COMPUTER-AIDED PROGRAMMING

We develop techniques and tools that exploit automated reasoning and large amounts of computing power to tackle challenging programming problems.

PROJECTS

Sketch — A synthesis-enabled language that allows programmers to write programs with holes and then rely on constraint-based synthesis to discover the missing code.
People: Armando Solar-Lezama

Jeeves — A programming language for automatically enforcing security and privacy policies.
People: Jean Yang

Bellmania — Deductive synthesis for large-scale implementations of dynamic programming algorithms. Strives to produce cache-oblivious distributed programs using a divide-and-conquer method. Incorporates modern proof techniques with a software refinement paradigm.
People: Shachar Itzhaky

Object Spreadsheets (joint work with SDG) — Attempts to make data-driven programming more accessible to end-users by imitating the look-and-feel of spreadsheets. The design comprises of a hybrid tabular-hierarchical data model, a query language for writing formulas, and an IDE.
People: Shachar Itzhaky, Matt McCutchen

Cyber-Physical Security — Safety-critical embedded systems are vulnerable to combinations of cyber and physical attacks. Examples include Stuxnet attacks on power grids and GPS spoofing. We use program analysis and synthesis techniques to analyze security vulnerability and develop defense mechanisms. People: Sicun Gao

Control Design Automation — To design controllers for dynamical systems is to solve a special class of program synthesis problems. We exploit the connection between control theory and formal methods to develop automated methods for hybrid and nonlinear control.
People: Sicun Gao

Synquid — Synquid stands for SYNthesis from liQUID types. It extends the Liquid Types framework, used successfully in program verification, to the domain of program synthesis, exploiting the combination of types and SMT-decidable predicates to generate provably correct programs in a modular fashion.
People: Nadia Polikarpova

Sigma — Sigma is a probabilistic programming language. It allows you to specify arbitrarily complex probabilistic models as functional programs, and provides inference procedures to answer questions about the model. Sigma’s inference algorithms combine modern statistical inference methods with abstract interpretation, SAT solving, and non-linear constraint solving.
People: Zenna Tavares

MSL — MSL is a synthesis enabled language for writing bulk-synchronous SPMD implementations.
People: Zhilei Xu

Cubix — Cubix is a framework for language-parametric source-to-source transformation. The ability to automatically rewrite code is critical for everything from automated refactoring to automated bug-fixing. Previous tools would need to be rewritten from scratch for each language because they lacked a way to handle the subtle variations between languages. We're making it possible to build tools that work on every language, and are just as good as tools written specifically for each language.
People: Jimmy Koppel

Mandate — If you write down the formal semantics of a programming language, it should be theoretically possible to automatically generate any tool you want for it. Mandate is a framework for doing this by performing rewrites and abstractions of rules. So far, we have focused on automatically synthesizing control-flow graph generators from operational semantics.
People: Jimmy Koppel

3cobblers — 3cobblers is an approximate program synthesis framework. Rather than synthesizing a correct program all at once, which can be difficult, it synthesizes a sequence of simpler approximate programs that approaches the correct program.
People: Evan Pu

AutoSMT — AutoSMT is a framework for automatically generating domain-specific rewriters for SMT problems. The generated problem rewriters are auto-tuned to performance of a specific solver for problems from a particular domain.
People: Rohit Singh

PUBLICATIONS

ALUMNI