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Abstract

Teachers of MOOCs need to analyze large quantities of student submissions. There
are a few systems designed to provide feedback at scale. Adapting these systems
for residential courses would provide a substantial benefit for instructors, as a large
residential course might still have several hundred students. OverCode, one such sys-
tem, clusters and canonicalizes student submissions that have been marked correct
by an autograder. We present GroverCode, an expanded version of OverCode that
canonicalizes incorrect student submissions as well, and includes interface features for
assigning grades to submissions. GroverCode was deployed in 6.0001, an introduc-
tory Python programming course, to assist teaching staff in grading exams. Overall
reactions to the system were very positive.
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1 Introduction

Interactive online learning experiences such as Intelligent Tutoring Systems (ITS) and

MOOCs are becoming increasingly popular and produce vast numbers of beginner-

level programs. A MOOC can have hundreds or thousands of students, and the

analyzing and grading of every submission individually would require an infeasible

amount of instructor time and effort. Consequently, there are a few systems de-

signed to help teachers analyze student submissions and provide feedback at scale.

Instructors of a residential course, unlike MOOC instructors, are expected to provide

feedback and assign grades to every student. Residential courses are generally much

smaller than online courses. However, a large residential programming course can still

be as large as several hundred students. Residential teaching staff invest a great deal

of time into grading and providing feedback to students. Adapting tools designed for

large-scale online classes for residential courses would provide a substantial benefit

for these instructors.

This thesis focuses specifically on grading exams in 6.0001, an introductory Python

programming course. In this course, a portion of each exam involves submitting code

online via the MITx platform. In the past, the MITx platform assigned a grade

automatically based on a suite of unit tests. However, basing scores solely on unit

test results can unfairly penalize some students while rewarding others. For example,

a student might write a function that performs the correct logic, but makes a small

error such as returning a floating point number instead of the required integer. This

student receives no credit from an autograder, despite showing an understanding of

programming concepts. Conversely, a different student might write a function that

always returns the same answer, and receive partial credit, despite showing no such

understanding. For this reason, the teaching staff of 6.0001 now grade by looking at

each student’s code and adjusting the output of the autograder as necessary. This

grading process is long and exhausting, often taking upwards of five hours per exam.

To ease this process, we present GroverCode, an expanded version of the OverCode

system [3]. As originally designed, OverCode allows teachers to visualize clusters of
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correct solutions that behave equivalently. It also renames variables to increase con-

sistency between solutions. With this system, a teacher can get a sense of the space

of student programming solutions and tailor feedback to reach as many students as

possible. Originally evaluated on MOOC data, this tool has great potential for res-

idential environments. The enhancements to GroverCode include handling incorrect

submissions as well as correct ones, and applying the system to the task of grading.

When grading, the staff must first understand what a student’s code does and locate

any mistakes in order to deduct points or provide feedback. Increasing the similarity

between incorrect solutions, to simplify the understanding step, was a primary goal

of this system.

In the GroverCode pipeline, we process incorrect solutions, that is, solutions which

have been marked as incorrect by an autograder for failing one or more test cases. The

original OverCode pipeline clustered correct solutions based on variable behavior and

renamed common variables so that all correct solutions shared a namespace. The

modified pipeline also analyzes the behavior of variables in incorrect solutions by

extracting the sequence of values these variables take on and the structure of the

lines of code in which they appear. Using this information, GroverCode can rename

these variables as well. The system then displays all solutions within a consistent

namespace, regardless of correctness. The GroverCode user interface includes features

for assigning scores and comments to solutions. This combines viewing code and

assigning grades into one interface.

We deployed the GroverCode system as a grading tool in the Spring 2016 semester

of 6.0001. Approximately 200 students enrolled in this course. Nine instructors, con-

sisting of a professor and eight Teaching Assistants (TAs), including the author, used

GroverCode to help grade both the midterm and the final exam, which together con-

tained seven programming problems. They used GroverCode to grade most, though

not all, student submissions. The number of GroverCode-graded submissions per

problem ranged from 133 to 189. Overall reactions to the system were very positive,

especially when applied to simple problems.
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The main contributions of this thesis are:

∙ An updated pipeline for the GroverCode system that analyzes the behavior of

variables in correct and incorrect solutions and renames them into a common

namespace

∙ An interface for displaying and grading canonicalized code

∙ Two field deployments in which instructors of an introductory Python course

used GroverCode to grade student exams and provided positive feedback about

the system

2 Related Work

2.1 OverCode

The original OverCode [3] helps teachers and other graders explore variation in stu-

dent submissions in large-scale programming classes such as MOOCs. It analyzes

only submissions marked as correct by an autograder, and clusters hundreds or thou-

sands of submissions by analyzing variable behavior on a single test case. It also

canonicalizes student submissions by renaming variables to increase the similarity be-

tween submissions and to improve human readability. Glassman et al. tested Over-

Code with a group of Teaching Assistant (TA) graders and found that the interface

helped them quickly assess students’ understanding. Modifications and expansions

to GroverCode described in this paper support the specific task of exam grading in

a residential introductory Python course, 6.0001. GroverCode adds the ability to

run student submissions on multiple test cases, rather than limiting to a single test

case. It augments the pipeline to handle submissions that are marked as incorrect

by an autograder. GroverCode does not cluster incorrect submissions; however, it

renames the variables in incorrect submissions to share names with the variables in

correct submissions. Finally, it adds interface support for assigning grades and adding

comments to submissions.
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2.2 Cluster Assisted Grading

Basu et. al [1] use clustering to explore the idea of “grading on a budget,” i.e.,

maximizing the impact of a small number of human actions when grading short

answer questions. They train a classifier to label pairs of submissions as similar

or different, then break the set of submissions into a fixed number of clusters and

subclusters, automatically marking clusters and subclusters as correct by clustering

answer key items with student submissions. Teachers can flip the labels of clusters,

subclusters, and individual submissions as appropriate. This approach of assigning

grades to whole groups of submissions at one time amplifies the teacher’s effort. It can

also reveal common modes of misunderstanding, because submissions within incorrect

subclusters often contain similar mistakes.

GroverCode uses a suite of grader-supplied unit tests to initially mark submis-

sions as correct or incorrect, rather than training a classifier. It clusters submissions

marked as correct into stacks, based on variable behavior and syntax. It calculates a

metric of similarity between submissions, but does not use that metric to cluster, only

to change the order in which it displays submissions. It groups submissions according

to the number of test cases they pass. Often these groups display similar mistakes,

as with the subclusters in the system described by Basu et al.

Brooks et al. [2] build on the work of Basu et al. presenting a web interface for

displaying clusters and subclusters, and assigning grades and feedback to them. They

evaluate this interface with a group of expert graders, who report that the clustered

interface is faster, easier to use, and more enjoyable than a flat interface for grading

the same problems.

The GroverCode interface focuses on displaying student code in a human-friendly

fashion, while Brooks et al. focus on displaying clusters and subclusters in a mean-

ingful way. GroverCode only clusters submissions that behave identically, so there

is no need to visualize variation within a cluster. Both interfaces aim to facilitate

hand-grading of student answers.
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Gross et al. [4] use prototype-based clustering and examine the effectiveness of

comparing student submissions to the prototype submissions. They use the Relational

Neural Gas technique (RNG) to cluster graded submissions and find prototypes. They

provide feedback on each new submission by highlighting the differences between that

submission and the closest prototype submission. Expert graders determined that

seeing these differences can help students debug their code.

Unlike GroverCode, Gross et al. focus on providing feedback to a single student

at a time. They cluster submissions already graded by experts, and use these clus-

ters and their prototypes to help identify problems in a new submission. In contrast,

GroverCode processes ungraded submissions and helps staff assign grades to a whole

body of submissions at one time. However, GroverCode does highlight differences

between submissions to help pinpoint problems, although it is staff, rather than stu-

dents, who view these differences.

2.3 Hint generation

Singh et al. [7] use program synthesis techniques to attempt to automatically correct

student code. Given a specification and an error model, their system can correct

a large fraction of incorrect submissions. They use the Sketch synthesizer to apply

the changes suggested by the error model to a student submission and generate a

set of candidate programs. Of all these candidate programs, they consider those

that match a provided reference implementation and pick the one that requires the

minimum number of corrections. Singh et al. find that a single addition to the error

model could enable correcting hundreds of additional submissions, indicating that

students often make overlapping mistakes. One benchmark error model corrected

65% of student submissions to a particular problem. However, this system requires

teachers to define an error model specific to each problem, and only supports a subset

of Python.

GroverCode does not attempt to fix students’ bugs automatically, but instead

aims to support teaching staff as they grade code manually. It considers the fact
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that students make overlapping errors, by grouping submissions based on test case

output, since submissions which pass the same set of test cases often include the same

mistake. In addition, the task of generating a rubric to grade a particular problem is

similar to that of generating an error model.

Rivers & Koedinger [6] generate hints by locating incorrect student submissions

in a space of possible submissions to a given problem. They generate this submission

space from previous student submissions by extracting the Abstract Syntax Tree

(AST) for each submission, and normalizing it using semantics-preserving operations,

including anonymizing variable names. Rivers & Koedinger generate feedback for an

incorrect student submission by finding the closest correct submission using string

edit distance, and then determining the necessary changes to convert the student’s

submission into a correct submission.

Like GroverCode, Rivers & Koedinger rename variables to increase the similarity

of submissions. However, GroverCode also attempts to increase the human readability

of submissions by renaming variables based on common names chosen by students.

Rather than automatically generating hints based on similar submissions to a student

submission, GroverCode orders submissions based on similarity and displays them to

teaching staff to assist them in assigning grades.

3 Dictionary of Terms

We define several terms below, used throughout Sections 4 and 5.

Test Case A single Python function call designed to test some aspect of a student’s

code. This may be a call to a student-defined function, or a call to a grader-

defined function that calls a student’s function and performs computation on

the results.

Error Signature A particular pattern of passes and failures on a set of test cases.

Submission A single student’s answer to a particular coding problem.
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Figure 1: The GroverCode user interface, showing data for a problem from a previous
semester of an introductory Python programming course. The problem asks students
to flatten a nested list of arbitrary depth.

Correct Submission A submission that has been marked correct by an autograder,

i.e., a submission that passes every test case in a set of test cases.

Incorrect Submission A submission that has been marked incorrect by an auto-

grader, i.e., a submission that fails at least one test case in a set of test cases.

Variable Instance A single global or local variable within a submission.

Abstract Variable A collection of one or more equivalent variable instances. Vari-

able instances are considered equivalent if they take on an identical sequence of

values.

Cleaning Removing comments from a submission and reformatting it to ensure con-

sistent line indentation and spacing.

Canonicalizing Renaming the variable instances within a submission such that the

submission shares a namespace with all other submissions.
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Stack A collection of one or more cleaned and canonicalized submissions. A correct

stack contains one or more equivalent correct submissions. See Section 5 for an

explanation of which submissions are considered equivalent. An incorrect stack

contains a single incorrect submission.

4 Design

The GroverCode user interface is the result of several iterations of prototypes. At

each stage in the design process, members of our research group and members of

the teaching staff of 6.0001, the introductory Python course, tested the interface

during intermediate design stages. The final design, shown in Figure 1, incorporates

their feedback. The GroverCode user interface includes two sections: a filter panel

on the left and a stack display on the right. The filter panel contains one row for

each observed error signature, which is a particular pattern of test case passes and

failures. Each row lists the number of passed test cases in the error signature, a visual

representation of the error signature, the total number of stacks exhibiting that error

signature, the number and percentage of graded stacks exhibiting that error signature,

and a progress bar for that error signature. An additional row at the bottom displays

the total number of stacks, the total number of graded stacks, and an overall progress

bar.

The stack display contains one column per stack, arranged horizontally. The

horizontal alignment facilitates comparing code and test case results between stacks.

Each column features a large center panel containing the code of the stack. A red

panel means that the stack failed one or more test cases. Above the code panel

is the interface for entering grades, with two textboxes for entering a score and a

comment, respectively, and a dropdown menu to show the rubric for the current

problem. There is also a numeric identifier for the stack, and an indication of whether

the stack has been graded. Test case information appears below the code panel. This

information includes a description of each test case and a green checkmark or red

X to denote a passed or failed test case, respectively. Failed test cases also include
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the expected output and the actual output produced by the stack. Finally, a link

beneath the code panel on the right toggles the display of raw submissions, that

is, the uncleaned and uncanonicalized code of each submission associated with the

stack. Raw submissions include some small amount of metadata, but are otherwise

unmodified from the student’s original submission (See Figure 2).

Figure 2: A correct stack with the corresponding raw submission displayed. The
top panel, with syntax highlighting, is the code panel. The bottom panel is the raw
submission. The dimmed lines of code in the code panel are shared between this
stack and the previous stack, not shown here. The three comments at the top of the
raw submission contain metadata added by the script that parses the CSV file of all
student submissions. The rest of the raw submission is exactly as submitted by the
student. The third line of metadata, grade, is the score that the student sees after
clicking “Submit” on the MITx platform while taking the exam. In the residential
course, the score is always 1.0, regardless of the correctness of a student’s code.
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4.1 Stacks

A stack contains at least one cleaned and canonicalized student submission. An

incorrect stack, indicated by code with a red background, always represents a sin-

gle submission. A correct stack may represent multiple similar submissions grouped

together. The process of cleaning, canonicalizing, and grouping submissions is de-

scribed in Section 5. The number of submissions a stack contains appears beneath

the code panel, in the link to toggle the display of raw submissions. If a stack contains

multiple submissions, clicking this link causes all the associated raw submissions to

appear, listed vertically. Grading a stack assigns the same score and comment to

every submission contained in the stack.

4.2 Filtering

With the left-hand panel, graders can filter the displayed stacks based on error signa-

ture by selecting the checkboxes next to the desired rows. The additional checkbox

next to the headings is a “select all” checkbox: selecting or clearing this checkbox

automatically selects or clears the checkboxes for all error signatures. Another option

allows toggling the display of previously graded stacks. The displayed stacks appear

in an order that maximizes similarity between adjacent stacks, as described below.

4.3 Ordering

The display order of the stacks depends on a pairwise metric of similarity, described in

Section 5. GroverCode finds the pair of stacks with the largest similarity and displays

these as the first two stacks, arbitrarily selecting one of these as the first stack. It

selects the third and all subsequent stacks by finding the remaining stack that is most

similar to the previously chosen stack. Ordering stacks so that neighboring stacks are

similar minimizes the cognitive load of moving between stacks.
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4.4 Highlighting Differences Between Stacks

Similar to [3], GroverCode uses dimming to highlight differences between stacks. It

compares each stack to its previous neighbor, unlike [3], which compares every stack

to a single reference stack. Lines of code shared with the previous stack become dim,

making differences between neighboring stacks more apparent (See Figure 2).

Figure 3: A stack with the rubric dropdown menu open. This rubric comes from the
second field deployment of GroverCode (See Section 8.3). Text for each of the two
checked items appears in the comment box.

4.5 Grading

Each column in the stack display has space to enter a score and a comment for

the stack. After a grader enters a score, the status of the stack changes to graded.

GroverCode removes the label “Not Yet Graded” and updates the appropriate progress
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bar in the filter pane. A grader can also enter a comment explaining the score. In

addition to or instead of typing a comment manually, a grader can select items from

the rubric dropdown menu (see Figure 3) to apply to the stack. A rubric item

consists of a score delta and a description, e.g., “-1, does not handle empty lists.” In

the dropdown menu, a checkbox appears next to each item. Selecting a checkbox

adds text to the comment textbox.

A grader can also add new items to the rubric via a set of textboxes at the bottom

of the dropdown menu. After entering a score delta and a description, clicking “Add”

or pressing Enter adds the new item. New rubric items are immediately visible to all

staff grading a particular problem. To delete a rubric item, a grader can click the X

next to the item in the dropdown. This does not change the comments on previously

graded stacks.

5 Implementation

GroverCode processes student submissions with a multi-stage pipeline. The system

first cleans each submission, and executes it on a series of grader-supplied test cases

using the Python execution logger described in [5]. GroverCode then canonicalizes

these submissions using the results of the execution, and groups submissions into

stacks. Each step of the pipeline is described in detail below.

1. Preprocess submissions. In the first stage of the pipeline, GroverCode cleans

and executes student submissions as described below. Executing student submissions

requires one or more test cases. Test cases must be supplied by the human grader

in the form of a file with one test case per line. A test case consists most often of

a single call to a student-defined function. However, it is not necessary to limit test

cases to this format. To introduce more complicated test cases, a grader can define a

set of test functions in a separate file.

a. Clean submissions. As in the original OverCode [3], GroverCode refor-

mats submissions to ensure consistent line indentation and token spacing, and removes
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comments. Although students often use comments to clarify their intent, in 6.0001,

graders ignore such additional notes. Analyzing comments remains future work.

b. Augment submissions. GroverCode automatically appends any test case

definitions that appear in a separate file to each student’s submission. The system

also appends any additional code that a student’s submission relies on, such as the

definition of a Python class of which the student created a subclass.

c. Execute submissions. GroverCode runs each submission through the Python

execution logger described in [5], one time per test case. The names and values of each

variable instance at every step in the execution are recorded in a data structure called

a program trace, as in [3]. The execution logger generates one program trace for each

test case. It also intercepts the submission’s stdout and records the submission’s

output instead of printing it. Next, GroverCode serializes each program trace and

intercepted output and writes it out to a pickle file. Because of this serialization step,

analyzing additional submissions does not require rerunning any previously analyzed

submission. This is particularly useful when applied to exam grading, where a small

number of students could take a makeup exam at a later date.

2. Extract variable sequences. As in [3], for every submission, GroverCode

extracts the sequence of values each variable instance takes on. A separate sequence of

values is extracted for each test case. Additionally, in this step, GroverCode separates

correct and incorrect submissions by comparing the intercepted output from each test

case to the output of a supplied correct answer.

3. Identify abstract variables in correct submissions. GroverCode next an-

alyzes the extracted sequences of values for each variable instance in every correct

submission, and identifies all distinct abstract variables. Incorrect submissions are not

considered here, because the values of variable instances in an incorrect submission

are unreliable. For example, a submission may raise an exception after initializing
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a local variable. The sequence of values of the variable instance in this case would

contain just a single value.

4. Rename abstract variables in correct submissions. GroverCode assigns

each abstract variable the name that it takes on most often across all program traces.

If there is more than one abstract variable that takes on the same name, GroverCode

adds a modifier to the variable that appears less frequently. This is what [3] calls a

Common/Common collision. Instead of using letters as modifiers as in [3], Grover-

Code appends three underscores and a number; for example, changing the name of the

second-most-common variable called i to i___2 instead of iB. In the UI, these mod-

ifiers appear as subscripts, so i___2 appears as i2. Unlike in [3], abstract variables

that appear in only a single submission are not treated as a special case.

5. Analyze behavior of individual lines. Next, GroverCode considers the be-

havior of both correct and incorrect submissions at the level of lines rather than

variables. By analyzing the program trace and the AST, each line of code is split into

three components:

1. A template, a string consisting of the text of the line of code with the variable

names replaced with blanks.

2. An ordered list of variables, one per blank in the template. These may be either

abstract variables or variable instances. The first variable belongs in the first

blank in the template, the second variable in the second blank, etc.

3. An ordered list of the sequences of values that appear in each blank.

6. Stack correct submissions. GroverCode gathers together correct submis-

sions into stacks as in [3], placing submissions into the same stack if they share a set

of lines of code. Rather than comparing the literal string representation of each line,

however, the system compares the line templates and the sequences of values each

blank in the template takes on. GroverCode chooses one submission arbitrarily to

represent the stack.
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7. Rename variable instances in incorrect submissions. The next step canon-

icalizes incorrect submissions. GroverCode attempts to rename the variable instances

in incorrect submissions so that they share the same namespace as correct submis-

sions. In step 3, when the system identifies abstract variables, it is clear that all

submissions in which those variables appear are functionally correct. However, when

choosing names for incorrect variable instances, that assumption no longer holds, so

name choice cannot depend solely on the values a variable instance takes on. There

are several steps of the renaming process.

a. Characterize behavior of variable instances and abstract variables.

Step 5 identifies where variables appear in each line of code in each submission. For

each abstract variable identified in step 3, GroverCode assembles a set of template-

location pairs, that is, the set of templates in which the abstract variable appears and

the location of that abstract variable in each template. The location is represented as

the index or indices of the blank(s) occupied by that variable instance, as illustrated in

the example below. The system repeats this process for each variable instance in each

incorrect submission as well. This information about variable behavior is important

for determining which abstract variable is the best match for each incorrect variable

instance.

b. Assign scores to template-location pairs. GroverCode assigns to each

template-location pair a score inversely proportional to the frequency with which

it appears among abstract variables in correct submissions. This score calculation

is log2(1/𝑝), where 𝑝 is the probability of a given template-location pair, i.e., the

number of times that particular template-location pair appears across all abstract

variables in correct submissions, divided by the total number of template-location

pairs. A threshold calculation separates template-location pairs that appear in only

one abstract variable from template-location pairs that appear in multiple abstract

variables.

23



Example: All templates and locations in which the abstract variable exp, the second
argument to a recursive power function, appears. A location represents the index or
indices of the blanks that the abstract variable occupies, where the first blank is index
0, the second is index 1, and so on. The second and third columns together form a
template-location pair.

Example line of code Template Location
def power(base, exp): def power( , ): 1
while index <= exp: while <= : 1

return 1.0*base*power(base,
exp-1)

return
1.0* * *power( , -1)

3

return base*power(base,
exp-1)

return *power( , -1) 2

return power(base,
exp-1)*base

return power( , -1)* 1

ans = base*power(base,
exp-1)

= *power( , -1) 3

if exp <= 0: if <=0: 0
if exp == 0: if ==0: 0
if exp >= 1: if >= 1: 0

assert type(exp) is int and
exp >= 0

assert type( ) is int and
>=0

0, 1

c. Match incorrect variable instances to abstract variables. Grover-

Code then attempts to match each variable instance in an incorrect submission with

an abstract variable. For each such variable instance, GroverCode searches for an

abstract variable that fulfills one of two criteria. The system begins by looking for

an abstract variable that fulfills the first criterion, and only moves on to the second

if no such abstract variable is found. The criteria are as follows:

1. The abstract variable takes on an identical sequence of values to the variable

instance in question. It is possible for parts of a program to be correct even if

the overall output is incorrect, so it is important to consider this criterion first.

2. The abstract variable appears in an identical set of template-location pairs to

the variable instance in question.

If such an abstract variable is found, GroverCode assigns the name of that abstract

variable to the variable instance in question. Otherwise, GroverCode uses the scores
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calculated in the previous step to estimate which abstract variable is the closest

match for that variable instance. The overall score of the match between an abstract

variable and a variable instance is defined as the sum of the individual scores of each

template-location pair that is shared between the abstract variable and the variable

instance. The closest match for the variable instance in question is the match that

yields the highest overall score, with ties resolved arbitrarily. Another method of

resolving ties, such as minimizing the string edit distance between the original name

and the possible matches, could yield better results. This remains future work. If

the overall score of the closest match is below the threshold found in the previous

step, then it is not possible to unambiguously map the variable instance to a single

abstract variable (see example below); in that case, GroverCode does not rename the

variable instance, instead using the student’s original name. Otherwise, GroverCode

assigns the name of the abstract variable in the closest match.

In all cases, if multiple variable instances in a single submission would be assigned

the same name, the system appends a capital letter modifier to distinguish them.

Example: This is the recursive power problem. One submission includes a variable
instance ans, shown in the table below. The first template-location pair does not ap-
pear in any abstract variables, so contributes nothing to the overall score. The second
template-location pair, however, appears in two different abstract variables, so there
is not enough information to determine which abstract variable name more closely
matches the student’s intent. Do not rename this variable, but use the student’s
original variable name.

Line of code Template Location
ans = base**exp = ** 0

return ans return 0

8. Find pairwise similarity between stacks. Relevant submissions include the

subset of correct submissions that are representatives of the stacks found in step 6,

and every incorrect submission. These are the submissions that the view renders.

For each relevant submission, GroverCode calculates a metric of similarity with each
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other relevant submission, as follows:

# of shared phrases
total number of phrases

+
# of shared variable names

total number of names

Here, “shared phrases” and “shared variable names” mean phrases or variable names

contained in both submissions, and “total” means the total across both submissions.

A phrase is a line of code with all variables renamed as described above in step 4 or 7

as appropriate. Two identical submissions have a similarity metric of 1.0, while two

submissions which share no variables or lines of code have a metric of 0.

6 Dataset

We evaluated the pipeline using data from the two field deployments (see Section 8).

We obtained data from the spring 2016 semester of 6.0001, a residential introductory

Python course, from both the midterm and the final exam for the course. Students

submitted answers to three coding problems on the midterm and four on the final,

described below. The number of submissions submitted for each problem appears in

Figure 4. An example staff-written correct solution for each problem appears after

its description.

6.1 Midterm Problems

∙ Question 4: power. Write a recursive function to calculate the exponential base

to the power exp.
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∙ Question 5: give_and_take. Given a dictionary d and a list L, return a new

dictionary that contains the keys of d. Map each key to its value in d plus one if

the key is contained in L, and its value in d minus one if the key is not contained

in L.

∙ Question 6: closest_power. Given an integer base and a target integer num,

find the integer exponent that minimizes the difference between num and base

to the power of exponent, choosing the smaller exponent in the case of a tie.
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6.2 Final Exam Problems

∙ Question 4: deep_reverse. Write a function that takes a list of lists of integers

L, and reverses L and each element of L in place.

∙ Question 5: applyF_filterG. Write a function that takes three arguments: a

list of integers L, a function f that takes an integer and returns an integer, and

a function g that takes an integer and returns a boolean. Remove elements from

L such that for each remaining element i, f(g(i)) returns True. Return the

largest element of the mutated list, or -1 if the list is empty after mutation.
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∙ Question 6: MITCampus. Given the definitions of two classes: Location, which

represents a two-dimensional coordinate point, and Campus, which represents a

college campus centered at a particular Location, fill in several methods in the

MITCampus class, a subclass of Campus that represents a college campus with

tents at various Locations.
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∙ Question 7: longest_run. Write a function that takes a list of integers L, finds

the longest run of either monotonically increasing or monotonically decreasing

integers in L, and returns the sum of this run.

Problem Number of submissions
power 193

give_and_take 193
closest_power 193
deep_reverse 175

applyF_filterG 173
MITCampus 170

longest_run 165

Figure 4: Number of submissions for each problem in the dataset. Several students
dropped the course between the midterm and the final exam. The decreasing number
of submissions for each final exam question occurred because some students ran out
of time before they could submit answers to the later problems.

7 Pipeline Evaluation

The GroverCode pipeline cannot process every student submission. The execution

logger cannot handle submissions that contain syntax errors or that use too much

memory, for example by calling range with a very large value. As shown below, the
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pipeline does process most student submissions, although longer submissions are less

likely to succeed.

Quiz Final
q4 q5 q6 q4 q5 q6 q7

Number of submissions 193 193 193 175 173 170 165
Avg. number of lines per
submission 9.9 16.9 19.8 12.3 20.9 50.0 41.8

Number of submissions
successfully processed by
GroverCode pipeline

186
(96%)

189
(98%)

168
(87%)

170
(97%)

166
(96%)

134
(79%)

133
(81%)

Exam questions increased in difficulty between the midterm and the final and

between the beginning and end of each exam. With an increase in difficulty, the

number of correct submissions that can be grouped together in stacks decreases. The

pipeline’s ability to analyze incorrect submissions thus becomes more important for

harder problems. The table below shows the number and percentage of submissions

marked correct by the autograder, that is, submissions that pass every test case. It

also shows the number of test cases, and the number of distinct error signatures,

where an error signature is the number and order of test cases passed for a particular

submission. The last row of the table displays the number of submissions that are

grouped into stacks containing more than one submission.

Quiz Final
q4 q5 q6 q4 q5 q6 q7

Number of correct
submissions

182
(94%)

160
(82%)

94
(49%)

96
(55%)

49
(28%)

16
(9%)

12
(7%)

Number of incorrect
submissions 4 29 74 74 117 118 121

Number of test cases 10 15 25 11 10 17 28
Number of distinct error
signatures 6 16 36 12 38 57 42

Number of correct stacks 40 84 93 47 46 16 12
Number of stacks
containing > 1 submission 13 18 1 8 2 0 0

Number of submissions
collapsed into stacks 151 94 2 57 5 0 0

GroverCode identifies abstract variables in correct submissions by comparing the
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sequences of values they take on, as described in Section 5. The number of variable

instances across all submissions and the number of abstract variables across correct

submissions appear below.

Quiz Final
q4 q5 q6 q4 q5 q6 q7

Total number of variable
instances 388 857 942 555 822 674 964

Number of variable
instances in correct
solutions

373 708 460 266 272 115 105

Number abstract variables 21 36 131 78 65 38 75
Number of name clashes
resolved when renaming
abstract variables

11 9 44 41 33 11 14

GroverCode manages to rename many of the variable instances in incorrect solu-

tions. See Section 5 for more detail about this renaming process. The table below

shows the number of variables renamed in this fashion as well.

Quiz Final
q4 q5 q6 q4 q5 q6 q7

Number of variable
instances in incorrect
submissions

15 149 482 289 550 559 859

Number of variable
instances renamed based
on values

14 84 266 97 246 97 187

Number of variable
instances renamed based
on templates

0 58 166 136 264 188 489

Number of variable
instances not renamed 1 7 50 56 40 274 183

Number of name clashes
resolved when renaming
variable instances

0 13 38 14 16 10 156
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7.1 Limitations

The GroverCode pipeline handles simple Python programs. Stacking correct sub-

missions becomes much less effective on more complicated problems, as shown by

the small number of stacked submissions in the later problems. Python classes pose

additional problems. The execution logger [5] does not include information about

instance variables in the generated trace, which makes renaming these variables im-

possible within the current pipeline architecture. Although Question 6 on the final

exam involves classes, exploring how non-primitive variable values affect the renaming

process remains future work.

8 Field Deployments

The teaching staff of 6.0001, an introductory residential Python programming class,

used GroverCode as a tool to help with grading the course’s two exams: midterm

and final. Approximately 100-200 students take this course each semester. Each

exam has two components: a paper portion with multiple choice and short answer

questions, and an online portion where students submit code via the MITx platform.

GroverCode deals only with the online portion. The online portion of the midterm

has three problems, and the final exam has four (see Section 6). After each exam, an

instructor extracts all student submissions in CSV format. Course staff grade student

submissions by hand, assisted by a set of unit tests for each problem. The 6.0001

members of the teaching staff who participated in the field deployments included one

professor, seven graduate student Teaching Assistants (TAs) including the author, and

one undergraduate TA. The goal was to reduce the burden of hand-grading student

code submissions.

8.1 Usual Grading Method

Course staff gather together in a conference room several days after an exam to

assign grades. One staff member grades the paper component, while the remaining
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staff grade the online component. The staff grading the online portion split into

small groups of two or three, and each group chooses a problem to grade. Staff use

a Google spreadsheet to record grades. They assign grades by examining the the

CSV of all student submissions in a text editor such as Sublime Text, and by copying

and pasting individual students’ submissions into MITx to view unit test output.

A rubric for each problem, recorded either at the top of the spreadsheet of grades

or in a separate document, builds up incrementally. Assigning grades to all of the

submissions is a long and exhausting process, often taking from five to eight hours.

8.2 First Field Deployment: Midterm exam

193 students submitted code for the online portion of the midterm, which consisted

of three problems.

Preparation. The day after the exam, an instructor exported student submissions

in CSV format from MITx. In preparation for the field deployment, we parsed the

CSV and ran the resulting submissions through the GroverCode pipeline, and created

three instances of GroverCode, one for each question. This allowed setting of question-

specific parameters, such as the location from which to read submission data.

Interface. This field deployment used a prototype interface which more closely

resembles the original OverCode interface described in [3] (see Figure 5). In this

interface, stacks display in two columns, with correct stacks on the right and incorrect

stacks on the left. Users can designate a single stack as the pinned stack. All other

stacks display in order of decreasing similarity with the pinned stack. For each other

stack, lines of code that share stacks with the pinned stack become dim to highlight

differences between them. It is possible to change the pinned stack any time.

Training. Course staff received an overview of the GroverCode user interface the

week before the field deployment, including the concepts of stacks, raw submissions,

and pinning, followed by a brief refresher on the morning of the field deployment.

Process. At the start of the grading process, staff divided into groups of two or

three, and each group claimed a problem to grade (see Section 6 for problem descrip-

tions). All groups assigned to a particular problem began by looking at submissions
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Figure 5: The prototype user interface used in the first field deployment.

together and reaching a consensus on what score to assign. Staff began by examining

the submissions marked as correct by an autograder. Most submissions that passed

every test case received full credit; however, in some cases points were deducted. For

example, for midterm Question 4, students needed to implement a recursive function;

however, some students submitted iterative solutions. For each error, staff discussed

how many points to deduct, and added a new item to the built-in rubric. After

grading a few submissions, groups divided up the remaining submissions and began

working independently. To avoid duplicating work, groups either pinned different

submissions, or pinned the same submission and had one group grade starting from

the top and another starting from the bottom. Some groups used the pinning function

often; however, several staff expressed displeasure with the amount of time it took the

interface to update after pinning a new submission. Staff members also requested the

ability to see specific tests cases and their output within the GroverCode interface,

instead of relying on the MITx platform for test results. Extensive interface updates

made between the first and second field deployments addressed these concerns.
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GroverCode writes a log entry after each change to a grade or comment. The entry

includes a timestamp, the ID of the associated submission, and the contents of the

grade and comment fields for that submission. Each question has a separate log. The

amount of time spent grading each question is shown in Figure 6. Very early in the

process of grading Question 6, after grading only two submissions, staff discovered a

discrepancy between the number of failed test cases reported by GroverCode and by

MITx. Staff eventually found the problem: an error in the test suite used by MITx.

However, while resolving the discrepancy, no grading took place for Question 6. After

applying a fix, staff regraded the two early submissions.

Problem
Timestamp

of first logged
event

Timestamp
of last logged

event

Approximate
time to grade

Question 4: power 9:21 9:45 0h 24m
Question 5: give_and_take 9:46 11:05 1h 19m
Question 6: closest_power 10:35 * 13:52 3h 17m

Figure 6: Approximate time to grade each of the three midterm questions. Currently,
GroverCode does not log the time when staff begin looking at a particular problem,
so there is no record of the length of discussion time before the first logged event.
The cell marked with an asterisk indicates the timestamp of the first event after the
discrepancy between GroverCode and MITx was resolved.

8.3 Second Field Deployment: Final Exam

175 students submitted submissions to the coding portion of the final exam, which

consisted of four problems. Preparation for this field deployment was the same as for

the first field deployment (see Section 8.2).

Interface. Between the two field deployments, there was significant overhaul to

the GroverCode interface. For a description of the final interface, see Section 4.

Training. On the morning of the field deployment, staff received a brief explana-

tion of the differences between the old user interface and the new user interface.

Process. As in the first field deployment, grading staff divided into small groups.

Question 4 was set aside for an absent staff member, but picked up later in the day by a

different TA. Again, each group independently decided to start by grading submissions
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that passed every test case. Figure 7 shows a scatterplot of each logged event versus

the number of test cases the associated submission passed. The grading staff used

the filters extensively. Each small group selected a single error signature to view and

graded every submission with that error signature before selecting a new signature.

When viewing an error signature with many submissions, groups often graded the

first few submissions together, then split up to grade the rest individually. A common

approach involved one staff member starting from the first displayed submission while

another started from the last displayed submission, consulting each other as necessary

if they encountered a novel error.

The method of choosing the next error signature to grade varied from group to

group. The staff grading Question 5, for example, graded error signatures with the

most submissions first, then worked in descending order ending with submissions

with unique error signatures (see Figure 8). In contrast, the staff grading Question 4

proceeded in order of most test cases passed to fewest test cases passed. In addition,

some staff members switched from grading submissions which passed few test cases

to submissions which passed many submissions to reduce the monotony of grading.

Staff also made heavy use of the built-in rubric, adding deductions whenever they

encountered a new mistake. Unfortunately, they encountered a bug in the rubric

infrastructure for Question 7 which caused previously-added deductions to sometimes

disappear.

When staff finished grading all submissions for a particular question, they switched

to a different question. For example, staff finished grading Question 5 at approxi-

mately 12:30, and then moved to Question 7. This led to many staff members working

on a single question. As Question 7 was the hardest to grade, most staff members

ended up working on this question. To split up the work, some staff members graded

error signatures in ascending order of number of test cases passed while others graded

in descending order. This can be seen by the triangular structure of the plot in Figure

7.

These results show two styles of grading supported by the GroverCode interface:

grading in order of number of test cases passed and grading in order of number of
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submissions that passed the same test cases.

9 User Feedback

We interviewed six of the eight grading staff (not including the author) to get their

high-level opinions about GroverCode and its features. Questions to staff included

what they liked about using GroverCode, what they did not like, and what sugges-

tions or feature requests, if any, they had for the future. Staff also answered questions

about several specific features of the GroverCode interface: variable renaming, high-

lighting differences between neighboring stacks, filtering stacks by error signature,

and displaying test case results underneath the associated code. Finally, staff mem-

bers with prior grading experience commented on the differences between grading

using GroverCode and the old method of grading using a CSV and a spreadsheet.

Responses were very positive overall, with mixed reactions to various features. In gen-

eral, staff thought that GroverCode gave them more control over the grading process

and increased consistency while grading. Staff found GroverCode most useful when

grading simple problems. Three of the six respondents remarked that they would like

to continue using GroverCode in the future.

9.1 Responses to specific features

Horizontal alignment. Four of the six respondents offered positive opinions, without

prompting, about the horizontal alignment of submissions. They found that compar-

ing submissions and test case output was easier in the horizontal display than the

vertical display.

Built-in rubric. Similarly, five of the six respondents mentioned that they liked

the rubric feature, despite some confusion over the bug described in Section 8. One

respondent remarked that it increased her self-consistency. Another found it use-

ful for double-checking scores before entering them. However, a third respondent

mentioned that although she found the rubric useful at the beginning of grading a

particular problem, eventually the rubric became so full that it was easier to simply
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Figure 7: Grading events versus test cases passed. In each plot, the scatterplot on the
left plots the time when grade or comment changed versus the number of test cases
the associated stack passed. The bar chart on the right shows the number of stacks
that passed that many test cases. The plots make no distinction between different
error signatures that passed the same number of test cases.

(a) Question 4. The TA assigned to this question stopped working at about 12:40 because
of another commitment, and resumed grading at about 15:15. The densely clustered group
of points from 15:15 to about 15:30 shows the relative ease of grading submissions marked
correct compared to those marked incorrect. Additional staff members began grading at
approximately 17:30, which explains the increased density after that point.

(b) Question 5. These results show an alternate grading strategy. Rather than choosing
a group of submissions to grade based on the number of test cases passed, staff members
chose the group containing the most submissions. See Figure 8b.
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(c) Question 6.

(d) Question 7. A large number of submissions fail every test case. Many such submissions
nevertheless show a minimal understanding of the material and so deserve a non-zero score.
See Figure 9.
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Figure 8: Grading events versus size of group. In each plot, the scatterplot on the
left plots the time at which a grade or comment changed versus the number of stacks
sharing an error signature with the associated stack. The bar chart on the right shows
the number of stacks in groups of that size.

(a)

(b)
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(c)

(d)
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Figure 9: These plots graph the number of test cases each stack passed versus the
score assigned by teaching staff. An autograder would assign the same score to every
submission that passed the same number of test cases. These plots illustrate the
importance of manually grading submissions.

(a)

(b)
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(c)

(d)
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type comments manually rather than searching for particular items in the rubric.

Progress bars. Three of the six respondents expressed appreciation for the progress

bars. One called this feature a “motivating factor.”

Filtering stacks by error signature. This feature was absent during the first field

deployment, but added by request for the second field deployment. After the second

field deployment, three of the six respondents found the ability to filter by error

signature helpful. The other three thought that this ability was useful in theory,

but did not help them during grading because there were too many submissions with

unique error signatures. However, all six respondents remarked that grouping together

stacks with the same error signature made grading the whole group relatively easy,

since such stacks often made the same mistake. One respondent cited this feature as

a major advantage over the old method of grading submissions in a CSV file and a

spreadsheet, saying that it “gave grading structure.” Additionally, she reported that it

eliminated a common source of frustration, where a grader encountered a submission

similar to a previously graded one but could not remember what deductions applied to

the previous submission. Interestingly, one respondent remarked that he associated

certain failed test cases with specific mistakes, and could therefore use the error

signature as “a sort of visual hash.” Another respondent said exactly the opposite:

she did not associate particular error signatures with specific mistakes, so the visual

representation of error signatures was not especially helpful.

Renaming variables. Respondents had mixed reactions to this feature. Five of the

six respondents expressed frustration with certain variable names chosen by Grover-

Code, particularly names featuring subscripts. They reported that submissions with

several renamed variables became less readable. Some respondents resorted to look-

ing at the raw submissions rather than the canonicalized code for such examples.

However, one of these respondents also said that she found variable renaming useful

when the names were not confusing, since it increased consistency across submissions.

A different respondent remarked that he initially forgot about the variable renaming

and consequently wondered why all students seemed to choose the same names for

their variables. He reported that after he remembered, he did not notice the vari-
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able renaming while grading unless a name was particularly confusing. However, in

retrospect, he thinks the feature was helpful.

Difference highlighting. One respondent said that he found this feature very help-

ful because it was easier to compare submissions. The other respondents reported

that they either did not notice this feature or were indifferent to it.

9.2 Frustrations

Each respondent expressed frustration with one or two aspects of GroverCode, al-

though there were several overlapping opinions. As mentioned in Section 9.1, respon-

dents did not like grading submissions that contained several variable names with

subscripts. An additional unpopular aspect of variable renaming was GroverCode’s

occasional renaming of the arguments of a function. Finally, four of the six respon-

dents remarked that loading submissions and scrolling the view was occasionally too

slow.

9.3 Comparison to Previous Grading Tools

Three of the six respondents had previous grading experience. All three preferred

GroverCode to grading with a CSV file and a spreadsheet. These respondents all

commented that they appreciated the ability to look at student code and test case

results as well as enter grades via one unified interface. One respondent remarked

that despite the frustrations mentioned in Section 9.2, “[Gr]overCode is already a

huge improvement over the primitive tools [we used before].”

Two of the remaining respondents had no prior experience grading, but graded

a small number of submissions using a CSV file during the field deployments, since

GroverCode could not run every student’s code. One of these respondents remarked

that based on this small experience, he thought that the old method of grading would

be “much more time consuming.” The other respondent expressed concern about the

prospect of grading using a CSV file and a spreadsheet in the future, and remarked,

“I’ve never graded the old way, but I like [Gr]overCode.”
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9.4 Suggestions

Respondents offered several suggestions for features they would like to see in the fu-

ture. These include activity indicators that show when a submission is being actively

graded, automatic calculation of a submission’s score based on the associated rubric

items, the ability to add test cases on the fly, an integrated console for rerunning

submissions on user-specified inputs, the ability to reorder rubric items, the ability

to filter submissions based on particular rubric items, and syntax highlighting that

more closely resembles other familiar tools such as IDLE or the Sublime Text editor.

10 Discussion

The two field deployments described in Section 8 demonstrate GroverCode’s useful-

ness in a residential course. In general, the staff of 6.0001 found GroverCode helpful

during the grading process. However, GroverCode is more useful when grading simple

problems than when grading complex problems. As shown in Section 7, as problems

get more complex, fewer students submit correct answers, and fewer submissions are

grouped together into stacks. Staff found grading incorrect submissions, especially

submissions that failed every test case, much more difficult than grading correct sub-

missions. The canonicalization of incorrect submissions sometimes contributed to this

difficulty, as staff often had trouble reading code that contained subscripts. Future

work to increase the readability of such submissions would be very beneficial.

Staff also expressed frustration with the speed and responsiveness of the Grover-

Code user interface. We did not focus on these aspects in our implementation, however

they are both important considerations that should not be neglected in future work.

One staff member remarked, “I get impatient when grading,” illustrating that speed

is indeed a concern.

During the second field deployment in particular (see Section 8.3), a great deal

of time was spent grading the last, most complex question. Although the increased

readability mentioned above would be helpful, more investigation may suggest further

ways to reduce the time required to grade such questions. Improving GroverCode’s
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usefulness for complex problems would be a worthwhile effort. A staff member ex-

pressed a similar sentiment, saying, “If you can perfect the more complicated [prob-

lems] it would be a really awesome tool, and it was a really awesome tool for more

simple things.”

11 Future Work

The goal of GroverCode was assisting graders of coding questions in an introductory

programming course. Although course staff found GroverCode helpful, further itera-

tion of the user interface would improve the grader experience. Features that improve

the efficiency of grading would be especially helpful, such as the ability to assign a

grade to multiple similar submissions simultaneously, or the ability to copy-and-paste

a comment from a previously graded submission.

The problems tested with GroverCode ranged from simple to complex. Teaching

staff found that for hard problems, GroverCode’s attempts to increase the similarity

of submissions did not reduce the cognitive load of debugging as much as they had

hoped. The GroverCode pipeline would benefit from additional support for complex

problems, especially problems involving classes.

GroverCode could make use of more advanced clustering algorithms and other

methods from the Machine Learning domain. The ability to learn metrics of similar-

ity between submissions rather than using empirically determined heuristics could be

very powerful for clustering submissions. This ability could also be helpful for find-

ing correct submissions that resemble incorrect submissions to help graders pinpoint

errors. If GroverCode could learn which rubric items are associated with certain lines

of code or other program features, it could suggest rubric items during grading.

GroverCode could also benefit from integrating with automated hint generation

tools, such as those discussed in Section 2. Currently, graders find debugging incorrect

student submissions the most time-consuming and difficult part of grading exams.

Offloading at least some of the burden of debugging to automated tools would save

teaching staff a great deal of time and effort.
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Finally, several possible avenues of future work suggested in [3] but not yet imple-

mented could be explored. These include expanding OverCode to other programming

languages besides Python, integrating OverCode with an autograder such as that used

by the MITx platform, and adjusting the OverCode interface to provide benefit to

students as well as staff.

12 Conclusion

The original OverCode system described in [3] is novel because it canonicalizes stu-

dent code to increase human readability. We expand GroverCode to accommodate

submissions marked incorrect by an autograder, and to canonicalize such submissions

in a similar fashion. We also add interface features for grading submissions. A group

of residential instructors found GroverCode a helpful tool for grading exams. We

hope GroverCode will continue to provide benefit to residential course staff in the

future.
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