
1

A Mobile Instructor Interface for Collaborative

Software Development Education

by

Angela N. Chang
S.B., Massachusetts Institute of Technology (2011)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 2012

Copyright 2012 Angela Chang. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis document in

whole and in part in any medium now known or hereafter created.

Author .
Angela N. Chang

Department of Electrical Engineering and Computer Science
May 21, 2012

Certified by .
Robert C. Miller

Associate Professor of Computer Science and Engineering
Thesis Supervisor

May 21, 2012

Accepted by .
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

2

3

A Mobile Instructor Interface for Collaborative

Software Development Education
by

Angela N. Chang
Submitted to the

Department of Electrical Engineering and Computer Science

May 21, 2012

In partial fulfillment of the requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Students are often asked to write code during lab sessions in software engineering courses.

However, the overall progress and level of understanding of lecture material during the

course of a single lab session is difficult for instructors to gauge, because they are limited in

the amount of direct interaction they can have with students. We have built CollabodeTA, a

web application optimized for Apple’s iPad on top of the Collabode real-time collaborative

web IDE. CollabodeTA is a tool that takes advantage of keystroke-by-keystroke and action-

by-action data intercepted through Collabode to aid software lab instructors in

determining student progress and understanding on in-class coding assignments. User

studies using TAs from MIT’s 6.005 Elements of Software Construction course and data

recorded from a semester of 6.005 recitations with in-class coding assignments indicate

that the mobile instructor interface shows potential as a useful tool for guiding the pace

and content of such recitations based on demonstrated student understanding.

Furthermore, the CollabodeTA mobile instructor interface illustrates a new use case for the

Collabode real-time collaborative web IDE.

Thesis Supervisor: Robert C. Miller
Title: Associate Professor of Computer Science and Engineering

4

5

Acknowledgments

There are many individuals whose support helped this thesis become a reality. First, I

would like to thank my advisor Rob Miller, whose zeal for software and user interface

design I admired even before joining the User Interface Design (UID) group at MIT CSAIL,

and whose vision, advice, and leadership carried me throughout the thesis process. He is

the best listener I have ever met, pushed me to become a better writer and researcher, and

was a constant source of support, ideas, and wisdom as well as the force that kept me

making consistent progress on this work throughout the year.

Collabode is the brainchild of Max Goldman, and I couldn’t have gotten luckier when

it comes to working with someone who is so technically capable, driven about doing

research that will make a difference in the lives of others, and fun to work with all at the

same time. In developing this thesis, I have learned the most about software engineering

from him, and would like to thank Max for letting me take the seed of his mobile instructor

idea and start to make it grow.

Mason Tang was without a doubt my most avid supporter, confidante, and friend

throughout this entire process, both within the context of developing the body of work

behind this thesis and managing in the many threads of my life outside of this work that

constantly fought for my time and attention. I am deeply grateful for his insights,

suggestions, references, and reassurances throughout the year that kept me strong and

moving forward.

6

Similarly, David Chen was a constant fountain of support. In particular, the console

output diff view that started out looking very different yet became so key to CollabodeTA

bloomed after discussing it with him. I’d also like to thank my roommates Drew Wolpert,

Anna Fung, and friend Ben Lee for helping me through and putting up with countless rants,

brainstorming sessions, and a year full of bizarre working schedule.

Without the data from the Fall 2011 6.005 TA recitations, the evaluation for this

thesis would not have been possible. I am forever grateful especially to Elena Tatarchenko,

Samuel Wang, and Amelia Arbisser for taking the extra time to help me evaluate

CollabodeTA a whole semester after teaching the class, and for providing valuable insight

that I could not have gotten anywhere else.

Thanks go to the members of the User Interface Design group at MIT CSAIL for

always being curious and enthusiastic, and for giving me confidence in and great feedback

on my project whenever we discussed it. I wish I could have worked with them more!

Finally, I would like to thank my family, for whom this thesis is written. I would not

be where I am today without them.

7

Table of Contents

Chapters

1 Introduction . 11

2 Background . 19

2.1 Interactions in Software Labs . 19

2.2 The Collaboration Problem . 21

2.3 Collabode . 23

2.4 Related Work . 26

3 CollabodeTA: A Mobile Instructor Interface for Collabode . 29

3.1 Motivation . 29

3.2 Types of Software Lab Assignments . 32

3.3 Metrics . 35

3.4 Design Overview . 37

3.4.1 Student Cards . 39

3.4.2 Toolbar . 39

3.5 Class Layout View . 40

3.5.1 Motivation . 40

3.5.2 Implementation . 43

3.6 Console Output View . 44

3.6.1 Motivation . 44

3.6.2 Types of Console Output . 44

8

3.6.3 Implementation . 46

3.7 Student Panel View . 50

3.7.1 Motivation . 50

3.7.2 Implementation . 52

3.8 Help Queue . 54

3.8.1 Motivation . 54

3.8.2 Implementation . 55

3.9 Replaying Recitations . 57

3.9.1 Structure of a Replay . 57

3.9.2 Playback . 58

3.9.3 Cluster Optimizations . 59

3.10 CollabodeTA Implementation . 60

4 Evaluation . 61

4.1 Mobile Instructor Interface User Studies . 61

4.2 Recitation Studies Using CollabodeTA . 67

5 Conclusion . 69

5.1 Future Work . 70

5.1.1 New Metrics for Student Activity and Progress . 70

5.1.2 Student Cards . 71

5.1.3 Class Layout View . 72

5.1.4 Console Output View . 73

5.1.5 Student Panels . 75

5.1.6 Help Queue . 76

9

6 References . 77

List of Figures

1-1 CollabodeTA . 16

2-1 A sample Collabode project . 24

2-2 The Collabode console . 24

2-3 The Collabode instructor view of project clones . 25

3-1 CollabodeTA overview . 38

3-2 Student card . 39

3-3 Toolbar . 40

3-4 Class layout view . 42

3-5 Class layout view with spatial arrangement . 43

3-6 Console output view . 49

3-7 Diff cleaning comparison . 50

3-8 Student panel view . 51

3-9 Event stream filtering . 53

3-10 Help queue . 55

3-11 Help queue button integration with student toolbar . 56

3-12 Replay file hierarchy . 58

10

11

Chapter 1

Introduction

Software engineering and programming courses are becoming increasingly and undeniably

popular in modern-day universities. Because it is difficult to teach programming or

software engineering without hands-on experience, most programming and software

courses incorporate in-class coding opportunities in the form of software labs, recitations,

or office hours, where students can work on code under the supervision of one or more

instructors who are there to teach and answer student questions. In software engineering

courses in particular, it is common in such classes to have students working together on

larger-scale assignments, both to enforce principles taught in class and to give students

experience with collaborative software development tools used in the workplace.

However, in our experience, the software lab situation is more opaque to instructors

than it could be. In a typical lab or recitation setting, students code by themselves or in

small groups, and instructors know very little about what the majority of the class is doing

at any given point in time. Often, they have to wait to be called over by a student with a

question and spend some amount of time looking over the student’s code with them before

they can give the help the student needs. Additionally, without constantly polling the class

and hoping for honest responses each time, there is no way for an instructor to know how

accurately how well students are completing the lab exercises and understanding key

12

concepts, and which topics or pitfalls need to be reiterated to the class as a whole. This

problem is especially apparent in the common situation where multiple students are

having the same difficulty and instructors are only working with one or a few at a time.

With new collaborative software development technologies, we believe that this

barrier between instructors and their students should no longer be the norm.

Collabode is a real-time web-based integrated development environment (IDE)

created as a platform for collaborative software development [1]. The introduction of

Collabode to the world of software development enables new scenarios for close,

synchronous collaboration between two or more programmers actively contributing to the

same body of code. The original papers [2, 3] describe three such models of collaboration:

test-driven pair programming, micro-outsourcing, and mobile instructor.

Prior to the work presented in this thesis, two of the three models had been studied

through user evaluations of the Collabode system. The goal of this thesis was to design and

build an interface supporting the third collaboration model, the “mobile instructor”. This

model makes use of Collabode in a classroom software lab setting, where one or more lab

instructors assign coding assignments to classes of 30-100 students. Instructors are

responsible for monitoring student progress and understanding by answering questions

and providing suggestions throughout the lab session. The mobile instructor interface is

therefore an interface that will be used by lab instructors with the goal of increasing the

quality and efficiency of student/teacher interaction and software engineering education.

We have built CollabodeTA, a web application optimized for the Apple iPad on top of

the Collabode real-time collaborative web IDE that uses keystroke-by-keystroke and

action-by-action data input by students and intercepted through Collabode to provide a

13

tool to aid software lab instructors in determining student progress and understanding

during in-class coding assignments. This augments previous work in the area of

collaborative coding, web IDEs, and technology-enabled classroom tools by taking

advantage of the information that collaborative, real-time web IDEs provide and applying it

to the area of software development education. The data we used to both design and

evaluate CollabodeTA came from MIT’s 6.005 Elements of Software Construction course, a

popular introductory class to software development, design principles, and tools, taught in

the Java programming language. Assignments in 6.005 (as this course will be referred to

for the rest of this thesis) consist of software design and implementation projects

completed individually and in small groups, as well as programming exercises assigned in

hour-long recitations of 15-30 students.

Our implementation of CollabodeTA consists of a collection of views and metrics

meant to be viewed on a touch tablet such as the Apple iPad. We aimed to accomplish the

following goals:

● Provide an at-a-glance summary of student activity requiring minimal user

interaction and interruption of an instructor’s accustomed workflow while

incorporating useful information in a concise way

● Help lab instructors gauge student understanding during the course of a lab session

based on student work and demonstrated understanding while completing

assignments, in order to guide the pace of their teaching and adjust on the fly if

necessary

● Help lab instructors identify student outliers who either might need additional,

proactive help from the instructor, or who demonstrate exceptional understanding

14

of the given assignment and in which case can be asked to help their fellow

classmates or whose code can be used as a teaching example

Within CollabodeTA, each student’s information is concisely summarized on a

student card, which contains a picture of the student, a label with their Collabode

username, and badges indicating student status according metrics we collect. Our

implementation includes a badge indicating a student’s help queue status, and other badges

can easily be added.

While we tried to make CollabodeTA as glanceable as possible, we also provide a

few different views with which instructors can monitor class progress. These views are as

follows:

Class layout view

The class layout view is a visual summary of student progress. Within the class

layout view, all student cards are visible at once, potentially providing the most

complete overview of student performance by many different metrics. Student

cards in this view can be rearranged to match actual locations of students in the

classroom, to help instructors locate specific students.

Console output view

In our evaluations of recitations from 6.005, we found analyzing console output to

be one of the richest sources of information about student progress. From looking

at console output, we could gather which exercises students were working on at any

given time, what errors they got and how they compared to the other students in the

class, which tests they passed or did not pass, and so on. Therefore, the console

15

output view exists as a way for instructors to compare console output from student

code in real time, in order to discern information such as class progress on

assignments and common errors.

Student panel view

Every student card has an associated student panel, which is a view showing

detailed information about that single student. It is intended to provide additional

important information to instructors who are helping or preparing to help a

specific student when it is needed, and hides details about other unhelped students

that would otherwise clutter up the summary views.

Help queue

A simple help queue can be shown or hidden to the left of any of the informational

views. This allows us to organize students asking for instructor help in a first in,

first out order.

Figure 1-1 shows the CollabodeTA interface, which is further described in Chapter 3.

16

Figure 1-1. CollabodeTA mobile instructor interface.

Evaluation of the mobile instructor interface was performed using both teaching

assistants and data from the Fall 2011 semester of 6.005, where students used Collabode to

complete coding assignments in recitations. In order to perform this evaluation, a replay

17

system was built to play back recorded recitation data and simulate the use of CollabodeTA

in a live classroom.

The aim of this thesis is twofold: First, to evaluate the effectiveness of the mobile

instructor collaboration model, and second, to describe the Collabode mobile instructor

interface, which demonstrates new possibilities for software development education

enabled by code collaboration in the classroom.

The remainder of this paper presents the context, design, implementation, and

evaluation of the mobile instructor interface. Chapter 2 introduces the problems Collabode

was created to solve, briefly describes the Collabode system itself, and summarizes related

work. Chapter 3 discusses the motivations, design, and implementation of each aspect of

the mobile instructor interface. Results from our evaluations of CollabodeTA through user

studies and post-recitation analysis are presented in Chapter 4. Finally, Chapter 5 presents

a conclusion and discussion of future work.

18

19

Chapter 2

Background

2.1 Interactions in Software Labs

MIT has several programming and software development classes during which students

complete coding assignments in class under the supervision of lab instructors (primary

lecturers), TAs (teaching assistants), and LAs (student lab assistants). The following

observations of how students interacted with instructors during such classes were made

during Fall and Winter 2011 in several programming labs:

● 6.005 recitations (15-30 students each, with 1 TA)

● 6.092, an introductory Java lab class (about 200+ students, with 3 instructors)

● 6.189, an introductory Python lab (about 150 students each, with 1-2 TAs and 3-5

LAs)

● A big data class (about 50 students, with 2 instructors)

● Office hours for 6.00, an introductory Python class (about 20 students each, with 3-4

TAs or LAs)

We observed that students receive help in either an active or a passive manner.

Students who actively request help from the instructor do so by catching the instructor’s

attention. The manner in which this was done varied depending on the size of the class. In

the introductory Java lab, which had about 200 students in a lecture hall, the class help

20

queue consisted of students physically lining up to talk to one of three instructors. In the

other smaller classes of 15-50 students with one or two instructors, students either raised

their hands or simply shouted out their question to catch the instructor’s attention. Each

class we observed went through a peak period where many students actively requested

help on the in-class assignment.

Passive instruction is given when there are lulls in active student requests, or when

students feel that they are confused about some part of the assignment but do not feel like

they are justified in asking for help, either because they feel they have not made enough

progress, cannot clearly state what their problem is to the instructor, or that their question

is “dumb” and they have not yet reached a base level of understanding required to

complete the assignment. In all but the largest class we observed, when students did not

actively engage instructors, instructors began to cycle through the class, looking over

students’ shoulders and picking out students to ask if they had any questions. We realized

that especially when a student’s motivation for staying quiet is because of a lack of

understanding of the assignment, this somewhat arbitrary and passive process of receiving

help often overlooks those most in need of instructor attention.

When actually giving help, instructors preferred being close to students so that they

could see the student’s code, ask them questions about their approach, and view the results

of running student code. After seeing enough student implementations, instructors

sometimes asked for the attention of the entire class to clarify common problems and

mistakes. However, this required a single instructor to have seen enough students with the

same mistake, which is more difficult to discern when multiple instructors are helping

different students in the same class, and often did not become apparent until a significant

21

portion of the lab time had elapsed and a significant portion of the class had moved past the

problem in question.

With CollabodeTA, we hope to give instructors a more clear view of which students

may be passively waiting for help, and to identify common mistakes early enough to

address them without having to discover them through what may be numerous lengthy

direct interactions with students.

2.2 The Collaboration Problem

The problem of collaboration in software development is detailed in the published

Collabode papers [2, 3], and is the key motivation for Collabode, the system upon which

CollabodeTA is built. Collabode was built in part to address the inadequacies of the two

major options programmers have to collaboratively write code, which are pair

programming and version control. Furthermore, within the area of software engineering

or programming education, we believe that both pair programming and version control

models of collaboration create undesirable barriers, not only between student

collaborators on code, but also between programmers (students) and observers of the code

and coding process (instructors).

Pair programming is the practice in which two (or more) programmers share a

computer screen, keyboard, and mouse. All programmers follow along and contribute to

the code’s progress as one designated programmer does the work of typing actual changes

into the code. Despite sharing a view of the screen, only one programmer has control over

what gets entered into the computer. In practice, even if each coder in a pair programming

situation is assigned a specific role (for example, if one is designated to code and the other

22

to catch potential bugs and typos), there is little hope for both coders to think on

substantially different levels of abstraction when actively discussing and looking at the

same small section of code at a time. In a classroom or software lab context, where

students often think at different rates and need time to absorb class concepts and practice

writing code, this creates an unequal learning experience and creates the potential for

students with weaker understanding of the subject material to hide behind those with

stronger abilities. From a lab instructor’s point of view, it is often impossible to tell

whether or not contributions are being made equally in a team using a pair programming

strategy.

The version control model of collaboration allows programmers to work separately,

at their own pace within the constraints of the team’s overall deadlines. Working on

separate tasks is encouraged, as conflicts that occur when code from multiple contributors

is committed into the source repository must be manually reconciled. Again, we can

identify problems with this model, particularly when implemented in a classroom lab

setting. While version control allows multiple programmers to develop code in parallel, all

in-progress code is completely hidden until both the author of the code decides to commit

and push it to the central repository, and the other contributors interrupt their workflow to

pull in the newest changes. In addition, collaborators must make an effort to keep their

code conflict-free when editing the same or closely-related bodies of code, as a single

conflicting update could potentially block all progress until it has been properly merged

with new code. For students as well as for lab instructors, it is often helpful to observe the

code development and thought process of other students in the class, and the version

control model makes this process opaque. Furthermore, in a timed lab setting, minimizing

23

the time spent merging code conflicts increases the time students can spend actually

solving the assignment.

 Variations of these two collaboration methodologies exist, but we believe that

existing options boil down to these two core scenarios. As we can see, there are problems

which show that neither of these scenarios is ideal for the type of collaboration in which

multiple programmers wish to contribute actively and synchronously to the same body of

code, especially in an educational setting. Furthermore, when students are asked to work

on assignments in class, which implies working either individually or under one of these

two models of collaboration, there is no satisfactory solution for instructors to watch over

the programming process.

2.3 Collabode

Collabode aims to solve the collaboration problem by providing a web-based IDE allowing

multiple programmers to work on separate machines while each having their own view of

the complete code source, which is updated in near real time. The editor is based on

Etherpad and is implemented in HTML and Javascript, which allows multiple collaborators

to simultaneously access the IDE and modify code through a standard web browser simply

by visiting a shared URL. Projects are hosted on a shared Collabode server, which uses

Eclipse both to manage the projects and also to provide much of the IDE’s core functionality

such as syntax highlighting, continuous code compilation, compiler errors and warnings,

and code formatting, refactoring and execution. Currently, Collabode supports these

features for Java programs and allows printing output to the user’s console. Programs with

graphical user interfaces are not supported.

24

Collabode uses a technique called error-mediated integration to integrate only code

without compilation errors into the main code body on disk, which allows programmers to

make their own changes to the code base and see changes made by others as those changes

are being made, in real time, without worrying about merge conflicts. It allows for much

closer collaboration on code design and implementation decisions regardless of whether

the programmers are co-located, and user studies have shown Collabode to significantly

and positively impact the collaborative coding situation.

Figure 2-1. A sample project open in Collabode.

Figure 2-2. The Collabode console.

Within the context of 6.005, Collabode was used in recitations as an easy way to distribute

and observe student code. For each recitation, TAs created a single project containing

starter code within Collabode, and each student was granted access to their own clone of

the project. All of the clones were visible to the TA (Figure 2-3), so that any given student’s

25

work could be viewed in real time, and at the end of the recitation, no additional code

collection needed to happen -- the TA’s instance of Collabode already contained all student

code in its workspace.

Figure 2-3. The instructor view of Collabode showing student clones of a project.

From its deployment in 6.005 recitations, Collabode showed that it could support a

sufficient volume of concurrent activity within projects hosted on a centralized server, and

that it was a logical choice upon which to build the mobile instructor interface. The manner

in which it was deployed in 6.005 recitations allowed us to easily intercept information

passing through Collabode into the CollabodeTA interface.

26

2.4 Related Work

Previous work has been done in the areas of web-based IDEs, collaborative coding, and

mobile visualizations. Amongst the numerous other active web-based IDEs projects are the

Cloud9 IDE [8], built on the popular Ace editor [9] (recently merged with Mozilla’s

Skywriter project, formerly known as Bespin); the eXo Cloud IDE [10]; ShiftEdit [11],

WaveMaker, a WYSIWYG Java Web 2.0 application development IDE [12], and

WWWorkspace, a web-based Java IDE built on Eclipse [13]. These IDEs offer syntax

highlighting for a variety of compiled and interpreted programming languages, code

completion, project management, and integration with FTP and popular source control

systems such as Git. Of these, only the eXo Cloud IDE supports real-time collaboration of up

to 6 developers.

 In the area of education, iTALC [5] has contributed a screen-sharing solution that

allows instructors to have remote control over student screens in a number of ways. Its

focus is less on collaborative learning between students and between instructor and

student than on purely distribution of tasks from a top-down teacher-to-student direction,

and the teacher using this system stands in front of a master computer with a view of each

screen in the classroom. We see lapses in this design that we think this mobile lab

instructor interface can fill. These include the ability to analyze (not just directly see)

student progress, as well as freeing the lab instructor to move about the room using a

mobile device rather than a fixed computer.

 Technology-enabled active learning (TEAL) [6] places emphasis on “interactive

learning”, i.e. problem-solving in groups with active discussion, with shared visualizations

of class concepts. Although TEAL is suited for learning concepts rather than producing or

27

monitoring the production of code, the TEAL system incorporates means to gauge student

understanding via periodic polling for and aggregation of student answers during the

course of a typical class session.

 Koile and Singer [7] have developed the Classroom Learning Partner (CLP) built on

previous Classroom Presenter work, which was tested in introductory computer science

classes. In this design, the lecturer annotates slides with digital ink and students likewise

submit answers digitally. The instructor then gets histograms clustering student

responses. Like the mobile instructor interface, CLP is tablet-based, from which we can

draw some insight, although the core of the mobile instructor interface will be the

Collabode IDE.

28

29

Chapter 3

CollabodeTA:

A Mobile Instructor Interface for Collabode

3.1 Motivation

Our goal in creating CollabodeTA is to empower individuals not necessarily directly

involved in the production of code towards a single project, but who monitor multiple

implementations of the same project or assignment in parallel while maintaining the ability

to interact with any of the implementations being overseen. In particular, we hope to

address the student/instructor interaction and code collaboration problems presented in

Sections 2.1 and 2.2 by using the technology Collabode provides in order to improve

software engineering and programming education.

In a typical software development class at MIT, students are given programming

assignments that can range from guided code templates to open-ended specifications. The

distinctions between these project types are explained further in Section 3.2. These

assignments may be given as individual projects, or occasionally, as group projects. During

the time frame that students are given to complete their smaller-scale programming

assignments or larger-scale projects, it is common to give students time to work in one or

more of a software lab, recitation, or office hours.

30

Software labs

Software labs are times for students to have full access to any computing resources

they might need, to serve as a fixed meeting time for group coding, or to serve as a

fixed time during which students complete assignments that measure their

understanding of recent lecture material. At MIT, software labs in which students

are required to complete assignments and have their solutions checked off by

instructors usually demand mandatory attendance. One or more instructors,

teaching assistants (TAs), or lab assistants (LAs) are generally present in the lab to

provide guidance and answer any questions that the students may have.

Recitations

Classes such as 6.005 use scheduled recitations as a time for TAs to review lecture

material in smaller groups of students. A recitation session may also include time

for the TA to demonstrate ideas by running bits of code in front of the class, or for

students to complete small coding assignments individually or in groups under the

TA’s supervision.

Office hours

Office hours are designated times at which TAs or instructors make themselves

available to answer student questions without presenting new material. They are

distinguished from official software lab hours by being optional and held at the

convenience of the instructor or students present. Unlike recitations, office hours

are generally less structured, and instructors are not expected to formally present

or review course material; however, students who attend are expected to bring

questions for the instructor to answer.

31

What we have observed in all three of these meeting types -- software labs,

recitations, and office hours -- is that students bring in their work on their own laptops or

by connecting to their code on an external server via SSH. Students then work at their own

pace individually or in small groups, waving instructors over or joining a shared help queue

if they feel stuck, as described in Section 2.1.

This development process is near opaque to the instructors, who typically have little

to no idea of what progress the students in the lab are making until they are explicitly

called over to give feedback on their ideas or answer clarifying questions. Furthermore,

instructors are usually seeing the students’ code for the first time when help is needed,

requiring them to spend time understanding the state of the students’ code: how far they

have progressed, what design decisions have been made, and what faults might exist in the

code as written. Our final observation is that having a high degree of mobility is important

to instructors in a lab setting. Because of the nature of having to observe many projects

simultaneously, the more compact their teaching materials are, the more easily lab

instructors can travel around a room to reach students in need of assistance.

Collabode gives us a platform within which all student code lives on a central server,

and from which near up-to-the-second, keystroke-by-keystroke changes can be monitored.

This creates the potential for a new type of interface for what we consider the “mobile

instructor”; that is, an interface built to be used in conjunction with Collabode to monitor

student progress in a lab setting, with an emphasis on visualizing student progress,

aggregating classroom performance metrics, and portability for the instructor.

A mobile instructor interface would provide means for lab instructors to accomplish

the following critical tasks, all of which we have seen are currently infeasible and/or

32

difficult to accomplish with current software lab technologies, and which contribute to a

holistic view of the classroom:

● Monitor student progress and rate of completion of assignments

● Identify outliers within the students or student groups that are having notable

successes or difficulties with the given assignment

● Identify common mistakes made by students due to misunderstandings of the

course material

CollabodeTA is the mobile instructor interface we have designed to fill this gap in

software engineering and programming education. By making these critical tasks possible,

we hope that instructors will more accurately be able to gauge progress and understanding

early in the teaching progress and proactively identify students who both need help and

can help their peers during the course of one teaching session.

3.2 Types of Software Lab Assignments

Software engineering has many configurations and degrees of flexibility in design. For the

purposes of this discussion, we will find it helpful to break down software projects into

three different categories.

Structured

Structured assignments are built around a code skeleton or template, with specific

methods or areas where students are instructed to work. This is the most

straightforward type of project for which to monitor progress, as student progress

33

can be measured in discrete and consistent chunks corresponding to each section of

the code they are instructed to complete.

In most cases, the correctness of individual methods can be tested by using

unit tests corresponding to each task, designed such that students incrementally

pass these tests as portions of the template are completed. A formal unit test

framework such as JUnit may be used, or the results of unit tests may simply be

printed to standard output in the user’s console. In other cases where tests are not

provided but the assignment skeleton is well-established or the scope of the

assignment is small, student progress can still be gauged based on how much of the

skeleton is completed, and how much code the student has contributed to each

section compared to how much code is expected from the student to produce a

working solution.

An example of a structured assignment is as follows:

Complete the implementation of the isValidMove(Coordinate) method for

each type of playing piece in a chess game. This method should return

true if the given coordinate is a valid move for that piece based on

its current location and the rules of the game, or false otherwise.

Interface

In interface-based assignments, students are given a specification or a common

interface with some design freedom as to how to implement that interface. In this

type of project, the expectations are expressed in the project specification, but the

structure of the implementation is up to the student. A suite of unit test cases

testing completion of the specifications, where student progress is monitored by the

34

rate at which their designs fulfill specifications, can be used to gauge progress on

such projects; however, the amount of code written, whether on an absolute scale or

relative to the rest of the class, while one factor on the step to completion, is not a

reliable indicator of student progress in these types of assignments.

 Here is an example of an interface-based assignment using the same chess

game example as before, assuming the chess game contains an AI component where

a human player can play against the computer. Note that the assignment does not

specify an algorithm or restrict which intermediary data structures the student uses,

and provides only the specification for the method:

Implement the computeNextMove() method for the computer player in the

chess game, which returns the playing piece and coordinates of the

player’s next move.

Freeform

Freeform assignments are those in which the students are given a set of

requirements and otherwise have freedom to design and implement them how they

wish, while being handed minimal starter code. Intermediary assignments for open

projects may be more structured; for example, students may be requested to submit

design documents. This is the most difficult type of project for which to monitor

progress, but one can imagine students being required to write their own test cases,

and submitting those as intermediary assignments, which structures freeform

assignments towards a more interface-based structure.

An example of a freeform assignment is as follows:

35

Implement a chess game, where users can play against each other or the

computer. You must accurately respect the rules of chess, but are

otherwise free to implement the game board, pieces, user interactions,

etc. however you wish.

3.3 Metrics

Collabode records real-time, keystroke-by-keystroke data as students are working in class.

As a result, there are a number of ways in which we could have decided to achieve our

goals of measuring student performance as concisely and accurately as possible. It was

important to us to choose metrics that would be meaningful when viewed over time, and

which would be meaningful when aggregated, and viewing the class as a whole. Our

experience observing and interviewing the instructors of the classes mentioned in Section

2.1 helped us to narrow the list of interesting metrics down to the following categories,

shown with some sample questions that could be answered with each category of metrics:

● Unit test results: Given a test suite for the assignment, how many unit tests has the

student’s current implementation passed?

● Compiler metrics: How many errors and/or warnings does the compiler find in the

student’s code?

● Run-time metrics: What exceptions are thrown when the student runs their code?

What non-fatal errors does the student encounter?

● Student-produced metrics: How much code has the student written? How many

lines of code were written compared to the amount of code deleted? If there are

multiple parts to the given assignment, which assignments have been completed

36

and which are the student still working on? How long did it take for the student to

complete each task?

● Integration metrics: The number of integrations made by Collabode of a student’s

code indicate how many complete chunks of compile-error-free code the student

has written. How many of these have there been?

Each of these questions also become more meaningful when we ask “how do these

numbers change over time? How does the student’s performance now compare to how

they were doing 10 minutes ago?” Similarly, we could also ask “what is the majority of the

class scoring for each metric? How does this student compare with the class mean,

minimum, or maximum?”

For CollabodeTA, we began the process of measuring student performance by

analyzing student console outputs. This made sense for a variety of reasons. First of all,

looking at console outputs allows us to measure student performance via multiple

categories of metrics, specifically those collected at run-time and those which were

student-produced. Printing output to a console is often a critical part of the development

and debugging process, and looking at such output is often essential for identifying and

debugging problems in code, and in discerning what students were thinking or trying when

errors were made. 6.005 recitations in the Fall 2011 semester used assignments that

primarily relied on either achieving a correct value or (when tests were provided) testing

via Java main methods that printed expected output to the console when correct.

Therefore, the structure of our data also supported analyzing console output over starting

with other metrics such as unit test cases, which were not available at the time. We found

it convenient that the collections of discrete, smaller-scale tasks assigned in 6.005

37

recitations tended to fall under the structured and interface-based assignment types, and

were therefore naturally testable via console output because of the ease with which

individual tasks could be tested separately. In all, we believe that the work done with

student console output is useful for the broadest variety of assignments, and in particular,

was most the most meaningful approach for the data with which we had to evaluate our

system.

3.4 Design Overview

Our design of the mobile instructor interface is to intrude as minimally as possible on the

lab instructors’ attention and natural workflow while still augmenting their understanding

of what is happening in the classroom at any given time. We therefore aimed to summarize

and present data in the interface such that can be understood “at-a-glance” with minimal

user interaction. This section provides a general overview of components and terminology

that we will use to describe the Collabode mobile instructor interface. Following sections

will describe in more detail the motivations, design, and implementation of each feature of

the interface.

38

Figure 3-1. Overview of CollabodeTA mobile instructor interface components. 1) Student

cards, 2) Toolbar, 3) Queue tray, 4) Tray for alternate views (i.e. class layout, console output,

student panels). Class layout view is shown.

39

3.4.1 Student Cards

A student card is designed to concisely summarize information about a student. It consists

of their picture, which can be taken from the 6.005 class website (or a placeholder image if

a picture does not exist), a small name tag with their Collabode username, and any

additional decorations (which we will refer to as badges). The only badge currently used is

an orange ? icon indicating that a student is on the help queue, but future work may

incorporate badges corresponding to metrics such as test suite completion, amount of code

output, and help status on the queue.

Figure 3-2. A plain student card (left). A student card decorated with a ? badge (right).

Student cards were designed to be viewed in aggregate in the class layout view

(Section 3.5), in the help queue tray (Section 3.8), and as a means to access student panels

(Section 3.7).

3.4.2 Toolbar

The toolbar is always visible and provides a way to switch between the main views of our

interface. It also allows toggling of the help queue visibility. The button corresponding to

the current view is highlighted in the toolbar.

40

Figure 3-3. Close-up of the toolbar.

3.5 Class Layout View

3.5.1 Motivation

Our original motivation for the class layout view was to provide a concise, at-a-glance

summary view of the entire class’s activity and aggregate performance statistics. However,

from our interviews of people who have previously led 6.005 labs and labs in other

programming or software engineering courses, we discovered that a common (although

tangential) problem experienced by lab instructors was that of locating students in labs

given just their names provided from a help queue. This problem is especially apparent in

the first few weeks of class (or simply large classes in general) when instructors have not

yet had a chance to familiarize themselves with student faces. One current solution to this

problem is to call out student names and ask them to raise their hands, which is time-

consuming to do in large classes in addition to being distracting to other students. Another

solution currently used in the 6.005 queue is to have students self-identify their location

when they join the class help queue. Rather than creating a second view to solve this

student recognition problem, we decided that the class summary view could be augmented

to solve this problem as well, which resulted in this final list of design goals:

1. Summarize class activity in a display that can be understood at a glance and

requires no human interaction

41

2. Incorporate student photographs to help instructors learn and recognize faces and

Collabode usernames

3. Incorporate information about the students’ locations in the classroom, to help

mobile instructors locate students they are trying to help

The class layout view (Figure 3-4) displays students in the class represented by their

student cards, and allows the user to drag and drop the cards into a spatial arrangement

(Figure 3-5) corresponding to students’ physical location in the room. Filters accessed by

the student panels (described in Section 3.7) fade and highlight students that match

different criteria. In combination with highlighting and badges on student cards, we

believe that we have thus achieved our design motivations in a space-efficient way.

 The largest unsolved aspect of this design is the generation of the spatial

arrangement. This class layout generation turns out to be time consuming to do manually

in practice, especially when student locations are not assigned and therefore change from

class to class as they are given freedom to work in their own groups. Furthermore, student

locations cannot be quickly or easily determined by the instructor until after the majority

of students have arrived, which is also a problem.

 We did not prioritize the class layout generation in this thesis, but the chapter on

future work (Chapter 5) includes a discussion on ideas for arranging student cards in the

class layout view with minimal human effort.

42

Figure 3-4. Class layout view with student cards arranged in a grid.

43

Figure 3-5. Class layout view with student cards arranged in groups of four.

3.5.2 Implementation

The implementation of the class layout view is straightforward. The view itself fills the

right tray when selected, and student cards are jQuery UI [15] draggable objects within the

droppable view space. Student card sizes are optimized such that a class of about 30

students can fit comfortably in an arrangement on an iPad screen. Logic to optimize

44

student card sizes for significantly larger class sizes was out of the scope of this thesis, but

is an interesting problem and mentioned in the section on future work (Section 5.1).

3.6 Console Output View

3.6.1 Motivation

Section 3.3 described why we are interested in examining the output students get in the

console while working on a variety of assignment types as a measure of demonstrated

student understanding. Console outputs can be used for more than simply debugging or

identifying the source of one students’ bug; especially when compared to expected output

from a test method, they can be used as a measure of overall class understanding, and as a

result help an instructor adjust the pace or content of a recitation-like class or lab session

during the course of the lab to more effectively address students’ most commonly

misunderstood lesson topics. We therefore designed this view to allow lab instructors to

see the outputs of every current student simultaneously, and like the class layout view,

require minimal-to-no human interaction so as to be as glanceable as possible.

3.6.2 Types of Console Output

While users may print any arbitrary text to their program console, console output from

recitation data we used to evaluate CollabodeTA fit into a few major categories.

Test function output

Comparing actual console output to expected output of test functions is, assuming

academic honesty, the most immediate way to tell whether a student has correctly

and completely implemented the function being tested. Examples of test function

45

output from 6.005 recitation data included explicit correct/incorrect print

statements (A), or print statements containing values or print statements of data

structures that were expected to have been computed correctly, (B, C).

A. 1)CORRECT: array1 and array2 contain the same elements!

2)CORRECT: list1 and list2 contain the same elements!

3)CORRECT: string1 and string2 contain the same values!

4)CORRECT: stringNull1 and stringNull2 contain the same values!

B. Investing $1000.00 at an interest rate of 3.5% for 7 years will have a

final worth of $1272.28.

C. [King of Diamonds, King of Spades, Ace of Diamonds, Queen of Diamonds]

Nondeterministic output

A separate class of console outputs arises when, as in some 6.005 recitations, the

assigned task deals with randomness (A), timing (B), synchronization (C), or

otherwise results in output that is nondeterministic and varies from run to run and

student to student.

A. Results of 10 dice rolls: {1:2, 2:1, 3:1, 4:2, 5:2, 6:2}

B. Timing method findPrimes: 461 milliseconds

C. thread1 vs. thread2

 thread2 thread3

 thread3 thread1

46

Exceptions/Errors

Unexpected output occurs when students run into exceptions or errors in their

code. We observed that a standard Java stacktrace was usually printed when

exceptions occurred, and other uncaught errors such as infinitely looping or

recursive functions that printed output indefinitely were characteristic and easy to

spot.

Arbitrary

The catchall category for console output includes all other print statements which

students include for the sake of debugging or even sometimes is just due to typos.

In general, console output from test functions written by the course staff that have

predictably correct or expected text are the types of outputs that this CollabodeTA view

focuses on. Assuming that correct output from student code will match that of the staff

implementation allows us to also assume that any differences from the “correct” output

that are not apparently due to nondeterminism or arbitrary debugging are due to

erroneous code. Once these cases are identified, instructors can then proceed to group

error cases into larger assignment-specific categories.

3.6.3 Implementation

For the purposes of this thesis, which was evaluated on data from a large number of pre-

recorded recitations, it was important to devise both an efficient design for clustering and

rendering student outputs through time as well as an efficient database schema to support

storing all of this computed metadata. To establish some terminology:

47

● At any given point in time, we consider an output to be the textual content of the

student’s output console, which is fed from both standard output and standard error

streams.

● A canonicalization (or normalization) of an output is the transformation of an output

to a form that can be compared to other outputs accurately. For example, in our

implementation, whitespace is trimmed from the beginning and end of each output

during the canonicalization process. A discussion of optimizations to the

canonicalization process is continued in section 5.1.4.

● A cluster of outputs is a set of outputs whose text maps to the same canonical value.

All raw outputs are normalized to their canonical form before clustering begins, and

CollabodeTA shows only normalized clusters. Section 3.9.3 contains details about

optimizations made in our clustering algorithm implementation.

Figure 3-6 shows a sample console output view. Our design displays all the

variations of student outputs (i.e. all the clusters) at a chosen point in time, sorted in order

of decreasing occurrence. We found the cluster with the highest number of occurrences

interesting because it indicates what most of the students in the class are encountering at

any given time. From replaying our recorded data, we found that there was often a clear

plurality or small set of frequently-occurring clusters at any given time, and that students

tended to converge on the correct output cluster by the end of the time allotted to work on

the given assignment.

At a given time, we consider the cluster with a plurality of occurrences (or an

arbitrarily chosen one from the set of maximally occurring clusters, if there is no single

48

cluster that occurs most frequently) to be the prototype cluster. The other clusters are

displayed below the prototype cluster in decreasing order of occurrence. Our solution for

making this glanceable was to perform two-way textual diffs of each cluster with the

prototype cluster and to display subsequent (non-prototype) clusters with the diffs

highlighted. Insertions are underlined, while deletions are displayed with a strikethrough.

We used the Google diff-match-patch Javascript library [21], which implements the Myer’s

diff algorithm as well as provides some optimizations for semantically cleaning up diff

results.

We also made some rendering optimizations to the displayed diffs. Because the

result of a diff is a sequence of insertion, deletion, and matched segments, we quickly

realized that it was not necessary to show every one of these segments. For example, a

modification of a chunk of text naively appears as a deletion immediately followed by an

insertion. Similarly, blank output appears as a deletion of the entire prototype text, but this

is more clearly shown (and more space-efficient) simply as blank output. We therefore

only display deletions if they are not followed directly by an insertion. Figure 3-7 shows

the difference between our diff rendering compared to a naively rendered diff.

Finally, we encountered some cases in our replayed data of long output (e.g. long

test output, output from infinite loops), so we set a maximum height for each console

output and require that the user scroll the inner frame holding the cluster text to see more

of a particularly long output. This decision was made to save significant screen space,

especially in the case of the stack overflow problem.

49

Figure 3-6. Console output view.

50

Figure 3-7. A naive diff (top) compared to a cleaned diff (bottom).

User studies (Chapter 4) revealed that users would find it useful to scroll back in

time to snapshots of individual student performance (or the performance of the entire

class) even during the course of the recitation session. Because of the way we have

designed the database schema and cluster computation, this can be done with minimal

effort. Section 5.1 suggests designs and ways to improve performance such that this

functionality can be included in our interface for use in real time.

3.7 Student Panel View

3.7.1 Motivation

The student panel view summarizes an individual student’s activity during a lab session.

The student panel is a way for instructors to see more detailed information about a specific

student, as well as link to the student’s code, actual console, and other documents.

51

Figure 3-8. A student panel. 1) Student information, 2) Event stream, 3) Timeline, 4) Queue

status widget

52

3.7.2 Implementation

In our implementation, tapping on a student card displays that student’s panel in the right

tray. Our design shows the following information:

● Basic information about the student (their picture and Collabode username)

● An event stream of the selected student’s activity. This event stream logs activities

such as successful executions of source files and unsuccessful executions with the

Java exception that occurred. Error events link to other students who have gotten

the same error, which we found is helpful for determining error frequencies. Each

event in the event stream links to the appropriate file console or file for that activity.

If users with similar exceptions in the event stream appear, they can also be clicked

to filter the class layout view, as shown in Figure 3-9.

● A simple timeline of student activities over time, with tappable markers linking to

events in the event stream, which can grow to be numerous during the course of an

hour-long lab session.

● A widget indicating the student’s help queue status. From the student panel,

instructors can see whether the selected student is currently on the help queue

(improving glanceability in the case of long queues), and mark them as being helped

or remove them from the queue after being helped. Other information that could

easily be included is the latest time a student was helped, how many times they have

been helped, and other statistics of interest to instructors. Section 3.8. describes the

help queue in more detail.

53

As CollabodeTA is expanded to record other metrics, similar detailed information

relevant to individual students should be included in the student panels for easy access.

Figure 3-9. Class layout view before and after filtering from the event stream.

54

3.8 Help Queue

3.8.1 Motivation

A number of MIT software classes use a formal help queue in labs to line students up for

instructor help in a reasonably fair (first in, first out) way. The 6.005 Karga queue [17] and

6.004 (Computation Structures) help and lab checkoff systems [16] are two examples of

software lab help queues.

The mobile instructor interface also includes a simple implementation of a help

queue. Unlike the other mobile instructor features mentioned so far, our hope is that the

inclusion of a help queue will 1) increase fairness by allowing students to elect for help

even if they do not stand out to instructors by other metrics, and 2) provide a way for

multiple instructors in the same session to distribute student question load given the

additional information that our interface provides.

55

Figure 3-10. Close-up of the help queue and highlighted students in the class layout view.

There is currently no implemented student UI for the help queue. However, a

student can only appear once on the help queue, and their earliest position on the queue is

maintained over any later joins while they are still on the queue. There is no limit to how

many times students may join after being removed from the queue.

3.8.2 Implementation

The mobile instructor help queue is displayed as a panel to the left of the interface. It fills

with student cards from top to bottom as students join the queue. Queue visibility can be

toggled by clicking the Show Queue/Hide Queue button on the left of the main toolbar

(directly above the queue itself), and can therefore be either constantly visible or hidden

when the queue is not active to provide more space on the right for content. The queue

56

does not ever cover other content, and when the queue panel is hidden, whatever content

is currently displaying on the right expands to fill the entire screen. It is important that the

queue panel behave this way, as the width of the queue is strictly larger than a single

student card, and therefore student cards can be hidden by the queue panel when in the

class layout view.

 A small ? badge marks students in the class layout view who are on the queue so

that they are immediately apparent to the instructor, who might decide to target a group of

students based on their location and queue status. Students elect to join the queue by

pressing the same ? icon in their individual editors (as shown in Figure 3-11) and appear

immediately in all instructor interfaces, if there are more than one.

Figure 3-11. Help queue button integration with the student toolbar.

 The student panel view also displays a student’s queue status. Tapping on a queued

student’s card brings up the student’s panel in the same way that tapping on the card in the

class layout view does. A student’s queue status cycles between three states:

1. NOT_QUEUED: the student is not currently on the queue

2. QUEUED: the student is on the queue but not being helped by an instructor

3. HELPED: the student is being helped by an instructor

57

By choosing to make assign one of three states to any given student, instructors can

see which students are already being helped by other instructors in the class without

having to remove the student from the help queue. A student card is not removed from the

queue until an instructor marks them as HELPED and subsequently removes them from the

queue.

3.9 Replaying Recitations

This section describes the components of Etherpad, schema design, methods, and

optimizations that were relevant to replaying recorded 6.005 recitations so that real-time

use of CollabodeTA in a classroom could be simulated.

3.9.1 Structure of a Replay

The recitation data gathered from Collabode comes in two parts. The first is a complete

workspace directory containing the Collabode plugin, all other plugins and metadata

necessary for Collabode to run properly, and a complete copy of the master project and

every student’s cloned project in its final state (i.e. as it was at the end of the recitation).

Each project is a complete Eclipse Java project. Instructors may have their own project

clone as well. The second half of the recitation data consists of the Etherpad database files.

The essential files in this data are a properties file describing the database type, a log file of

all committed database transactions executed since the Collabode server was started, and a

script file that stores database information so that it can be recovered between restarts of

the Collabode server.

In all, Figure 3-12 shows the high-level hierarchy of replay files:

58

workspace/

 .metadata/

 rec1/

 rec1-student1/

 rec1-student2/

 …

db/

 edits.log

 edits.properties

 edits.script

Figure 3-12. Organization of files included in recitation data

 An Etherpad document is called a pad, and user edits are packaged into changesets

which are applied to pads to update their content. In Collabode, both source files and user

consoles are pads, but with different properties. Each pad has a unique ID from which we

can determine its pad type and author, amongst other attributes.

3.9.2 Playback

Replays are captured in three phases.

In the first phase, we use the Etherpad API to read the database log and retrieve

every revision in the database, where a revision is an object with attributes such as author,

source pad ID, timestamp, and changeset. The revision attributes of interest to us are

stored into a separate replay database table.

In the second phase, we run through each of the revisions we have collected and

execute them in Collabode as if they were happening in real time. During this phase, user

edits to files are reapplied as if the system were running live, which changes the state of the

59

system as if it were running live and allows us to capture metrics that were not captured

the first time, such as information about console output and exceptions that were being

thrown. These metrics are again stored into the database so that this phase, which by

involving the rest of the Collabode system is the most expensive phase to execute, need

only be executed once per database schema change. During this phase, we assume all

source files have an associated pad and check also to see if they have an associated console

pad as well by attempting to access the console pad with the corresponding pad ID to the

source file pad. If they do, we also collect the console output at each revision.

The final phase of playback is the rendering phase, where we assume we have

collected all data of interest and render it to the CollabodeTA web interface. Except for the

very first time a replay is run, this is the only phase that the system will need to go through,

which significantly improves the speed at which replays can be played back.

3.9.3 Cluster Optimizations

During initial playback, all raw outputs are normalized to their canonical form before

clustering begins. Post-canonicalization, clusters are identified by simple string

comparison. Therefore, cluster storage in the database can be optimized by mapping each

cluster -- which corresponds to a unique canonicalized string output -- to a unique id.

Revision data stored in the replay database therefore need only store a cluster id, and the

complete output text can be retrieved by looking up the text associated with the revision

data stored in the replay database. This reduces the amount of storage for replay data

significantly.

60

To significantly optimize cluster visualization, cluster ids for each student’s console

output after each revision are computed and stored upon running the replay of a particular

recitation session for the first time. Thus, on subsequent replays of the same recitation

data, each student’s most recent precomputed cluster ids (optionally, the most recent

precomputed cluster ids for each separate assignment’s output console) can be retrieved at

any desired point in time and we need only render the resulting set of clusters in our

interface without having to renormalize and reassign clusters every time.

3.10 CollabodeTA Implementation

The CollabodeTA is directly integrated into the Collabode infrastructure. It is accessible via

http://<root_url>:<port>/mobile and is protected by the same access control logic as

the root Collabode project page.

The bulk of the CollabodeTA mobile instructor interface application logic is written

in client and server-side Javascript with some Java. Embedded JS templates and Less JS are

used for templating and styling. Notably, its design and touch behaviors are currently

optimized for the Apple iPad 2 locked in portrait orientation. This orientation was chosen

in order to show output cluster diffs in the console output view most efficiently. Like

Collabode, the CollabodeTA mobile instructor interface can run on any Javascript-enabled

mobile browser with a network connection to the Collabode server.

61

Chapter 4

Evaluation

We evaluated CollabodeTA in two ways. The first, described in Section 4.1, was to evaluate

the usefulness of the mobile instructor interface by asking software lab instructors to use

the interface in a simulated real-time lab setting. The second, described in Section 4.2, was

to show the usefulness of CollabodeTA in post-lab analysis; that is, as a tool for analyzing

how effective lab exercises were after the lab session was completed, without the time or

attention constraints imposed by a real time lab or recitation imposes, for the purposes of

evaluating the lab exercises themselves and for planning future classes.

4. 1 Mobile Instructor Interface User Studies

Our evaluation of CollabodeTA was performed using pre-recorded data collected from the

Fall 2011 semester of 6.005 Elements of Software Construction. The official MIT Subject

listing describes 6.005 as an introductory class to software development, with an emphasis

on learning how to design and write good software. The official course description [18] is

as follows:

“Introduces fundamental principles and techniques of software development,

i.e., how to write software that is safe from bugs, easy to understand, and

ready for change. Topics include specifications and invariants; testing, test-

case generation, and coverage; state machines; abstract data types and

62

representation independence; design patterns for object-oriented

programming; concurrent programming, including message passing and

shared concurrency, and defending against races and deadlock; and

functional programming with immutable data and higher-order functions.”

In the Fall 2011 semester of 6.005, Collabode was used in 13 recitations ranging from 10-

30 students per session. One instructor was in charge of each recitation, with six

instructors in total. Teaching assistants who served as recitation instructors from that

semester were asked to user test CollabodeTA.

Although the CollabodeTA mobile instructor interface consists of a number of

separate components, evaluation was done on the system as a whole. Three users who

were TAs/recitation instructors from the semester of 6.005 from which Collabode was

used were chosen to do the user study. Users were given a statement of the goal of the

mobile instructor interface and a list of tasks and questions to consider while using the

system before being presented with the interface. These questions were chosen to gauge

whether CollabodeTA indeed achieve its goals of making it easier for instructors to gauge

individual and overall student progress and performance earlier and more easily than it

was possible to do before, without intruding on the instructor’s natural teaching style. The

questions were as follows:

Goals

Gain insight on what goes on during a software lab session that you

couldn’t achieve without the perspective of the mobile lab instructor

interface.

63

Tasks/Things to think about

 Where is the majority of the class in the assignment? Estimate how much

of the assignment(s) the class is on track to finishing.

1. What key points in the recitation material are getting across and

which are not being understood?

2. Which, if any, students are significantly ahead or behind, and why? Is

anyone done?

3. If no one were on the help queue, which students would you help right

now? Do the students on the help queue correspond with those that

appear to need the most help?

4. What, if any, common problems does it look like people are running

into? Does the interface help make this clear? Does it coincide with

what you remember about the recitation when you taught it?

Reflection

1. How easy was it to achieve each of the tasks?

2. Was the overall goal achieved?

3. Do you have any other suggestions or thoughts?

The pre-recorded recitations chosen for user evaluation were chosen based on

expected console output format, diversity of assignments, and when in the semester the

recitation occurred. We chose assignments whose expected primary console output was

test-driven, so that the console output view would be the most meaningful and useful to

instructors. This view was chosen because it was the richest view of student performance

64

implemented in CollabodeTA and the one that we wished to get the most feedback on.

Within the constraints of the console output format, we still chose a diversity of

assignments, many of which resulted in output that was still test driven but either partially

nondeterministic or had varying amounts and types of student errors and arbitrary or

debug output. Finally, we chose assignments from three different times during the

semester. The earliest assignments shown in user tests were from the first recitation,

where the majority of students were just getting familiar with the Java programming

language and therefore were completing very structured, discrete tasks, and the latest was

from the last recitation, where students were assumed to be proficient in Java and moved

on to tackling more conceptually difficult tasks.

Students achieved correctness for each of these assignments by printing the correct

output to their consoles, but were free to print intermediary debug statements as well. In

the end, the following recitation and assignments were chosen:

Recitation 1

Recitation 1 consisted of a series of short assignments to help students become familiar

with simple Java syntax, operations, and data structures. Our users, who were familiar

with the assignments though not necessarily of the specific students in the recitations

replayed for them, were shown Recitation 1 data at four evenly-spaced points in time

during the time span of the recorded recitation session, and were asked to comment on

anything they noticed as the recitation session progressed and answer the questions given

to them as best as they could.

65

Financial Calculations

Students were asked to make a series of financial calculations such as calculating the

expected balance after a certain amount of time given a starting balance and annual

interest rate. Correctness was verified by values printed to standard output.

Equals Checking

Students were asked to check whether the contents of two arrays were equal.

Correctness was verified by four tests, each of which printed CORRECT or

INCORRECT to standard output along with a description of the test.

Prime Checking

Students were asked to implement three increasingly efficient versions of a prime

number checker. Correctness was verified by the result of the prime checker as well

as the runtime of each prime number checker, both of which were printed to

standard output.

Palindrome

Students were asked to write a program that verified whether given strings were

palindromes. Correctness was verified by printing the correct value to standard

output.

Drawing Cards

Students were asked to simulate the process of drawing playing cards from a deck

with and without replacement between each draw, where cards were represented

as objects in a Java array representing a deck of cards. Correctness was verified by

printing the contents of the correct final arrays to standard output.

66

Recitation 10

IntensiveSumRC.java

Students were asked to write a multithreaded program to sum the elements of an

array. Correctness was achieved by printing the correct sum to standard output.

Recitation 13

Threading

Students were asked to find and eliminate a race condition in a small multithreaded

program that caused occasional inconsistencies in text printed to standard output.

Correct output was assumed when each of 10 threads consistently printed a

complete, identical statement to standard output without races.

Results

Response to CollabodeTA was positive. All of our user study participants felt that the

console output view would be useful, and liked the idea of viewing class performance as an

aggregate within the class layout view. They felt that the tablet form factor was non-

intrusive in their workflow, and were able to answer the questions given to them at the

start of the user study, which they all agreed would have been difficult or impossible to do

without CollabodeTA.

All three of the user study participants suggested features that would make the

interface more useful for them, most of which we had preconceived and were simply not

included in the first iteration of CollabodeTA. Most of these related to being able to drill

down into student code more easily. The main confusion points with the interface were

67

with specific design choices in how cluster diffs are displayed in the console output view,

and in which aspects of the interface linked back to other parts of Collabode that they were

familiar with. These suggestions have been incorporated into the section on future work

(Section 5.1).

4.2 Recitation Studies Using CollabodeTA

In developing CollabodeTA, where our focus was initially to aid instructors helping

students in real time, we realized that the data we have collected is useful for analyzing

recitations or labs after they finish. Specifically, the cluster data we have for each student

and assignment over time within each recitation session, in addition to other metrics that

could be easily added to the interface, is valuable information for determining factors such

as how difficult the assignments were, which tasks were most difficult for students and

how long each of them took to complete, which concepts were most easily grasped and

which caused the most confusion, and so on.

Simply by analyzing cluster data on the first recorded recitation session, we found

that students ran their code relatively infrequently compared to how much time they spent

writing it, and often did not spend much time iterating on each task. This, of course, applies

to the recitation-scale exercises we had access to, and by analyzing other metrics we collect

through the interface, CollabodeTA can begin to give us a much richer view of how to better

design future recitations and lab sessions.

68

69

Chapter 5

Conclusion

We found that the process of writing code in class in the context of software education is

more opaque to instructors than it could be in terms of understanding the pace and amount

of student progress and understanding on in-class assignments. It is also difficult to

accurately gauge student performance on lab exercises for the purposes of identifying

those that need help, or common mistakes that should be addressed for the entire class.

 CollabodeTA was built on top of the Collabode real-time collaborative web IDE to

address this problem by taking advantage of the the real-time, keystroke-by-keystroke data

provided by Collabode to act as a tool to aid software lab instructors during lab sessions.

Through it, we provide a set of views for lab instructors to address and locate students

queued for help, and gain insight on how students are performing on tasks while in the

context of a lab session. User testers who were previously TAs of the MIT 6.005 Elements

of Software Construction class were able to use CollabodeTA effectively to identify students

who were on task as well as outlier problems that they would have addressed had they

known they were an issue at the time. CollabodeTA is a web application that can be

accessed from any Javascript-enabled browser connected to a Collabode server, and is

optimized for tablet devices for portability within the classroom.

CollabodeTA illustrates a new use case for the Collabode as a mobile instructor

interface, and shows promise both as a new model of collaboration that supports software

70

development and programming education in a lab setting and as an evaluation tool for

current coursework that can contribute to improving the quality of software and

programming classes in the future.

5.1 Future Work

In this section, we suggest ways in which CollabodeTA can be improved and extended to

become an even more useful tool for software lab instructors.

5.1.1 New Metrics for Student Activity and Progress

Analyzing console output gives us a rich yet limited look on in-class student performance.

In order to provide as comprehensive of a view of the classroom as possible for software

lab instructors, CollabodeTA should be extended to measure student progress,

understanding, and performance by more of the metrics presented in Section 3.3, notably:

● Integration with a unit test framework such as JUnit [25], especially if applicable to

course content, which would provide similar functionality to our test function

output analysis without the noise of spurious print statements

● Compiler metrics: What kinds of problems did students encounter and for how long

before they even ran their code?

● Additional run-time metrics beyond identifying exceptions and clustering on

console outputs. In particular, identifying non-fatal or non-terminating errors is a

challenging but interesting task that could be attempted.

● Perhaps the biggest contribution Collabode makes is giving us insight into what and

where students are editing at any given moment. There are a wealth of student-

produced metrics that could be collected in order to give instructors a more

71

complete idea of how any given student or the class as a whole is doing on given

assignments.

● Similarly, Collabode itself performs operations on top of student keystrokes and

actions in the Collabode interface that can be collected. The suggestion in Section

3.3 was to collect integration metrics, as a measure of the quality of code each

student is writing, not with respect to logic, but rather with respect to how correct it

is in terms of syntax and organization.

While measuring some of these metrics may take some creativity and more effort than

others to collect efficiently, all of these can be collected from Collabode. The framework we

have established in our implementation of CollabodeTA is also flexible and easy to extend

with new data while being minimally intrusive on the main Collabode system as it is

running.

5.1.2 Student Cards

Student cards are meant to be decorated with more at-a-glance indicators, especially as

other metrics are added. Examples of these are:

● Additional badges and labels indicating metrics such as the amount of code written,

where in the code the student is currently working, which files have been touched,

and so on. Even the current help queue badge may be modified to reflect either a

student’s queued/helped status or their position on the queue.

● Progress bars or grids corresponding to tests passed in a unit test suite (if

applicable), or by any new measure of progress

72

● Color overlays or subtle animations such as glowing or gentle pulsing to bring the

instructor’s attention to students that the system identifies as being in need of it.

According to our original design motivations and user studies, we believe that the class

layout view, which displays all student cards at once, will benefit immensely from

additional student card indicators if they are added tactfully.

5.1.3 Class Layout View

The primary barrier to use in the class layout view is a way to create spatial arrangements

of student cards with minimal human effort. We are certain that this burden should not be

laid on the lab instructor, especially as class sizes may be upwards of 20 students. Because

students at MIT classes are rarely (if ever) asked to work on designated machines in

designated locations, we cannot assume class layout to remain consistent between

software lab or recitation sessions. However, the classroom in which the lab or recitation

takes place is generally consistent throughout the academic term. The 6.005 Karga queue

asks students to provide a short description of where they are sitting, which we could also

implement in our system, perhaps by having students identify their location on a map of

the classroom at the beginning of the classroom, which would provide a reasonably

accurate indicator of their location.

 A second interesting area for future work within the class layout view is the

problem of optimizing student card sizes for arbitrarily large-sized classes. Our interface is

currently optimized for class sizes of 30-50 students, after which student cards would

begin to obscure each other, especially when arranged in a spatial layout. The dimensions

73

of student cards could in hypothetically be determined formulaically, to minimize the

amount of overlap between cards in large classes while preserving legibility.

5.1.4 Console Output View

The console output view is an exciting start to collecting student performance metrics. The

following suggestions for future work arise from our user study feedback and own

personal experience as instructors in software engineering and programming classes.

Improved cluster normalization

An optimization for future consideration is to implement fuzzy matching during the

normalization process such that inconsequential differences are ignored, such as

differences in line number for the same code across different implementations. A

more sophisticated optimization is to automatically detect non-deterministic output

and also remove these differences when generating the canonical form of an output.

Improvements to cluster diffs

We have implemented small optimizations to the rendering of cluster diffs, but we

believe that this can be improved further, make sure the points that differ between

each cluster are immediately apparent to users.

Smoother integration with Collabode and CollabodeTA

Various aspects of the console output view can and should be linked back to

relevant pieces of Collabode and the CollabodeTA mobile instructor interface. This

includes linking from student names back to their student panels, linking from

exceptions or console output to relevant pieces of code, and the ability to view

74

previous outputs the student has encountered during the same session, to compare

with their most recent output.

 In addition to linking, there is no reason why student card thumbnails shown

the console output view should not also show a limited set of indicators as the rest

of CollabodeTA does on student cards. An example of this is highlighting students

on the help queue from within the console output view. This would make questions

such as “does this student who has been getting a particular exception for several

minutes want help? Are they on the queue?” much easier to answer.

Scrolling through time

We have shown that we can replay recitations and stop at arbitrary time points in

recorded recitation data. From our user studies, we also found that instructors

would find useful the ability to scroll through time during the course of the

recitation, in order to view the class or a student’s progress history on the spot. The

primary difficulty in this task is finding a way to implement it that is performant

enough to do in real time. The cluster precomputation we did when running

prerecorded data is an example of an optimization that would most likely be

necessary to implement real-time scrolling.

Displaying long output

We have mentioned that we truncate code containers for clusters when the cluster

text becomes unreasonably long to display in its entirety. Our solution for this was

to implement scrolling in the inner code containers; however, a better or more

intuitive solution may be found, perhaps including simply providing an affordance

for expanding a container holding truncated output. More likely, in cases where

75

long output is not necessarily due to error, it would make sense to scroll all code

containers in lockstep, so that an instructor can view the same line of output for

every cluster variation at once without having to scroll each code container

individually to the same spot.

Overlay view

The overlay view is a reimagined concept for test-driven output in the console

output view that instead of displaying diffs between clusters and a prototype

cluster, stacks all outputs on top of each other intelligently, and allows instructors to

see using an overlay paradigm where student outputs differ. We make the

distinction that overlays must be done “intelligently” because our prototype

implementation of this showed that the variations in console output are too many

for naive overlays, and at the very least, algorithms for entering whitespace and line

breaks within clusters in order to maximally align them must be developed before

this view is feasible. However, if implemented correctly, this has potential to be an

interesting way for instructors to select pieces of erroneous cluster text and drill

into what the cause might have been.

5.1.5 Student Panels

Similarly to student cards, more information should be added to student panels as other

metrics are added. In particular, our user studies indicate that instructors would find it

helpful if details collected from CollabodeTA metrics linked to the relevant files, code

snippets, or consoles in Collabode.

76

5.1.6 Help Queue

While the CollabodeTA help queue implementation is designed to be simple, small

improvements can be made to its interface and functionality to increase the transparency

of its state for all users, both instructors and students. In particular, students should be

able to see their position on the queue, and have the flexibility to remove themselves from

it if they wish. In the case of multiple instructors, they should also be able to see which

instructor is helping which student on the queue at any given time. Because student info

panels and other views can be opened while the help queue is shown, we also envision the

queue to be a way of partitioning and assigning students between multiple instructors, to

streamline the answering process by grouping together students with similar questions.

77

References

[1] Collabode. [Online]. Available: http://groups.csail.mit.edu/uid/collabode/

[2] M. Goldman, G. Little, and R. C. Miller, “Real-Time Collaborative Coding in a Web

IDE”. In UIST, 2011.

[3] M. Goldman, G. Little, and R. C. Miller. “Collabode: Collaborative Coding in the

Browser”. In CHASE, 2011.

[4] M. Goldman. “Thesis Proposal: All the program’s a stage, and all the programmers

merely players”. [Online]. Available:
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf

[5] iTalc - Intelligent Teaching and Learning with Computers. [Online]. Available:
http://italc.sourceforge.net

[6] TEAL - Technology-Enabled Active Learning. [Online]. Available:
http://icampus.mit.edu/teal/

[7] K. Koile, and D. Singer, “Development of a Tablet-PC-based System to Increase

Instructor-Student Classroom Interactions and Student Learning”. In The Impact of

Pen-based Technology on Education; Vignettes, Evaluations, and Future

Directions. Berque, D., Gray, J., and Reed, R. (editors). Purdue University Press, 2006.

[8] Cloud9 IDE. [Online]. Available: http://cloud9ide.com/

[9] Ajax.org Cloud9 Editor (Ace). [Online]. Available: http://ace.ajax.org/

[10] eXo Cloud IDE. [Online]. Available: http://cloud-ide.com/

[11] ShiftEdit. [Online]. Available: http://shiftedit.net/

[12] WaveMaker. [Online]. Available: http://www.wavemaker.com/

[13] WWWorkspace. [Online]. Available: http://www.willryan.co.uk/WWWorkspace/

[14] JQuery Mobile. [Online]. Available: http://jquerymobile.com/

[15] JQuery UI. [Online]. Available: http://jqueryui.com/

[16] MIT, 6.004 help queues. [Online].

Available: https://courses.csail.mit.edu/6.004/queues/

[17] MIT, 6.005 Karga queue. [Online]. Available: https://karga.csail.mit.edu/karga/

http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://groups.csail.mit.edu/uid/collabode/�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://people.csail.mit.edu/maxg/proposal/maxg-proposal.pdf�
http://italc.sourceforge.net/�
http://italc.sourceforge.net/�
http://italc.sourceforge.net/�
http://italc.sourceforge.net/�
http://italc.sourceforge.net/�
http://italc.sourceforge.net/�
http://italc.sourceforge.net/�
http://italc.sourceforge.net/�
http://italc.sourceforge.net/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://icampus.mit.edu/teal/�
http://cloud9ide.com/�
http://cloud9ide.com/�
http://cloud9ide.com/�
http://cloud9ide.com/�
http://cloud9ide.com/�
http://cloud9ide.com/�
http://cloud9ide.com/�
http://cloud9ide.com/�
http://cloud9ide.com/�
http://ace.ajax.org/�
http://ace.ajax.org/�
http://ace.ajax.org/�
http://ace.ajax.org/�
http://ace.ajax.org/�
http://ace.ajax.org/�
http://ace.ajax.org/�
http://ace.ajax.org/�
http://ace.ajax.org/�
http://cloud-ide.com/�
http://cloud-ide.com/�
http://cloud-ide.com/�
http://cloud-ide.com/�
http://cloud-ide.com/�
http://cloud-ide.com/�
http://cloud-ide.com/�
http://cloud-ide.com/�
http://cloud-ide.com/�
http://shiftedit.net/�
http://shiftedit.net/�
http://shiftedit.net/�
http://shiftedit.net/�
http://shiftedit.net/�
http://shiftedit.net/�
http://www.wavemaker.com/�
http://www.wavemaker.com/�
http://www.wavemaker.com/�
http://www.wavemaker.com/�
http://www.wavemaker.com/�
http://www.wavemaker.com/�
http://www.wavemaker.com/�
http://www.wavemaker.com/�
http://www.wavemaker.com/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://www.willryan.co.uk/WWWorkspace/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
http://jquerymobile.com/�
https://courses.csail.mit.edu/6.004/queues/�
https://courses.csail.mit.edu/6.004/queues/�
https://courses.csail.mit.edu/6.004/queues/�
https://courses.csail.mit.edu/6.004/queues/�
https://courses.csail.mit.edu/6.004/queues/�
https://courses.csail.mit.edu/6.004/queues/�
https://courses.csail.mit.edu/6.004/queues/�
https://courses.csail.mit.edu/6.004/queues/�
https://courses.csail.mit.edu/6.004/queues/�
https://courses.csail.mit.edu/6.004/queues/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�
https://karga.csail.mit.edu/karga/�

78

[18] MIT, Subject Listing and Course Catalog. [Online]. Available:
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim

[19] Less.js. [Online]. Available: http://lesscss.org

[20] JQuery UI for iPad and iPhone. [Online]. Available:
http://code.google.com/p/jquery-ui-for-ipad-and-iphone/

[21] Google, diff-match-patch. [Online]. Available: http://code.google.com/p/google-
diff-match-patch/

[22] iScroll. [Online]. Available: http://cubiq.org/iscroll-4

[23] Flot. [Online]. Available: http://code.google.com/p/flot/

[24] S. Levithan, datetime format. [Online]. Available:
http://blog.stevenlevithan.com/archives/date-time-format

[25] JUnit. [Online]. Available: http://junit.org/

http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://student.mit.edu/catalog/search.cgi?search=6.005&style=verbatim�
http://lesscss.org/�
http://code.google.com/p/jquery-ui-for-ipad-and-iphone/�
http://code.google.com/p/google-diff-match-patch/�
http://code.google.com/p/google-diff-match-patch/�
http://cubiq.org/iscroll-4�
http://code.google.com/p/flot/�
http://blog.stevenlevithan.com/archives/date-time-format�

	A Mobile Instructor Interface for Collaborative Software Development Education
	A Mobile Instructor Interface for Collaborative Software Development Education
	Abstract
	Acknowledgments
	Table of Contents
	Chapters
	List of Figures
	Chapter 1

	Introduction
	Chapter 2

	Background
	2.1 Interactions in Software Labs
	2.2 The Collaboration Problem
	2.3 Collabode
	2.4 Related Work
	Chapter 3

	CollabodeTA:
	A Mobile Instructor Interface for Collabode
	3.1 Motivation
	3.2 Types of Software Lab Assignments
	3.3 Metrics
	3.4 Design Overview
	3.4.1 Student Cards
	3.4.2 Toolbar

	3.5 Class Layout View
	3.5.1 Motivation
	3.5.2 Implementation

	3.6 Console Output View
	3.6.1 Motivation
	3.6.2 Types of Console Output
	3.6.3 Implementation

	3.7 Student Panel View
	3.7.1 Motivation
	3.7.2 Implementation

	3.8 Help Queue
	3.8.1 Motivation
	3.8.2 Implementation

	3.9 Replaying Recitations
	3.9.1 Structure of a Replay
	3.9.2 Playback
	3.9.3 Cluster Optimizations

	3.10 CollabodeTA Implementation
	Chapter 4

	Evaluation
	4. 1 Mobile Instructor Interface User Studies
	Recitation 1
	Recitation 10
	Recitation 13

	Results
	4.2 Recitation Studies Using CollabodeTA
	Chapter 5

	Conclusion
	5.1 Future Work
	5.1.1 New Metrics for Student Activity and Progress
	5.1.2 Student Cards
	5.1.3 Class Layout View
	5.1.4 Console Output View
	5.1.5 Student Panels
	5.1.6 Help Queue

	References

