
Snapdown: A Text-Based Snapshot Diagram
Language for Programming Education

Daniel Whatley
MIT CSAIL

Cambridge, MA

dwhatley@alum.mit.edu

Max Goldman
MIT CSAIL

Cambridge, MA

maxg@mit.edu

Robert C. Miller
MIT CSAIL

Cambridge, MA

rcm@mit.edu

Abstract—Snapshot diagrams, which visualize in-memory pro-
gram state, are frequently used in programming education to
demonstrate new concepts and help students develop a bet-
ter understanding of program functionality. In this paper we
introduce Snapdown, a textual language for drawing snapshot
diagrams, designed for use by both students and instructors of
programming courses. Snapdown is designed with an emphasis
on learnability and simplicity: both to be picked up by students in
a classroom setting in a matter of minutes, and to enable creation
and maintenance of diagrams in instructional content with
minimal overhead. We introduce several use cases of Snapdown
and describe the design and features of its textual language. We
also describe a deployment of Snapdown during two semesters
of emergency remote teaching in 6.031 Software Construction at
MIT, a software engineering course intended for sophomore- and
junior-level undergraduate students.

Index Terms—snapshot diagrams, textual language, program-
ming education

I. INTRODUCTION

In many programming courses, students complete exercises

that involve writing or analyzing a program. Some exercises

ask students to draw diagrams to help with mental visual-

ization. Such diagrams, commonly termed memory diagrams

[6, 21, 12], typically show the state of a program and its

variables. These diagrams are commonly used as a teaching

aid: instructors often include them in their lecture notes, digital

textbooks, online exercises, and other course content. These

diagrams are designed to be simple and flexible, only showing

particular aspects of the program state that are relevant to the

discussion at hand. We refer to these diagrams as snapshot

diagrams, as they represent transient snapshots of memory, and

depict both objects on the heap and frames on the call stack.

Figure 1 is an example of a snapshot diagram presented early

in 6.031 Software Construction at MIT, a software engineering

course taught by the authors.

Generating many snapshot diagrams for online course con-

tent is not an easy task. Instructors must create, update, and

maintain snapshot diagrams as course content changes and

as students need more examples. Diagrams can be drawn by

hand, constructed with an image editor like Graphviz [10] or

OmniGraffle [24], or with a low-level diagramming language

like DOT [8]. However, these methods are not designed to

cities -> (

List<String>

0 -> (String "Boston"),

1 -> (String "Bogotá"),

2 -> (String "Barcelona")

)

Fig. 1: A snapshot diagram that shows a list of three String objects.
Left: Snapdown syntax, right: corresponding diagram.

support continuous changes in diagram content and structure.

In addition, some of these methods have steep learning curves,

and are not feasible for students to use in completing course-

work. Programming courses typically contain tens or hundreds

of code snippets, examples, and exercises, and several chal-

lenges would immediately surface if instructors and students

were to use these methods to draw diagrams illustrating them.

In this paper, we address these challenges with Snapdown, a

text-based language for drawing snapshot diagrams, intended

for use by both instructors and students. Inspired by Markdown

[14], Snapdown aims to represent graphical objects using text

syntax that resembles the diagram as closely as possible.

Snapdown also takes advantage of the fact that a primary

purpose of these diagrams is to show associations between

names and values: the same names that appear as labels in

the diagram can be used to refer to objects in the text source,

making many diagrams more straightforward to draw. Finally,

Snapdown gives users the ability to draw multi-step diagrams

that show the evolution of the state of a program. Figure 1

shows Snapdown syntax on the left for the corresponding

diagram on the right, and Figure 2 contains an example four-

step diagram drawn with Snapdown.

We evaluated the learnability of Snapdown by asking stu-

dents and instructors of 6.031 to draw diagrams with it.

Snapdown proved to be an advantage during the COVID-19

pandemic: students could complete diagram exercises online

using Snapdown without a drawing tablet or other means. In

addition, 6.031 incorporates pair programming exercises into

its class sessions. Using Snapdown, students collaboratively

edited diagrams in their web browsers. Overall, approximately

500 students used Snapdown for 10-15 exercises across two

semesters, Fall 2020 and Spring 2021, of emergency remote978-1-6654-4592-4/21/$31.00 ©2021 IEEE

t -> (String "a")

tarr ->

(List<String> 0 -> t)

s -> t

arr -> tarr

#r -> (String "ac")

s -x> t

s -> #r

tarr add 1 -> (String "d")

Fig. 2: Multi-step diagram demonstrating reassignment and mutation of variables. Example Java code follows. Step 1: String t = "a";

List<String> tarr = List.of(t); Step 2: String s = t; List<String> arr = tarr; Step 3: s = "ac"; Step 4: tarr.add("d");

Fig. 3: Example figure from Wellesley CS 111’s lecture
notes on lists and memory diagrams (reproduced with
permission).

myList -> [

98.6, 17, 23,

ˋTrueˋ, #subList, #circle]

list2 -> myList

#subList -> [

"I", "was", "not", "Adams"]

#circle -> (

Circle

radius -> 50

location -> (Point

x -> 200

y -> 100)

)

Fig. 4: Snapdown representation of diagram from Fig. 3

teaching in 6.031. Instructors of 6.031 created approximately

20 new diagrams using Snapdown for course material.

We also evaluated the generalizability of Snapdown. Using

Snapdown, we recreated over 100 diagrams from 11 program-

ming courses at a variety of institutions. For example, Figure

3 shows a snapshot diagram presented in the lecture notes of

CS 111 at Wellesley College [25], and Figure 4 shows the

equivalent representation in Snapdown.

This paper makes the following contributions:

• Snapdown, a textual language for drawing snapshot dia-

grams, designed to be learnable by students in a matter

of minutes, with a syntax that resembles the shape of

diagram elements, and that uses the same syntax for

drawing names in the diagram and binding names in text.

• An implementation of Snapdown that generates SVG

diagrams with an intermediate representation in JSON,

which facilitates embedding Snapdown in web applica-

tions and collaborative drawing of diagrams.

• A syntax and mechanism for rendering multi-step dia-

grams that is easy to write and maintain and preserves

visual consistency between steps.

• An analysis of how students and instructors in a large

programming course used Snapdown over the course of

two semesters.

In the next section we review related work in diagram layout

engines, and diagrams and visualizations used in programming

education. We then introduce Snapdown syntax and the situ-

ations in which it can be used. We detail Snapdown’s layout

routine, its approach to both single- and multi-step diagrams,

and evaluate its learnability and effectiveness. We conclude

with limitations of our approach and future work.

II. RELATED WORK

A. Diagramming languages

Several diagramming languages are well-known and com-

monly used to draw diagrams for a variety of purposes, in-

cluding ones related to programming education. Systems such

as Penrose [18], DOT [8], Mermaid [15], and PlantUML [19]

are examples. Of these, Mermaid and PlantUML both share

Snapdown’s approach of providing an accessible language.

These systems focus heavily on drawing UML diagrams.

Object diagrams in UML are similar to snapshot diagrams,

but are much more focused on showing single snapshots of

class and object hierarchy.

Overall, these systems solve different problems and focus

on different use cases. For example, UML object diagrams are

not designed to show how variables and values change over

time. UML object diagrams also do not contain compound

nodes, while most snapshot diagrams do. (In Figure 2, the

List<String> objects are all examples of compound nodes:

they have internal fields such as 0 and 1 which point to

other nodes, such as the String objects.) Drawing a visually

appealing snapshot diagram in a system designed for UML

diagrams would require careful manual positioning or substan-

tial syntax additions. This added work presents a complexity

barrier which can distract the user from their primary goal of

drawing a diagram.

B. Drawing diagrams in classroom settings

Research has shown that drawing diagrams is beneficial yet

difficult for students in programming courses. Sajaniemi et

al. [21] performed studies with students in an introductory

programming course, collected many student-drawn diagrams

for different types of exercises, and analyzed them to check

for common mistakes and misconceptions. Based on the

diagrams, a small number of key concepts, such as objects

and constructors, caused most confusion. A study by Holliday

and Luginbuhl [12] involved giving two different versions of

a quiz to students, one with multiple-choice questions, and

another asking students to draw snapshot diagrams. The quiz

results led to the conclusion that drawing a correct diagram

is more difficult than correctly answering the multiple-choice

questions, and that a student’s ability to draw a snapshot

diagram is positively correlated with an assessment of their

understanding.

Researchers have also performed experiments to show the

effectiveness of visualizations in different settings. A study by

Hendrix et al. [11] divided participants into two groups, one

presented only with a question about a code snippet, and the

second presented with the same question and code snippet but

also an accompanying diagram. The group presented with the

diagram performed significantly better on the question than

the group without. A study by Baltes and Diehl [1] concluded

that diagrams can be a helpful way to enhance out-of-date

company documentation.

C. Generating diagrams from code

The problem of visualizing executable code with diagrams

has been explored extensively. Python Tutor [20] is a widely-

used system that generates snapshot diagrams, with both stack

and heap, from executable code in several programming lan-

guages. GitUML [9] can generate UML diagrams from GitHub

repositories containing object-oriented executable code. Sys-

tems built into certain IDEs such as the UML Generator for

IntelliJ IDEA [13] and ObjectAid for Eclipse [16] can generate

UML diagrams from code in existing projects. A paper by

Dalton and Kreahling [4] took a step toward automatically

generating snapshot diagrams from executable code in an

instructional setting, with a focus on generating incorrect

diagrams for teaching purposes. Incorrect diagrams were gen-

erated through a custom language specified by the authors that

resembles executable code.

Compared to these systems, Snapdown has different require-

ments and makes different tradeoffs. For example, diagrams

drawn directly from executable code can become very large

and contain parts of the heap or stack that are beyond the scope

of course material. We believe our approach better serves

students and instructors who only wish to visualize parts of

the heap or stack relevant to their specific needs. In addition,

in scenarios where a user has not yet written working code but

wishes to draw a snapshot diagram, they can do so without

needing completed code that compiles and runs.

D. Generating diagrams with code

Constrain [2] is an example of a system designed to draw

arbitrary figures including snapshot diagrams. Constrain is

used in classes such as CS 2112 at Cornell to demonstrate

evolving states of programs. To draw simple snapshot dia-

grams in Constrain, at a level of complexity similar to that

of Figure 1, a user would need to learn approximately 10-15

Constrain library functions. A description for such a diagram

in Constrain consists of approximately 20 lines of JavaScript—

each line draws a single diagram element using multiple

function calls. More involved diagrams require many more

lines of code, and require the user to learn and use more library

functions. Such code, while possible for instructors to write

and use to draw a large range of diagrams, would be infeasible

for students to write for their coursework. Diagramcodes [5]

and Structurizr [22] are two other examples of systems that

draw diagrams from a representation written in code, and

each have a similar complexity overhead to that of Constrain.

In comparison with these systems, Snapdown’s language is

much smaller and constrained and has much less flexibility.

Snapdown does not require students to learn a new API or a

new programming language, which greatly reduces the slope

of its learning curve.

III. LANGUAGE DESIGN

Snapdown’s language supports the following features. The

examples presented in this section were chosen with the Java

programming language in mind, but Snapdown is a language-

independent drawing tool.

A. Primitives and variables

Figure 5 shows examples of Snapdown syntax for prim-

itive data types and variables, as well as the corresponding

diagram. Arrows between variable names and their values are

represented with a textual arrow, ->.

Variable names can be a single alphanumeric word, similar

to those in most programming languages. For the purpose of

snapshot diagrams, however, we may want to include the types

of variables as well. Placing backticks around literals, such as

`int i`, allows for any string literal to be interpreted as a

variable name or a value.

Note how all arrows point downward, and how variables are

introduced left-to-right as they are written in Snapdown. This

design was based on an evaluation of diagrams drawn on paper

and collected in the course of 6.031, and drawn by course

staff during an initial exploratory study. Students and staff

both had a strong preference to draw arrows top-to-bottom

and introduce variables left-to-right.

i -> 12345

‘int i‘ -> 12345

str -> "I am a string!"

str2 -> "I am a

multiline

string!"

Fig. 5: Primitives and variables

B. Objects, fields, and arrays

Figure 6 shows an example of objects, fields, and arrays,

and the corresponding Snapdown syntax. We use parentheses

around class names and fields to resemble the round shape

of an object in the diagram. The MyFloat object contains

only its inherent value of 5.0, and the array contains two

f -> (MyFloat 5.0)

arr -> [

(String), (String)]

lst -> (

ArrayList

0 -> 1000

1 -> 2000

2 -> 3000

length -> 3

)

Fig. 6: Objects, fields, and arrays

a -x> 1

a -> 2

b -> a

Fig. 7: Reassignments

coursesSet -> (Set<Course>

-> cs1 -> cs2)

cs1 -> (Course

ˋ...ˋ semester#1 -> #sem)

cs2 -> (Course

ˋ...ˋ semester#2 -> #sem)

#sem -> (

Semester

season ->

((String "Fall"))

year -> 2020

)

semester#2 -x> (Semester

ˋ...Spring 2020...ˋ)

Fig. 8: Name-binding and resolution

x -> (MyClass)

topOfStack() {

foo -> 5

this -> x

}

lowerInStack() {}

main() {}

Fig. 9: Stack frames

String objects. The third object goes into more detail on

the inner structure of the ArrayList. It has four fields, 0,

1, 2 and length, which may or may not actually exist in

the representation of the object in a programming language.

Objects can be represented in different ways depending on the

desired level of detail. Adding, removing, or updating names

of objects or their fields can be done by simply editing the

text or using a find-and-replace operation.

C. Reassignments

Variables in a program are typically assigned new values

over time. To show the evolving nature of programs, Snapdown

allows users to draw both old and new values of variables using

reassignments. Figure 7 shows a diagram illustrating a code

segment such as int a = 1; a = 2; int b = a;. We represent

crossed-out arrows with the syntax -x>, as it resembles what

is drawn in the diagram as closely as possible.

D. Name-binding and resolution

Values in a program are typically associated with names.

Snapdown takes an approach to name-binding that allows the

user to easily associate names with parts of a diagram. Figure

8 shows an example of such a diagram with names for both

variables (such as cs1 and cs2) and fields (such as semester,

season, and year). Using underscores as field names, like in

_ -> cs1, means that space should be reserved for a field

but that no name should be drawn. Consequently, by using

the names cs1 and cs2 in the definition of the Set<Course>

object, the arrows from the Set<Course> object point at the

Course objects.

Many programs also have duplicate names and objects with

identical field names. In addition, some values may not be

associated with a name. In both of these scenarios, users

can include a # in variable names, both to help disambiguate

between identical names and to give a reference to unnamed

values. In Figure 8, the semester fields of both Course

objects are named the same, so to disambiguate, we use the

notation semester#1 and semester#2. #-disambiguation is

helpful when we indicate that semester#2 is reassigned. In ad-

dition, the name #sem is associated with the Semester object

representing Fall 2020 in the Snapdown snippet. Snapdown

still binds the name #sem to this Semester object, but does

not draw the name #sem itself.

The example in Figure 7 demonstrates an important feature

of name-binding that applies specifically when a variable is

reassigned. Here, when the user types b -> a, Snapdown

infers that b should point to the reassigned value of 2.

E. Stack frames

Figure 9 shows an example of Snapdown syntax for

stack frames and the corresponding diagram. This diagram

represents a call stack of three methods: topOfStack(),

lowerInStack(), and main(), each of which can contain vari-

able definitions. The method topOfStack() is likely within

the class MyClass, and the this reference points at the

MyClass object.

F. Multi-step diagrams

In many cases, a single diagram containing reassignments is

not enough to communicate the evolving nature of a program.

In Snapdown, users can draw multi-step diagrams by including

dashed lines, ---, between steps that illustrate code fragments.

One method to draw multi-step diagrams, used for exam-

ple by Constrain, would be to animate transitions between

snapshots. We take a different approach that does not rely

on transitions to communicate the changes between each

snapshot, and allows users to scroll between steps of a diagram

at an arbitrary speed. Our approach requires that if the same

object is present in multiple steps of a multi-step diagram,

#sam -> (Dog "Sam")

a -> #sam

a -> (

list

0 -> #sam

1 -> (Dog "Fred")

2 -> (Dog "George")

)

Fig. 10: Multi-step diagram demonstrating the need to keep objects
in place.

it should not change position physically within the diagram.

In the first frame of the diagram presented in Figure 10, the

arrow is intentionally drawn much longer than usual to ensure

a fixed position for this object.

IV. USER INTERFACE

Snapdown’s user interface is its textual language, which can

be embedded and integrated into many different situations and

use cases. Here, we describe some scenarios in which Snap-

down has been used and tested by students and instructors.

Snapdown web app: Snapdown is embedded in a simple,

minimal web app that can serve as a sandbox for users to try

out its features. This web app contains a textbox into which

the user can type Snapdown syntax, as well as a diagram that

live-updates to reflect user input. Users are also presented with

a help sidebar that documents common Snapdown features.

This help sidebar contains an explanation of one representative

example for each core feature, the Snapdown text for that

example, and the corresponding diagram. These examples can

serve as templates for more complex diagrams users wish to

draw: users can copy-paste the canned syntax examples and

modify them as necessary. After the user has drawn a diagram,

they have the option to export the diagram to an SVG file.

Pre-class readings: Snapdown is used in 6.031’s required

pre-class reading material. When preparing readings with

embedded snapshot diagrams, instructors can type Snapdown

syntax within embedded HTML <script> tags, and include

the Snapdown library JavaScript file. Snapdown converts these

HTML elements to SVG diagrams and embeds them within

the final version of the reading that is released to students.

Pre-class reading exercises: Each pre-class reading also has

a number of exercises, which are designed to be completed by

a student in one sitting. We introduced Snapdown into some of

these exercises. Students typed Snapdown in a setting similar

to that of the web app: students type in a text box and a

diagram is generated to the right of it. Clicking the “Check”

button provides feedback on their diagram. A screenshot of a

completed reading exercise is shown in Figure 11.

Collaborative in-class exercises: Snapdown was used by

students to complete in-class exercises that involved drawing

snapshot diagrams. Using a collaborative text editor designed

for in-class pair programming, students worked in pairs to

Fig. 11: Completed Snapdown reading exercise.

create snapshot diagrams that illustrate code segments. After

each exercise was over, TAs gave feedback on diagrams drawn

by each pair.

Usage by instructors: Snapdown was used by 6.031 instruc-

tors during class to explain concepts such as mutability and

aliasing. Instructors also developed the in-class and reading

exercises that involve Snapdown. Writing these exercises re-

quired instructors to iterate on different versions of starting

and completed diagrams, and this iteration process involved

writing and updating Snapdown syntax.

V. TECHNICAL DETAILS

Snapdown is open-source1, implemented in JavaScript and

uses ELK [7] as its layout engine. ELK provides a number

of layout algorithms, each with specific use cases in mind.

Since we prefer arrows to be drawn downward, we chose ELK

Layered, a layout algorithm that can support our requirement

for directionality.

Snapdown uses an intermediate JSON representation to

decouple parsing of Snapdown syntax from diagram layout

and rendering. Snapdown syntax is first parsed, evaluated, and

converted into this intermediate representation, which is then

fed into the layout engine (in this case, ELK), and finally the

laid-out diagram is drawn as an SVG in the browser. Because

Snapdown outputs an SVG diagram, any web application with

Snapdown embedded has great flexibility in post-processing or

applying a custom CSS stylesheet to Snapdown diagrams.

We now describe how Snapdown visualizes the heap, how

it draws stack frames, and how it handles multi-step diagrams.

A. Drawing the heap

Snapdown’s implementation parses heap elements and per-

forms name resolution on every named object, value, and

field in the diagram. Through this name resolution, each

object, variable name, and value is assigned a unique ID.

ELK requires an input representation consisting of explicit

nodes and edges, and this assignment of IDs gives ELK the

information it needs to lay out the diagram. Assigning IDs is

also crucial to the layout of multi-step diagrams.

1Implementation hosted at https://github.com/uid/snapdown, sandbox
hosted at https://snapdown.csail.mit.edu/

https://github.com/uid/snapdown
https://snapdown.csail.mit.edu/

B. Drawing stack frames

For diagrams with stack frames, our approach is more

complicated, since these diagrams have arrows that point in

multiple directions. Currently, we apply a global ELK setting

that specifies a single direction across the diagram. At a high

level, this setting does not allow edges to be drawn in multiple

directions. Other such global settings are available, but they

substantially alter the layout of the heap. To work around this

limitation, we use PathFinding.js [17], an external pathfinding

library, to lay out edges between the heap and the stack.

We treat the stack and heap as separate diagrams and run

Snapdown’s full layout routine twice, with a different ELK

directionality setting on each diagram. With this pathfinding

library, we develop a set of constraints according to the nodes

and edges that already exist in the diagram, and lay out the

edges between the stack and heap. Finally, we combine the

two diagrams together and draw the required edges.

C. Multi-step diagrams

Multi-step diagrams are the biggest challenge, since di-

agram elements need to have a consistent identity across

steps. Whether we choose to animate them, or keep them in

consistent positions as we have done, we would face the same

challenges.

Each frame in a multi-step diagram represents a diff: for

example, objects that are added or variables that are reas-

signed. In Figure 2, for instance, between Steps 1 and 2, the

introduction of the two references s and arr is part of the

diff between those two steps. Starting with the initial diagram

(Step 1), each diff is applied to obtain a sequence of individual

diagrams. Individual diagrams contain all the elements neces-

sary for each step, but do not yet keep those elements in stable

positions. While constructing individual diagrams, Snapdown

preserves the IDs assigned to each diagram element. An object

included in two distinct animation frames must have the same

ID in both frames.

Next, Snapdown constructs a combined diagram. Every

object and arrow ever drawn in the diagram will be included in

the combined diagram. It is not sufficient to just make the last

frame in sequence the combined diagram, since some arrows

and objects may have been deleted prior to the last animation

step. Finally, the individual steps of the diagram are created

by deleting elements from the combined diagram that do not

appear in each of the individual diagrams.

VI. EVALUATION

We evaluated the learnability of Snapdown by having both

students and instructors use it while taking or teaching 6.031.

We also used Snapdown to replicate diagrams from courses at

other institutions, and we describe our results.

A. Presentation in readings and in class

Across two semesters of emergency remote teaching in

6.031, instructors presented Snapdown in six pre-class read-

ings and in four class sessions. Figure 12 shows an analysis

of student responses to two exercises, named heap and stack,

Fig. 12: Spring 2021, heap and stack Snapdown exercise analysis. *
= Students who spent more than 5 minutes on the exercise; includes
both students who clicked Explain and those who didn’t.

seg -> (

Stroke

)

(Point)

(Color ˋBLACKˋ)

Fig. 13: Starting Stroke diagram.

presented in sequence in a reading assignment. During these

two exercises, students were seeing Snapdown for the first

time. Approximately 240 students were actively participating

in the course at the time, and 226 students completed at least

one of these two exercises. Each exercise has an Explain button

that students can click if they wish to give up and see the

answer without figuring it out on their own. We consider

an exercise completed if either a student clicks the Explain

button or they get the exercise correct. Student submissions

were checked for correctness using a regular expression on

the Snapdown source.

For each exercise, students who did not click the Explain

button took an average of about 2 minutes to get the exercise

correct (heap: 127.8 seconds, stack: 145.2 seconds). For

both exercises, approximately 40 students clicked the Explain

button almost immediately after opening the exercise. For

students who spent more than 120 seconds on either exercise

after opening it, we analyzed their sequences of answers. For

both exercises, we believe these students were deliberately

taking much more time to learn Snapdown by playing around

with many of its features. The help sidebar also presented a

large number of features, which may have been daunting to

some students, especially to those who clicked the Explain

button. In the text of the exercise, we specified which features

were relevant, but it may have been better to only present the

features we said would be useful.

One issue that came up frequently, and that was commented

on both by 6.031 students and staff, was the lack of specific

error messages when Snapdown could not parse user input.

When a user enters invalid syntax, or enters a name that could

not be looked up, the only error message shown is “Unable

to parse Snapdown input.” Displaying a more detailed error

message, along with the syntactic or semantic nature of the

error, is an area for future work.

seg -> (

Stroke

start->#1

end -> #2

color -> (Color ˋBLACKˋ)

)

#1 -> (Point x->5 y->10)

#2 -> (Point x-> 20 y->15)

Fig. 14: Correct student-drawn Stroke diagram.

seg -> (

Stroke

startx -> (double 5)

starty -> (double 10)

endx -> (double 20)

endy -> (double 15)

color -> (Point)

(Color ˋBLACKˋ)

)

Fig. 15: Incorrect student-drawn Stroke diagram.

One of the authors of this paper presented Snapdown in

a class session of 6.031 by using the main Snapdown web

application. It is their opinion that compared with a tablet

or whiteboard application, drawing with Snapdown resulted

in much cleaner diagrams, and took approximately the same

amount of time. During the Spring 2021 semester, 6.031

initiated a move from using Java to using TypeScript as its

main programming language, and many snapshot diagrams had

to be updated for the new language. We found that diagrams

drawn with Snapdown were far easier to update, because its

textual format allowed for easy global search-and-replace.

B. In-class exercises

Students in 6.031 completed collaborative exercises using

Snapdown in pairs during class. One in-class exercise asked

pairs of students to use Snapdown to draw a representation of

a Stroke object in Java given its source code. Students were

provided with the starting diagram shown in Figure 13. This

exercise occurred after students had already seen Snapdown in

reading exercises, and after they used it in class once before.

Figure 14 shows an example of a correct diagram drawn by

a pair of students. A correct diagram has objects recursively

nested within others: the Stroke object has fields pointing at

Point objects, which themselves have fields. Such recursively

nested objects were presented with corresponding Snapdown

syntax in previous reading exercises, and examples were given

in the help sidebar. All syntax examples, however, involved #-

disambiguation—no examples were given similar to Figure 6

which directly included nested objects inside parent objects.

A total of 107 pairs of students worked on this exercise

for twelve minutes. Approximately 56% of pairs drew correct

diagrams. The pair shown in Figure 14 used #-disambiguation

to achieve the object nesting; 6% of pairs did so in total. The

other 50% of pairs put the Point objects directly inside the

Stroke objects.

Figure 15 shows an example of an incomplete student-drawn

diagram. This specific pair of students may have been unsure

of how to achieve the desired nesting of objects, and directly

included startx and starty as fields of Stroke. Approxi-

mately 14% of pairs of students had this issue. Another 4% of

pairs of students drew diagrams without arrows between field

names and objects, like start and the corresponding Point.

Introducing students to previous examples of nested objects,

either through previous exercises or in the help sidebar, may

have resolved these issues.

The remaining 26% of pairs drew diagrams that demon-

strated issues with conceptual understanding. Some pairs did

not draw the names of fields such as x or y. In general, we

consider diagrams without any field names (such as x or y) or

values (such as 15 or 20) to indicate a conceptual issue or a

lack of effort.

C. Replicating diagrams from other courses

We used Snapdown to replicate diagrams presented in many

courses, at a variety of institutions, that use diagrams through-

out their lecture notes and lab assignments. We surveyed 11

introductory- and intermediate-level programming courses. We

now describe our evaluation of Snapdown on diagrams from

a representative sample of these courses.

CS 2112, Cornell [3]: We found 13 snapshot diagrams

across lecture notes, 10 of which were readily expressible in

Snapdown. One of the diagrams includes text written at arbi-

trary positions on the diagram, which Snapdown currently does

not handle: the output SVG must be edited in order to achieve

this effect. The other two diagrams that Snapdown could

not draw contained a grid structure for a multidimensional

array, and a representation of memory using hexadecimal

addresses. These specific diagram layouts are not yet supported

by Snapdown and are potential future additions to the system.

“OOP in Java”, UCSD (Coursera) [23]: We found 14

snapshot diagrams across eight lecture videos in this course.

We were able to replicate 13 of them using Snapdown. The

only diagram we were unable to replicate was an invalid

diagram, in which a variable name had an arrow pointing

at another variable name as opposed to a value. We were

also able to express two sequences of three diagrams each

using Snapdown’s multi-step diagram feature. We noticed that

this course, among many others, prefer primitive values to be

drawn directly in boxes: see Figure 16 for an example of this.

Figure 17 shows our attempt to more closely replicate Figure

16 in Snapdown. To replicate this diagram, we added new

syntax, =, to represent direct assignment of primitive values

to variables. This syntax was easy to add and brought us much

closer to visually replicating many diagrams not only from this

course but from others as well.

CS 111, Wellesley [25]: We found 35 snapshot diagrams

across two sets of lecture slides. All of them were readily

expressible in Snapdown individually. CS 111 also includes a

lab assignment instructing students to draw a sequence of nine

snapshot diagrams that depict the state of a program at various

Fig. 16: Example figure from “OOP in Java” at UCSD

d = -77.0

lima -> (SimpleLocation

lat = -12.0 lon = -77.0)

washDC -> (SimpleLocation

lat = 38.9 lon = -77.0)

Fig. 17: Snapdown representation of diagram from Fig. 16

Fig. 18: Example snapshot diagram drawn in 6.009 (reproduced with
permission)

points in its execution. We were able to draw all nine diagrams

with Snapdown individually. We also tried expressing this

sequence as a multi-step diagram in Snapdown. Snapdown

has syntax for appending list elements, but does not yet have

syntax for more advanced control of list elements necessary

for these sequences. Future work includes adding syntax to

support such mutations of lists and other objects.

6.009, MIT: Figure 18 shows an example of a snapshot

diagram drawn in 6.009 Fundamentals of Programming at

MIT, the prerequisite to 6.031. Contrary to 6.031 and the

courses above, 6.009 does not have diagrams in online read-

ings or a textbook—these diagrams are all drawn live by

instructors during class sessions. Diagrams drawn in 6.009

contain stack frames and objects similar to those in 6.031,

but with considerable visual differences. 6.009 uses Python,

and being a lower-level course, its diagrams focus heavily on

the inner workings of Python and how code executes. The

diagram in figure 18 contains arrows pointing to stack frames,

from other stack frames as well as functions on the heap.

Snapdown cannot yet draw these arrows, but it can draw all

other components in the diagram, modulo visual differences.

VII. LIMITATIONS AND FUTURE WORK

ELK provides a number of layout algorithms—as described

earlier, the ELK Layered algorithm best serves our needs. One

limitation of this algorithm, however, is the lack of support for

hierarchy-crossing edges. In other words, if we wish to have

arrows point in two directions (i.e., down for arrows between

heap objects, and right for stack-to-heap arrows), ELK Layered

performs automatic layout only on arrows pointing in one

of the two directions. We worked around this limitation by

using an external pathfinding library. Our approach works

because diagrams with stack frames, both in 6.031 and in

other courses surveyed, are not very complex. For example,

no diagram we encountered had more than four stack frames.

Future work includes exploring other algorithms or solutions

to this problem, especially if the need arises to draw more

complex diagrams involving stack frames.

We can also add many features to our language. As de-

scribed in Section VI-C, Snapdown currently does not have

syntax to illustrate mutations of objects across diagram frames.

In addition, some courses such as 6.009 place much more

emphasis on stack frames, and have arrows pointing to stack

frames to demonstrate the inner workings of a specific pro-

gramming language. Snapdown is designed to be language-

independent, but in the future we can add customized modes

for specific programming languages. Finally, expanding our

syntax for multi-step diagrams and our use of the pathfinding

library are fruitful avenues for future work.

We also identified issues students had with using Snapdown.

For example, some students had difficulties with drawing

recursively nested diagrams, and we hypothesize that adding

more such examples to the help sidebar will resolve this

problem. Future work includes testing these hypotheses with

targeted experiments and exercises.

VIII. CONCLUSION

Snapdown was developed based on our approach to teaching

introductory software engineering, but we have shown that

it is a general tool for drawing snapshot diagrams. The

textual nature of the Snapdown language promotes usability

in a wide range of situations, both in the classroom and

in web applications. In addition, when used in readings or

course material, updating a diagram becomes as easy as a

find-and-replace operation. During the COVID-19 pandemic,

drawing a diagram on paper as part of a class was no longer

easily possible for students. Yet with Snapdown, students were

able to complete collaborative diagram-drawing exercises, and

instructors were able to use it to explain concepts during class.

Finally, Snapdown’s ability to handle multi-step diagrams

gives it a compelling use case in course materials and in exer-

cises given to students. We believe Snapdown makes snapshot

diagrams easier to create and maintain, and will benefit courses

in which drawing diagrams is a learning objective for students.

REFERENCES

[1] Sebastian Baltes and Stephan Diehl. “Sketches and Diagrams
in Practice”. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engi-
neering. FSE 2014. Hong Kong, China: Association for Com-
puting Machinery, 2014, pp. 530–541. ISBN: 9781450330565.
DOI: 10.1145/2635868.2635891. URL: https://doi.org/10.1145/
2635868.2635891.

[2] Constrain - a JS (ES6) library for responsive, animated
figures, based on declarative constraint solving. URL: https:
//andrewcmyers.github.io/constrain/.

[3] Cornell University, CS 2112 Fall 2020: Object-Oriented De-
sign and Data Structures (Honors). URL: https : / / www. cs .
cornell.edu/courses/cs2112/2020fa/lectures/lecture.html?id=
objects.

[4] Andrew R. Dalton and William Kreahling. “Automated Con-
struction of Memory Diagrams for Program Comprehension”.
In: Proceedings of the 48th Annual Southeast Regional Con-
ference. ACM SE ’10. Oxford, Mississippi: Association for
Computing Machinery, 2010. ISBN: 9781450300643. DOI: 10.
1145 / 1900008 . 1900040. URL: https : / / doi . org / 10 . 1145 /
1900008.1900040.

[5] diagram.codes. URL: https://www.diagram.codes/.
[6] Toby Dragon and Paul E. Dickson. “Memory Diagrams:

A Consistant Approach Across Concepts and Languages”.
In: Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. SIGCSE ’16. Memphis, Ten-
nessee, USA: Association for Computing Machinery, 2016,
pp. 546–551. ISBN: 9781450336857. DOI: 10.1145/2839509.
2844607. URL: https://doi.org/10.1145/2839509.2844607.

[7] Eclipse Layout Kernel. URL: https://www.eclipse.org/elk/.
[8] Emden R Gansner, Eleftherios Koutsofios, and Stephen North.

Drawing graphs with dot. URL: https://www.graphviz.org/pdf/
dotguide.pdf.

[9] GitUML. URL: https://www.gituml.com/.
[10] Graph Visualization Software. URL: https : / /www.graphviz .

org/.
[11] T. Dean Hendrix et al. “Do Visualizations Improve Pro-

gram Comprehensibility? Experiments with Control Struc-
ture Diagrams for Java”. In: Proceedings of the Thirty-First
SIGCSE Technical Symposium on Computer Science Educa-
tion. SIGCSE ’00. Austin, Texas, USA: Association for Com-
puting Machinery, 2000, pp. 382–386. ISBN: 1581132131.
DOI: 10.1145/330908.331890. URL: https://doi.org/10.1145/
330908.331890.

[12] Mark Holliday and David Luginbuhl. “Using Memory Dia-
grams When Teaching a Java-Based CS1”. In: Proc. of the
41st Annual ACM Southeast Conference. ACMSE ’03. 2003,
pp. 376–381. URL: https://dl.acm.org/doi/abs/10.1145/971300.
971373.

[13] IntelliJ UML Class Diagrams. URL: https:/ /www.jetbrains.
com/help/idea/class-diagram.html.

[14] Markdown. URL: https : / / daringfireball . net / projects /
markdown/.

[15] Mermaid. URL: https://mermaid-js.github.io/mermaid/#/.
[16] ObjectAid for Eclipse. URL: https://objectaid.com/.
[17] PathFinding.js. URL: https : / /qiao .github. io /PathFinding. js /

visual/.
[18] Penrose. URL: http://penrose.ink/.
[19] PlantUML. URL: https://plantuml.com/.
[20] Python Tutor. URL: http://pythontutor.com/.
[21] Jorma Sajaniemi, Marja Kuittinen, and Taina Tikansalo. “A

Study of the Development of Students’ Visualizations of
Program State during an Elementary Object-Oriented Pro-
gramming Course”. In: Proceedings of the Third International
Workshop on Computing Education Research. ICER ’07.

Atlanta, Georgia, USA: Association for Computing Machin-
ery, 2007, pp. 1–16. ISBN: 9781595938411. DOI: 10.1145/
1288580.1288582. URL: https: / /doi .org/10.1145/1288580.
1288582.

[22] Structurizr. URL: https://structurizr.com/help/code.
[23] UCSD, Object-Oriented Programming in Java (Coursera).

URL: https://www.coursera.org/learn/object-oriented-java.
[24] Visual Communication Software To Make Pro Diagrams -

OmniGraffle for Mac. URL: https : / / www. omnigroup . com /
omnigraffle.

[25] Wellesley College, CS111 Computer Programming. URL: http:
//cs111.wellesley.edu/∼cs111/archive/cs111 spring16/public
html/index.html.

https://doi.org/10.1145/2635868.2635891
https://doi.org/10.1145/2635868.2635891
https://doi.org/10.1145/2635868.2635891
https://andrewcmyers.github.io/constrain/
https://andrewcmyers.github.io/constrain/
https://www.cs.cornell.edu/courses/cs2112/2020fa/lectures/lecture.html?id=objects
https://www.cs.cornell.edu/courses/cs2112/2020fa/lectures/lecture.html?id=objects
https://www.cs.cornell.edu/courses/cs2112/2020fa/lectures/lecture.html?id=objects
https://doi.org/10.1145/1900008.1900040
https://doi.org/10.1145/1900008.1900040
https://doi.org/10.1145/1900008.1900040
https://doi.org/10.1145/1900008.1900040
https://www.diagram.codes/
https://doi.org/10.1145/2839509.2844607
https://doi.org/10.1145/2839509.2844607
https://doi.org/10.1145/2839509.2844607
https://www.eclipse.org/elk/
https://www.graphviz.org/pdf/dotguide.pdf
https://www.graphviz.org/pdf/dotguide.pdf
https://www.gituml.com/
https://www.graphviz.org/
https://www.graphviz.org/
https://doi.org/10.1145/330908.331890
https://doi.org/10.1145/330908.331890
https://doi.org/10.1145/330908.331890
https://dl.acm.org/doi/abs/10.1145/971300.971373
https://dl.acm.org/doi/abs/10.1145/971300.971373
https://www.jetbrains.com/help/idea/class-diagram.html
https://www.jetbrains.com/help/idea/class-diagram.html
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://mermaid-js.github.io/mermaid/#/
https://objectaid.com/
https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/
http://penrose.ink/
https://plantuml.com/
http://pythontutor.com/
https://doi.org/10.1145/1288580.1288582
https://doi.org/10.1145/1288580.1288582
https://doi.org/10.1145/1288580.1288582
https://doi.org/10.1145/1288580.1288582
https://structurizr.com/help/code
https://www.coursera.org/learn/object-oriented-java
https://www.omnigroup.com/omnigraffle
https://www.omnigroup.com/omnigraffle
http://cs111.wellesley.edu/~cs111/archive/cs111_spring16/public_html/index.html
http://cs111.wellesley.edu/~cs111/archive/cs111_spring16/public_html/index.html
http://cs111.wellesley.edu/~cs111/archive/cs111_spring16/public_html/index.html

	Introduction
	Related Work
	Diagramming languages
	Drawing diagrams in classroom settings
	Generating diagrams from code
	Generating diagrams with code

	Language Design
	Primitives and variables
	Objects, fields, and arrays
	Reassignments
	Name-binding and resolution
	Stack frames
	Multi-step diagrams

	User Interface
	Technical Details
	Drawing the heap
	Drawing stack frames
	Multi-step diagrams

	Evaluation
	Presentation in readings and in class
	In-class exercises
	Replicating diagrams from other courses

	Limitations and Future Work
	Conclusion

