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Abstract

A novel approach for tracking 3D articulated human bodies
in stereo images is presented. We present a projection-based
method for enforcing articulated constraints. We define the
articulated motion space as the space in which the motions
of the limbs of a body belong. We show that around the
origin, the articulated motion space can be approximated
by a linear space estimated directly from the previous body
pose. Articulated constraints are enforced by projecting un-
constrained motions onto the linearized articulated motion
space in an optimal way.

Our paper also addresses the problem of accounting for
other constraints on body pose and dynamics (e.g. joint an-
gle bounds, maximum speed). We present here an approach
to guarantee these constraints while tracking people.

1. Introduction
Vision-based tracking of human bodies has been an ac-
tive and growing research area in the last decade. This
is because of the numerous potential applications such as
surveillance, motion capturing, human-computer interface
but also because of multiple scientific problems it raises
(e.g. high dimensionality of the state space, human motion
modeling).

Many approaches to track people in monocular image
sequences have been proposed. Such methods usually use
image cues such as color [20] or edges [9, 12]. Dense opti-
cal flow has also been used in differential approaches where
the gradient in the image is linearly related to the velocity of
the model to estimate [3, 21]. Since these approaches only
estimate relative motions from frame to frame, small errors
are accumulated over time and cause the pose estimation
to drift.

Due to the numerous ambiguities (usually caused by
cluttered background or occlusions) that may arise while
tracking people in monocular image sequences, multiple-
hypothesis frameworks may be more suitable. Many re-
searchers investigated stochastic optimization techniques
such as particle filtering [18, 19]. Though promising, these

approaches are not computationally efficient (typically re-
quiring thousands of samples to track simultaneously) and
cannot yet be implemented for real-time purposes.

Stereo image-based techniques, though not as general as
monocular image techniques, are subject to less ambiguity.
[6] proposes a technique that uses physical forces that are
applied to each rigid part of a kinematic 3D model of the
tracked object. These forces guide the minimization of the
fitting error between model and data. Their approach uses a
recursive algorithm to solve the dynamical equations. [14]
introduces a nice framework by using soft-object (implicit
surfaces) to model and track people. [15] explores the case
of tracking kinematic chains using uncalibrated stereo cam-
eras and introduces a formulation for spherical joint con-
straints similar to [3] in the 3D projective space. None of
these approaches is fast enough for real-time purposes.

An effort to track body gestures with real-time stereo
used a generative mixture model to infer arm orientation
[11]. This system worked well for gestures with a fully ex-
tended arm since the arm were modeled using two coarse
shape ”blobs”. However, the system could not accurately
detect arm configurations where the arm was not fully ex-
tended, nor could it detect rotations that do not change the
apparent shape (but may change its texture or appearance).

We have developed a system that can track pose in real-
time using input from stereo cameras. This system is an ex-
tension of [7]. Motion of independent part is estimated us-
ing an ICP-based technique [2] and an optimal articulated
motion transformation is found by projecting the (uncon-
strained) motion transformations onto a linear articulated
motion space. An advantage of our approach is that the size
of the system involved in the body motion estimation is very
small.

Moreover our paper addresses the problem of accounting
for other kind of constraints on body pose and dynamics
(e.g.joint angle bounds, maximum speed). We present here
a stochastic optimization algorithm to guarantee kinematic
and dynamic constraints while tracking people.
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2. Preliminaries
We introduce here the body model used in our approach as
well as the representation for rigid and articulated motions.

2.1 Body model

Modeling people is a difficult problem. This is because the
size, proportion and shape of limbs are person dependent
but also because the kinematics (e.g. the joints between
limbs are usually complex) and the dynamics of the human
body are difficult to describe completely.

In this paper we assume that limbs are rigid objects de-
scribed by a 3-D mesh, allowing for any kind of shape. As
in previous works, our body model consists of a set ofN

rigid limbs linked with each other in a hierarchical system.
We assume the body model to be articulated,i.e. the links
between limbs are perfect spherical joints. However we also
show that our approach can easily allow for other kind of
links between limbs.

The pose� of a body is defined as the position and ori-
entation of each of itsN constituent limbs in a world coor-
dinate system (� 2 R6N ).

2.2 Rigid motions

We parameterize rigid motions using twists [3]. A twist� is
defined as a 6-vector such that:

� =

�
t

!

�

wheret is a 3-vector representing the location of the ro-
tation axis and translation along this axis.! is a 3-vector
pointing in the direction of the rotation axis.

The rigid transformation associated with the twist� can
also be represented by a 4� 4 matrixG� such that:
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matrix associate with vector!.
Let � define a set of rigid transformations applied to a

set of rigid objects.� is represented as a6N -vector such
that:
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whereN is the number of limbs in the body model.
� lies inR6N . In the case of articulated models, motions

�i are constrained. As a result,� only spans a manifold
A � R6N that we will callarticulated motion space. Since

A cannot be described easily, we will show thatA is around
the origin (hypothesis of small motions) a linear space that
can be simply estimated from the current pose�.

T� denotes the motion transformation between poses,
i.e. if � and�0 are two poses,T� such that�0 = T�(�) is
the motion transformation between the two poses.

3. Model Fitting
Here we consider the tracking problem as the fitting of a
body model pose� to a set of visual observations. Our
approach assumes that observations are made using a stereo
camera that provides both 3-D and color information in real-
time

Fitting a body pose model to visual observations is ac-
complished by minimizing the distanced(M;O) between
the model appearanceM and the observationsO while
enforcing pose constraints (joint constraints, ...). We as-
sume that the pose�t�1 from the previous frame is known
and we search for the motion transformation�? so that
�t = T�?(�t�1) satisfies constraints while minimizing the
fitting error.

ICP-based approach

The computer vision literature offers many techniques for
3-D model fitting and registration. The ICP algorithm [2, 4]
has been very popular for both its simplicity and efficiency.

Given two clouds of 3D points (e.g. observed 3D data
and 3D model of a rigid object to register), ICP finds cor-
responding points and estimates the motion transformation
� between the two clouds by minimizing the error (usually
the Euclidean distance) between the matched points. Many
variants of the ICP algorithm have been proposed (see [16]
for an extensive survey). The ICP algorithm can handle both
3-D and color observations by incorporating the color infor-
mation in the point-to-point distance [8, 17] or by filtering
matches based on color similarity [10].

The first step of our tracking algorithm consists in ap-
plying independentlythe ICP-algorithm to each limb of the
3D-model. The initial pose of each limb is the one esti-
mated in the previous frame�t�1. An important feature of
our approach is that we only take into account the visible
points from the model,i.e. the ICP-step only uses the visi-
ble points from the 3D model (when a limb has none of its
points visible, its motion is assumed to be the same as in the
previous frame).

The ICP-algorithm we used here can briefly be described
as follows:

1. For each pointPi in the 3D data, find pointP 0j of the
3D model which minimizesd(Pi; P 0j). The 3-vector
�!
fj =

��!
P 0jPi is the local displacement between the

3D model and the rigid object.
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2. Estimate the motion transformation� by integrating
the local displacement

�!
fj over the entire object.

3. Apply the motion transformation� to the 3D model. If
there is no more improvement in the minimization of
the fitting error then quit, otherwise go to step 1.

Let �k be the motion transformation estimated by the
ICP algorithm applied to limbk. Let�k be the correspond-
ing covariance matrix (�k is estimated as in step 2 of the
ICP algorithm).

Let � be the global body transformation as denoted in
eq.(1).� obviously does not satisfy body constraints. The
corresponding covariance matrix� is the block-diagonal
matrix� = diag(�1;�2; : : :).

The idea we propose here consists in finding theclosest
body transformation�? to� that satisfies body constraints.
More precisely we search for�? that minimizes the follow-
ing Mahalanobis distance:

E2(�?) = (�? ��)>��1(�? ��) (2)

while satisfying body constraints. The body constraints
consist of articulated constraints (Section 4) and also other
constraints related to human body (Section 5).

4. Articulated constraints
In this section, we consider articulated constraints. We
show that an optimal motion transformation�� that satisfies
articulated constraints is found byprojecting� onto the ar-
ticulated motion spaceA in an optimal way. First we show
thatA can be approximated at the origin by a linear space
(derived from the previous pose�t�1). Then we estimate
an optimal projection of� ontoA.

4.1 Local parameterization ofA

Let Mij be a spherical joint between two rigid bodiesLi
andLj . Let �0i and�0j be the respective motion transfor-
mation applied to the rigid bodiesLi andLj . LetR0 and
t0 be the rotation and translation associated with a motion
transformation�0.

If Li andLj perform small motions, the spherical joint
constraint onMij can be written:

�0i(Mij) = �0j(Mij)
) (R0

i �R
0

j)Mij + t0i � t0j = 0
) [!0i � !0j ]�Mij + t0i � t0j = 0
) �[Mij ]�(!

0
i �!0j) + t0i � t0j = 0

(3)

Let �� be an articulated motion transformation with:

�� =

0
B@

�01
...
�0N

1
CA (4)

Figure 1: Projection of� onto the linearized articulated
space.�� (or equivalently�Æ) is the closest point to� in A
w.r.t. metricE.

Let Sij the 3x(6N) matrix defined by:

Sij = (03 : : : [Mij ]�| {z }
i

�I3|{z}
i+1

: : : 03 : : :�[Mij ]�| {z }
j

I3|{z}
j+1

: : : 03)

Eq.(3) is equivalent to:

Sij
�� = 0 (5)

Similar equations can be written for each joint constraint.
By stacking eqs.(5) into a single matrix�, the spherical
joint constraints are simultaneously expressed by the equa-
tion:

� �� = 0 (6)

Eq.(6) implies that the articulated motion transformation
�� lies thenullspaceof the matrix�. This proves that, lo-
cally around the origin (hypothesis of small motions), the
articulated motion spaceA is the linear space generated by
nullspacef�g.

Let K be the dimension ofnullspacef�g andvk be a
basis ofnullspacef�g. In our study the basisvk is esti-
mated from� using a SVD-based approach and is orthogo-
nal. There exists a set of parameters�k such that�� can be
written:

�� = �1v1 + : : :+ �KvK (7)

Let �Æ be a vector andV a matrix such that:

�Æ = (�1 : : : �M )> V = (v1 : : :vM )

Finally eq.(7) can be rewritten:

�� = V�Æ (8)

3



4.2 Articulated motion estimation

Let� be the global motion transformation estimated by ap-
plying the standard ICP algorithm to each of the rigid bod-
ies. Let� be the covariance matrix corresponding to�. As
stressed in the previous section,� does not satisfy the joint
constraints. Eq.(2) gives:

E2( ��) = ( ����)>��1( ����)
= (V�Æ ��)>��1(V�Æ ��)

(9)

By differentiating the previous equation w.r.t.�Æ, it can
be shown that the minimum ofE2 is reached at:

�Æ = (V>��1V)�1V>��1�

Finally the correct articulated motion�� is estimated us-
ing eq.(8). �� can be seen as the projection of� through a
matrixP on the articulated motion space such that:

�� = P�

with P = V(V>��1V)�1V>��1

5. Other constraints
The previous section shows that articulated constraints are
ensured by projecting� onto the articulated motion space
A in an optimal way. However the human body is not re-
stricted to just articulated constraints and other constraints
can be taken into account. For example, the joint angles
between limbs cannot exceed some thresholds [13].

5.1 Modeling constraints

We constrain the body pose and dynamics by functionsf

such that:
f(�;�) � 0 (10)

The functionf can be learnt by machine vision tech-
niques, or by using Biomechanic/anthropometric data such
as [13]. Unfortunatelyf is non-linear and therefore a lin-
ear projection method as the one suggested for articulated
constraints cannot be used. Next we introduce a stochastic
algorithm for constrained optimization.

At each timet, the estimated pose�t = T�(�t�1) must
satisfy f(�t;�) � 0. Therefore, given a previous pose
�t�1 the optimal motion transformation�? must satisfy
f(T�?(�t�1)) = f(�t;�) � 0.

In the rest of the section we consider that the pose�t�1
is known and satisfiesf(�t�1;�t�1) � 0. For simplicity,
we will noteF (�) = f(T�(�t�1);�). � will be said to
be anacceptablemotion transformation iff.F (�) � 0.

As mentioned previously, the goal is to estimate the
motion transformation�? which satisfies articulated con-
straint and body pose constraintF (�?) � 0 while mini-
mizing eq.(2). Articulated constraints are guaranteed by us-
ing the minimal parameterization�? = VÆ?. Let �� = V�Æ

be the (unconstrained) articulated transformation from Sec-
tion 4.1. The constrained minimization of criteriaE2(�?)
is replaced with the one of�E2(Æ?):

�E2 = (�? � ��)>��1(�? � ��)
= (Æ? � �Æ)>V>��1V(Æ? � �Æ)

(11)

with F (�?) � 0.
The functionF may not be differentiable and standard

methods such as Rosen’s gradient projection method [1] to
do constrained optimization cannot be used.

5.2 Constrained optimization algorithm

We designed the following algorithm that exploits the fact
that the unconstrained minimum�Æ of eq.(11) is known
as well as its covariance matrix�p = (V>��1V)�1.
Our algorithm is iterative and consists in refining an ac-
ceptable motion transformationÆ?k. The algorithm starts
with k = 0 and Æ?k = 0 (we assume that�t�1 satisfies
f(�t�1;�t�1) � 0, therefore� = 0 is an acceptable mo-
tion transformation). The following 2 steps are successively
repeated.

Binary search. The first step consists in a binary search
betweenÆ?k and�Æ. A solution
k+1 of the form:


k+1 = �Æ?k + (1� �)�Æ with 0 � � � 1

is sought so thatF (V
k+1) � 0. This is done using a
standard binary search where initial bounds areL = Æ?k and
H = �Æ. At each iteration, the algorithm estimatesv =
F (VM) with M = L+H

2
:

� if v � 0 then the lower bound is updated withL = M ;

� otherwise the upper bound is updated withH =M .

After N iterations, we set
k+1 = M . By construc-
tion,V
k+1 is an acceptable motion transformation. From
eq.(11), it is easy to show that:

�E2(
k+1) = �2 �E2(Æ?k) �
�E2(Æ?k)

Stochastic search. The second step consists in a
stochastic search along the equipotential surface�E2 =
�E2(
k+1) of eq.(11). This search is done by generat-
ing some random vectors�!� in directions orthogonal to
the gradient of�E2 at 
k+1 (see Appendix 1 for computa-
tion details). A move is accepted in a direction�!� when
F (
k+1 +�!� ) � 0, in which case we set:

Æ?k+1 = 
k+1 +�!�

When there is no more improvement on the estimation
Æ?k, the algorithm is stopped and we setÆ? = Æ?k.

The algorithm is illustrated Figure 2. At each step, our
algorithm guarantees that the objective function�E2 is min-
imized and the constraintF (�?) � 0 is satisfied.
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Figure 2: The constrained optimization algorithm. Thebi-
nary searchis represented with dashed lines. Thestochastic
searchis represented with plain lines.

6. Summary
Assuming an initial estimate of the pose has been given, the
iterative tracking algorithm can be summarized as follow:

� ICP (constraint free). Estimate� and uncertainty�
by applying the ICP algorithm to all the limbs of the
body model.

� Optimal projection (articulated constraints). Suc-
cessively compute�, V andP from the joint coordi-
natesMij of�t�1 the body pose at the previous frame.
Estimate�� = P�.

� Constrained optimization (other constraints). Itera-
tively apply the stochastic constrained optimization to
estimate�?.

The tracking algorithm requires an initial estimate of the
body pose. This initialization is provided by a coarse stereo-
based multiple-person tracking system [5] developed in our
group that gives an estimate of the location of multiple peo-
ple. The user is assumed to be in a canonical configuration
(standing, arms stretched) and the pose is initialized by fit-
ting 3 lines (torso, right arm, left arm) to the 3D data. This
initialization procedure is simple but the pose estimation is
approximate.

Constraints initialization

The functionF (�) is initialized so that it returns a positive
number iff.:

� all joint angles are in valid ranges (using tables from
[13]);

� and no limb penetrates another one;

� and the center of gravity of the person is in a stable
position.

7. Experiments

We applied the body tracking approach described previ-
ously to stereo image sequences captured in our lab. Each
sequence is made from images provided by a stereo camera.
The 3-D model used in the experiments only considers the
upper body parts (head, torso, arms, forearms). The torso
has been purposely made long to compensate for the lack of
hips and legs in the model. The complete tracking algorithm
(stereo + articulated body tracking) was run on a Pentium 4
(2GHz) at a speed ranging from 6Hz to 10Hz.

Two video sequences of about 30sec. were recorded.
Some of the images have been extracted and are shown on
Figures 3, 4 and 5. Images are numbered from left to right,
and top to bottom. Though no ground-truth data are avail-
able to confirm the tracking accuracy, the projection the 3-D
articulated model onto the images provides qualitative re-
sults.

The first sequence (see Figure 3) shows a young woman
performing different gestures (putting her hands on her hips,
walking, pointing). Image 1 shows the initialization proce-
dure. In the images 3 and 4, we can see that the tracking
of the arms of the young girl is not correct. However the
tracking algorithm is able to recover frommis-trackingand
in the following images, the tracking error has been cor-
rected. In the images 5 and 6, though subtle, we can see
that the torso orientation is recovered properly (torso facing
right in image 5 and facing left in image 6).

The second sequence (see Figure 4) shows a man do-
ing similar gestures (hands on hips, pointing, moving
arms randomly). Image 1 shows the initialization pro-
cedure. The pose estimation ismis-aligned. However
our tracking algorithm can cope with an incorrect ini-
tialization as seen on image 2. In the middle of the
sequence, the man turns around completely and at the
end, waves his hand. This kind of motion is usually
difficult to track (fast, auto-occlusion). However our
tracking algorithm successfully tracked the body pose.
Seehttp://www.ai.mit.edu/ �demirdji/movie/ for
original sequences.

Figure 5 shows what happens if body pose constraints
are not enforced: in image 1, the tracking result is simi-
lar to the constrained case (image 4 of Figure 4). How-
ever, because of the ambiguities due to fast motion and self-
occlusion, the body pose converges at image 3 in a configu-
ration where the arms go through the body!

5



Figure 3: Pointing sequence: Motion capture results. The images show the tracked body poses projected onto the initial
images. Image 1 shows the initialization procedure. In the images 3 and 4, we can see that the tracking of the arms of the
young girl is not correct. However the tracking algorithm is able to recover frommis-trackingand in the following images,
the tracking error has been corrected. In the images 5 and 6, though subtle, we can see that the torso orientation is recovered
properly (torso facing right in image 5 and facing left in image 6).

8. Conclusion

We described an approach for real-time articulated body
tracking. The main contribution of our work is a projection-
based approach for enforcing articulated constraints. Our
approach is based on the ICP algorithm. Contrary to previ-
ous work such as [6], articulated constraints are not taken
into account during the ICP minimization. We show that an
optimal articulated motion transformation can be found by
projecting the (unconstrained) motion transformation onto
the linearized articulated motion space. An advantage of
our approach is that the size of the system involved in the
body motion estimation is very small. Then we describe a
stochastic algorithm to take other constraints into account
(e.g. joint limits, dynamics). The approach provides a nice
framework to enforce constraints while preserving low-cost
computation.

Experiments show that our tracking algorithm is robust
to self-occlusions and fast motions. Moreover it is able to
cope with bad initializations and mis-tracking.

Appendix 1: Generating�!�

Let K be a square matrix so thatV>��1V = KK
>

(Cholesky decomposition). LetX be a vector such that
X = K(
k+1 � �Æ).

A noise vector�!n is isotropically generated in directions
orthogonal toX. The normjj�!n jj is constrained so that
jj�!n jj � �jjXjj where� is a (small) fixed scalar.

We finally set�!� =K�>�!n .
It is important to notice that:

�E2(Æ?k+1) =
�E2(
k+1) + jj�!n jj

2 ' �E2(
k+1)

which guarantees thatÆ?k+1 is on the same equipotential
as
k+1.
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mis-aligned. However our tracking algorithm can cope with an incorrect initialization as seen on image 2. In the middle of
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