
The Michael Jackson Design Technique:
A study of the theory with applications

C.A.R.Hoare
edited and introduced by Daniel Jackson

Abstract
This paper reproduces a report written by Hoare in 1977, in which he explains the fun-
damental ideas of Jackson’s programming method, JSP. The notions that Hoare uses for
this purpose – program traces, selective traces, and combination of selective programs
– appeared in the following years in the conceptual foundation of his process algebra,
CSP. Hoare shows that the key step in the JSP method, in which multiple stream struc-
tures are merged to form a single program structure, can be viewed in two phases. First,
each stream – represented as a regular expression – is transformed by applying simple
algebraic equalities into an equivalent structure, matching the structures obtained from
the other streams. Second, these structures are merged. The paper also includes a wider
discussion about the scope and nature of JSP. A new introduction provides some con-
text, and presents in full the examples that Hoare alludes to in his report.

Introduction
In March 1977, Tony Hoare wrote a short paper explaining the essence of JSP, the pro-
gram design method presented two years earlier in Michael Jackson’s book, Principles
of Program Design [4].

Hoare and Jackson had studied classics together at Merton College, Oxford, twenty
years earlier, and both had subsequently worked on large software projects and had
become dissatisfied with existing programming methods. Hoare was appointed pro-
fessor at Queen’s University in Belfast in 1968, and over the next few years developed
the seminal ideas in semantics and verification for which he was to receive the Turing
Award in 1980.

Jackson remained in industry (at the consultancy John Hoskyns & Company), and
began work on a new method. In 1970, he left Hoskyns and founded his own firm, Mi-
chael Jackson Systems Limited, to develop the method fully. By 1977, JSP – standing for
‘Jackson Structured Programming’, a name coined by the company’s Swedish licensee in
1974 – was widely known, used in the United States, Europe and Asia, taught in several
universities, and had been adopted (under the name ‘SDM’) by the UK government as
its standard program design method.

JSP is unusually rigorous, not only amongst the approaches known as ‘methods’ at
the time of its invention, but even by comparison with programming methods today.
Indeed, for most problems, JSP is systematic enough that two programmers can be ex-
pected to produce identical solutions to a given problem. This rigour – demanded also

2

by the tools built to support JSP – relied on the notation having a simple and precise
semantics. Jackson had provided such a semantics informally; JSP diagrams, it turned
out, were essentially regular grammars. There was, however, no mathematical theory of
JSP that might explain why the steps were sound, and what kinds of programs could be
handled. It is these questions that Hoare began to answer in his short paper.

The paper is interesting for another reason too. Hoare’s explanation of JSP in terms of
traces and projections connects it to his own work on CSP (Communicating Sequential
Processes). The same year that he wrote this paper, Hoare returned to Oxford, becom-
ing head of the Programming Research Group – following the death of Christopher
Strachey (who, incidentally, had introduced Jackson to programming as his teacher at
Harrow School in the early 1950s). Over the next few years, Hoare developed CSP, cul-
minating in the book of 1985 [3].

The Contributions of JSP

Because JSP advocated basing the structure of a program on the structure of the data
that it processes, it has often been misunderstood. In JSP, ‘data’ does not mean the in-
ternal data structures representing the state of the program. Nor does it refer to the
processing of inputs that are in-memory data structures (although JSP can be used ef-
fectively in this way, as for example in a current approach to functional programming
[1] that it inspired). Rather, ‘data’ in JSP refers to a stream being processed, and its struc-
ture is that imposed on it when parsed as input or generated as output.

The premise of JSP is that any sequential stream of data can be treated in the same
way, whether it consists of records read from a file on disk or a magnetic tape (dominant
when JSP was invented), or of events from a user interface or network. The developers
of Unix, in which the sequential stream plays a fundamental role, had the same idea. In
fact, one of the features of JSP-COBOL, the preprocessing tool sold by Jackson’s com-
pany, was its decoupling of programs from the physical properties of the devices, in
just the same way that Unix’s ‘special files’ allowed tape drives, network cards and other
peripherals to be accessed as if they were disks, through a single API [10].

In this sense, JSP was a precursor not only to CSP but more generally to the view
of programs as stream processors. The key insight of JSP is that a program to process
a stream is best structured in the same way as the stream itself. When only the input
stream has significant structure, JSP reduces to recursive descent parsing: a grammar
is written for the stream and the code traverses the grammar in the (now) obvious way.
Even today, this simple idea is not always well understood, and it is common to find
programs that attempt to parse iterations of iterations without nested loops, or that
become contorted with jumps, flags and exceptions because read operations are not
placed early enough in the stream to resolve ambiguities.

JSP was more than this though. It identified the source of many of the difficulties that
plagued data-processing programs as incompatibilities between stream structures. A
program that processes (as inputs or outputs) streams with distinct structures cannot
be structured on the basis of one stream alone (although a related method [11] attempt-
ed to do exactly that). Instead, a program structure must be found that generalizes over
all the streams, reducing to the structure of each stream when projected onto its events.

3

This idea is the focus of Hoare’s paper. He gives both a semantic view – in terms of
‘selective traces’ – of how a single program structure can be compatible with multiple
streams, and an operational view – in terms of algebraic identities on regular expres-
sions – of how the stream structures are manipulated to obtain the merged program
structure.

Many aspects of JSP are not addressed by the paper. In some cases, the stream struc-
tures are fundamentally incompatible, and cannot be reconciled by the kinds of trans-
formations that Hoare formalizes. JSP calls these situations structure clashes, and clas-
sifies them into three classes: ordering clashes, in which streams share elements but the
elements occur in different orders; boundary clashes, in which the elements occur in the
same order but are grouped differently; and interleaving or multithreading clashes, in
which one stream can be split into (sequential) components, with the elements of each
component corresponding to a subsequence of the elements of another stream.

JSP prescribes a solution for each kind of clash. For an ordering clash, the program is
broken into two phases, connected by a sort or by a data store that can be accessed in
either order. For a boundary clash, an intermediate stream is created, and the program
is either run in two phases, or two programs are run in parallel with a stream between
them. To eliminate the stream, one program can be run as a coroutine of the other. CO-
BOL, of course, did not provide coroutines, so JSP offered a program transformation
(automated by the JSP-COBOL tool) that converted stream reads and writes into calls,
and let the programmer choose whether the reader or writer had initiative without
changing to the code.

For an interleaving clash, a separate thread was executed for each interleaving. Jack-
son discovered (as he explained in the penultimate chapter of the JSP book [4]) that
most information systems could be viewed as stateful transformers that generated
reports from interleaved event streams. These streams could be grouped according
to type. The input stream presented to a banking system, for example, might include
events related to accounts, and events related to customers, and could thus be viewed
as an interleaving of a set of account streams (each containing updates to a particular
account) and a set of customer streams (each containing updates regarding a particular
customer). Thus Jackson’s system development method, JSD, was born [7]. Each type of
stream became a process type; instances of a process could be executed concurrently,
or could be scheduled on demand, with their states frozen in a database between uses.

This is, of course, much like object-oriented programming (OOP), but with some
important distinctions. JSD was more flexible than OOP in terms of scheduling and
concurrency. The treatment of scheduling issues as secondary (and their implementa-
tion by program transformation) provided an important decoupling. It also made JSD
suitable for the design of real-time systems. Moreover, JSD insisted on a clean separa-
tion between the objects that represented the state of the world, and the processes that
computed functions for output. In OOP, the coupling between these has been an end-
less source of difficulties that patterns such as Visitor [2] and strategies such as aspect-
oriented programming [9] try to mitigate. (The ‘join points’ of aspect-oriented pro-
gramming are perhaps just indications of how to form JSP correspondences between a
base program and its aspects.)

4

Another major focus of JSP was its treatment of recognition problems – when a re-
cord’s interpretation could not be resolved until after reading (sometimes an unbound-
ed number of) subsequent records. To handle this difficulty, JSP prescribed multiple
readahead, and when this was not feasible, positing a certain interpretation and back-
tracking if it turned out to be incorrect (an idea due to Barry Dwyer, who worked with
Jackson early on in the development of JSP).

Perhaps, however, none of these particular technical ideas was the essential contri-
bution of JSP – nor even the part of the book most widely quoted, namely Jackson’s
optimization maxim (‘Rule 1: Don’t do it. Rule 2 (for experts only). Don’t do it yet – that
is, not until you have a perfectly clear and unoptimized solution.’) [4, p. vii]. Rather, the
key contribution was the idea that a programming method should identify difficulties
inherent in the class of problems addressed. The difficulties provide not only a rationale
for the method’s prescribed solutions, but a measure of progress. Partly in reaction to
those who believed that a successful method was one that made all difficulties magically
vanish, Jackson formulated this idea explicitly (many years after JSP) as the Principle of
Beneficent Difficulty [8]:

Difficulties, explicitly characterized and diagnosed, are the medium in
which a method captures its central insights into a problem. A method with-
out limitations, whose development steps are never impossible to complete,
whose stages diagnose and recognise no difficulty, must be very bad indeed.
Just think about it. A method without limitations and difficulties is saying one
of two things to you. Either it’s saying that all problems are easily solved. You
know that’s not true. Or else it’s saying that some problems are difficult, but
the method is not going to help you to recognise or overcome the difficult bits
when you meet them. Take your choice. Either way it’s bad news.

So the identification of difficulties marks progress not only in a single development,
but in the field as a whole. A method’s difficulties characterize the class of problems
it addresses. In Jackson’s view, the limitations of JSP are not an embarrassment to be
hidden from potential users. On the contrary, the fact that its limitations are so clearly
spelled out – in terms of the difficulties the method addresses, and by omission the diffi-
culties it fails to address – makes it a worthy tool in the software developer’s repertoire.

An Outline of Hoare’s Paper

Hoare’s paper starts by connecting the structure of a program to the structure of its ex-
ecutions. A program’s behaviour is represented by its possible executions, called traces
(later to become the semantic foundation of CSP); and a program with a regular struc-
ture defines a regular language of traces. Hoare defines a program as annotated if mock
elementary statements have been inserted that have no effect on the state when execut-
ed, but which indicate, when they occur in a trace, the beginning or end of a structural
block (according to whether the program is ‘left’ or ‘right’ annotated). The trace of an
annotated program thus reveals the structure of the program that generated it, and by
this means, Hoare is able to express the idea of structural correspondence between pro-
grams entirely semantically.

5

Hoare then introduces the selective trace, in which only some subset of statements
appear – such as the reads of a particular input stream, or the writes of an output stream,
or the updates of a particular variable – and the selective program in which all but the
chosen statements have been deleted. By postponing consideration of conditions and
treating them as non-deterministic, Hoare ensures that the selective traces obtained
by filtering the traces of the complete program are exactly those obtained from the full
executions of the selective program. This notion of selection becomes a principal means
of abstraction in CSP (where it is referred to as ‘restriction’ when applied to traces and
‘hiding’ when applied to processes).

JSP, Hoare explains, can be viewed as a reversal of this selection process. Instead of
obtaining selective programs from a complete program, the complete program is syn-
thesized by merging its selective programs. Since the selective program for a stream is
exactly that stream’s grammar, the selective programs are readily available. To obtain
the complete program, the selective programs have to be brought into correspondence.
Hoare defines correspondence as a simple property on the traces. Two elementary
statements a and b correspond if they strictly alternate a; b; a; b; … etc; similarly, two
larger structures correspond if the start of the first alternates with the end of the second.
(By left-annotating the first selective program and right-annotating the second, this cor-
respondence of structures becomes a simple alternation of the annotation events.)

Two selective programs can be brought into perfect correspondence by manipulat-
ing their structures until they match. These manipulations can be expressed as simple
transformations on regular expressions, each based on a well-known algebraic iden-
tity. Because these transformations preserve the meaning of the regular expression, the
changes made to the selective programs do not affect their trace sets.

This formalization does not tell the whole story. As Hoare notes, correspondences
have a deeper semantic significance. Two elementary statements a and b can only be
paired if, in addition to strictly alternating, the data required to generate each b can be
computed from the a’s and b’s that preceded it. In JSP, the programmer determines this
informally.

The contribution of Hoare’s paper is not only an elegant and compelling formaliza-
tion of the basic concept of JSP. From his formalization emerge some concrete proposals
for the method itself:

(a) In Jackson’s approach, the merging of selective programs is accomplished often
in a single step, which can be justified by a check that applying each selection to
the merged program recovers the original selective program. Hoare prefers the
merging to be performed in a series of small steps, each formally justified, so
that the resulting merged program is correct by construction.

(b) JSP postpones the listing and allocation of operations until the merged program
has been obtained. Hoare notes that a selective program could be written not
only for each stream, but also for each variable. Allocation of operations then
becomes just another merging step. As Hoare suggests, this could be a useful
teaching tool. Whether it would work well in practice is less clear. The usage
pattern of a variable – unlike the structure of an input or output stream – is not
given but rather invented, is often guided by the structure of the merged pro-

6

gram, and is dependent on the usages of other variables. So it may be hard to de-
scribe the variables independently before considering their inter-relationships.

(c) Whereas Jackson sees the notion of structure clash as absolute – two selective
programs clash if the only possible merge places one in its entirety before the
other – Hoare prefers to see the notion as relative. Whenever correspondences
cannot be established all the way down to the leaves of the structure tree, some
state must be retained in memory to record the effect of multiple events. Hoare
notes that the programmer may have a choice about how far down to go, and
might choose to read an entire structure from one stream before writing the
entire corresponding structure to another, even if a finer-grained interleaving
were possible. Jackson would view this as undesirable, since it sees a structure
clash where one does not really exist, and would prefer a tighter program, ap-
plying the standard JSP strategy of establishing correspondences as far down
as possible. But Hoare’s proposal is nevertheless compelling, because it adds
some flexiblity to JSP, allowing greater use of intermediate structures. And by
JSP standards, most programs written today are quite loose, and take liberal
advantage of Hoare’s proposal.

Hoare’s paper was written not for an academic audience, but as a consulting report. It
references example problems (taken from contemporary course materials) and assumes
a knowledge of the basic JSP method. To make it more accessible, I have added brief
presentations of these problems, based on the versions that appeared in Jackson’s book.
The paper was written in Hoare’s elegant long hand. Beyond typesetting it, I have made
only a few changes: notably updating the code fragments to a more modern idiom, in-
lining some footnotes, and adding section headings.

Multiplication Table Problem

The Multiplication Table problem is the first appearing in Jackson’s book [4, pp. 3–7].
It is used not so much as an illustration of how to apply the JSP method, but rather to
show the difference between a well-structured program, in which the program struc-
ture matches the stream structure, and a poorly structured program obtained by coding
from a flowchart (a popular technique back in the 1970s). With the correct structure, a
variety of simple modifications are straightforward to apply. With the wrong structure,
even the most simple modification is awkward: a change to how a line is displayed, for
example, cannot be made locally, because no program component corresponds exactly
to the displaying of a single line.

The problem is to generate and print a multiplication table in this form:

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
…
10 20 30 40 50 60 70 80 90 100

7

JSP proceeds by representing the streams as regular grammars, forming a merged pro-
gram structure from the stream structures, and then allocating operations to it. In this
case – somewhat unusually for JSP – the only stream to consider is an output stream,
and no merging will be needed. Its structure is simply an iteration of lines, each being
an iteration of numbers (Figure 1).

Using a variable r to count rows, and c to count columns, the operations required are
the initializations:

1. r = 1
2. c = 1

the updates:

3. r = r + 1
4. c = c + 1

and operations to clear a line, append a number to it, and write the line to output:

5. clear ()
6. append (r × c)
7. write ()

Each operation is allocated (Figure 2) by finding its appropriate component (by asking
how often the operation should be applied), and placed in a position relative to the other
operations to ensure the required dataflow. So, for example, to place operation (3) that
updates the row, we ask: ‘how many times is the row variable updated?’. The answer is
‘once per line’, so we allocate it to LINE, placing it at the end since the new value will be
used for the next iteration. Similarly, we place the row initialization at the start of the
table; the line-clearing, column initialization and line-writing once per line; and the
adding of a new entry and the column update once per number. Although, as Hoare will
note, placing the operations requires programmer intuition, it is usually easy; if not, the
program structure is almost certainly wrong.

TABLE

LINE *

NUMBER *

Fig. 1: Structure of Multiplication Table

8

Finally, the conditions for the iterations are identified – c <= r for number iteration
and r <= 10 for the line iteration – and the code is transcribed from the diagram:

r = 1;
while (r <= 10) {
 c = 1;
 clear ();
 while (c <= r) {
 append (r × c);
 c = c + 1;
 }
 write ();
 r = r + 1;
 }

(I have chosen the operations to match the original COBOL program, which is not so
different from the program one might write today in Javascript, for example, in which
clear () might be written as document.write (“<tr>”), append (r × c) as document.write (“<td>”,
r*c, “</td>”), and write () as document.write (“</tr>”). In a language such as C# or Java, the
need to write a tab before each number would require a small elaboration of the output
stream structure, to distinguish the first number on each line, since otherwise an extra
tab would appear the end of each line.)

Stores Movement Problem

The Stores Movement problem [4, pp. 59–63] is a more typical JSP problem, in which the
program structure is derived from the structure of a single input stream.

In the 1960s, magnetic tape was the only realistic choice for large files. A 2400-foot
tape cost about $10 and held 20-60MB; a hard disk that held only 2MB cost about $400.
Consequently, company data was typically stored on one of more ‘master files’ held on
tape, with records sorted, for example, by customer number. Transactions were held on

TABLE

LINE *

NUMBER *

1

2 3

4

5

6

7

Fig. 2: Multiplication Table structure with allocated operations

9

a separate tape as a stream of records sorted on the same key, and were applied in batch
by reading both tapes and writing a new tape for the updated master file.

Although such programs were standard, errors – such as mishandling an empty set
of records or mistakenly reading beyond a record – were common, and many of the
techniques used at the time encouraged the use of flags and complex control flow, re-
sulting in a bug-ridden program with little semblance of structure. JSP identified the
essential difficulties and prescribed simple and systematic remedies for them: reada-
head for recognition difficulties; interposed streams for structure clashes; inversion for
overcoming lack of multithreading, etc.

In the Stores Movement problem, a file of transactions is to be summarized. The file
contains records for orders of parts received and issued by a factory warehouse, each
record consisting of a code indicating receipt or issue, a part number, and the quantity.
The file has already been sorted into part-number order. The problem is to generate a
report with one line for each kind of part, listing the part number and net movement
(total received minus total issued). The reader is encouraged to sketch a solution to this
problem before proceeding.

The input file is an iteration of groups (one per part number), each group being an
iteration of movement records, and each record being an issue or a receipt (Figure 3a).

The operations are:

1. smf = open (…)
2. close (smf)
3. rec = read (smf)
4. display (pno, net)
5. pno = rec.part_number
6. net = 0
7. net = net + rec.quantity
8. net = net - rec.quantity

The program structure is just the input stream structure. Each operation (as explained
before) is allocated (Figure 3b) by finding its appropriate component and placing it in
a position relative to the other operations that respects dataflow dependences. So, for
example, to place operation (1) that opens the file, we ask: ‘how many times is the file
opened?’. The answer is ‘once per stores movement file’, so we assign the operation to the
top level node, and knowing that the file must be opened before reading, we place it at
the start. Operation (7), which increments the net movement, must be executed once
for each receipt record, so we assign it to RECEIPT. To place the read operation (3), we
ask how much readahead will be required. Since we only need to determine whether the
next record is a receipt or an issue record (and whether it belongs to the group currently
being processed) single readahead will do, so a read is allocated once immediately after
the open, and once after each record is consumed.

The resulting program is:

smf = open (…);
rec = read (smf);
while (!eof (rec)) {

10

 pno = rec.part_number;
 net = 0;
 while (!eof (rec) && pno == rec.part_number) {
 if (rec.code == ISSUE)
 net = net - rec.quantity;
 else
 net = net + rec.quantity;
 rec = read (smf);
 }
 display (pno, net);
 }
close (smf);

This example, although simple, illustrated an important point. The double iteration is
essential to match the structure of the input; without it, getting a clear and maintain-
able program is impossible. And yet the traditional approach to writing such programs
at the time ignored this simple observation, and, in place of the nested iteration, used
a ‘control break’ to separate the record groups. Although the term ‘control break’ is no
longer used, the same mistake is still made today. Few programmers would solve the
Multiplication Table problem with only one loop, but many would fail to see the same
nested structure in this case.

Hoare’s reference to this problem was actually to a version appearing in course notes
(Figure 4b), which differed slightly from the version appearing in the book (Figure 4a),
by having the report include a heading. This hardly complicates the problem, but it illus-
trates an important point from a theoretical perspective: that formalizing the merging
process would require, in this case, an additonal elaboration that Jackson skips.

1 23

45 6

78

SMF

PART-GROUP*

MOVEMT-REC*

ISSUE RECEIPT

3

SMF

PART-GROUP*

MOVEMT-REC*

ISSUE RECEIPT

Fig. 3: Stores Movement Problem.
3a (left): Structure of input stream; 3b (right): With operations allocated

11

Magic Mailing Problem

The Magic Mailing problem appears in the chapter of the book [4, pp. 70–74] that shows
how to construct programs that handle multiple streams, and is an example of a ‘collat-
ing’ or ‘matching’ problem.

Here is the description of the problem from Jackson’s book:
The Magic Mailing Company has just sent out nearly 10,000 letters con-

taining an unrepeatable and irresistible offer, each letter accompanied by a
returnable acceptance card. The letters and cards are individually numbered
from 1 to 9999. Not all of the letters were actually sent, because some were spoilt
in the addressing process. Not all of the people who received letters returned
the reply card. The marketing manager, who is a suspicious fellow, thinks that
his staff may have stolen some of the reply cards for the letters which were not
sent, and returned the cards so they could benefit from the offer.

The letters sent have been recorded on a file; there is one record per letter
sent, containing the letter-number and other information which need not con-
cern us. The reply cards are machine readable, and have been copied to tape;
each reply card returned gives rise to one record containing the letter-number
and some other information which again does not concern us. Both the letter
file and the reply file have been sorted into letter-number order.

A program is needed to report on the current state of the offer. Each line of
the report corresponds to a letter-number; there are four types of line, each
containing the letter-number, a code and a message. The four types of line are:

NNNNNN 1 LETTER SENT AND REPLY RECEIVED
NNNNNN 2 LETTER SENT, NO REPLY RECEIVED
NNNNNN 3 NO LETTER SENT, REPLY RECEIVED
NNNNNN 4 NO LETTER SENT, NO REPLY RECEIVED

When there is more than one stream, JSP proceeds by identifying correspondences be-
tween the elements of the structures of the various streams. Corresponding elements

REPORT

SUMMARY
LINE

*

BODYHEADING

REPORT

SUMMARY
LINE

*

Fig. 4: Structure of output stream for Stores Movement Problem
4a (left): Version appearing in book [3]; 4b (right): Version appearing in course notes

12

then become a single element in the program structure. The programmer can check
that the program structure is correct by taking each stream in turn, and projecting the
program structure onto the elements of that stream. If the program structure has been
obtained correctly, this will recover for each stream a structure equivalent to the origi-
nal one.

Collating problems such as Magic Mailing present a complication. The input streams
– here, one for letters and one for reply cards – cannot be understood in isolation from
one another; we need to impose a structure on each stream based on its relationship to
the others. In the Magic Mailing solution in Jackson’s book, each stream is represented
as an iteration of matched or unmatched records (Figure 5). The report is just an itera-
tion of lines, each having one of the four forms (Figure 6).

To obtain the correspondences (Figure 7), we match each type of output record to its
corresponding inputs: type 1 when both input files have matched records, type 2 when a
letter record is unmatched, and type 3 when a reply record is unmatched. A type 4 out-
put has no correspondence in the input, since it represents the case in which a record
is missing from both files.

The operations are easily identified, and allocated using single readahead, resulting
easily in the final program:

lrec = read (lfile);
rrec = read (rfile);
n = 1;
while (n < 9999) {
 if (lrec.num == n == rrec.num) {
 write_type_1 (n);
 lrec = read (lfile);
 rrec = read (rfile);
 }
 if (lrec.num == n != rrec.num) {
 write_type_1 (n);
 lrec = read (lfile);
 }
 if (lrec.num != n == rrec.num) {
 write_type_1 (n);
 rrec = read (rfile);
 }
 if (lrec.num != n != rrec.num) {
 write_type_1 (n);
 }
 n = n + 1;
 }

Although this final program is correct, the method is not, strictly speaking, applied cor-
rectly. As Hoare notes, there is no correspondence between LREC, RREC, and LINE, since
there may be more lines that letters or reply cards. The correct solution is to elaborate
the input structures further, to distinguish records that are present from records that

13

LFILE

LREC *

MATCHED
LREC

UNMATCHED
LREC

Fig. 5: Structure for letter file of Magic Mailing Problem

Fig. 6: Structure for report of Magic Mailing Problem

REPORT

LINE *

TYPE 1 TYPE 2 TYPE 3 TYPE 4

LFILE

LREC *

MATCHED
LREC

UNMATCHED
LREC

RFILE

RREC *

MATCHED
RREC

UNMATCHED
RREC

REPORT

LINE *

TYPE 1 TYPE 2 TYPE 3 TYPE 4

Fig. 7: Correspondences for Magic Mailing Problem

14

are missing. Jackson does in fact show how to perform this elaboration [4, p.72], but
appears not to insist on its use.

15

The Michael Jackson Design Technique:
A study of the theory with applications

C.A.R.Hoare

1 Programs, Traces and Regular Expressions
The execution of a computer program involves the execution of a series of elementary
commands, and the evaluation of a series of elementary tests (which, in fact, the Mi-
chael Jackson technique tends to ignore). It is in principle possible to get a computer to
record each elementary command when it is executed, and also to record each test as it
is evaluated (together with an indication whether it was true or false). Such a record is
known as a ‘trace’; and it can sometimes be helpful in program debugging.

It is obviously very important that a programmer should have an absolutely clear un-
derstanding of the relation between his program and any possible trace of its execution.
Fortunately, in the case of a structured program, this relation is very simple – indeed, as
Dijkstra pointed out, this is the main argument in favour of structured programming.
The relation may be defined as follows:

(a) For an elementary condition or command (input, output, or assignment), the
only possible trace is just a copy of the command. This is known as a ‘terminal
symbol’, or ‘leaf ’, of the structure tree.

(b) For a sequence of commands (say P ; Q), every possible trace consists of a trace
of P followed by a trace of Q (and similarly for sequences longer than two).

(c) For a selection (say P ∪ Q), every possible trace is either a trace of P or a trace of
Q (and similarly for selections of more than two alternatives).

(d) For an iteration (say P*), every possible trace is a sequence of none or more
traces, each of which is a (possibly different) trace of P. Zero repetitions will give
rise to an ‘empty’ trace <>. Thus it can be seen that a program is a kind of regular
expression, and that the set of possible traces of the program is the ‘language’
defined by that expression. In fact, the ‘language’ will contain many traces that
can never be the result of program execution; but for the time being it will pay
to ignore that fact.

Of course, a complete trace of every action of a program will often be too lengthy for
practical use. We therefore need a selective trace, which is a record of all actions affect-
ing some particular variable, or some particular input or output file. (Note that a com-
plete trace is a merging of all the selective traces derived from it; but it is not possible to
work out which merging it was from the selective traces alone.)

A record of all input instructions on a particular input file will be effectively the same
as a copy of the particular data presented to the program on that particular execution of
it; and similarly a selective trace of output instructions will be nothing but a copy of the
output file. For program debugging such traces would never be required. But the idea of
the selective trace is the basis of the whole Michael Jackson Design Technique.

16

2 Extracting Selective Programs
The theoretical foundation for the technique is that there is a very close relation be-
tween a complete program, defining a set of complete traces, and the ‘selective’ or ‘par-
tial’ programs defining the sets of all selective traces; indeed, a selective program can be
derived automatically from a complete program by the following algorithm:

(a) An elementary command is retained if it refers to the selected variable or file;
otherwise, it is replaced by the empty trace <>.

(b) A sequence P ; Q is replaced by P’; Q’, where P’ is the selective program derived
from P and Q’ is the selective program derived from Q. If P’ is <>, then it may be
omitted (leaving Q’), and similarly if Q’ is <>.

(c) A selection P ∪ Q is replaced by P’ ∪ Q’ where P’ and Q’ are the corresponding se-
lective programs. In this case, an empty program element must not be omitted.
However, if P’ and Q’ are identical, then one of them can be suppressed.

(d) An iteration P* is replaced by (P’)* where P’ is the selective program derived
from P. If P’ is <>, then (P’)* should be taken simply as <> instead of <>*. In P*; P*,
the second P* can be suppressed.

Let us taken an example, the Multiplication Table problem. The complete program is:

r = 1;
(
 c = 1;
 clear ();
 (
 append (r × c);
 c = c + 1
)* ;
 write ();
 r = r + 1
)*

The selective program for r is:

r = 1; (r = r + 1)*

The selective program for c is

(c = 1; (c = c + 1)*)*

The selective program for output is

(clear (); append ()*; write ())*

Jackson recommends that all these programs should be written as tree diagrams, which
can easily be done. The main advantage of doing so is that every part of the regular ex-
pression must be given its own name. This can also be done by splitting the definition of
the regular expression, for example:

TABLE ≙ r = 1; LINE*
LINE ≙ c = 1; clear (); NUMBER*; write (); r = r + 1
NUMBER ≙ append (r × c); c = c + 1

17

But there remains the advantage of the tree-picture, since it avoids repetition of the
‘nonterminal symbols’ (LINE, etc); and it prevents recursion.

Now let us suppose that the non-terminal symbols are included in the program, as
‘commands’ without any effect, except that they are recorded as part of the trace of pro-
gram execution. We say that a program is left annotated if the nonterminal symbol pre-
cedes the expression which defines it, and that it is right annotated if the nonterminal
symbol follows the expression which defines it. These concepts correspond to preorder
and postorder traversal of the corresponding tree. For example, the left-annotated ver-
sion of the Multiplication Table problem would be:

TABLE;
r = 1;
(
 LINE;
 c = 1;
 clear ();
 (
 NUMBER;
 append (r × c);
 c = c + 1;
)* ;
 write ();
 r = r + 1
)*

And the right–annotated version would be:

r = 1;
(
 c = 1;
 clear ();
 (
 append (r × c);
 c = c + 1
 NUMBER
)* ;
 write ();
 r = r + 1;
 LINE
)* ;
TABLE

The advantage of these annotated programs is that we can obtain selective traces and
corresponding selection programs that print out only selected nonterminal symbols;
and thereby we greatly shorten the traces we need to consider. For example, a selective
program for LINE and NUMBER would be

(LINE; NUMBER*)*

18

which is identical to the tree diagram on which the original structure was based.
Consider now a selective trace containing just two commands (or nonterminals) a

and b. It may happen that the occurrences of a and b strictly alternate, thus:

a; b; a; b; …; a; b.

A selective program for this trace is simply (a; b)*. If every such selective trace of a pro-
gram displays this behavior, we say that the actions a and b correspond in that program.
The correspondence of actions is indicated in Michael Jackson’s diagrams by drawing a
double–ended arrow between boxes containing the actions a and b.

3 Merging Selective Programs
The basic insight of the Michael Jackson Design Technique is that in the design phase
of the program construction, the selection algorithm for regular expressions can profit-
ably be reversed; that is that the programmer should first design his selective programs,
and then he should arrange them to obtain the complete program. The important se-
lective programs are those relating to the input and output files; fortunately, these can
usually be designed quite simply, given the specification of the problem to be solved.
There remains only the task of merging them, together with the necessary operations
on internal variables.

We shall consider the task of merging only two selective programs at a time. We will
call these the left program (usually the input) and the right program (usually the out-
put). We shall assume that these are fully annotated, like Michael Jackson’s trees; and in
considering the traces, we will assume that the left program is left-annotated, and the
right program is right-annotated.

Consequently if two nonterminal symbols (internal nodes in the tree) are found to
correspond, this means that the start of execution of the left subtree below the left node
will always strictly alternate with completion of the execution of the subtree below the
right node of the pair.

In principle, it is always possible to solve the merging problem in the wholly trivial
fashion, by putting the entire left program (for input) before the entire right program
(for output), thus: INPUT; OUTPUT. This would mean that the entire input file is read and
stored in internal variables of the program; and only when input is complete does the
output start. But this trivial solution will usually be totally impractical, since there will
not be sufficient room in internal storage to hold the entire input file before output
starts. We therefore wish to obtain a program that economises on space by reusing in-
ternal storage occupied by input data as soon as possible after the data has been input.

In principle, the best way to ensure this is to move the output instructions as early as
possible in the merged program, because in general it is possible to overwrite input data
immediately after execution of the last output instruction that actually uses the data.

So it is a good idea to try to plan for early output even before designing the storage
layout of the input data, or how it is going to be reused. (Of course, early output doesn’t
guarantee success; but success will depend on it).

The basis of the technique recommended by Michael Jackson is the recognition of
correspondences between the paired actions, in which an action of the left program

19

is paired with some action from the right program. Recall that corresponding actions
alternate in every execution of the program. As explained above, the entire input pro-
gram can always be paired with the entire output program, since the start of the top
nonterminal symbol of the one is always followed (exactly once!) by the end of the top
nonterminal of the other. So the essence of the technique must be to find paired actions
lower down in the tree as well, because this is what is required to permit output opera-
tions to be more tightly interleaved with input.

There are two conditions necessary for successful interleaving of a left and right pro-
gram:

(a) the structures of the two programs must match;
(b) the proposed correspondences between the actions must be feasible.

The second of these conditions is the more difficult. Consider, for example, the Matrix
Transposition problem (Figure 8). Here we seem to have a good ‘structural’ match (con-
dition (a)): as always, the top level nodes – here INPUT-MATRIX and OUTPUT-MATRIX – can
be paired. Apparently also, INPUT-ROW can be paired with OUTPUT-COLUMN. Of course,
this would not work for a non-square matrix, which has more rows than columns, or
vice versa. But this possibility cannot be detected from the diagrams; it must be sup-
plied by the intuition of the programmer. Suppose the programmer knows that the input
matrix is square, with the same number of rows as columns. Even so, the pairing won’t
work, because it is impossible to print the first column after input of only the first row,
simply because there is not yet enough input information available to do so. In fact, out-
put of the first column cannot take place until after input of the last row. (This example
is well explained in Jackson’s book [4, pp. 151–153]). The point that I wish to make here
is that the identification of the corresponding pairs requires considerable insight from
the programmer, and an understanding of what input data is required for the calcula-
tion of the value of each item of data output.

When the conditions cannot be satisfied and no interleaving is possible, we have,
in Jackson’s terminology, a structure clash. This is, in fact, a relative term. A structure
clash can occur anywhere in the tree, when it proves impossible to perform an output
instruction until a whole group of input instructions has been completed. If there is

INPUT
MATRIX

INPUT
ROW *

INPUT
NUMBER *

OUTPUT
MATRIX

OUTPUT
COLUMN *

OUTPUT
NUMBER *

Fig. 8: Structures for Matrix Transposition Problem

20

enough room in main store to hold a sufficiently detailed summary of the input data,
then the structure clash causes no problem, and can be ignored. If there is not enough
room, other measures must be adopted: for example, the use of an intermediate data
file, sorting, program inversion, etc. But these are just more sophisticated methods of
saving main storage, which must be used when the simpler method of interleaving has
failed (at any level). They will not be further mentioned in this study.

Let us move away from the extreme of structural mismatch to the other extreme of
perfect structural match, in which every component of the left program is paired with
some component of the right program, and vice versa, and furthermore every member
of a sequence is paired with a member of a sequence, every member of a selection is
paired with a member of a selection, and every iteration is paired with an iteration. Ac-
tually, it does not matter if there are some completely unmatched subtrees in either of
the programs; e.g., the structures of Figure 9, for example, are perfectly matched.

It is now a completely mechanical task to construct a merged program from the left
and right programs, together with their pairings. First draw an identical copy of either
tree, as far as it matches the other (Figure 10); the two trees are, of course, identical up
to that point. Then extend each leaf of the tree as a sequence of two elements, the left
one taken from the left program, and the right one from the right program (Figure 11).
Any subtrees should be copied too.

4 Transformations
The merging we have considered so far is only the simple case. In general, the left pro-
gram will have quite a different tree structure from the right program. In this case, it is
impossible to apply the simple procedure described above, even when the pairing lines
can validly be drawn between the boxes. The solution to this problem is to transform
one or both the programs to an equivalent program in such a way that there is an exact
match between the paired items. We are therefore interested in transformations that
preserve the meaning of a program. In general, the transformations will be the reverse
of the simplifications that can be made when a program is separated by the process de-
scribed above (in Section 2). Let us try to catalogue such transformations.

The simplest transformation is just the insertion of an extra box on a line (Figure 12).
This is required in the Stores Movement problem (Figure 13). Of course, after a bit of
practice, one would not always wish to make this elementary transformation explicitly;
but to begin with, it may be a good idea to realize the necessity for it.

Another very common transformation is the introduction of a selection, by simply
copying complete subtrees (as in Figure 14, where B’ and B“ are identical copies of the
subtree B). This transformation is required when the output selective program makes a
distinction (like MATCH and NOMATCH) that is not made explicitly in the definition of the
input. This technique is the converse of the simplification Q ∪ Q → Q in regular expres-
sions, and relies on the fact that the same set of languages is defined before and after the
transformations.

In general, multiple structures must be brought into correspondence together. In the
Magic Mailing problem, for example, there are three structures: the letter file, the reply

21

*

L7 L8

L4 R4 L5 R5 L6 R6

R7 R8

L1

L2 L3

R1

R2 R3

R7 R8

*L4 *

L7

R4 *

L8

L5 R5L6 R6

**

Fig. 9: Structures that are perfectly matched despite unmatched subtrees

Fig. 10: Constructing a merge: first step

Fig. 11: Constructing a merge: second step

22

file, and the report. Here, we shall deal with only two of the tree structures at a time.
This is always a valid simplification, and will always find a successful solution if one ex-
ists – though it might be a good idea to get a rigorous proof of this fact.

Consider the reply file and the report (Figure 15). It is clear that RREC cannot be
paired with LINE, since there are more lines than RRECs. The only solution to this problem
is to introduce a selection (Figure 16), with an empty alternative to correspond to the
lines which are written without reading an RREC.

This transformation can be made without looking any further down the tree from the
LINE* component. The validity of the transformation relies on the fact that the languages
defined by

R*

and

<> ∪ R*

are identical. (Perhaps this is a simple case of Jackson’s ‘interleaving clash’ and its resolu-
tion). In the Magic Mailing problem, it turns out that two further copies of the empty

A

NEW

B

A

B

⇒

Fig. 12: Simple transformation: adding structure
Before transformation (left); after transformation (right)

SMF

PART-GROUP*

SMF

PART-GROUP*

NEW

SUMMARY
LINE

*

BODY

⇒

Fig. 13: Applying transformation to Stores Movement Problem
Before transformation (left)

After transformation (right), with correspondences to output stream shown

23

A

B

A

NEW

B' B"

⇒

Fig. 14: Introduction of a selection, based on the identity Q = Q ∪ Q
Before transformation (left); after transformation (right)

RFILE

RREC *

REPORT

LINE *

Fig. 15: Unmatched structures in the Magic Mailing Problem

RFILE

NEW *

REPORT

LINE *

EMPTY RREC

Fig. 16: Applying the transformation based on the identity
R* = <> ∪ R* to the Magic Mailing Problem

24

alternative must be made to match the structure of the line. This splitting of alternatives
has already been justified by the fact that (R ∪ R) = R. Then exactly the same transfor-
mations must be made in the letter file. In Jackson’s solution, all these transformations
are made implicitly and simultaneously on both files, thereby obscuring the essential
simplicity of the operations.

These two examples of identities over regular expressions can be used to transform
the left and right selective programs to make them match prior to merging. It might be
interesting to list some of the simpler identities, and construct examples of their useful
application; eg.

(P; Q); R = P; (Q; R) = P; Q; R

which is shown diagramatically in Figure 17. Similar diagrams can be drawn for the fol-
lowing:

(P ∪ Q) ∪ R = P ∪ (Q ∪ R) = P ∪ Q ∪ R
P; <> = <> ; P
P ∪ P = P ∪ P ∪ P = P
P ∪ Q = Q ∪ P
R* = (R ∪ <>) *
R * = (R ∪<>); R* = R*; (R ∪ <>)
P; (Q ∪ R) = (P; Q) ∪ (P; R)
(P ∪ Q) ; R = (P; R) ∪ (Q; R)

and so on.
The correct application of these rules could, of course, be checked by computer. But,

unfortunately, the computer cannot help in applying the rules in finding correspon-
dences, because this depends intensely on the programmer’s intuition about what needs
to be done before what. Nevertheless, we can now give the programmer very much
more explicit advice about how to apply Michael Jackson’s Design Technique.

(a) Initially, one need consider only two partial programs at a time; any others can
later be merged with the result of the first two, one after the other.

(b) Start by drawing the correspondence between the root nodes of the tree. Then
consider only one pair of nodes at a time, one from the left program and one
from the right. Check that all nodes higher than the considered nodes have

R

P Q

P

Q R

RP Q
= =

Fig. 17: Transformations based on the identity (P; Q); R = P; (Q; R) = P; Q; R

25

already been successfully paired (that is, all nodes on the path back to the root
have been paired).

(c) If the nodes cannot be paired, try transforming one or both of the nodes by any
of the valid transformations listed above.

(d) If you can’t succeed, abandon this pair of nodes, and try any other possible pair.
(e) When the tree of paired nodes has been extended as far as possible, check that

there is enough room in main storage to accommodate the input data before it
is output. This must be done at every point where it was impossible to obtain a
correspondence.

(f) If not, try to establish further pairs, even though the parent nodes have not
been paired. If this can be done, then we have an example of Michael Jackson’s
‘structure clash’ (in this case, a ‘boundary clash’) which can be resolved by his
technique of an intermediate working file, and by program inversion.

Here again, the establishment of the pairs requires an understanding of the nature of
the problem, and cannot be done automatically. For example, in the Telegrams Analysis
problem [4, pp. 155–160] the ‘words’ of the input file are in the same order as the ‘words’
required by analysis; but in the case of the numbers of the Matrix Transposition prob-
lem, this is not so (even though there are the same number of them!). Only the human
programmer can distinguish between the two cases.

5 Summary
To summarise this rather rambling discourse, I will give brief answers to a number of
questions which were posed before the start of the study.

What is the meaning of a structure diagram?

It is a pictorial representation of a regular expression; the language defined by the regu-
lar expression contains all possible traces of execution of the commands which feature
as terminal nodes of the tree.

Are there any other programs that cannot be written by the Michael Jackson Design Tech-
nique?

In principle there are not; because every program trace is a repetition of the union of all
the terminal commands (ie, the regular expression comprising the set of all strings over
the given alphabet). But this description would be extremely unhelpful. The Michael
Jackson Technique is most useful when it is possible to construct rather deep structure
trees, and when the structure of the program execution is determined by the structure
of its input/output data. It is less useful for the development of clever algorithms, where
the content of the program is difficult to determine, and the course of the calculation is
dominated by tests on the internal data (ie, while-conditions and if-conditions).

What is the meaning of the ‘correspondences’ drawn as horizontal double-ended arrows
between nodes in two structure diagrams?

A pair of nodes correspond if for every execution of the program, the start of execution
of the left node alternates strictly with end of execution of the right node.

26

What is the taxonomy of tricks available to transform a structure to bring it more into
correspondence with some other structure?

It is possible to use any valid identity between regular expressions. A number of these
identities can be listed and illustrated by example.

Is it possible to write a computer program that will check whether an original and a
transformed structure diagram describe the same data or program?

Yes; but the program would be polynomial space-complete (see [12, 13]). This means
that there is no efficient algorithm known; the best known algorithms are based on an
exhaustive search of all possible methods of matching, which will be quite inefficient in
many cases. But perhaps a more serious problem is that we probably do not want an ex-
act isomorphism between the languages described; there is no unique way of describing
a program as a regular expression; and the programmer should be at complete liberty to
give slightly more accurate or less detailed descriptions of his data, if this will help him
to find useful correspondences.

Is it possible to detect whether correspondences have been correctly filled in?

Yes. It is trivial, provided that all the needed extra nodes have been inserted. All that is
necessary to check is that whenever two nodes correspond,

(a) Their parent nodes correspond.
(b) They are the same kind of nodes (o , * , or plain).

In fact, Michael Jackson does not usually put in all the extra nodes and lines that are
needed. Presumably it would be possible to define some machine-checkable conven-
tions which would permit these extra nodes to be omitted. But for teaching purposes, it
might be better to make the students write them in, to begin with.

What is a structure clash?

A structure clash is whatever prevents the chain of correspondences between branches
of two diagrams to be extended.

(a) Some structure clashes can be resolved by making valid transformations on one
or both structures.

(b) Some structure clashes can be tolerated because there is room enough in main
store to hold all of the data required.

(c) In some cases the clash is not resolvable, since the required output data simply
cannot be computed from the preceding input data. There is no automatic way
of detecting this case; it must rely on the programmer’s judgment.

(d) In case (c) it sometimes happens that a correspondence can be established low-
er down in the tree. In this case we have a definition of a boundary clash, for
which Jackson’s methods provide an excellent solution.

How do you list all the executable operations which will be required, and how do you put
them in the proper place?

This is in principle the same task as finding correspondences between two structure
diagrams. I would recommend that a structure diagram should be drawn for each in-

27

ternal variable of the program, just as it is for the input and output. For example, in
the Multiplication Table problem, we could construct diagrams for c and r; and then
establish the correspondences and merge the diagrams in the same way as any other
structure diagrams (see Figure 18).

How much of the Michael Jackson Technique relies on programmer judgment, and how
much is just routine formal manipulation?

All the part that involves construction of structure diagrams, and established of cor-
respondences, relies on the judgment of the programmer. The great advantages of the
Michael Jackson Technique are that:

(a) It provides a framework within which the programmer can make one decision
at a time, with high confidence that all decisions will mesh properly with each
other.

(b) It provides a framework within which he can describe and justify his decisions
to his managers, colleagues, subordinates, and successors; and gives these the
ability to understand them.

(c) It provides a framework within which alternate decisions can be easily seen, and
cheaply explored, until the best decision is recognized and adopted.

(d) It ensures that program documentation is constructed during program design,
when it is most useful. The usual practice of documentation after testing is
guaranteed to be useless. If the documentation is not a help to the program
writer himself, it will hardly be helpful to the unfortunate maintainer!

Nevertheless, there are several aspects of the Michael Jackson Technique that are rou-
tine:

(a) Given a program, it is possible to work back to the original structure diagrams
from which it was created. This is a useful check on the correctness of the pro-
gram, before it is tested.

(b) The final construction of a COBOL program is fairly routine; though there are
still good opportunities for skill in local optimization. This task can therefore

r

r = r + 1 *

INCr = 1

c

c = c + 1 *

INCc = 1

Fig. 18: Structure diagrams for variables

28

be delegated to coders, who do not have the necessary judgment to design the
program, or to postpone their passion for optimization to a stage when it is
relatively harmless.

Are there any suggestions for shortening the learning time for the Michael Jackson’s Tech-
nique?

I think it may help to give exercises which show how the structure diagram ‘generates’
the input data, the output data, and the traces of program execution. Also, perhaps
some exercises in constructing selective traces, and selective programs from the com-
plete ones. I believe that it is useful in teaching to show how to check the solution to a
problem before trying to get the student to find his own solution. Similarly for corre-
spondences, a list of permissible transformations to a structure should help consider-
ably.

The consideration of only two structure diagrams at a time, and only one pair of nodes
at a time should be helpful. The use of the same technique of structure diagrams and
correspondences for internal calculations should help too.

Are there any improvements in the Michael Jackson technique that you could recom-
mend before it is packaged for use in the U.S.A.?

Apart from the possible changes in teaching strategy listed in my answers above, I
would be very reluctant to suggest any changes without considerable further thought
and experience. The fact is that Michael Jackson is one of our most brilliant original
thinkers in the field of programming methodology. Not only is his academic distinction
of the highest; he also has long experience of commercial data processing, and has seen
his ideas tested in practice over a wide range of environments and applications. Finally,
he is a brilliant and experienced teacher; and he has as good understanding of the ca-
pabilities and limitations of his likely audience, and he has adapted his material to meet
them. That is why I am not qualified to make authoritative suggestions for change in his
Technique. If I were so bold to suggest a change, I would very much prefer to discuss
the suggestion thoroughly with Michael Jackson himself, not only because he would be
the most qualified to comment, but because I have always found in him the true scien-
tific spirit, which is eager to understand and evaluate ideas different from his own; and
admit freely if he finds them better.

References (Introduction)
[1] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt and Shriram Krish-

namurthi. How to Design Programs: An Introduction to Programming and Com-
puting. MIT Press, 2001.

[2] Erich Gamma and Richard Helm and Ralph Johnson and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional Computing Series, 1995.

[3] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[4] Michael Jackson. Principles of Program Design. Academic Press, 1975.

29

[5] Michael Jackson. The Origins of JSP and JSD: a Personal Recollection. IEEE An-
nals of Software Engineering, Volume 22, Number 2, pp. 61–63, 66, April–June
2000.

[6] Michael Jackson. JSP In Perspective. SD&M Pioneers’ Conference, Bonn, June
2001.

[7] Michael Jackson. System Development. Prentice Hall, Englewood Cliffs, New
Jersey, 1983.

[8] Michael Jackson. Software Requirements and Specifications: A Lexicon of Prin-
ciples, Practices and Prejudices. Addison-Wesley and ACM Press, 1996.

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Videira Lopes, Jean-Marc Loingtier, John Irwin. Aspect-Oriented Programming.
Proceedings of the 11th European Conference on Object-Oriented Programming,
Mehmet Aksit, Satoshi Matsuoka (Eds.), Jyväskylä, Finland. Lecture Notes in
Computer Science, Vol. 1241. Springer-Verlag, June 1997, pp. 220-242.

[10] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing system. Bell Sys-
tem Technical Journal 57, 6, Part 2 (1978) pp. 1905–1930.

[11] Jean Dominique Warnier. Logical Construction of Systems. John Wiley & Sons,
Inc., 1981.

References (Original Paper)
[12] Alfred V. Aho, J.E. Hopcroft, Jeffrey D. Ullman. The Design and Analysis of Com-

puter Algorithms. Addison-Wesley, 1974. Page 403, Exercise 10.28.
[13] L. Stockmeyer & A.R. Meyer. Word Problems Requiring Exponential Time. Proc.

5th Annual ACM Symposium on Theory of Computing, May 1973, pp. 1–10.

Acknowledgments (Introduction)
Daniel Jackson is grateful to Maria Rebelo for entering the text of the original manu-
script; to Dick Nelson (the originator of the name ‘Jackson Structured Programming’)
for retrieving old course notes; to Michael Jackson for answering questions about JSP
and its history; and to Tony Hoare for his encouragement in the publishing of this paper.
The historical comments in the introduction are drawn in part from earlier papers [5, 6].

30

Fig. 19: Sample page from original course notes

31

Fig. 20: Sample page from Hoare’s original report

