
Cilkpride: Always-on Visualizations for Parallel

Programming

by

Genghis Chau

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2017

© Genghis Chau, MMXVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole or in

part in any medium now known or hereafter created.

Author .

Department of Electrical Engineering and Computer Science

January 30, 2017

Certified by. .

Robert C. Miller

Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by .

Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Cilkpride: Always-on Visualizations for Parallel Programming

by

Genghis Chau

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Parallel programming is an increasingly important way for programmers to squeeze more per-
formance out of their programs. Parallelization is error-prone, however, and programmers
often forget to run error checkers and performance analyzers regularly. This thesis presents
Cilkpride, an IDE plug-in that uses always-on visualizations to show programmers informa-
tion on on their parallel program directly inside their IDE. Cilkpride runs a race checker and
program profiler every time code is changed and immediately displays output to make pro-
grammers always aware of parallelization errors and performance bottlenecks. Programmers
can then react and fix these issues quickly. To evaluate the system, we asked students who
had taken MIT’s 6.172 class, a performance engineering course, to use Cilkpride. Students
found Cilkpride useful, helping them find races and bottlenecks.

Thesis Supervisor: Robert C. Miller
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

First, I’d like to thank my parents for giving me the chance to sit here and write this para-

graph. Without their hard work and constant prodding, there’s probably no way I could’ve

gotten here. It’s been a long ride thus far, but at least I wasn’t alone. Sorry I wasn’t home

very often, but I guess that’s college for you.

Speaking of not being alone, I’d like to give some appreciation to my friends. I had some

old friends come to MIT with me, and I’ve met many new friends, too. College can be a

stressful place — especially MIT — and having people to chill with really makes it all easier.

Bouncing some research ideas off you guys also made it all the easier.

Next, thanks to Charles Leiserson, T.B. Schardl, and the folks over at 6.172 for letting me

introduce the tool in class, brainstorming ideas with me, and fixing stuff whenever they

needed fixing. Special thanks to T.B., who has spent many hours helping me debug various

things, and personally implementing bug fixes when I needed them. Hopefully Cilkpride will

be of use next year, too.

Lastly, big thanks to my advisor Rob Miller and everyone in the research group formerly

known as the User Interface Design. Thanks for all the help and suggestions, and even

though it’s become a little bit more quiet recently, keep UP the good work.

I’ll show myself out now.

5

6

Contents

1 Introduction 9

1.1 Motivation and Problem Statement . 9

1.2 Cilkpride . 11

1.3 Contributions . 15

1.4 Outline . 16

2 Related Work 17

2.1 Parallel Programming and Cilk . 17

2.2 Dynamic Analysis Visualizations . 21

2.3 Always-on Visualizations . 23

3 Design 25

3.1 General Cilkpride UI . 25

3.2 Cilksan UI . 29

3.3 Cilkprof UI . 31

3.3.1 Pruning Cilkprof Output . 31

3.3.2 Interfaces . 34

4 Implementation 39

4.1 Overall Structure . 39

4.2 SSH and File Sync . 40

4.3 Build System . 41

4.4 Modules . 43

7

4.5 Cilkprof Graphs . 45

4.6 Cilkprof Modifications . 46

5 Evaluation 47

5.1 Deployment in 6.172 . 47

5.2 User Studies . 48

5.3 General Feedback . 52

5.3.1 Cilksan . 52

5.3.2 Cilkprof . 53

5.4 Discussion . 54

6 Conclusion 57

6.1 Future Work . 57

8

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Over the last few decades, computer processor performance has increased exponentially

as predicted by Moore’s Law, due in part to techniques that let manufacturers put more

transistors on increasingly smaller chips. Unfortunately, this trend is slowing, as physical

limitations prevent makers from producing smaller chips without significant innovations. As

a result, multicore processors, or processors with several computing units to allow for parallel

processing, are now commonly used to make modern computers quicker. To take advantage

of multiple cores, however, programmers must identify parallelizable sections of code and

rewrite them to use threading. This presents unique challenges because humans find it diffi-

cult to reason about parallel execution. Architecture details and behind-the-scenes compiler

modifications like instruction re-ordering and memory caching further complicate writing

performant parallel code to the point where poor application of parallelization can result in

parallel code slower than its sequential counterpart.

This thesis primarily focuses on two fundamental aspects of parallel programming: correct-

ness and performance. Since parallel execution involves multiple pieces of code running at

the same time, a common but difficult-to-detect problem is race conditions, which happen

when shared memory is simultaneously accessed by multiple threads and at least one of

those accesses is a write. Since parallel code is executed in many different ways depending

9

on instruction interleaving and timing, race conditions can be hard to catch manually. For

example, race conditions in the Therac-25 radiation therapy machine that caused patients

to receive lethally high amounts of radiation went undetected because they only appeared

when users pressed specific buttons with specific timings, which manual testing did not catch

[8]. After program correctness comes optimization, which is especially important in parallel

programming, as one of the core goals of parallelizing programs is to speed up execution.

Determining what to optimize, though, is harder with parallel code. In fully sequential code,

optimizing any function will result in a faster program, but the same is not true in parallel

code if the function does not lie on the critical path of execution. Furthermore, functions

that lie on the critical path if the program is executed on a certain number of cores may

not lie on the critical path if the number of cores changes. Adding to the complexity, using

parallelism is not cost-free — spawning too many threads incurs overhead and can wipe out

any gains made by parallelization.

The traditional solution to these problems is command line tools that instrument and run

programs, recording relevant data as execution happens. Race condition checkers keep track

of all memory accesses and report when parallel threads access the same memory location

without appropriate locking. Performance analyzers instrument function entries and exits

and record the amount of time or cycles taken within each function, or use polling tech-

niques to estimate how much time is spent in each function. These tools give programmers

valuable insight into what their parallel code is doing, but running command line tools re-

quires programmers to actively remember to do so. Programmers often only run these tools

sporadically, after significant chunks of the code have been changed. If the tools do detect

race conditions, time is wasted pinpointing the origin of the problem and rewriting code.

Similarly, fixing a performance bottleneck can be much more work when large portions of

code are freshly written. Even when programmers do remember, the command line environ-

ment generally limits the tool output to text, making it difficult to show visualizations and

more advanced user interfaces. Finally, for programmers editing code in an IDE, the CLI is

a separate window, making it hard to connect the tool output to the actual code.

10

To remedy this, this thesis explores utilizing always-on visualizations inside the program-

mer’s IDE to constantly provide up-to-date information about race conditions and code

performance, showing the information cleanly in context next to the code it is referring to.

This work builds on previous research about always-on visualizations, including Theseus, a

tool for Javascript programs that displays updated traces and execution counts inside the

programmer’s editor as code is modified [9]. It also uses ideas from established examples of

always-on visualizations, such as linters and syntax checkers. By making race conditions and

performance counters more obvious to programmers, they will be more aware of the quality

of their code and be inclined to fix parallelization issues before they grow unmanageable.

In order to test the effectiveness of always-on visualizations in parallel coding, we imple-

mented a prototype, Cilkpride, in the Atom text editor that runs a race condition checker

and performance analyzer and visualizes the results directly within Atom.

1.2 Cilkpride

Cilkpride is an IDE extension prototyped in the Atom text editor that automatically runs

program analysis tools in the background and displays the results inside the editor. The

Cilkpride prototype is targeted for use in MIT’s 6.172 Performance Engineering course. As

a result, it is tightly paired with the Cilk threading library used in 6.172 to introduce par-

allelization to C code, and Cilktools, a set of tools developed to analyze Cilk code. Since

many students in the class have had little exposure to parallel code, Cilkpride aims to in-

crease programmer awareness of race conditions and performance bottlenecks in their code

so that they can address them quickly and efficiently. To accomplish this, Cilkpride uses two

tools from the Cilktools suite — Cilksan and Cilkprof. Cilksan is a race condition checker

for Cilk code, while Cilkprof is a performance analyzer. In order for these tools to work

properly, programmers must add several flags during the compiling process and then run the

resulting executable.

All programmer interaction with Cilkpride occurs in Atom. Users begin by picking the folder

where their Cilk code is located on their file system, and giving appropriate commands to

11

compile and run executables with the two analysis tools, Cilksan and Cilkprof, enabled. This

enables Cilkpride for that directory and its subdirectories so that any time a file within the

designated folder is modified, Cilkpride recompiles the code and runs the Cilksan and Cilkprof

tools in the background using the user-given commands. Since Cilkpride runs silently in the

background, the user is free to continue coding. As soon as each tool finishes and produces

output, Cilkpride parses the output and generates the user interfaces for that tool. One of the

challenges of designing Cilkpride is choosing what information to display in the user interface.

For example, the Cilkprof performance profiler outputs 24 different performance counters for

every function. Cilkpride prunes this number to 7 counters per function, making it easier

for programmers to digest the information, find performance bottlenecks and optimize them.

For each tool, there are two primary user interfaces — the gutter view and the detailed view.

The gutter view, shown below in Figures 1-1 and 1-2, appears on the side of the editor in

the form of markers and badges, next to the code being edited. This gives programmers a

quick summary of the line they are editing, and lets them tell if there are any race conditions

associated with the line and what its current multicore performance looks like without any

special editor interactions. The gutter view is an example of a zero-click always-on visual-

ization, as the markers are constantly visible and silently give updated analysis without the

programmer needing to click on anything. The detailed view, shown in Figures 1-3 and 1-4,

is a one-click view and must be actively opened by the programmer. This provides additional

visualizations and more in-depth detail about race conditions and performance counters, and

is intended for use when the programmer is focused on fixing races or optimizing code.

12

Figure 1-1: An example of Cilksan’s gutter view in Cilkpride. Cilkpride places
an alert sign in the gutter if there is a race condition at the associated line. In
this example lines 32, 36, 40, and 44 are all involved in race conditions.

Figure 1-2: An example of Cilkprof’s gutter view in Cilkpride. The left visu-
alization graphs the amount of time consumed versus number of cores for the
function call on line 320, and the right badge indicates that line 320 was executed
approximately 922,000 times.

13

Figure 1-3: Cilksan’s detailed view in Cilkpride. The table summarizes all race
conditions on the right, and provides a interactive visualization of the files with
race conditions on the left. Users can select a race condition on the right, and the
associated markers on the left will light up. Users can also click on file names,
file numbers, or highlighted lines on the left visualization to jump to code.

Figure 1-4: Cilkprof’s detailed view in Cilkpride. The table summarizes the
Cilkprof output data, provides coloring for easier parsing, and allows the user to
sort by column. In this example, the work column is sorted in descending order.

14

While Cilkpride currently runs only Cilksan and Cilkprof, there are a number of other CLI-

only tools that would be helpful if automated and converted into an always-on visualization,

such as a memory sanitizer. To account for this, Cilkpride’s backend is designed to be

modular, so that additional dynamic analysis tools can be easily added in the future. In ad-

dition, Cilkpride provides additional tools for 6.172 students, including the ability to choose

whether to run the tools locally or on a remote environment. If users choose to run Cilksan

and Cilkprof on a remote server, Cilkpride automatically syncs files as soon as any change

is made, and uses a SSH shell instance to compile and run the program.

We released an early version of Cilkpride for use in the Fall 2016 version of 6.172 that only

provided file syncing and the Cilksan interface. Later, in order to evaluate Cilkpride with

the Cilkprof interface completed, we asked six students who had taken 6.172 to use Cilkpride

while coding in Cilk. Students performed four short tasks using Cilkpride, and then were

asked for general feedback on the interface in an one-hour session. They generally found

that Cilkpride notified them of race conditions promptly, and liked the overall interface, but

sometimes struggled with interpreting the information provided by Cilkpride.

1.3 Contributions

Cilkpride presents several contributions:

� A novel interface for the Cilksan and Cilkprof tools to show race conditions and per-

formance statistics in a code editor.

� Methods for identifying bottlenecks in parallel code and appropriate strategies for

optimizing them.

� Improvements to the Cilkprof performance analysis tool to help it better instrument

C functions.

� A framework to run dynamic analysis tools from within an IDE as part of an always-on

visualization.

15

1.4 Outline

The rest of this thesis discusses Cilkpride in more depth. In Chapter 2, related work to

Cilkpride is discussed, including command line tools, always-on visualizations, and the Cilk

threading library. The design of Cilkpride’s user interface is presented in Chapter 3, while

the implementation details are provided in Chapter 4. The evaluation process and user

studies conducted are covered in Chapter 5. Lastly, the thesis is concluded and future work

is proposed in Chapter 6.

16

Chapter 2

Related Work

2.1 Parallel Programming and Cilk

Previously, programs became faster naturally due to processor speed increases over time.

As gains from Moore’s Law come to end, multicore machines have become more popular

[4]. Parallelization has become an important optimization tool, but taking advantage of

multithreading can be a difficult task. Many programming APIs do not work well with

parallel programming, and many programming models need to be reworked to fit parallel

applications. Since threads must share resources, it is hard to predict what exactly will

happen to program correctness and performance, and modifying code can cause unexpected

consequences. Many problems appear in parallel programming that do not have sequential

counterparts, such as memory contention, deadlock and race conditions [1].

In order to make parallel programming easier for beginner programmers to grasp, the Cilk-

plus programming language, commonly known as Cilk, was developed [5]. Cilkplus, an

extension of C, provides a simple interface for programmers to introduce threading. Origi-

nally designed to abstract away thread scheduling and simplify the concurrency model, Cilk

only requires users to specify which parts of the code to parallelize [3]. It offers two primary

ways to parallelize: spawning a new thread using the cilk_spawn keyword, or parallelizing

a loop with a divide-and-conquer strategy using the cilk_for keyword. The extension also

offers tools like hyperobjects, which allow threads to safely modify shared data structures

17

without using explicit locks. Since Cilk only requires programmers to identify parallelizable

sections and is easy to use, it is a good choice to use as a teaching tool, such as in 6.172

where students use Cilk to parallelize homework assignments and projects.

Like any concurrent programming language, Cilk applications often contain race conditions

on memory addresses. There are two main tools to help Cilk programmers find races,

Cilkscreen and Cilksan. While Cilkscreen is available from Intel as part of their Cilktools

tool suite, Cilksan is an updated, open-source version of Cilkscreen currently developed at

CSAIL that improves on some critical bugs in Cilkscreen such as recognition of races in-

side cilk_for loops. Both race detectors are examples of dynamic analysis tools and run

multithreaded applications serially, keeping track of which instructions would normally be

run in parallel. They also instrument and record all memory accesses, and when concurrent

instructions access the same memory address, the tools report a race condition. While this

strategy is generally successful in catching race conditions, there are a few limitations. One is

that they can report benign races as erroneous despite the fact that these races do not affect

correctness. Another is that because the tools rely on running the program with specific

inputs and examining behavior, they are unable to catch race conditions in code paths that

are not executed by those inputs.

Optimizing parallel programs is also a challenge because identifying bottlenecks in concur-

rent code involves additional variables compared to sequential code. For a CPU-bound serial

program, the amount of time the program takes is dependent on the amount of computa-

tion performed, or the program’s work. Since all computation must be done sequentially,

optimizing any function in a serial program will reduce the amount of work and make the

program finish faster. With parallel programs, computation can be done concurrently on

different processors, and simply reducing the program’s work will not necessarily make the

program faster. For example, consider a program running concurrently on two processors —

one processor is running a function that takes 10 seconds while the other processor is running

a function that takes 20 seconds. Optimizing the 10 second function will reduce the work of

the program, but will not reduce the completion time, which remains 20 seconds. Therefore

18

multithreaded optimizations require a different metric called the span, or the length of the

longest computation path that must be done sequentially. This is also known as the criti-

cal path of the program, and the length of the span determines the application’s wall-clock

runtime assuming it is run on enough processors to fully exploit its parallelism. Being able

to identify a program’s span allows performance engineers to determine which functions to

optimize first.

For Cilk programs, the Cilkprof tool helps programmers get a better picture of their pro-

gram’s overall performance. Cilkprof, also currently developed at CSAIL, measures the total

work and span for each function. Cilkprof runs Cilk programs serially on a single core, in-

strumenting every function entry and exit [10]. Cilkprof also keeps track of which functions

are running in parallel, so that it can accurately calculate the span. On exiting a func-

tion, Cilkprof determines the amount of computation used for the function and updates the

counters for that function. Since Cilkprof offers span measurements to the programmer, it

emphasizes that parallel execution differs from sequential execution, and is more descriptive

than other common profilers like gprof, which only calculate the work performed for each

function [7].

Each of these tools are run from the command line and the output is often difficult to

parse on first glance. Cilksan lists all race conditions in the console window using text, as

seen in Figure 2-1, which can become difficult to read if there are many race conditions.

Cilkprof creates a CSV file, with 24 performance counters for each function. An example

of Cilkprof output is seen in Figure 2-2 below. The large amount of information and lack

of formatting makes it hard to read the CSV, hindering usability. Cilkpride builds upon

Cilksan and Cilkprof by providing a user-facing view directly in the programmer’s code

editor, automatically running them so that the programmer does not need to, along with

visualizing and parsing the data so that outputs can be interpreted easily.

19

Figure 2-1: An example of output from the Cilksan race condition checker.

Figure 2-2: An example of part of a CSV output from the Cilkprof profiler,
rendered in Microsoft Excel. Note that the screenshot shows fewer than half of
the columns available in the output file.

20

Figure 2-3: The KCachegrind interface.

2.2 Dynamic Analysis Visualizations

Since many CLI-based tools output only text, a common way to make the results more

accessible to users is by visualizing them. As the Cilkprof and Cilksan tools are both exam-

ples of these CLI tools, Cilkpride borrows from existing interfaces when visualizing output.

One such example is KCachegrind, which creates a user interface for the callgrind tool

[12]. callgrind, an extension of the popular cachegrind tool and part of the valgrind

tool suite, is a performance profiler mainly for C and C++ programs. callgrind runs an

executable and outputs an execution callgraph as well as the number of instructions run for

each function, but entirely in text format. Since the callgrind output file is written in

a specific format and was not designed to be easily understood by humans, callgrind is

difficult to use by itself.

KCachegrind, as shown above in Figure 2-3, makes up for the deficiencies by providing a

21

visualization for callgrind’s output. In the bottom-right area of the interface, KCachegrind

shows a interactive version of the callgraph, with a complete list of functions next to it on

the left side, sorted in descending order by number of instructions performed. The list also

contains a bar representation of how many instructions each function takes, seen as the

blue bars in the leftmost column in the list interface. Users can find more information by

navigating to other tabs, such as the callees, callers, and code for a specific function.

Figure 2-4: The Visual Studio Performance Profiler. Screenshot from Microsoft
(https://msdn.microsoft.com/en-us/library/ms182372.aspx).

Another example is the Visual Studio Performance Profiler, which, like Cilkpride, is located

within an IDE, Visual Studio. The Performance Profiler runs the program and collects

performance data by either sampling during execution or instrumenting functions. When

the profiler is finished, Visual Studio shows the user an interface similar to the one seen

in 2-4. Like KCachegrind, the Performance Profiler displays the results in sorted order

starting from the most expensive function, and also uses bar representations to show how

much computation each function uses. Clicking the function name allows users to see a more

detailed view, including callers and callees. However, since Visual Studio has direct access

to the source code, it also shows the source code in the detailed view and lets users jump to

the code by clicking on the source file name.

22

https://msdn.microsoft.com/en-us/library/ms182372.aspx

2.3 Always-on Visualizations

Since programmers spend most of their time in text editors, a logical idea is to integrate

developer tools in editors so that programmers have quick access to them, like the Visual

Studio Performance Profiler mentioned in Section 2.2. Always-on interfaces are an extension

to this idea, taking advantage of being in the editor by updating while the programmer edits

code. This lets the programmer discover bugs more quickly and see the direct effects of a

change.

Figure 2-5: AtomLinter showing an lint error in a Less file.

A common example of an always-on interface is error checking, found in many IDEs and text

editors. Error checking runs code through tools like compilers and linters and reports back

any errors found. For example, the Eclipse Java IDE [6] compiles user code using the Java

compiler and reports any compilation errors and warnings by displaying icons next to invalid

source code in the editor gutter. AtomLinter [2], for the Atom text editor, runs user code

through a language-specific linter and reports syntactic and style issues, also alerting users

to potential mistakes like unreachable code or setting variables to invalid values. An example

of a lint error is shown above in Figure 2-5. Error checking only requires static analysis of

the source code and can be run quickly, allowing it to consistently provide up-to-date results

even if edits are happening rapidly. Many programmers are already used to error checking,

and race conditions are multithreaded errors, so the interface of Cilkpride borrows heavily

from error checking but differs in several ways. Because the race detector cannot be run

statically and may take several minutes to complete, Cilkpride must deal with a possible

delay in results. The added complexity of race conditions compared to simple syntax issues

also requires a more detailed interface.

23

While error checking is an example of an always-on interface based off static tools, recent

research has integrated runtime tools into text editors as well. Several interfaces have been

developed to target web developers and Javascript programmers, including Theseus [9] and

Tracr [11]. Designed to replace the old debugging techniques of setting breakpoints and in-

serting print statements, Theseus and Tracr allow programmers to see a Javascript runtime

trace from within the Bracket text editor. By adding hooks to every Javascript function,

they track all invocations of functions along with their parameters, including functions asyn-

chronously called from events like mouse clicking or typing. The runtime traces update in

real-time as test actions are performed, so programmers can see what part of their code

is executing at any time and quickly debug if any errors appear. Theseus and Tracr also

act as code coverage tools, annotating the code with the number of times that each line

was run. Both systems argue that always-on visualizations are useful to programmers by

providing a constant source of information. However, user studies on Theseus found that

while these types of visualizations could be very helpful, they could also be distracting and

overwhelming. Cilkpride builds on the conclusions from these two tools by applying them

to multithreaded programs.

24

Chapter 3

Design

3.1 General Cilkpride UI

In order to evaluate the effectiveness of always-on visualizations with parallel programming,

we built Cilkpride using the Atom text editor. We chose to prototype our system with Atom

for a number of reasons. First, Atom provides a built-in package manager and package dis-

tribution system, allowing users to easily download packages and begin using them without

any hassle. Furthermore, all Atom packages are written in HTML5, Coffeescript and Less,

enabling quick and easy prototyping. Packages using HTML5 can additionally take advan-

tage of canvases and SVGs, resulting in more options and possibilities for user interfaces.

They are also compatible with Node.js, allowing package developers to leverage the large

repository of third-party Node.js packages and the Node.js API. Lastly, Atom’s user inter-

face is designed to look and feel like that of the commonly-used Sublime Text editor. Since

Cilkpride is intended to be a tool for 6.172 students, the similarity of Atom’s UI to Sublime’s

UI should help tool adoption in the future by making students feel more comfortable when

using Cilkpride.

Two goals for the Cilkpride interface were to make the general interface informative but not

intrusive, and to make it as easy as possible to get up and running. While the interfaces

for Cilksan and Cilkprof, which show race conditions and performance statistics, should be

prominent, general Cilkpride UI elements should avoid distracting the user if there aren’t

25

any urgent issues to fix.

Figure 3-1: Cilkpride interfaces when creating a Cilkpride project. In the top
screenshot, the user chooses a folder to register with Cilkpride. Cilkpride then
automatically creates a configuration file for the project and opens it, shown in
the bottom screenshot.

26

After installation, the first step required from the user is to register a directory containing

Cilk code with Cilkpride. For convenience, we will refer to a Cilkpride-enabled directory

as a Cilkpride project. Since Cilkpride requires information from the user for each project,

Cilkpride asks for the relevant information at the beginning, asking the user to fill out a

configuration file directly after registering the project, as seen above in Figure 3-1. The

configuration file is formatted as a JSON file stored in the Cilkpride project. As the target

user is a 6.172 student, most fields in the configuration file are pre-populated, but they are

asked to input four pieces of information to get Cilkpride up and running:

� username — their username to log into the remote server, usually their Athena user-

name

� remoteBaseDir — the directory on the remote server to store a copy of the Cilkpride

project

� cilksanCommand — a command to compile and run their executable with the Cilksan

race condition checker enabled

� cilkprofCommand— a command to compile and run their executable with the Cilkprof

performance analyzer enabled

The other fields can be ignored by most students, but can also be used by more advanced

users to change the remote server, ignore directories and files, or disable SSH and file sync-

ing. By pre-populating as much as possible, Cilkpride tries to make it easy for users to get

Cilkpride projects created.

After the configuration file is filled out and saved, Cilkpride tries to log into the remote

server if SSH is enabled and a file in the project is open. This is also designed so that

all user prompting is done at the beginning of their coding session, so that they are not

interrupted while actually writing code. The user’s password is temporarily saved for recon-

necting until the text editor is closed, and Cilkpride silently tries to reconnect if the SSH

connection is broken for any reason. Whenever a file in a Cilkpride project is modified on

disk, Cilkpride will silently start running the command line tools in the background. In

27

earlier prototypes, Cilkpride waited until the user stopped typing for several seconds before

running the CLI tools, but users complained that they did not understand when the tools

would start running. Dynamic analysis can take up to a few minutes to run, and the always-

on visualizations update automatically when the tools finish.

Figure 3-2: The location of the Cilkpride status bar tile in Atom. On the bottom,
a few of the possible status bar indicators. From left, a tile for when Cilkpride
has not yet connected to the remote server, a tile for when race conditions have
been detected, a tile for when no races have been found, and a tile for when tools
are still running in the background.

Since Cilkpride does not prompt the user after establishing an SSH connection, users can

monitor the status of Cilkpride by looking at its status bar tile, located at the bottom of

the text editor as part of Atom’s status bar API, shown above in Figure 3-2. This gives the

user a clearly defined area to interact with Cilkpride, and is located to the side of the screen

so that status updates, which are color-coded for easier recognition, aren’t a nuisance. The

28

status bar also provides estimates as to when tools are expected to complete, based off of

previous execution times.

3.2 Cilksan UI

Figure 3-3: The always-on visualization for the Cilksan tool, appearing as gutter
markers on the side of code.

Compared to the general Cilkpride UI, the interface for Cilksan should be prominent and

easy-to-notice, as it informs users of race conditons. As users often forget to run command

line tools, Cilksan’s UI should alert users to detected race conditions as soon as they are

found, and make it easier for them to find all races and fix them. To do this, Cilkpride

has two main views for Cilksan — the always-on visualization and the detailed view. The

always-on visualization, shown in Figure 3-3 above, notifies users of races by placing a red

alert marker next to any racing line of code. By placing markers in the gutter alongside

29

the code, the errors are more likely to be noticed and fixed, as the markers are located in

the user’s line of vision even if they are concentrating on coding. The Cilkpride status bar

tile also turns completely red when races are present, making it stand out if the user is not

looking at any racing code. The gutter view borrows from existing always-on visualizations

for linters, which also use the gutter to point out style issues.

Figure 3-4: The detailed view for the Cilksan tool, with a graphical view of where
racing lines are in the code base on the left, and a complete list of race conditions
on the right. The yellow markers in the gutter and graphical view correspond
to lines involved in the highlighted race condition on the right side of the detail
view.

Race conditions, however, are often between multiple lines of code, and knowing that a single

line is involved in a race is not helpful if the user does not know what other lines are also

involved in the race. While the always-on visualization is useful for quickly seeing that there

are unresolved race conditions, it relies on the detailed view to help connect racing lines

30

together. The user can access the detailed view by clicking a gutter marker or by clicking

the red Cilkpride status bar tile. The detailed view, shown above in Figure 3-4, contains

an overview of all Cilksan-detected races, as well as a graphical representation of where the

races are in the code base. The left side of the view contains a small visual representation,

or minimap, of all files with a race condition. Each racing line is highlighted in red, with a

marker next to it. These markers correspond to the gutter markers in the always-on visual-

ization. If the user is currently viewing a file that has a race condition, the corresponding

minimap will highlight that part of the file in white. The visualization is designed to help

the user get a quick sense of the severity of races. Since Cilksan can report pairs of lines

multiple times depending on the write and read orders, looking at the number of markers on

the minimaps can indicate if, for example, there are several lines all racing with each other,

or many unrelated pairs of racing lines.

The right side contains a full list of races, along with the code that caused each race. Clicking

on a particular race will highlight it and turn any markers associated with it yellow, also

shown in Figure 3-4. This ties together the detail view with the always-on visualization,

and lets the user quickly and visually find where the two racing lines are. The interface also

takes advantage of being directly in the code editor by providing hotlinks to code. Users can

jump to violating code by clicking on the code snippets, line numbers, or a racing line on a

minimap. This makes it easier for users to jump from line to line in order to examine issues

and fix them.

3.3 Cilkprof UI

3.3.1 Pruning Cilkprof Output

One of the main challenges in designing the Cilkprof user interface is choosing the information

to show in each view. Like Cilksan’s interface, the Cilkprof interface has an always-on

visualization and a detailed view. Compared to Cilksan, however, the Cilkprof tool outputs

a larger amount of data, with 24 performance counters for every function callsite. The high

31

number of counters is due to double-counting from recursion — Cilkprof provides three sets

of 8 counters, with each set handling the double-counting using a different strategy. To

choose which counters should be displayed in each of the interfaces, we first developed a list

of generic parallel code optimization strategies and their corresponding indicator variables.

On a high level, there are two types of optimization strategies:

� Work-based Optimizations — These optimizations are focused on reducing the amount

of work that a function uses. These are general strategies that are useful for sequential

code as well as parallel code, and can be further broken down into two sub-strategies.

– Optimize Function Contents — If the amount of work consumed by a callsite

is high but the total number of times the callsite is executed is low, work can

be reduced by modifying what the function does, such as implementing a better

algorithm or cutting extraneous code.

– Optimize Calls to the Function — If the amount of work consumed by a callsite

is high and the total number of executions is also high, work can be reduced

by lowering the number of calls to the function. This is especially useful if the

function is a third party function whose contents cannot be optimized directly,

such as malloc.

� Span-based Optimizations — These optimizations are focused on reducing the amount

of span that a function takes up. Similar to the work-based optimizations, there are

two sub-strategies, but these involve finding suitable places to parallelize and are only

applicable to parallel code.

– Parallelize Function Contents — If the amount of span consumed by a callsite is

high and the number of executions on the span is low, the span could be reduced

by parallelizing computation within the function. This will reduce the span by

spreading out the computation over multiple threads.

– Parallelize Calls to the Function — If the amount of span consumed by a callsite

is high and the number of executions on the span is also high, the span could

32

be reduced by looking for parent functions that call the function and trying to

parallelize those calls.

These four strategies point to several important indicators for performance bottlenecks —

total work, total span, total executions, and executions on span. In addition to these four

counters, local work and local span are also useful. For example, if a function has high

local work, users should optimize the function itself and not any child functions called inside

the function. The same holds true for functions with large local span. Lastly, we chose

to display the overall parallelism of each callsite, as parallelism indicates how much more

speed can be gained from additional parallelization. In general, functions with parallelism

of approximately 1 will see more gains when parallelized compared to functions with high

parallelism. These seven numbers are the final numbers that the Cilkprof interface directly

displays to the user — the rest of the numbers can still be viewed by the user by going to

the original Cilkprof output CSV. While these other numbers have meaning for recursive

functions and advanced optimization tactics, they can be difficult to use properly and are

not needed to identify most bottlenecks.

33

3.3.2 Interfaces

Figure 3-5: The always-on visualization for the Cilkprof profiler tool. The gutter,
seen in the top screenshot, contains a graph visualization of performance and an
execution counter. Hovering over the graph will display a more detailed close-up,
as shown in the bottom screenshot.

34

(a) The initial value for the colored curve

is high with only 1 execution, so a possible

strategy is optimizing the called function’s

contents.

(b) The initial value for the colored curve is

high, but it is called 10 million times. Work

can be optimized by reducing the number of

calls to the callsite.

(c) The curve is a straight line, indicating

no parallelism for this callsite. Since there

aren’t too many executions for this callsite,

a strategy could be to parallelize the function

contents.

(d) The curve is straight, again suggesting

no parallelism. With the high number of ex-

ecutions, parents of the callsite should be ex-

amined for possible parallelization opportu-

nities.

Figure 3-6: Examples of Cilkprof gutter views, and which substrategies each view
suggests.

Another challenge for the always-on gutter view is showing the Cilkprof information in a com-

pact form. From the discussion on important bottleneck indicators, we chose work, span,

total executions, and executions on span to display. To show all of these variables at the same

time, the Cilkprof gutter view, seen above in Figure 3-5, displays a graph describing how a

function callsite’s performance varies with number of cores. The graph plots the runtime of

the callsite versus the number of cores it is run on. Several examples, corresponding to the

four strategies outlined in Section 3.3.1, are shown above in Figure 3-6. The gutter view is

not shown for callsites that take less than 1% of the program’s overall work to prevent clutter.

The colored curve represents the upper bound of time taken by the callsite if the program is

run on different numbers of cores. The color of the curve is based off the callsite’s work, with

low-work callsites being green, medium-work callsites being gray, and high-work callsites

being red. The upper bound curve is calculated using the overall parallelism of the callsite

— if the callsite has a high amount of parallelization, the execution time should decrease

quickly as the number of cores increases. On the other hand, if the callsite has a low amount

35

of parallelization, then the execution time is independent of the number of cores. As a re-

sult, the shape of the graph indicates if the callsite is a good candidate for parallelization —

callsites with graphs that are almost straight lines like in Figures 3-6c and 3-6d are better

optimization candidates than those with convex graphs like in Figures 3-6a and 3-6b.

The maximum y-value of the graph corresponds to the total time taken to run the applica-

tion on a single core. As a result, a callsite curve’s relative starting height, when the number

of cores is 1, indicates the percentage of work the callsite takes. This lets users determine

which callsites can be optimized for work — if the graph has a high starting height like those

in Figures 3-6a and 3-6b, then the callsite is a good candidate for work optimization.

Hovering over the graph displays a larger version for easier viewing, also shown in Figure

3-5. The larger graph displays a vertical line at a user-defined number of cores. This number

should be set to the number of cores of the target environment, so that the user can see

what the performance might look like if actually run in parallel. The graph also contains a

black curve, representing the ideal case when the entire callsite is completely parallel. This

curve is the lower bound of time taken by a callsite on various numbers of cores. The lower

and upper bounds tell users how much parallelism there is left to be gained from a callsite

— if the upper bound and lower bound are fairly close to each other, then continuing to

parallelize the callsite will likely not see large gains. On the other hand, a callsite with large

gaps between the upper and lower bounds at the target number of cores may be a good

parallelization target.

These graphs are placed in the gutter, along with a badge that displays the number of total

executions of a callsite. This design is based partly off that of Theseus, which also places the

number of executions in the gutter next to the appropriate line of code. In order to keep the

gutter relatively small, the number of executions is abbreviated, using K to indicate thou-

sands, M for millions, and B for billions. The badge also has a hover tooltip that displays

the exact number of executions. This information is not only useful for users to identify

bottlenecks, it serves also as sanity checks for programs. If a user expects their test code to

36

run a line a certain number of times, seeing a different number will alert them to the fact

that their code is likely not correct.

Figure 3-7: The detailed view for the Cilkprof profiler.

Like the Cilksan detailed view, the Cilkprof detailed view provides a full list of performance

numbers. The view contains a cleaned up table version of the important indicator variables

from the Cilkprof output CSV. Each row represents a function callsite, and contains the

work, span, parallelism, execution counts, and links to the relevant piece of code. The work

and span of each function is visualized as a bar, seen in Figure 3-7 above. The bar is color

coded with gradients like with the gutter view graphs, so that low numbers are represented

by green, middle numbers are represented by grey, and high numbers are represented with

red. The bar also contains a percentage out of the corresponding statistic for the entire appli-

cation, and can be clicked to show the amount of raw CPU cycles used instead. Percentages

are the default as they provide context that raw cycle count does not give. Higher percentage

indicates a higher urgency for optimization, and users should be able to quickly make out

the expensive functions from the bar’s color coding. Finally, the table is sortable by clicking

on the headers, and is by default sorted by work in descending order when opened. This

allow users to look for optimizations in a smart way by starting with the most problematic

functions and working their way down the list.

37

38

Chapter 4

Implementation

4.1 Overall Structure

There are several components to the Cilkpride extension — the SSH and file sync system,

the build system and modules for Cilksan and Cilkprof. The interactions between each com-

ponent are detailed below in Figure 4-1.

Figure 4-1: The relationships between the various systems for a generic Cilkpride
session with SSH enabled.

When the user opens a file in a Cilkpride project for the first time and SSH is enabled,

39

Cilkpride begins an SSH session by prompting the user for their password. Cilkpride then

remains idle until it detects that files in the Cilkpride project are modified on disk. If the user

has enabled file syncing, the modified files are then uploaded to the user’s remote environ-

ment using the file sync system. Otherwise, the Cilksan and Cilkprof modules are started

and run each tool in the background with the help of the build system. When each tool

finishes, the output is returned to the modules, parsed, and displayed in the user interface

described in Chapter 3. If the tool is already running when another file in the project is

modified, the tool is stopped and rerun automatically.

Since Cilksan and Cilkprof are only two of many tools that provide useful information about

parallel code, Cilkpride’s backend is designed to be modular and allow for the easy addition of

supplementary modules in the future. The two implemented modules — Cilksan and Cilkprof

— follow the general module structure and serve as examples for future development.

4.2 SSH and File Sync

One of the difficulties of using command-line tools is that they can be difficult to set up

locally. Many tools are limited by operating systems, or take a large amount of memory

or disk space to build. For example, 6.172 uses the Tapir compiler, a customized compiler

based off the LLVM-Clang toolchain that adds custom instrumentation hooks and optimiza-

tion passes. Since Tapir requires over 10 gigabytes of RAM and disk space to properly build

and works only on Linux environments, many students are unable to compile and run their

Cilk executables from their own computers. As a result, most development in 6.172 is done

on Athena machines, where the tools are already set up and ready for use.

This restricts the possible development environments that 6.172 students can use, as they

must either physically be at an Athena machine, manually upload their code to Athena via

FTP, or be able to use a CLI-based text editor such as vim or emacs. Cilkpride alleviates

this issue by providing file syncing from Atom, letting students use a more familiar Sublime-

based editor instead of a CLI one, which often requires remembering a sizable number of

40

keyboard shortcuts. Since Atom is a cross-platform text editor, students can work on a local

copy of their code while still being able to compile and run their executables on the remote

Athena servers.

After a user starts an SSH instance, the connection is kept open until the editor is closed,

and Cilkpride will automatically attempt to reconnect every 30 seconds whenever connection

is lost. On SSH login, Cilkpride then creates a SFTP connection for file transferring, as well

as multiple shell instances — one for each module. These shell instances are used for the

build system, discussed later in the chapter.

Cilkpride syncs files when it detects that Cilkpride-enabled files have been modified. Cilkpride

uses recursive directory watches to monitor project files, meaning that file syncing can be

initiated from within Atom — for example, when a user saves a file — or from an external

source, such as changing Git branches or copying and pasting a file. Users can also specify

directories and files in the project configuration file that Cilkpride should ignore and not

sync, such as .git metadata or other temporary files. When uploading a file, Cilkpride first

checks if all parent directories for the target location exist, and if they do not, Cilkpride

creates them. Finally, Cilkpride uploads the modified file, possibly overwriting an existing

version of the file. Uploading multiple files is done asynchronously and in parallel.

4.3 Build System

The build system enables Cilkpride to compile and run executables both locally and on re-

mote servers. For local instances, Cilkpride creates a shell by using the native Node.js API.

This gives Cilkpride access to the stderr and stdout streams, as well as an exit code. For

remote instances, however, Cilkpride relies on a shell created by the SSH module, which

only provides a single output stream, similar to what a programmer would see in a terminal.

As a result, the implementations for running executables locally and remotely are slightly

different.

41

First, the system must be able to compile the executables. Since Cilksan and Cilkprof re-

quire different compilation flags to work appropriately, the two executables must be compiled

separately. For each tool, Cilkpride makes a copy of the project and places it in a hidden

folder named for the tool, prepended by a period. As a result, Cilksan’s copy of code is

located in .cilksan and Cilkprof’s copy of code is located in .cilkprof. Each module can

then access the appropriate folder and build their executables in parallel. This method does

have a limitation in that it will break any relative references in the code, such as an import

from ‘..’, but we expect projects to be self-contained and for this problem to be relatively

rare. If a user is building and running remotely, Cilkpride does not make copies of code on

the user’s local machine.

In order to compile and run properly, Cilkpride must know where Tapir, the Cilk-enabled

GCC compiler, Cilksan, and Cilkprof are located. If SSH is enabled, then Cilkpride runs

bash and expects the user to have placed the appropriate paths in their .bashrc file. The

choice of bash also allows Cilkpride to more easily determine when the shell is ready to ac-

cept commands by parsing the output for a $ symbol, and 6.172 students automatically have

the paths to 6.172-related tools in their .bashrc configuration files. If SSH is not enabled,

then users must provide the appropriate paths in the Cilkpride package settings, and the

paths are injected into the local shell when building and running.

After building the executable, the build system will run the user-specified command for each

tool, as well as any module-specific commands to help make the output easier to parse. The

Cilkprof module adds

echo 'cilkpride:cilkprof_start' && cat 'cilkprof_csv_0.csv' && echo

'cilkpride:cilkprof_end'

to extract the Cilkprof output from the CSV and make the data easier to parse. For remote

instances, Cilkpride also automatically appends echo $? to extract the exit code. After

the build system detects that the tool has finished running, it reports all output to the

appropriate module, which then handles any post-processing. Since remote instances only

42

have one output stream while local instances have two, Cilkpride appends stderr stream

data to the stdout stream data before passing it to the module for local instances.

4.4 Modules

The Cilksan and Cilkprof modules are examples of the general module system that Cilkpride

uses. Modules run a specific command line tool and display its results in a tab in Cilkpride’s

detail panel. In general, modules has four components — a controller, view, parser, and

build system instance. The module structure is summarized below in Figure 4-2.

Figure 4-2: The generic module structure.

The controller is the class that interfaces directly with Cilkpride, and handles all of the

general functionality of the module, including initialization of the parser and view, and

handling of the module’s build instance. The controller uses its instance of the build system

to run the module’s tool, receives the tool output, passes it to the parser, and then relays

the parsed output to the view. The controller must have several functions implemented:

� updateInstance - retrieves an instance of the build system

43

� startThread - initiates the build process for the module

� kill - terminates the current build process, if any, for the module

� getView - returns the module’s view object

� registerEditor - handles setup when a file in a Cilkpride project is opened in Atom

� destroy - performs cleanup when the editor is closed

The controller is also expected to have the following variables declared:

� moduleName - class variable containing the user-facing name of the module

� id - class variable containing the private name of the module

� currentState - a dictionary containing the module’s state information, including:

– ready - boolean, true if the module is fully initialized

– state - String denoting the current execution status

– lastUpdated - UNIX time of last completed execution (could have resulted in an

execution error)

– startTime - UNIX time of the start time of the current build cycle, if any

– lastRuntime - number of milliseconds the last completed execution took

– output - String containing the console output of the last completed execution

The parser takes in tool output from the main controller and transforms it into a module-

specific format for the user interface to use. The format for each module can be freely defined

by the programmer. For example, the Cilksan module parser takes in a chunk of console

output, steps through each line, and returns an array of objects representing race conditions,

with each object containing the line number, filename, access type, and code text for each

racing line. An example of the Cilksan parser output is shown below in Figure 4-3. Similarly,

the Cilkprof module parser takes in a block of console output and returns a dictionary with

the total work, total span and parallelism of the program, as well as a formatted version of

Cilkprof’s CSV output file. The parser has no required functions or variables that must be

44

implemented.

Figure 4-3: Example of the Cilksan parser converting text output to a structured
format. The Cilksan parser squashes the 3 race conditions into 1 Object since
the 3 race conditions involve the same two lines, and parses out the access type,
filenames, and line numbers. It also fetches the racing code, seen in the text

field.

Lastly, the view uses the information from the parser and handles all functionality related to

the user interface. For Cilksan and Cilkprof, the view objects and their subclasses generate

all gutter markers and detailed views and implement all UI event callbacks. The view class

must implement two functions:

� getElement - returns the DOM element containing the detailed view interface

� resetUI - performs cleanup when the detail panel is closed (removing highlights, etc.)

Modules that follow this pattern can be easily integrated into Cilkpride by adding the con-

troller class to a list of enabled modules. The Cilksan and Cilkprof modules follow this

template, and are meant to serve as examples for future addition of dynamic CLI tools.

4.5 Cilkprof Graphs

The Cilkprof interface contains curves that represent the upper and lower bounds of time

that a function takes when run on different numbers of cores. The upper bound of time

45

taken is calculated by using the work-span formula:

𝑇𝑐 ≤
𝑊 − 𝑆

𝑐
+ 𝑆

where 𝑊 is the work, 𝑆 is the span, 𝑐 is the number of cores, and 𝑇𝑐 is the time it takes to

run the function on 𝑐 cores. From the formula, if the function has little parallelization, then

𝑆 will be close to 𝑊 and 𝑇𝑐 will generally not change much as 𝑐 changes. If the function is

well-parallelized, then 𝑆 should be much less than 𝑊 , and 𝑇𝑐 will decrease as 𝑐 increases. As

a result, the more convex the curve is, the more well-parallelized the function is, as explained

in Section 3.3.

The lower bound for time consumed by a function follows the equation

𝑇𝑐 ≥
𝑊

𝑐

where𝑊 is the total work of the function, 𝑐 is the number of cores, and 𝑇𝑐 is the time it takes

to run the function on 𝑐 cores. This equation is derived from the case when the function is

completely parallelized and thus has a span of 0. Then the work is evenly split between each

of 𝑐 cores, and the ideal time taken is 𝑊
𝑐
.

4.6 Cilkprof Modifications

Lastly, in order to get Cilkprof working for Cilkpride, some development was done on Cilkprof

to make it compatible with the Taper compiler. As Cilkprof had been designed for use with

an earlier set of instrumentation hooks that the 6.172 Tapir compiler no longer inserted into

executables, the old hooks in Cilkprof needed to be replaced with corresponding new hooks

in the Comprehensive Static Instrumentation, known as CSI, set. This work was performed

with support of the Tapir and Cilkprof developers at MIT CSAIL, as various bugs were found

in the Tapir compiler, and resulted in a usable Cilkprof tool for use in Cilkpride testing.

46

Chapter 5

Evaluation

5.1 Deployment in 6.172

In order to receive feedback on an earlier version of Cilkpride, the extension was released

during the Fall 2016 term for 6.172 students to use. The class had approximately 100 stu-

dents at the end of the term, and roughly 15 students ended up installing Cilkpride on their

personal machines. 6.172 had four large projects during the term, and Cilkpride’s first re-

lease was near the end of the second project. From student feedback, the third and fourth

projects did not involve much difficult parallelization, so they did not find Cilkpride to be as

useful compared to the earlier projects. Instead, they said that they would have preferred

to have had it for the second project, which was the first project to introduce parallelization

and was the trickiest to implement correctly.

Students found the file sync feature to be one of the most useful features in Cilkpride dur-

ing the term, since it allowed them to program from their own computers while leveraging

Athena’s resources, even using the extension to work on projects from other classes. Some

students were already using Atom as their default text editor, so they were very comfortable

adding Cilkpride and coding from it. For the most part, the Cilksan interface did not see

much use from the students who used Cilkpride, as encountering race conditions in the later

projects was a rarer occurrence. Instead, some used Cilkpride’s status bar to keep track of

if their program was compiling or not, since the status bar appears red if the executable

47

fails to compile. If the program did not compile, students consulted the console tab in the

Cilkpride detail view to see the details, without needing to switch windows.

5.2 User Studies

To evaluate the Cilkpride prototype, we asked 6 students who had previously taken 6.172

to try using Cilkpride while coding a Cilk program. The main goal of the evaluation was

to look at the usability and learnability of the Cilkpride interface. Each participant was

observed while performing four tasks. At the beginning of the session, participants were

given a brief description of what Cilksan, Cilkprof, and Cilkpride were, but they were not

shown the interface before starting.

Task #1 — Register a Cilk project with Cilkpride.

Participants received a sample Cilk project along with instructions on how to compile and

run the executable, and then attempted to register the project with Cilkpride by using the

Atom interface. Participants also received general instructions on how to set up the Cilkpride

configuration file, which were identical to instructions given out to 6.172 students when the

Cilkpride prototype was released in class. This task tested the ease of use of getting Cilkpride

working with Cilk code, and the usefulness of the setup instructions. Afterwards, partici-

pants were asked to change the configuration file so that the file syncing and SSH feature

was turned off, to test if the advanced settings were accessible.

All of the participants were able to register the Cilk project with Cilkpride, but with varying

difficulty. Two of the six participants set up Cilkpride with no problems, while the other four

did not enter a working Cilksan execution command on their first try. Three of them forgot

to add inputs to the executable to get it running properly, while the last participant did

not realize that she needed to run the executable as well as compile it. One participant also

ended her commands with a semicolon, which was not valid. Lastly some participants found

choosing the Cilk directory from the folder picker to be awkward. After double-clicking the

48

folder they wanted to register, the Ubuntu folder picker showed the contents of the folder

instead of registering it, which was unexpected for them. After a few seconds of confusion,

they were able to find the "OK" button that correctly registered the folder.

When attempting to change the configuration file so that Cilkpride built and ran executa-

bles locally, five of the six participants correctly identified the sshEnabled setting and

changed it to false. The last participant first tried to change the default hostname from

athena.dialup.mit.edu to localhost, followed by changing the remote directory path to

point to a local directory path. She ultimately was unable to get Cilkpride working locally

until helped.

Task #2 — Finish implementing a lock-free 2-thread queue.

Next, participants finished coding an implementation of a simple, lock-free two-worker fixed-

length queue with Cilkpride enabled. They were provided skeleton code and test cases to run

Cilksan on, as well as pseudocode for a correct implementation to use as reference. This task

was primarily focused on seeing if the Cilksan notifications were noticeable while coding.

The lock-free queue contained benign races when implemented correctly, and the code file

was small enough so that Cilksan markers would be visible on-screen after the participants

finished coding. Participants were not told that this implementation would have race condi-

tions, nor did they know that they would be interacting with Cilksan during the task.

Since they were given pseudocode to look at, participants did not have much trouble finish-

ing the implementation aside from C-specific errors, such as improper memory allocation or

invalid struct referencing. After finishing the implementation, four participants opened up

a terminal to make sure the executable properly compiled and ran. One participant noticed

the Cilkpride status bar on the bottom of the screen and used it instead of the terminal, and

the last participant did not perform any extra checks to verify program correctness. All four

of the participants who opened the terminal noticed the red gutter markers upon switching

back to Atom, and clicked on the markers immediately after. The participant who used the

status bar instead noticed the status bar turning bright red after Cilksan detected errors,

49

and opened the Cilksan detail panel from there. The last participant interestingly did not

notice the markers at all. When asked about why she did not notice them, she answered

that because she was used to vim and other command-line editors, she was not accustomed

to looking next to lines for information.

Task #3 — Finish implementing a parallel implementation of breadth-first search.

After seeing the Cilksan interface, participants then performed a similar task, finishing a

mostly-complete implementation of breadth-first search. Participants were given a serial

version of the algorithm, and asked to turn it into a parallel version that explored nodes in

parallel. Since the queue used to store nodes was not thread-safe, Cilksan once again reported

race conditions after implementation. These race conditions were not benign, so participants

then attempted to investigate the race conditions and fix them. This evaluated the Cilksan

detail view, and looked at how Cilkpride users interacted with the information given to them.

Since participants were more accustomed to the gutter view interface after completing Task

#2, upon finishing the implementation, all six noticed that there were race conditions in

the code. After being asked to try to fix the bugs, most participants clicked on the gutter

view, with only one participant clicking on the status bar to get to the detail view. Upon

opening the detail view, some participants were visibly overwhelmed with the number of race

conditions. As one participant put it, “when there are a lot of race conditions, the list can

be kinda hard to read". Participants mostly used the detail view to jump back and forth be-

tween lines of code by clicking on the code snippets or line numbers. One participant clicked

on a code fragment to jump to it, but because her window was already on the line, nothing

appeared to happen. As a result, she did not realize that clicking on the code actually did

anything, and did not attempt to click on it for the rest of the session. Another participant

was confused when he clicked on a race condition and markers turned yellow, and did not

understand why some markers had changed color.

Overall, participants were able to determine the problematic variables quickly from looking

at the Cilksan detail view.

50

Task #4 — Examine a program’s Cilkprof interface, and identify possible bottlenecks.

For the final task, participants were given a code base with Cilkprof results, and asked to

find potential bottlenecks to optimize. Participants had to first find the Cilkprof interface

within Cilkpride, and then walk through their thought processes for choosing a callsite to

optimize.

All participants, from the previous tasks, knew to open the Cilkpride detail panel and switch

to the Cilkprof view. They began by looking at the work column, as it had a number of red

bars and was the default sorted column. They then went to the code, with most participants

clicking on the provided filename and line to jump directly to the appropriate line. One

participant preferred to manually open the file and go to the line. A common confusion was

why the work for all callsites did not add up to 100%, as they were unaware of the fact

that Cilkprof work differed from local work. In addition, all six participants did not know

what "local work" and "local span" were, and either did not see it because the columns were

located on the far right, or ignored it because they did not think it was important. After

the terms were explained to them, most participants actually began to sort by local work,

as they thought that it was the most important factor in determining a bottleneck.

Similar to local work and local span, some participants did not understand why execution

numbers were provided. One participant said that she thought execution counts were mean-

ingless and extraneous, as it didn’t tell her anything extra about the callsite. This was tied

mostly to her optimization process, which focused mostly on looking at work and span. After

a later discussion on potential optimization strategies for parallel programs, she said that

she saw the usefulness of the execution counts.

The biggest factor that caught participants’ eyes was the color-coding. Participants consis-

tently spent more time looking at any callsite that had a red Cilkprof graph, or had a red work

bar in the detail view. When looking at the gutter view, roughly half of the participants were

able to correctly figure out what the graph displayed, while the other half did not understand

51

the meaning of the two curves, which pointed out a lack of labeling for the curves. The execu-

tion badge, however, was easy to understand as the tooltip provided sufficient context. One

participant did briefly think the execution badge indicated time taken, as she read ‘1m’ as

1 minute instead of 1 million. However, a second read of the tooltip cleared up the confusion.

While most of the functionality of the Cilkprof interface was discovered by the participants

during this task, there were some features that went little-noticed. The ability to switch

from percentage of work and span to the number of raw cycles in the detail view was only

discovered by 2 people, and interestingly one commented that she preferred raw cycles over

percentages.

5.3 General Feedback

Lastly, after the participants finished the four tasks, they were asked for general feedback

about Cilkpride, including what they liked, disliked, and thought should be added.

Participants were generally very positive about Cilkpride, with all of them saying that they

would be willing to use it again in the future if they ever needed to code in Cilk. They

especially liked the concept of not needing to worry about running a race detector or per-

formance analyzer by themselves, and they preferred being notified only when there was a

problem to fix. One participant said that she wanted a tutorial before using the tool to

understand what kind of features were available, but said that once she had figured things

out once, using Cilkpride became very easy and natural.

5.3.1 Cilksan

For the Cilksan interface, participants generally liked the look and feel of the interface, and

the fact that it showed race conditions without having to switch windows. With the ex-

ception of the one vim participant, participants liked the placement of the gutter markers

and remarked that they were easy to see. One participant said that he "rarely ran [Cilksan]

52

normally, so having Cilkpride run it for me is very useful". Another participant liked that

the race conditions were all in a formatted list so that they were easier to navigate through,

and being able to click code to jump to it was another commonly complimented feature.

While participants liked the fact that race conditions were organized and shown in one place,

several mentioned that they preferred it if the interface tried to further combine race con-

ditions if the same variable was involved in multiple races. Since in Task #3, a single size

variable appeared in multiple race conditions, it would have reduced clutter if Cilkpride had

been able to squash the race conditions into one large race on size. This was in addition

to the complaints that the list was too overwhelming, discussed in Task #3. On top of this,

one participant expected Cilkpride to tell him how to fix the race, and was surprised when

he could not find such a feature in the Cilksan interface. Another suggestion was the ability

to tell Cilksan to ignore some race conditions, such as benign races.

Lastly, participants generally did not think that the minimaps in the Cilksan detail view

were useful. One participant commented that he would not use the minimaps to navigate

the code, and that while it looked pretty, it did not serve any practical use for him. Other

participants echoed similar thoughts, with one saying that it might be more useful if the

minimap showed functions names instead of just lines of code. Another commented that the

minimaps might be more useful for longer files or larger code bases, whereas the files during

the user study were fairly small and contained.

5.3.2 Cilkprof

Like the Cilksan interface, participants again liked the overall look of the Cilkprof detail

view, as they found the organized table to be easy to look at and use. All participants gave

positive feedback on the color-coding, which they felt simplified parsing and made figuring

out what to focus on easy. A majority of participants, after being explained the different

components of the Cilkprof gutter view, also liked the gutter graph, saying that it was "cool"

and made them less dependent on the detail view. Two participants appreciated how the

53

graph was reminiscent of Cilkview, a tool for Cilk programs that graphed a program’s par-

allelism versus number of cores.

There were a number of suggestions for the Cilkprof interface. One participant wanted a

better connection between the gutter view and detail view, and expected to be able to see

the detailed information of a callsite if he clicked on the corresponding gutter graph. Four of

the participants also wanted more advanced sorting features than those provided, suggesting

that Cilkpride instead order the callsites by a heuristic that took into account all of the

variables instead of sorting by just one. They stated that they wanted to have Cilkpride

suggest functions to them instead of investigating each of the high-work functions one-by-

one. In a similar vein, one participant also wanted Cilkpride to suggest possible optimization

strategies for each function so that he would be able to see if the optimization was possible.

The big frustration for participants was that they did not understand the underlying behavior

of the interface. Two participants asked about how the gutter graph colors were determined,

and as discussed in Task #4, the exact meaning of the graph was not clear to three of the

participants. Along with confusion about what work and local work meant, some were also

initially unsure what the work percentages were out of. Lastly, two participants also pointed

out that there were not gutter graphs for every function callsite, and wondered aloud what

the conditions were.

5.4 Discussion

The user studies generally show the usefulness of Cilkpride when writing Cilk code. While

Cilkpride was helpful when simply giving information to the programmer, study participants

felt that there was more room for Cilkpride to suggest bottlenecks and optimization strate-

gies. Since participants had their own ways of tackling race conditions and bottlenecks, they

used only certain subsets of information that was provided to them, and ignored the numbers

that they did not use, potentially forgoing some useful optimization strategies in the process.

54

As a result, making Cilkpride "smarter" and having it provide heuristic-based suggestions

as to what callsites are good optimization targets and explaining why they were suggested

would not only provide programmers with an actionable list of functions to potentially op-

timize, but also explain how each variable can be used in identifying bottlenecks.

The studies also showed that one of the big flaws in the current interface is that while it

presents a large amount of data, it does not satisfactorily explain to users what the data

means, causing them to simply ignore it. Users had their own set list of optimization strate-

gies, and did not understand what all of the columns meant. Similarly, with the Cilkprof

gutter view, some users did not initially see how they could use the graph to deduce the call-

site’s performance. Better introduction of information and explanation of how the interface

can be used would greatly help the Cilkprof interface’s usefulness.

Another factor to consider is that while the user studies looked at how users interacted

with Cilkpride during relatively short coding tasks, users may interact differently for longer,

prolonged projects. Some parts of the interface may also be more useful when dealing with

large code bases, such as the Cilksan minimap view, which participants found useless when

looking at small files. In addition, while the Cilksan interface was effective at catching the

participants’ attention during the studies, it is still an open question to see if it is effective

over several days of coding, and if users become desensitized to the markers. While we were

unable to run a longer-duration user study to look at Cilkpride’s long-term usefulness, a

future opportunity to continue testing the interface is a full deployment in the Fall 2017

edition of 6.172.

55

56

Chapter 6

Conclusion

In order to help programmers catch race conditions and improve parallel performance, we

created the Cilkpride prototype. Cilkpride converts Cilksan and Cilkprof tool output and

shows it to users from directly within Atom, automatically updating when code is modified.

Cilkpride also provides 6.172 students quality-of-life features such as Athena file syncing.

User studies on Cilkpride have shown that the interface is effective in increasing awareness

of parallelism issues, and we look forward to seeing Cilkpride fully deployed to 6.172 students

in the future.

6.1 Future Work

There still remains much work to be done to improve Cilkpride. While Cilkpride gives

programmers the information needed to identify performance bottlenecks, it does not yet

suggest possible optimization tactics for them. Since Cilkpride is designed for 6.172 use,

the tool could be better used for educational purposes by letting users know which strate-

gies may be effective for each case. Cilkpride also does not consider the case when users

are optimizing code and would like to see the change in performance from their last version.

While the graph does update in response to code modifications, it is unable to properly show

smaller changes in performance, which is often important to users when they are focusing

on performance engineering and testing out small changes. Modifications to the always-on

visualization to support this use case as well as performance bottleneck identification is an

57

open question.

A number of other possible improvements are tied to the improvement of the Cilkprof tool

itself. A possible metric is flexibility, or how close to being off the critical path a function

is. If a function will no longer be on the critical path if it is optimized slightly, then even

though it shows up on the critical path currently, it shouldn’t be a high optimization target

because it will not yield much speedup. Cilkprof also does not handle cilk_for loops very

well, and determining ways to properly profile the contents of a for loop is still an open

question. Another possible feature is allowing users to specify parts of code to instrument,

useful for when programmers would like to examine the performance of a specific code path.

When these are implemented in the profiler, Cilkpride will need an appropriate interface to

show the new information.

Lastly, a potential extention of Cilkpride is to investigate adding additional modules. For

example, adding a memory sanitizer would enable programmers to see potential correctness

issues that a race condition like Cilksan might not catch. This also raises the question of if

there are additional useful CLI tools that would have a compelling always-on visualization,

and what those visualizations would be.

58

Bibliography

[1] Shameem Akhter and Jason Roberts. Multi-Core Programming, volume 33. Intel Press,
2006.

[2] Atomlinter. https://atomlinter.github.io/. Accessed: 2016-12-30.

[3] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
SIGPLAN Not., 30(8):207–216, August 1995.

[4] Barbara Chapman. The Multicore Programming Challenge, pages 3–3. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[5] Intel Corporation. Cilkplus. https://www.cilkplus.org/. Accessed: 2016-12-30.

[6] The Eclipse Foundation. Eclipse. https://www.eclipse.org/. Accessed: 2016-12-30.

[7] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call graph
execution profiler. SIGPLAN Not., 17(6):120–126, June 1982.

[8] N.G. Leveson and C.S. Turner. An investigation of the therac-25 accidents. Computer,
26(7):18–41, July 1993.

[9] Tom Lieber, Joel R. Brandt, and Rob C. Miller. Addressing misconceptions about code
with always-on programming visualizations. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, CHI ’14, pages 2481–2490, New York, NY,
USA, 2014. ACM.

[10] Tao B. Schardl, Bradley C. Kuszmaul, I-Ting Angelina Lee, William M. Leiserson, and
Charles E. Leiserson. The cilkprof scalability profiler. In Proceedings of the 27th ACM

Symposium on Parallelism in Algorithms and Architectures, SPAA ’15, pages 89–100,
New York, NY, USA, 2015. ACM.

[11] Alexis Troberg. Improving javascript development productivity by providing runtime
information within the code editor. Master’s project, Aalto University School of Science,
2015.

[12] Josef Weidendorfer. Kcachegrind. https://kcachegrind.github.io/. Accessed: 2016-
12-30.

59

https://atomlinter.github.io/
https://www.cilkplus.org/
https://www.eclipse.org/
https://kcachegrind.github.io/

	Introduction
	Motivation and Problem Statement
	Cilkpride
	Contributions
	Outline

	Related Work
	Parallel Programming and Cilk
	Dynamic Analysis Visualizations
	Always-on Visualizations

	Design
	General Cilkpride UI
	Cilksan UI
	Cilkprof UI
	Pruning Cilkprof Output
	Interfaces

	Implementation
	Overall Structure
	SSH and File Sync
	Build System
	Modules
	Cilkprof Graphs
	Cilkprof Modifications

	Evaluation
	Deployment in 6.172
	User Studies
	General Feedback
	Cilksan
	Cilkprof

	Discussion

	Conclusion
	Future Work

