
Bayesian Network for Online Global Pose Estimation

A. Rahimi T. Darrell

MIT AI Lab
Cambridge, MA 02139

Abstract

We cast the location estimation problem in vision-
based robotic navigation in a Bayesian framework.
We derive an efficient online algorithm for updating
the trajectory of a robot as new frames of data be-
come available. For each new frame, the algorithm
computes the pose of the robot relative to past frames
and combines these relative pose changes to obtain
a robust estimate of its trajectory. The complex-
ity of this algorithm grows linearly with the number
of frames so far processed. Because it is effectively
tracking against an appearance-based map, our al-
gorithm provides consistent results in circular envi-
ronments, where the robot returns to places already
visited.

1 Introduction

Many robot navigation tasks require accurate sens-
ing of the robot’s location. This is a particularly
difficult problem when the environment is uninstru-
mented or has never been explored before. This pa-
per addresses the problem of computing an accurate
estimate of the robot’s position given a sequence of
scans from an optical sensor such as a monocular
camera, a stereo camera, or a laser range scanner.
No prior knowledge or instrumentation of the envi-
ronment is required. Our algorithm computes a glob-
ally consistent trajectory, so that when the target
returns to an already visited position, its estimated
pose is consistent with the pose estimate produced
on the earlier visit. To compute the trajectory, we
build a non-causal filter which continually updates
the past poses as new scans become available, main-
taining an optimal trajectory at each time step. Our
algorithm does not need to build a 3D model of the
world, since it tracks with respect to past frames,
and updates the trajectory in time proportional to
the number of frames seen so far.

We revisit the problem of global registration in the
Bayesian framework and cast the true trajectory
to be estimated as hidden variables, where noise-
corrupted estimates of the difference between these

are available as observations. We presume an algo-
rithm which, given two scans of the environment, can
recover the pose change parameters between them
and provide a certainty over its result. There exists
an abundance of these trackers, ranging from pla-
nar [23, 26] and 3D [25, 30, 4] motion models using
monocular camera to 3D motion models using range
imagery [8, 13].

Our algorithm incorporates each measurement by
updating the pose of every frame so far encountered.
To insure that subsequent updates can happen in
linear time, the resulting correlation structure of the
poses is approximated with a simpler Markov chain.
This scheme can be thought of as an instance of As-
sumed Density Filtering (ADF) [17, 1].

2 Related Work

Global pose estimation has been applied to a vari-
ety of tasks, ranging from aerial photography [19],
mosaicking of planar scenes[26, 23], stitching of laser
range scans [6, 21, 3, 27, 2], robot navigation[15, 5,
29], head tracking [22, 11, 9] and camera-based 3D
model acquisition [31]. Global pose estimation has
typically involved building a mosaic, a 3D model, or
a feature-based map of the environment. Alterna-
tively, instead of maintaining an explicit geometric
model, poses can be associated with the scans them-
selves, providing a kind of image-based model of the
environment. Depending on the representation, it
may be necessary to construct a topological map of
how scans are spatially related to each other before
registering them together. Updates and refinements
to the model and the trajectory can be performed
either in batch, once all scans have been made, or
online, as scans become available. The following sub-
sections compare the existing literature along these
three axes.

2.1 Representation of map

A common approach to global registration is to reg-
ister each incoming frame against a map, and to
subsequently update the map with the new frame.
An early version of Sawhney and Kumar’s system

[24] registered each incoming frame against a mosaic
and then pasted the warped image unto the mosaic.
Work in 3D model acquisition [6] has used a sim-
ilar strategy for building 3D models by registering
structured light range scans against an accumulated
model.

These methods work well when there are few scans.
But since scans are committal, future frames are not
able to resolve inconsistencies in the past. For exam-
ple, when the trajectory closes on itself, these meth-
ods cannot explicitly take advantage of this informa-
tion to adjust the trajectory, and so the quality of
the map deteriorates over time.

A common way to address this issue is to represent
the map as a feature vector. For example, McLauch-
lan [15] represents the map as a vector of parame-
ters which describe geometric features in the envi-
ronment, such as 3D lines and corners. This state
vector is updated recursively for each new scan using
a Kalman Filter. Jebara [9] uses a similar represen-
tation for features on the face of a human subject.
Over time, the location of these features are refined
to describe the subject’s facial geometry.

The alternative is to represent the map as a collec-
tion of scans with associated pose parameters. For
example, Stoddart and Hilton [27] first find corre-
sponding points between pairs of scans, attach vir-
tual springs between all corresponding points in the
entire scan set, and relax the system to convergence.
Chen and Medioni [2] propose a version of the It-
erated Closest Point (ICP) algorithm which itera-
tively computes correspondences between scan pairs,
and brings all scans into registration together using
these correspondences. The process is iterated un-
til convergence. Sawhney and Kumar [23] define a
cost function for minimizing the appearance differ-
ence between the overlapping areas of images, which
are assumed to be of planar structures. This cost
function is reduced as a function of the pose of the
planar patches. Lu and Milios [12] first compute pose
differences between pairs of scans, and merge these
pose differences into consistent poses by solving a
maximum likelihood problem. [22] use a similar ap-
proach.

2.2 Topology determination

Gutmann and Konolige [7] and Sawhney and Kumar
[23] both represent the environment map as scan sets.
In order to determine which scans to use as base
frames for each incoming scan, [23] use a coarse pass
over the data which computes rough estimates of 2D
location. Proximity in that parameters space is used
to identify suitable matches. [7] builds a 2D top view
map of the environment solely for use with topology
determination.

We pursue a hybrid approach. Since the pose of all
past frames are assumed to be accurate, the pose
of an incoming frame is computed with respect to
a given base frame only if they are similar in both
pose and appearance (measured as the L2 norm of
the pixel differences).

2.3 Online vs. Batch

The cost functions used in global pose estimation
typically have the form

ε(x) =
∑

(i,j)∈P

dij(x).

The function dij is a measure of registration error
between frames i and j. This optimization is costly
and can involves large matrix multiplications or in-
versions of Jacobians and Hessians. This makes it
difficult to build an online global pose estimation sys-
tem, since the introduction of a new frame couples
many poses and increases the size of the Jacobians of
the optimization. McLauchlan [15] and Thrun [29]
address the issue of efficient online updates of the
map as each new scan is introduced.

McLauchlan proposes an online recursive algorithm
for updating the map, which is represented as a fea-
ture vector. Since adding features increases the com-
plexity of the updates, a method is provided for for-
getting old features. Thus, to curb the complexity
growth of the updates, certain features are simply
not updated. Hence this algorithm does not perform
well in large trajectory loops.

Thrun suggests another way of updating the map on-
line. As loops in the trajectory are detected, a propa-
gation step corrects backward poses in the loop. The
updates are online, but increase linearly in complex-
ity with the length of the loop.

Our update algorithm is derived as an approxima-
tion to the true posterior trajectory estimator for
the robot. We obtain an algorithm which takes lin-
ear time with respect to the number of frames seen so
far to perform its updates. Unlike [15], our algorithm
does not forget the past. Instead, we use an approx-
imation which simplifies the correlation structure of
the poses and take advantage of an efficient inference
algorithm for computing posterior pose estimates.

Much of the global pose estimation literature as-
sumes an algorithm for recovering the pose change
between two scans of the sensor. We assume such
an algorithm is available and that in addition, it can
report its uncertainty. The next section casts pose
tracking in a Bayesian framework. Section 4 builds
up a probabilistic model for globally consistent pose
estimation using a pose change algorithm. Section 5
shows how to use this model to track the pose of an

object in real-time. Finally, we present results on a
2D trajectory estimation problem.

3 Generative Model

This section defines a probabilistic generative model
where poses are hidden variables and pose changes
are measured by a pose change estimator. Subse-
quent sections explain how to use this model to esti-
mate the true poses given pose change estimates.

Let X = {xt}t=1..T be the trajectory of the robot
up to time T , with each xt its pose at time t.
These poses can represent any parametrization of
pose, for example as 3D rotations and transla-
tion, 2D translations, or even non-rigid deforma-
tions such as affine. Call Y the set of measured
pose changes up to time T: Y = {yt

s|s < t <
T and pose between (s, t) has been measured}.
The problem of estimating the current pose involves
finding the posterior distribution p(xt|Y). Global
pose consistency, on the other hand, involves adjust-
ing the entire trajectory as each new pose change
measurement becomes available, by computing the
joint posterior poses p(X|Y). To compute this pos-
terior trajectory, we need a prior model p(X) for the
pose trajectory and an observation model p(Y |X) to
describe the output of the pose change estimator in
terms of the true poses it measures.

We model the pose dynamics absent any measure-
ments as a Markov chain:

p(XT) =
T∏

t=1

p(xt|xt−1).

We model the pose change estimator as observing
scans It and Is from the environment and estimat-
ing the pose change between them. We assume that
these measurements are independent of each other
even when they share a base image, and model the
pose change estimator as measuring the true pose
change d(xs, xt) directly:

p(yt
s|xs, xt) = N (yt

s|d(xs, xt),Λy|xx)

where Λy|xx| is the uncertainty in the measurement
and must be provided by the pose change estimator.

By way of example, suppose the pose is parametrized
as the affine appearance deformation with respect to
the last frame. Let xt be the affine transformation
required to bring the image at time t into registration
with the frame at time s. The pose change estimator
recovers a pose change yt

s according to p(yt
s|xs, xt),

a distribution centered around d(xs, xt) = I−xsx
−1
t .

The model is:

p(yt
s|xs, xt) = N (vec

[
yt

s

]
|I−vec

[
xsx

−1
t

]
,Λy|xx)

p(xt+1|xt) = N (vec [xt+1] | vec [xt] ,Λx|x),

Figure 1: Independence diagram for multiple-base

frame pose estimation.

where the vec operator stacks up the elements of a
matrix into a column vector [18].

4 Inference with Multiple Base Frames

Given a pose change estimator, the simplest way to
recover the trajectory of a robot is to compute pose
changes between temporally adjacent frames, and to
accumulate these changes into a pose estimate. This
formulation suggests a Kalman filter where the state
vector is a compounding of the pose of the current
frame and the past frame, and the observation is the
difference between these, corrupted by noise. How-
ever, this approach results in drift, as witnessed by
the growing variance in the estimated pose (see con-
ditions of convergence in [10]).

To overcome this drift, we compute pose changes be-
tween non-adjacent frames in addition to temporally
adjacent frames. As each new frame appears, its pose
is computed with respect to several strategically cho-
sen back frames. These pose change measurements
are used to calculate the pose of the incoming frames
and to update the pose of all past frames. Thus we
effectively maintain a kind of image-based map of the
world, which is updated for each new frame. Track-
ing with respect to past frames can then be thought
of as tracking with respect to an adjustable map of
the environment [23, 22, 12].

Figure 1 shows the independence diagram for this
scheme, where pose changes are allowed to span over
a wider set of poses and can provide redundant in-
formation. As each new pose change measurement
yt

s is computed (with s < t), we wish to compute the
posterior trajectory p(x1..xt|y2

1 ..yt
s).

This update can be accomplished recursively by con-
sidering the estimate of X from old observations Y old

and conditioning on the latest measurement yt
s:

p(X|Y new) ∝X p(X|Y old)p(yt
s|X, Y old). (1)

Since a new pose measurement is independent of
past measurements when the true poses are known
(see the independence diagram in figure 1) [16, 20],

⇓

⇓

Figure 2: The measurement (top) correlates the hidden

variables (middle), whose correlation is then simplified

(bottom), and is ready to accept a new measurement.

p(yt
s|X, Y old) = p(yt

s|X). So the update (1) is Bayes’
rule with the trajectory so far estimated as the prior,
and the measurement model for the new measure-
ment as the likelihood.

This recursion was used by [12]. This update requires
time proportional to O(T 2) since that p(X|Y old) is
a T-dimensional Gaussian with arbitrarily complex
correlation structure (as shown by figure 1. See for
example the Kalman update equations [10]).

Some methods have been proposed for curbing this
cost. For example, [15] lowers the dimensionality of
the problem by fixing some of the poses and drop-
ping them from the state vector. Unfortunately, this
method doesn’t apply to situations with very large
loops. When the structure of figure 1 suggests a
sparse structure, suitable sparse methods can be used
[28, 15]. But these algorithms still run slower than
O(T).

5 An Approximate Update Scheme

In this paper, we reduce this cost to O(T) by re-
sorting to Assumed Density Filtering (ADF) [17]:
we approximate the estimate of X given old data,
p(X|Y old), with a simpler distribution q(X|Y old). To
incorporate a new measurement yt

s, we apply the up-
date

p(X|Y new)
Bayes∝ p(yt

s|xs, xt)q(X|Y old). (2)

This new p(X|Y new) has a more complicated inde-
pendence structure than q(X|Y old), so incorporating
subsequent measurements would require more work
and the resulting posterior would be even hairier.
So we approximate it again with a q(X|Y new) that
has a simpler independence structure. Specifically,
we force q to always obey Markovian independence.
Subsequent measurements can again be incorporated
easily using this new q. Figure 2 summarizes this
process.

To see that the distribution p(X|Y new) has the in-
dependence structure of figure 2(middle), call Xleft

the nodes to the left of xs, Xloop the nodes between
xs and xt, and Xright the nodes to the right of xt.
Write the posterior as:

p(X|yt
s, Y

old) =
1

p(yt
s)

p(Xleft)p(Xloop, y
t
s|xs)p(Xright|xt),

where we’ve dropped the condition on old data for
clarity. p(Xleft|yt

s, Y
old) has the structure of a

Markov chain with an observation on the tail, and
so is a Markov chain. p(Xright|yt

s, Y
old) is a Markov

chain with an observation on the head, so it is also
a Markov chain. Because the variables in the loop
are conditioned on xs and y, they also form a Markov
chain (xs is the cutset of the loop [20]). However, the
observations appear on the head and on the tail, with
yt

s appearing on the tail with distribution p(yt
s|xt)

parametrized by xs. So unless we condition on xs, it
is not a Markov chain.

The following section discusses how to find a Marko-
vian q so as to minimize the KL divergence between
p and q. Section 5.2 shows how to incorporate a
pairwise measurement on the resulting Markov chain
using equation (2).

5.1 Simplifying the independence structure

We would like to approximate an arbitrary dis-
tribution which factors according to p(X) =∏

t pt(xt|Pa[xt]) using one which factors into q(X) =∏
t qt(xt|Qa[xt]). Here, Pa[xt] are the parents of

node xt in the graph prescribed by p(X), and Qa[xt]
are the parents of node xt as prescribed by q(X).
Specifically, we want q to have Markov structure, so
Qa[xt] = xt−1.

The objective is to minimize:

q∗ = arg min
q

KL

(∏
pt

∥∥∥∥∏
qt

)
(3)

=
∫

x

p(X) ln
p(X)∏

i qt(xt|Qa[xt])
.

After splitting the objective into two sums, this is
equivalent to maximizing∫

X

p(X)
∑

t

ln qt(xt|Qa[xt])

=
∑

t

∫
X

p(X) ln qt(xt|Qa[xt]).

Since each qt can be optimized independently, we can
maximize the terms one by one. Each term can be

further simplified:∫
X

p(X) ln qt(Xt|Qa[xt]) =∫
Qa[xt]

p(Qa[xt])
∫

xt

p(xt|Qa[xt]) ln qt(xt|Qa[xt]).

Again, we can optimize this by optimizing the inner
integral for all Qa[xt], so

q∗t = arg max
qt

∫
xt

p(xt|Qa[xt]) ln qt(xt|Qa[xt])

= p(xt|Qa[xt])

This says that the best conditional qt is built up from
the corresponding pt by marginalizing out the con-
ditions that were removed in the graph. In general,
this is not easy, but as we show below, it is very
useful in performing ADF updates.

5.2 Computing posterior transitions on a
graph with a single loop

This result suggests a simplification to the update of
equation (2). Because the ultimate goal is to com-
pute q(X|Y new), not p(X|Y new), we only need to
compute the posterior transitions p(xt|xt−1, Y

new).
Thus, we circumvent having to first find p then
project it onto q. We propose computing these tran-
sitions in three steps, one for the transitions to the
left of xs, another for the loop, and the third for
transitions to the right of xr.

Finding p(xτ |xτ−1, y) for τ = s..t. For every s <
τ < t, notice that

p(y, xτ−1, xt)p(xτ |xτ−1, xt) = p(y, xτ−1, xτ , xt),
(4)

because according to figure 2, p(xτ |xτ−1, xt) =
p(xτ |xτ−1, xt, y). If we could find this joint dis-
tribution for all τ , we could find p(xτ |xτ−1, y) by
maringalizing out xt and normalizing. We could
also find p(xτ |y) by marginalizing out both xt and
xτ−1, then normalizing. Finally, we could compute
p(y, xτ , xt) for the next τ in the iteration.

So there are two missing pieces: The first is
p(y, xs, xt) for starting the recursion. Computing
this term is easy, because p(y|xs, xt) is the given
measurement model, and p(xs, xt) can be obtained
easily from the prior by successively applying the to-
tal probability theorem.

The second missing piece is p(xτ |xτ−1, xt). Note that
this quantity does not depend on the measurements
and could be computed offline if we wanted to. The
recursion for calculating it is:

p(xτ |xτ−1, xt)
Bayes∝ p(xt|xτ)p(xτ |xτ−1) (5)

p(xt|xτ) =
∫

dxi+1 p(xt|xi+1)p(xτ+1|xτ)(6)

The second equation describes a recursion which
starts from t and goes down to s. It computes the
influence of node τ on node t. Equation (5) is cou-
pled to this equation and uses its output. It in-
volves applying Bayes rule to compute a function
of 3 variables. Because of the backward nature of
(6), p(xτ |xτ−1, xt) has to be computed using a pass
which runs in the opposite direction of the process
of (4).

Finding p(xτ |xτ−1, y) for τ = 1..s. Starting from
τ = s− 1, compute

p(y|xτ) =
∫

dxτ+1 p(y|xτ+1)p(xτ+1|xτ)

p(xτ |y)
Bayes∝ p(y|xτ)p(xτ)

p(xτ |xτ−1, y)
Bayes∝ p(y|xτ)p(xτ |xτ−1)

The recursion first computes the influence of xτ on
the observation, then computes the marginal and the
transition probability.

Finding p(xτ |xτ−1, y) for τ = t..T . Starting from
τ = t, compute

p(xτ |y) =
∫

dxτ−1 p(xτ |xτ−1, y)p(xτ−1|y)

p(xτ |xτ−1, y) = p(xτ |xτ−1)

The second identity follows from the independence
structure on the right side of observed nodes.

5.3 Behavior of the Algorithm

Instead of computing p(X|Y new), we have justified
that it is sufficient to compute its transitions to ob-
tain a good approximation. Intuitively, as each mea-
surement appears on the chain, the poses in the loop
are “stretched” appropriately to match the obser-
vation. Poses to the left of the loop are similarly
relaxed to fit with the origin on one end and the be-
ginning of the loop on the other. Poses to the right
of the loop are simply shifted according to the end
of the loop.

6 Results

We manually navigated a camera rig along two tra-
jectories. The camera faced upward and recorded the
ceiling. The robot took about 3 minutes to trace each
path, producing about 6000 frames of data for each
experiment. The floor was marked so that the cam-
era revisited specific locations on the floor through-
out its trajectory (see figure 4). This was done to
make the evaluation of the results simpler.

In these experiments, the pose parameters were (x, y)
locations on the floor. The dynamics were taken to

−100 0 100 200 300
−200

−100

0

100

200

300

400

500

−200 0 200 400
−600

−400

−200

0

200

400

600

800

1000

Figure 3: Recovered pose. Naive accumulation (solid)

and belief propagation (dashed) for two different experi-

ments. The X marks the common starting position.

be Gaussian Markov. For each new frame, at most
three pose changes were computed. The selection of
base frames was based on a measure of appearance
between the current frame and all past frames. The
pose change estimator was a Lucas-Kanade optical
flow tracker [14]. To compute pose displacements,
we computed a robust average of the flow vectors
using an iterative outlier rejection scheme. We used
the number inlier flow vectors as a crude estimate of
the precision of p(yt

s|xs, xt).

The trajectory estimation worked at frame rate, al-
though it was processed offline. Figure 3(left) com-
pares the belief propagation algorithm against the
accumulation of pose changes over time. Both al-
gorithms used the same pose changes estimates and
were run concurrently. Figure 4 depicts the trajec-
tory the rig underwent. Figure 3(right) shows similar
performance on a different path.

The naive accumulation of pose changes suffered
from severe inaccuracies. In figure 3(right), the
tracker recovered a spurious motion towards the left
every time the camera moved downwards. This bias
was corrected by the belief propagation algorithm
because the upward trajectory had been recovered
accurately. Note that all of the excursions away
from the horizontal spine have similar lengths, as
they should, and that the excursions are horizon-
tally equidistant, as they should be. Also note that
the trajectory correctly returns to its initial posi-
tion. Since the rig did not retrace its steps exactly

Figure 4: Intended trajectories. Both path started at

the bottom left. Circles indicated locations in the path

where the camera was intentionally made to revisit the

same place.

on the return path to the home position, the return
path does not meet the origins of the excursions on
the recovered trajectory. The accumulation in fig-
ure 3(left) doesn’t have a systematic flaw, other than
underestimating the path length during the first leg,
and suffering from lots of noise throughout the tra-
jectory.

The belief propagation algorithm was helpful even
on straightaways, before the trajectory ever crossed
itself. Computing the pose of a frame while taking
into account multiple back frames improved accuracy
dramatically, as has been shown in [5].

7 Conclusions and Future Work

We have described an algorithm which computes
globally consistent pose estimates using an efficient
approximate belief propagation algorithm. The al-
gorithm updates the trajectory for each frame and
constructs a map of the world in the form of pose-
attributed images. Its main strengths are that it
maintains a simple world model and that it runs in
linear time for each update. We expect to improve
this running time by taking advantage of the fact
that updates on a Markov chain have do not propa-
gate beyond an unaffected node. So that in practice,
it will be sufficient to run the left-right propagation
updates on a small neighborhood.

We have observed that the algorithm not only re-
turns consistent pose estimates near locations which
have already been visited, but also improves accu-
racy for paths which do not close on themselves, by
taking advantage of redundant pose change informa-
tion.

We are currently working on producing results using
a more sophisticated pose estimator based on [8], for

computing globally consistent pose estimates in six
degrees of freedom.

References

[1] X. Boyen and D. Koller. Tractable inference for com-
plex stochastic processes. In Uncertainty in Artificial
Intelligence, 1998.

[2] Y. Chen and G. Medioni. Object modelling by reg-
istration of multiple range images. In Porceedings
of the IEEE Internation Conference on Robotics and
Authomation, pages 2724–2728, 1991.

[3] B. Curless. From range scans to 3d models. Computer
Graphics, 33(4), november 1999.

[4] Olivier Faugeras. Three-Dimensional Computer Vi-
sion: A Geometric Viewpoint. MIT Press, Cam-
bridge, Massachusetts, 1993.

[5] Andrew W. Fitzgibbon and Andrew Zisserman. Au-
tomatic camera recovery for closed or open image se-
quences. In ECCV, pages 311–326, 1998.

[6] G.Turk and M. Levoy. Zippered polygon meshes form
range images. In SIGGRAPH, pages 311–318, 1994.

[7] J. Gutmann and K. Konolige. Incremental map-
ping of large cyclic environments. In IEEE Interna-
tional Symposium on Computational Intelligence in
Robotics and Automation (CIRA), 2000.

[8] M. Harville, A. Rahimi, T. Darrell, G.G. Gordon, and
J. Woodfill. 3d pose tracking with linear depth and
brightness constraints. In ICCV99, pages 206–213,
1999.

[9] T. Jebara and A. Pentland. Parametrized structure
from motion for 3d adaptive feedback tracking of
faces. In CVPR, 1997.

[10] T. Kailath, A. H. Sayed, and B. Hassibi. Linear Es-
timation. Prentice Hall, 2000.

[11] M. LaCascia, S. Sclaroff, and V. Athitsos. Fast, re-
liable head tracking under varying illumination: An
approach based on registration of textured-mapped
3d models. PAMI, 22(4):322–336, April 2000.

[12] F. Lu and E. Milios. Globally consistent range scan
alignment for environment mapping. Autonomous
Robots, 4:333–349, 1997.

[13] Feng Lu and E. Milios. Robot pose estimation in
unknown environments by matching 2d range scans.
Robotics and Autonomous Systems, 22(2):159–178,
1997.

[14] B. D. Lucas and Takeo Kanade. An iterative image
registration technique with an application to stereo
vision. In International Joint Conference on Artificial
Intelligence, pages 674–679, 1981.

[15] Philip F. McLauchlan. A batch/recursive algorithm
for 3d scene reconstruction. Conf. Computer Vision
and Pattern Recognition, 2:738–743, 2000.

[16] T.P. Minka. Independence dia-
grams. Technical report, Media Lab,
http://www.stat.cmu.edu/˜minka/papers/diagrams.html,
1998.

[17] T.P. Minka. Expectation propagation for approxi-
mate bayesian inference. In UAI, 2001.

[18] T.P. Minka. Old and new matrix algebra use-
ful for statistics. Technical report, Media Lab,
http://www.media.mit.edu/˜tpminka/papers/matrix.html,
2001.

[19] H. F. Moffitt and E. Mikhail. Photogrammetry.
Harper and Row, 1980.

[20] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
mann, 1997.

[21] K. Pulli. Multiview registration for large data sets. In
Int.Conf. on 3D Digital Imaging and Modeling, pages
160–168, 1999.

[22] A. Rahimi, L-P. Morency, and T. Darrell. Reducing
drift in parametric motion tracking. In ICCV, vol-
ume 1, pages 315–322, June 2001.

[23] Harpreet S. Sawhney, Steve Hsu, and Rakesh Kumar.
Robust video mosaicing through topology inference
and local to global alignment. In Proc ECCV 2, pages
103–119, 1998.

[24] H.S. Sawhney and R. Kumar. True multi-image align-
ment and its application to mosaicing and lens dis-
tortion correction. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 21(3):235–243, 1999.

[25] A. Shashua. Trilinearity in visual recognition by
alignment. In ECCV, pages 479–484, 1994.

[26] H.-Y. Shum and R. Szeliski. Construction of
panoramic mosaics with global and local alignment.
In IJCV, pages 101–130, February 2000.

[27] A. Stoddart and A. Hilton. Registration of multiple
point sets. In IJCV, pages B40–44, 1996.

[28] E. Sudderth. Embedded trees: Estimation of gaussian
processes on graphs with cycles. Master’s thesis, MIT,
2002.

[29] S. Thrun. A probabilistic online mapping algorithm
for teams of mobile robots. International Journal of
Robotics Research, 20(5):335–363, 2001.

[30] C. Tomasi and T. Kanade. Shape and motion from
image streams under orthography: A factorization
approach. International Journal of Computer Vision,
9(2):137–154, 1992.

[31] Bill Triggs, Philip McLauchlan, Richard Hartley, and
Andrew Fitzgibbon. Bundle adjustment – a mod-
ern synthesis. In W. Triggs, A. Zisserman, and
R. Szeliski, editors, Vision Algorithms: Theory and
Practice, LNCS, pages 298–375. Springer Verlag,
2000.

