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What is a texture?
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About 45,000,000 results (0.31 seconds) Advanced search
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About 30,800,000 results (0.81 seconds) Advanced search







Which textures are we going to
talk about in this lecture?

Stationary

Stochastic



When are two textures similar?

All these images are different instances of the same texture
We can differentiate between them, but they seem generated
by the same process



Texture Analysis

mput lmage

ANALYSIS‘ Same™ of

77 ‘different”

13 r(ﬁm’t texture  generated image

Compare textures and decide if they're made of the
same “stuff”.



Texture SyntheS|s

mput lmage

13 r(inﬁite texture generated image

Given a finite sample of some texture, the goal is to

synthesize other samples from that same texture
— The sample needs to be "large enough”



Let’s get a feeling of the
mechanisms for
texture perception



What is special about texture
perception?
* Pre-attentive texture discrimination

* Perception of sets and summary statistics
* Crowding



Nature Vol. 290 12 March 1981 21
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REVIEW ARTICLES

Textons, the elements of texture perception,
and their interactions

Bela Julesz
Bell Laboratories, Murray Hill, New Jersey 07974, USA

Research with texture pairs having identical second-order statistics has revealed that the pre-attentive
texture discrimination system cannot globally process third- and higher-order statistics, and that
discrimination is the result of a few local conspicuous features, called textons. It seems that only the
first-order statistics of these textons have perceptual significance, and the relative phase between textons
cannot be perceived without detailed scrutiny by focal attention.

Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions". Nature 290: 91-97. March, 1981.




Pre-attentive texture
discrimination
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Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions". Nature 290: 91-97. March, 1981.



Pre-attentive texture
discrimination
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Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions". Nature 290: 91-97. March, 1981.



Pre-attentive texture

discrimination
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This texture pair is pre-attentively indistinguishable. Why?

Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions". Nature 290: 91-97. March, 1981.



PERSPECTIVE

nature
ncuroscicnce

The uncrowded window of object recognition

Denis G Pelli & Katharine A Tillman



Crowding

Pelli, D. G., Cavanagh, P., Desimone, R., Tjan, B., & Treisman, A. (2007).
Crowding: Including illusory conjunctions, surround suppression, and
attention. Journal of Vision, 7(2):i, 1, http://journalofvision.org/7/2/i/



A summary-statistic =
representation in peripheral
vision explains visual crowding

Benjamin Balas 1, bty
Lisa Nakano 2 and ity
Ruth Rosenholtz 3 R0

A B
B A

Journal of Vision
November 19, 2009 vol. 9 no. 12
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PSYCHOLOGICAL SCIENCE VOL.12,NO.2, MARCH 2001

Research Article

SEEING SETS:
Representation by Statistical Properties

Dan Ariely

Massachusetts Institute of Technology




Representation of sets
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Set Is this element a member of the set?




Ebbinghaus illusion
‘ The central circle is
judged relative to the

set properties of the

‘ ‘ ‘ circles surrounding it

Attenuated by
reducing the set
| | grouping.




Representation



What a model should account for:

1. Biological plausibility: The stages of the model should
be motivated by, and be consistent with, known
physiological mechanisms of early vision.

2. Generality: The model should be general enough that it
can be tested on any arbitrary gray-scale image.

3. Quantitative match with psychophysical data: The
model should make a quantitative prediction about the
salience of the boundary between any two textured
regions. Rank ordering of the discriminability of different
texture pairs should agree with that measured
psychophysically.

From Malik & Perona, 1990



Julesz - Textons
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Julesz - Textons
Textons: fundamental texture elements.

| >

Textons might be represented by features
such as terminators, corners, and
Intersections within the patterns...




Nature, Vol. 333. No. 6171. pp. 363-364, 26 May 1988
Early vision and texture perception

James R. Bergen* & Edward H. Adelson*#*

* SRI David Sarnoff Research Center, Princeton,

New Jersey 08540, USA

** Media Lab and Department of Brain and Cognitive Science,
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Observation: the Xs
look smaller than the Ls.

“We note here that simpler, lower-level mechanisms tuned for size may be

sufficient to explain this discrimination.”
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Early vision and texture perception

James R. Bergen®



J. Malik and P. Perona Vol. 7, No. 5/May 1990/J. Opt. Soc. Am. A

Preattentive texture discrimination with early vision
mechanisms

Jitendra Malik and Pietro Perona

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,
Berkeley, California 94720

Received July 7, 1989; accepted December 28, 1989

We present a model of human preattentive texture perception. This model consists of three stages: (1) convolu-
tion of the image with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of
responses modeling outputs of V1 simple cells, (2) inhibition, localized in space, within and among the neural-
response profiles that results in the suppression of weak responses when there are strong responses at the same or
nearby locations, and (3) texture-boundary detection by using wide odd-symmetric mechanisms. Our model can
predict the salience of texture boundaries in any arbitrary gray-scale image. A computer implementation of this
model has been tested on many of the classic stimuli from psychophysical literature. Quantitative predictions of
the degree of discriminability of different texture pairs match well with experlmental measurements of discrimina-
bility in human observers.



. O Squared responses  Spatially blurred

vertical filter

Threshold squared,
blurred responses,
then categorize

_ texture based on
horizontal filter those two bits




Texture gradient (X,y)
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Fig. 1. Simplified schematics of our model for texture perception.
The image (bottom) is filtered using the kernels F;...F, and is
half-wave rectified to give the set of simple-cell responses R; . . . R,,.
The postinhibition responses PIR,...PIR, are computed by
thresholding the R; and taking the maximum of the result over small
neighborhoods. The thresholds depend on the activity of all chan-
nels. The texture gradient is computed by taking the maximum of

the responses of wide odd-symmetric filters acting on the postinhi-
bition responses PIR;.




Two big families of models

1- Parametric models of filter outputs

2- Example-based non-parametric models



The trivial texture synthesis
algorithm




Texture synthesis and
representation

Set of equivalent textures

L

Space of all image

Set of equivalent textures: generated by exactly the same physical process



Texture synthesis and
representation

Set of equivalent textures

‘Set of perceptually

equivalent textures

Space of all image

Set of equivalent textures: generated by exactly the same physical process
Set of perceptually equivalent textures: “well, they just look the same to me”



If matching the averaged squared filter
values is a good way to match a given
texture, then maybe matching the entire
marginal distribution (eg, the histogram) of
a filter's response would be even better.

Jim Bergen proposed this...



Pyramid-Based Texture Analysis/Synthesis

David J. Heeger" James R. Bergen'
Stanford University SRI David Sarnoff Research Center
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The main 1dea: 1t works by ‘kind of’ projecting a
random 1mage into the set of equivalent textures

m ¥ n
L EE g
100 H g .l ]
.l o [ ] |
[ | -. ]
200 m n L :
N Set of equivalght textures
[ |
250 /
0

50 100 150 200

Set of perceptually w ~% f
equivalent textures " " & g LR E

-m -
250l . ™. P,
50 100 150 200

Synthetic texture

Space of all imag



Overview of the algorithm

Match-texture (noise, texture)
| Match-Histogram (noise,texture)|
analysis-pyr =|Make-Pyramid (texture)|
Loop for sgeveral iterations do

synthesis-pyr = Make-Pyramid (noise)

Loop for a-band in subbands of analysis-pyr
for g-band in subbands of synthesis-pyr
do
Match-Histogram (g-band, a-band)

noise = Collapse-Pyramid (synthesis-pyr)

Match-Histogram (noise,texture)

Two main tools:
1- steerable pyramid

2- matching histograms



1-The steerable pyramid
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1-The steerable pyramid

// \\

But why do | want to represent images like this?



1-The steerable pyramid

N

Argument used by H & B: Statistical measures in the subband
representation seem to provide a “distance” between textures that

correlates with human perception better than pixel-based
representations.



1-The steerable pyramid

In general seems a good idea to have a representation that:
-Preserves all image information (we can go back to the image)

-Provides more independent channels of information than pixel values (we
can mess with each band independently)

But all this is just indirectly related to the texture synthesis task. But let
assume is good enough...



1-The

Input texture

100

150

250

steerable pyramid

Steerable pyr
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Overview of the algorithm

Match-texture (noise, texture)
| Match-Histogram (noise,texture)|
analysis-pyr =|Make—Pvramid (textureﬂ
Loop for several iterations do

synthesis-pyr = Make-Pyramid (noise)

Loop for a-band in subbands of analysis-pyr
for g-band in subbands of synthesis-pyr
do
Match-Histogram (g-band, a-band)

noise = Collapse-Pyramid (synthesis-pyr)

Match-Histogram (noise,texture)

Two main tools:
1- steerable pyramid

2- matching histograms



2-Matching histograms

Y
9% of pixels have an intensity value 75% of pixels have an intensity val
within the range[0.37, 0.41] smaller than 0.5
3 i 50: 4

5% of pixels have an intensity value
within the range[0.37, 0.41]



2-Matching histograms

We look for a transformation
of the image Y

Such that
Hist(Y) = Hist(f(2))

Problem: there are infinitely many functions
that can do this transformation.

A natural choice is to use f being:

- pointwise non linearity

- stationary

- monotonic (most of the time invertible)




2-Matching histograms

The function f is just a look up table: it says, change all the pixels of
value Y into a value f(Y).

Y=0.8 Y'=0.5
Original New
intensity intensity




2-Matching histograms




Another example: Matching histograms
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5% of pixels have an intensity value
within the range[0.37, 0.41]



Another example: Matching histograms

The function f is just a look up table: it says, change all the pixels of
value Y into a value f(Y).

Y= 08 Y,= 1 —
Original New “
intensity intensity 0

150

200




Another example: Matching histograms
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In this example, f is a step function.
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Matching histograms of a subband
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Matching histograms of a subban
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Texture analysis

Wavelet decomposmon (steerable pyr)

Input texture
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. (Steerable pyr; Freeman & Adelson, 91)

1 The texture is represented as a collection of
wo marginal histograms.
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Heeger and Bergen, 1995

Input texture

Texture synthesis
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Why does 1t work? (sort of)
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Why does 1t work? (sort of)

The black and white blocks appear by
thresholding (f) a blobby image
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Why does 1t work? (sort of)
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50 100 150 200 250
Original texture

Color textures

Three textures
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This does not work

4 - N 3
50 100 150 200 250
Synthetic texture

Original texture



Color textures

Problem: we create new colors not present in the original image.

Why? Color channels are not independent.




250

200 -

150 |

100+

50

PCA and decorrelation

50

100

150

200

% R

250

200 -

150

100

50 -

0 L * L L 1
0 50 100 150 200 250 R



PCA and decorrelation

The texture synthesis algorithm assumes that the channels
are independent.
What we want to do is some rotation

250

200 |

150

—

100( L : Rotation

50| . 1 2

0 d 1 | L 1 t’o
0 50 100 150 200 % R i
2

See that in this rotated space,
if | specify one coordinate the
other remains unconstrained.
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C=

PCA and decorrelation

correlation(R,G)

A
1.0000 0.9303 0.6034

0.9303 0.9438 0.6620
0.6034 0.6620 0.5569

PCA finds the principal directions of variation of the data.
It gives a decomposition of the covariance matrix as:

C=DD

0.6347 0.6072 0.4779
D= (6306 -00496 -0.7745
0.4466 -0.7930 0.4144

By transforming the original data (RGB) using D we get:

u1
U2

D’

R
G
B

3 X Npixels

3x3

3 x Npixels

The new components (U1,U2,U3) are decorrelated.




Color textures

Rotation
Original texture M atri X
(3x3)
D!
These three textures These three textures
look similar Look less similar

(high dependency) (lower dependency)



Color textures

Inverse
Rotation
Matrix

D

50 100 150 250
Original texture



Color textures

Original texture

These three textures
look similar
(high dependency)

Eotatiom <

Matrix

D’

These three textures
Look less similar
(lower dependency)

Inverse
Rotation




Color channels

L oD ‘E L ‘ &t
50 100 150 200 250
Original texture

Without PCA
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Synthetic texture

With PCA

50 100 150 200
Synthetic texture
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Color channels

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Original texture Synthetic texture Synthetic texture
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Original texture

Color channels
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Examples from the paper

Figure 3: In each pair left image is original and right image is synthetic: stucco, iridescent ribbon. green marble, panda fur,

slag stone, figured yew wood.
Heeger and Bergen, 1995



Examples from the paper

& g e

Figure 4: In each pair left image is original and right image is synthetic: red gravel, figured sepele wood, brocolli, bark paper,
denim, pink wall, ivy, grass, sand, surfl.



Examples not from the paper

Input
texture

Synthetic
texture

But, does it really work even when it seems to work?



But, does it really work???
How to measure how well the representation
constraints the set of equivalent textures?

All the textures in this
? set have the same
parameters.

o ° .?



How to 1dentify the set of equivalent textures?

This does not reveal how poor
the representation actually is.



We need a space that is more perceptual

In a perceptual space
all these noise images
are very close. But in
pixel space, they are
very far away.

How big is this set
in a pixels space?



We need a space that is more perceptual

In a perceptual space
all these noise images
are very close. But in
pixel space, they are
very far away.

How big is this set

How big is this set :
in a perceptual space?

in a pixels space?



How to 1dentify the set of equivalent textures?

These trajectories are
more perceptually

salient - This setis huge




How to 1dentify the set of equivalent textures?

100

150

250 I

50 100 150 200 250
Original texture Synthetic texture



How to 1dentify the set of equivalent textures?

These trajectories are
more perceptually
salient

i i diiidtdiisiiaia



Portilla and Simoncelli

 Parametric representation, based on
Gaussian scale mixture prior model for
Images.

 About 1000 numbers to describe a texture.

* Ok results; maybe as good as DeBonet.



Portilla and Simoncelli
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Portilla & Simoncell

50 100 150 200 250 " 50 100 150 200 250 50 100 150 200 250
Heeger & Bergen Portilla & Simoncelli



How to identify the set of equivalent textures?

Now they look good, but maybe
they look too good...

Portilla & Simoncelli



A summary-statistic =
representation in peripheral
vision explains visual crowding

Benjamin Balas 1, bty
Lisa Nakano 2 and ity
Ruth Rosenholtz 3 R0

A B
B A

Journal of Vision
November 19, 2009 vol. 9 no. 12



Zhu, Wu, & Mumford, 1998

* Principled approach. Based on an
assumption of heavy-tailed distributions for

an over-complete set of filters.
* Synthesis quality not great, but ok.



Zhu, Wu, & Mumford

VTR

* Cheetah Synthetic



De Bonet (and Viola)

SIGGRAPH 1997

Multiresolution Sampling Procedure
for Analysis and Synthesis
of Texture Images
Jeremy S. De Bonet -
Learning & Vision Group

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

EMAIL: jsd@ai.mit.edu
HOMEPAGE: http://www.ai.mit.edu/__jsd



DeBonet

[.earn: use filter conditional statistics across scale.

raEad” EcEa of

3 . b wrmrded

i

Figure 8: The distribution from which pixels in the synthesis pyra-
mid are sampled is conditioned on the “parent”™ structure of those
pixels. Each element of the parent structure contains a vector of the
feature measurements at that location and scale.

Figure 9: An input texture is decomposed to form an analysis pyra-
mid, from which a new synthesis pyramid is sampled, conditioned
on local features within the pyramids. A filter bank of local texture
measures, based on psychophysical models, are used as features.



DeBonet







Two big families of models

1- Parametric models of filter outputs

2- Example-based non-parametric models



IEEE International Conference on Computer Vision, Corfu, Greece, September 1999

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776, US A.
{efros leungt} @cs.berkeley.edu



Efros & Leung Algorithm
. non-parametric [ m

sampling

Input image

Synthesizing a pixel
Assuming Markov property, compute P(p|N(p))
— Building explicit probability tables infeasible
— Instead, we search the input image for all similar

neighborhoods — that’s our pdf for p

— To sample from this pdf, just pick one match at
random



Neighborhood Window




Increasing window size
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Synthesis Results
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More Results

white bread brick wall
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Hole Filling
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Extrapolation
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Image Quilting [Efros & Freeman]

non-parametric
sampling

Input image

Synthesizing a block
* QObservation: neighbor pixels are highly correlated

Idea: unit of synthesis = block
e Exactly the same but now we want P(B|N(B))

e Much faster: synthesize all pixels in a block at once

e Not the same as multi-scale!
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Texture Transfer

« Take the texture from one
object and “paint” it onto
another object

— This requires separating
texture and shape

— That’'s HARD, but we can
cheat

— Assume we can capture shape
by boundary and rough
shading

*Then, just add another constraint when sampling:
similarity to underlying image at that spot
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Project ideas
Non stationary texture synthesis




Project ideas: 3D textures




Project ideas: 3D textures

Can you create a 3D volume that you can navigate?
Assume that all slices should have the same statistics.
Need knowledge about alpha map?

This is not a solid texture. This is a 3D scene texture.



