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Abstract. In this paper we propose an efficient real-time approach that
combines vision-based tracking and a view-based model to estimate the
pose of a person. We introduce an appearance model that contains views
of a person under various articulated poses. The appearance model is
built and updated online. The main contribution consists of modeling,
in each frame, the pose changes as a linear transformation of the view
change. This linear model allows (i) for predicting the pose in a new
image, and (ii) for obtaining a better estimate of the pose corresponding
to a key frame. Articulated pose is computed by merging the estimation
provided by the tracking-based algorithm and the linear prediction given
by the view-based model.

1 Introduction

Speed and robustness are usually the two important features of a vision-based
face or person tracking algorithm. Though real-time tracking techniques have
been developed and work well in laboratories (compliant users, stable and adapted
lightning), they tend to break easily when used in real conditions (users per-
forming fast moves, being occluded or only partially in the field of view of the
camera). Tracking algorithms failures usually require a re-initialization, which
prevents therefore their use in many applications.

In this paper we address the problem of robustness in tracking algorithms.
We propose an efficient online real-time approach that combines vision-based
tracking and a view-based model to estimate the pose of an articulated object.
We introduce an appearance model that contains views (or key frames) of a
person under various articulated poses. The appearance model is built and up-
dated online. The main contribution consists of modeling, in each frame, the pose
change as a linear transformation of the view change (optical flow). This linear
model allows (i) for predicting the pose in a new image, and (ii) for obtaining a
better estimate of the pose that corresponds to a key frame. Articulated pose is
computed by merging the estimation provided by the tracking-based algorithm
and the linear prediction given by the view-based model.

The following section discusses previous work for tracking and view-based
models. Section 3 introduces our view-based model and shows how such a model
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is used to predict the articulated pose in a new image. Section 4 describes our
standard recursive tracking algorithm. We then present the general framework
that combines recursive tracking and view-based model in Section 5. Finally we
report experiments with our approach in Section 6 and discuss the general use
of our approach in Section 7.

2 Previous Work

Vision-based tracking of articulated objects has been an active and growing
research area in the last decade due to its numerous potential applications. Ap-
proaches to track articulated models in monocular image sequences have been
proposed. Dense optical flow has been used in differential approaches where the
gradient in the image is linearly related to the model movement [2,17]. Since
monocular motion-based approaches only estimate relative motion from frame
to frame, small errors are accumulated over time and cause the pose estimation
to be sensitive to drift.

Recently, systems for 3-D tracking of hand and face features using stereo has
been developed [8,4,9,5,12]. Such approaches usually minimize a fitting func-
tion error between a geometric model (limbs modeled as quadrics, cylinders, soft
objects, ...) and visual observations (tridimensional scene reconstructions, col-
ors). The minimization is usually usually performed locally (initialized with the
pose estimated at the previous frame) and therefore subject to local minima,
causing the tracking to easily fail when, for instance, motions between frames
are important. To prevent this pit-fall that is caused by local minima, many
researchers investigated stochastic optimization technics such as particle filter-
ing [13,14]. Though promising, these approaches are very time-consuming and
cannot yet be implemented for real-time purposes.

In this paper, we propose to tackle the problem of local minima in the min-
imization of the fitting function error by recovering tracking failures using a
view-based model. View-based models have been mainly developed for repre-
senting the appearance of a rigid object from different points of view [10]. These
appearance models are usually trained on images labeled with sets of landmarks,
used for image point matching between frames, and annotated with the corre-
sponding rigid pose. These models are able to capture the shape and appearance
variations between people. The main drawback, however, is that the training
phase is painstakingly long (requiring manual point matching between hundreds
of images) and the pose estimate is very approximate. [3] recently proposed an
approach for increasing the pose estimation accuracy in view-based models by
using a linear subspace for shape and texture.

Recent work has suggested the combination of traditional tracking algorithms
with view-based models. [16] proposes a simple approach that uses a set of
pose-annotated views to re-initialize a standard recursive tracking algorithm.
However the approach assumes that the annotation is manual and offline. A
similar approach is proposed in [11] where an adaptive view-based model is
used to reduce the drift of a differential face tracking algorithm. The authors
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introduce an interesting linear Gaussian filter that simultaneously estimates the
correct pose of a user face and updates the view-based model.

3 View-based model

In this paper, we assume that the body model to be articulated. Pose IT of a
body is defined as the position of the torso and the relative orientation between
consecutive limbs. We introduce here a view-based model M that represents the
relationship between visual information and articulated pose IT.

Our view-based model M consists of a collection of key frames F. Each
key frame contains information about the visual information (view), the pose
associated with the view and a linear transformation that relates the pose change
with respect to the view change. Different approaches have been proposed to
model image deformation (morphable models, active appearance models, ....).
In this paper, we model image deformations by considering the optical flow
around a set of support feature points f,. A key frame F is defined as:

F= {J)vaaﬂ()}

where J is the view (intensity image) associated with the key frame. z =
(f1, .-, fn)" is a vector formed by stacking the location of the feature points
fi- IIy is the articulated pose associated with the view J. L is a matrix that
represents the local linear transformation between the articulated pose IT and
the image flow between a new view I and the view J:

II = II, + Ldz (1)

where dx = &’ — x is the image motion between the support points location
a’ in the image I and original support points x in image J.

Modeling the linear transformation between articulated pose and image de-
formation allows a compact representation of the information contained in sim-
ilar views. Therefore it enables to span a larger part of the appearance space
with fewer key frames. It also provides a better estimate of the articulated pose.

3.1 Pose prediction

Given a new image I, not necessarily present in the view-based model, an esti-
mation of the corresponding articulated pose IT is obtained as follow:

— The key frame Fj which image Jj is closest to I with respect to image
distance dz(.,.) is selected.

— The image motion dz®) of support points f*) between images J; and T is
estimated;

— The pose IT is predicted as IT = ITy(®) + L*) dg
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Fig. 1. The left image shows the current image. The right image shows the detected
key frame of the view-based model, optical flow of the support points (in blue) and the
prediction of the articulated body pose from the linear model (in white).

In our current implementation dz(I,J;) is defined as the weighted sum of
absolute pixel differences between images I and Ji:

dr (I, Jx) =Y wij|T(i,5) = Ji(i, 5)]
1)

where (i, j) are pixel coordinates and w; ; some foreground weights that account
for the fact that pixels (4, j) in image I correspond to foreground (w; ; = 1) or
background (w;; = 0). Weights w; ; are, in this paper, estimated by using a
foreground detection algorithm similar to [15]. This algorithm updates online a
background model and therefore performs a robust foreground detection, allowing
our approach to be robust to slowly varying backgrounds

Figure 1 shows an example of detected key frame and linear prediction from
the view-based model. The approach we present here consists in building and
using such a view-based model to improve the robustness and accuracy of a
tracking-based pose estimation algorithm.

4 Model-based tracking

This section briefly describes our real-time model-based tracking algorithm pre-
viously published in [5]. Our approach uses a force driven technique similar to
[4,9] that allows the enforcement of different kind of constraints on the body
pose (joint angles, orientation, ...). These constraints can eventually be learnt
from examples using a Support Vector Machine [6]. For simplicity, only the force
driven technique is described here.

We consider the pose estimation problem as the fitting of a body model pose
IT to a set of visual observations. When visual observations come from a stereo
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Fig. 2. Our geometric-based tracking algorithm minimizes the Euclidean distance be-
tween an articulated model (left image) and the 3D reconstruction of disparity image
(middle image) corresponding to the scene (right image).

or multi-view camera, tridimensional reconstructions P = {M;} of the points M;
in the scene can be estimated. In this case, a fitting error function E(IT) defined
as the distance between reconstructed points P and the 3D model at pose IT is
suitable. Such a function can be defined such that:

E*(I) = Y d*(M;,B(IT)) (2)

M;eP

where B(IT) is 3D reconstruction of the body model at pose IT and d*(M;, B(IT))
the Euclidean distance between the point M; and the 3D model B(IT).

A direct approach for pose tracking consists in minimizing the fitting error
E(IT) using a recursive scheme: the pose IT;_; estimated at the previous frame is
used as initialization in a local optimization algorithm that searches for directions
7 around IT; ; that minimize the fitting error E(IT + 7).

The iterative tracking algorithm consists of 2 steps: (i) an ICP step that
estimates a set of unconstrained rigid motions dj, (or forces) to apply to the artic-
ulated body to minimize eq.(2) and (ii) an articulated constraints enforcing
step that finds a set of rigid motions J; that satisfy articulated constraints while
minimizing a Mahalanobis distance w.r.t. rigid motions d;. The main steps of
this tracking algorithm are recalled below.

ICP step Given a set of 3D data and a 3D model of a rigid object to register,
ICP [1] estimates the motion transformation between the 3D model and the rigid
object. The ICP algorithm is applied to each limb L independently, estimating
a motion transformation dy, and its uncertainty Ay.

Articulated constraints enforcing Motion transformations d;, correspond to
’directions’ that minimize the distance between limbs £; and the reconstructed
3D points of the scene. However, altogether d; do not satisfy articulated con-
straints (due to the spherical joints between adjacent limbs).

Let A = (01,...,0n)" be the (unconstrained) set of rigid motions and A* =
(6%,...,0%) T be a set of rigid motions satisfying articulated constraints. A correct
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set of motion transformation A* that satisfy the spherical joints constraint can
be found by projecting the set of rigid motions d; onto the manifold defined by
articulated motions (see [5, 6] for details). The projection is linear (hypothesis of
small angle rotations) and minimizes the following Mahalanobis distance €2(A*):

e(A%) = [|A* = A|[3
— (A* _ A)TAA—I(A* _ A) (3)

where A is the covariance (block-diagonal) matrix A = diag(A;, As, .. .).

The projection is written A* = PA, where P is a projection matrix whose
entries are computed only from the covariance matrix A and the position of the
spherical joints (before motion).

5 Tracking with key frames

This section describes how model-based tracking and the view-based model are
combined.

At each new frame, articulated poses are estimated independently using the
recursive (ICP-based) tracking algorithm and the view-based model. The correct
pose is chosen so that it minimizes the fitting error function. Figure 3 illustrates
the combined pose estimation algorithm.
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Fig. 3. Combined pose estimation.
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Let IT, be the pose estimated by applying the ICP-based tracking algorithm
(Section 4) to the pose found at the previous frame. Let IT, be the prediction
given by the view-based model (Section 3.1). IT,, is found by:

— searching for the key frame Fj, = {Ji, g, Ly, Ilor }, which view .J;, is most
similar to the current image I;

— estimating the optical flow dx of the support points xg between images Jy,
and I and computing IT,, = Iy, + Lidx.

The fitting error function E(IT) defined in (2) is evaluated at IT, and IT,.
The pose corresponding to the smallest value of E(IT,) and E(II,) is considered
as the current pose:

IT = arg Hllijn(E(Hr), E(I1,))

The view-based model is built online using images I (observed during the
tracking) and pose estimates IT. The next sections describe how new key frames
are added in the view-based model and detail the process for updating existing
key frames.

5.1 Key frames selection

The maximum number N of key frames in the view-based model M is obviously
limited by the speed! and memory? of the CPU. Therefore the choice of key
frames to keep in the view-based model is crucial.

Many criteria can be considered to select the key frames (frames for which
the tracking is accurate, frames appearing frequently, ...). In this paper, we prefer
keeping the key frames which span a maximum of the appearance space. This can
be done by selecting key frames that maximizes an intra-class distance D(M)
between key frames.

Let S(F,F’) be a distance between key frames F and F'. The corresponding
intra-class distance D(M) is defined as:

DM)= D SFEF)=D > SFF)

{F,FrcM F F'4AF

Let Fr be a key frame from the view-based model M and F,., be a new
key frame. If F,..,, is such that:

> S(Faews F)> Y. S(Fr,F) (4)

FEM,F£F FEM,F£F

then the view-based model M., obtained by replacing the key frame Fj, by
Frew in the view-based model M satisfies D(Myey) > D(M).

! The pose prediction algorithm involves a comparison between the current image I
and the images of all key frames
2 Because of real-time issues, frames cannot be stored on disk
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In practice, we keep a current estimate of the weakest key frame F,,;,, € M
such that:
. !
Fimin = argmin > S(F.F)
FI#F
When a new frame F,,.,, satisfies (4) with Fj, = Fpnin, then F,,4, is replaced
by Fnew, therefore increasing the intra-class distance of M.

5.2 Key frame update

In this section, we show how the parameters x, L, ITy of a key frame F =
{J,z,L,II,} are estimated. Let .J;, (with 1 < k < N)) be a set of images similar
to J, and IIj the corresponding articulated pose. Let dfy be the motion of a
feature point f between the images J and Jy.

Support points First, support points x are estimated as the set of feature
points f; detected as being part of the articulated object to track. In our cur-
rent framework, support points @ are chosen so that they correspond to pixels
detected as foreground. In practice, we use the foreground weights w; ; intro-
duced in section 3.1. A pixel (i,7) is considered as a support point if its average
foreground weight w; ; across images .J;, is higher than a threshold .

Linear model: L, ITyg Let dxj; be the motion of the support points * =
(fifa2...) " between the images .J and Jj. The matrix L and vector ITg are con-
strained by the linear equations (1) corresponding to the observations (I, dxy,).

If the number of images J; similar to J is too small, there are not enough
constraints (1) to estimate L and ITy. In the rest of this section, we assume that
there are more constraints than entries in L and ITy.

Solving eqs.(1) directly using a linear least square technique could lead to
biased estimates of L and ITp because (i) the noise in the entries ITj is not
uniform and isotropic and (ii) the image motion of some of the support points x
may be mis-estimated due, for instance, to the aperture problem or the presence
of similar textures. Therefore we propose a robust scheme to solve for L and ITy
that accounts for the presence of outliers in dxy,.

Eq.(1) can be rewritten:

dxy, :Lil(Hk—Hg) =TIl + p (5)

with
r=L"! p=-L"'I, (6)
Let the matrices I'; and vectors p; be such that T' = (I ' . ..I‘NfT)T and

p= (. --HN,T)T-

With dzp, = ( 1(k), 2(’6),...,3"'1\1('“))T and considering only the lines of (5)
corresponding to the support point motion dfi(k), it gives:
zT

I;
df® =TIy + pi = <r-yT> Iy, + pi = Piq; (7)
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T ry”
where Py, = <Hg HOT (1) 2) qg = | IV
k 223

Vector g; is found by solving simultaneously eqs.(7) for all k£ using a robust

optimization technique based on M-estimator [7]. More precisely, we introduce
2
€T

202

S o1 — Praill, o) (8)
-

an influence function p(z,0) = log(1+ &5 ) and minimize the following objective

function:

The scalar o corresponds to the expected covariance of the noise in the inliers
(in our implementation, o = 2.0pix). It worth noticing that eq.(8) is actually
solved using an iterative weighted linear least-square method (see [7] for details).
Once vectors g; are estimated, L and ITy are estimated using (6).

5.3 Summary
The complete tracking algorithm can be summarized as follow:

— Key frame search. The key frame Fy = {Ji, g, Lk, IIo} of the view-
based model, which image J}, is the closest to the current image I is esti-
mated;

— Pose estimation. Pose IT, is predicted using the linear model (1) and
optical flow dx between image I and J;. Pose I, is estimated using the
ICP-based algorithm. The pose minimizing the fitting error function (2) is
chosen as the correct pose IT;

— View-based model update. The optical flow dx is added as an additional
constraint to update the linear model (Ly, IIg;) of key frame Fy. If image
I satisfies criteria (4), then a new key frame Fe,, is created (with image I
and pose IT).

6 Experiments

We applied the body tracking approach described previously to stereo image
sequences captured in our lab. Experiments were done in order to compare
the standard recursive (ICP-based) algorithm with our approach (ICP-based
combined with a view-based model). The algorithms were run on a Pentium 4
(2GHz). The ICP-based algorithm alone runs at a speed ranging from 8Hz to
12Hz. The ICP-based algorithm combined with a view-based model runs at
about 5Hz. In these experiments, the maximum number of key frames in the
view-based model is N = 100.

In order to learn the view-based model, a training sequence of about 2000 im-
ages is used. The training sequence is similar to Figure 4 (same background /subject).

Figure 4 show some comparative results on a testing sequence of more than
1500 images. More exactly, the figure show the corresponding images of the
sequence and re-projection of the 3D articulated model for frames 132, 206,
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Fig. 4. Comparative results (re-projection of the 3D articulated model) on a sequence
of more than 1500 images (lines correspond to frames 132, 206, 339, 515, 732 and
850). The graph shows that, with our approach (ICP + view-based model), the error
is always smaller. The left column corresponds to the ICP-based tracking algorithm.
The right column corresponds to our algorithm (ICP + view-based model)
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Fig. 5. Average error between the estimation of the 3D articulated model and the 3D
scene reconstruction vs. number of frames. Peaks in the data (around frames 520, 670,
930, 1100, 1190) corresponding to the ICP algorithm are actually tracking failures.

339, 515, 732 and 850. Results show that our approach enables to cope with
re-initialization after tracking failure.
Figure 5 shows the average error between the estimation of the 3D model
and the 3D scene reconstruction from the stereo camera for the two algorithms.
Additional sequences can be found at: http://www.ai.mit.edu/~demirdji

7 Conclusion

We described an approach for real-time articulated body tracking. The approach
combines traditional recursive vision-based tracking and a view-based model to
estimate the pose of an articulated object. We introduce an appearance model
that contains views (or key frames) of a person under various articulated poses.
The appearance model is built and updated online. The main contribution con-
sists in modeling, in each frame, the pose change as a linear transformation of
the view change.

The experiments we carried out show that our approach significantly in-
creases the robustness of the tracking by enabling an automatic re-initialization
in case of failure of the traditional recursive tracking algorithm. Experiments
are being carried out to show the accuracy of the linear predictor of the view-
based model. The use of an online background learning algorithm allows our
approach to be robust to slowly varying background. However, our approach is
not robust to different clothing/person. In future work, we plan to extend our
approach by introducing an adaptive appearance model to model the variability
of appearance across people/clothes.
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