
Using Graphical Representation of User Interfaces as
Visual References

by

Tsung-Hsiang Chang

Submitted to the Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

c⃝ Massachusetts Institute of Technology 2012. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Engineering and Computer Science

May 23, 2012

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rob Miller

Associate Professor
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Chair of the Committee on Graduate Students



Using Graphical Representation of User Interfaces as Visual

References

by

Tsung-Hsiang Chang

Submitted to the Electrical Engineering and Computer Science
on May 23, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
My thesis investigates using a graphical representation of user interfaces - screenshots -
as a direct visual reference to support various kinds of applications. We have built several
systems to demonstrate and validate this idea in domains like searching documentation,
GUI automation and testing, and cross-device information migration. In particular, Sikuli
Search enables users to search documentation using screenshots of GUI elements instead of
keywords. Sikuli Script enables users to programmatically control GUIs without support
from the underlying applications. Sikuli Test lets GUI developers and testers create test
scripts without coding. Deep Shot introduces a framework and interaction techniques to
migrate work states across heterogeneous devices in one action, taking a picture. We also
discuss challenges inherent in screenshot-based interactions and propose potential solutions
and directions of future research.
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Chapter 1

Introduction

In human-to-human communication, people communicate with each other verbally and

visually. However, sometimes it is difficult to verbally describe something. In that case,

we use pictures as visual references. For example, to find a missing dog, we would not

post flyers with only the dog’s name. We would put the dog’s picture on the flyer. For

another example, we would say “I want a haircut like her” and show a hairstyle photo to

the barber.

However, in human-to-computer communication, most interfaces do not interact with

us visually and force us to rely on non-visual alternatives. An example is automation and

testing for graphical user interfaces (GUIs). GUI automation and testing usually require

writing scripts to send commands to particular GUI widgets in order to operate them and

verify the correctness of their behavior. When one wants to write such scripts, one big

challenge is: how to refer to a specific widget in a script?

Common solutions are using the pre-programed name of the widget, which may be

unfamiliar or even unavailable to the users, or using screen location, such as (x, y), which

is very brittle as the widget is not likely to stay at the same place. Both solutions are

examples of non-visual alternatives, which forces the users to learn a new way to operate the

system they are already familiar with, and therefore damages the usability of the automation

system.

Another example is searching for help. With the explosion of information on the web,

search engines are increasingly useful as a first resort for help with an application. Search-

13



ing the web currently requires coming up with the right keywords to describe the GUI

element, which can be very challenging if there is no title or textual label available around.

We observe that these non-visual alternatives present certain limitations to GUI users

as they perform various kinds of tasks. Motivated by these problems, we wonder why we

cannot just use the user interface itself (i.e. its screenshot) as a reference.

This thesis explores the possibilities of using screenshots as a visual reference in vari-

ous domains. We propose a new interaction model, Screenshot-Driven Interaction, a set of

interaction techniques triggered by taking a screenshot to find information or issue com-

mands involving GUI elements. We also contribute a series of work that embodies this

interaction model and the idea of using screenshots as visual references. Furthermore,

while developing these systems, we see new challenges ans obstacles coming up along

with this new notion. To address them, we contribute a set of design principles and discuss

the trade-off in our solutions.

1.1 Thesis Statement

A graphical representation of user interfaces can be used as direct a visual reference to

enable new kinds of screenshot-driven interactions in domains like searching, GUI au-

tomation and testing, and cross-device information migration.

1.2 Screenshots as Reference in User Interface Design

Screenshots are not common design elements in modern GUI systems compared to text

or graphical icons. However, a great potential of using screenshots as visual references

in user interface design has emerged recently. Compared to the non-visual alternatives,

taking screenshots is an intuitive way to specify a variety of GUI elements, applications,

or devices. Most importantly, screenshots are universally accessible for all applications on

all GUI platforms, since it is always possible to take a screenshot of the interface the users

see.

Sikuli Search [49] is the first attempt to explore mixing screenshots into an interaction

14



process. Sikuli Search allows a user to search documentation by taking a screenshot of a

GUI widget instead of using key words to look up the application built-in help. After this,

a similar idea is applied to writing GUI automation scripts and created Sikuli Script and

IDE [49].

Standing on the basis of the Sikuli project, I have applied this idea to more problems,

such as GUI testing and task migration across devices. While exploring the solutions to

these problems, the following systems have been developed.

• Sikuli Test [12], a system based on Sikuli Script [49] that enables GUI developers and

Quality Assurance (QA) testers to create test scripts to verify GUI behavior without

writing code and facilitates applying good testing practices on GUI development.

• Deep Shot [10], a framework for capturing the current work state of a task (e.g.,

the specific part of a document being viewed) and resuming it on a different device.

Two new interaction techniques deep shooting and deep posting with Deep Shot,

for pulling and pushing work states, respectively, using a mobile phone camera are

introduced. For example, we can use a mobile phone camera to take a picture of a

desktop monitor showing a map and continue to browse the same area of the map on

the phone.

• PAX [11], a hybrid framework that associates the visual representation of user inter-

faces and their internal hierarchical metadata. This framework enhances the capabil-

ity of existing pixel-based systems and allows them to reach not only the pixels of a

user interface but also the internal structured data under the pixels.

In this section, I describe how screenshots can be used in various domains.

1.2.1 Searching Documents

Software becomes more and more complex as it evolves in a very fast pace. When a user

has questions with using a particular feature in an application, searching on the web or

looking up the application built-in help are the most common way to request help. In order

to retrieve related documentation or web pages, these methods require the user to come up
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with right keywords, which can be very challenging. However, if there is a human expert

around, the user may directly point at the user interface of the application and ask questions,

such as "how do I use this tool?" or "why is this button grayed out?"

Yeh et al. [49] introduced Sikuli Search, which uses screenshots to search documen-

tation about GUI elements. For example, a new user of Photoshop may search in a

collection of documents by taking a screenshot of it without knowing its name. In Sikuli

Search, the interaction model consists of two steps: 1) the user takes a screenshot of a por-

tion of the screen, which can be a GUI element, a paragraph of text, or a window; 2) the

system retrieves documents related to the screenshot and present them to the user. Accord-

ing to the user study conducted in [49], the average time of a screenshot-based search is

less than half time of a conventional keyword-based query, with no reduction in the quality

of search results.

1.2.2 GUI Automation

GUI automation or scripting has been a challenging problem for a long time. The main

difficulty is that there are no standard communication channels or protocols for GUI ap-

plications. Some well-engineered applications expose a set of API to other applications

or properly follow a accessibility standard of the operating system, so there is a chance to

communicate with them through these APIs. However, most applications do not have these

kinds of designs, and therefore the only common element among all GUI applications is

the pixels of the user interfaces.

In late 90’s, Potter [34] was the first to explore the idea of analyzing the visual patterns

on the screen and championed its potential for supporting application-independent end-

user programming. About the same time, Zettlemoyer et al. [51] introduced VisMap and

VisScript, which converts the GUI elements on the screen into structured objects and further

allows a user to script the GUI with simple commands and those objects.

Recently, we introduced Sikuli Script [49], a scripting system that enables users to use

screenshots of GUI widgets to control them programmatically. The system is based on

Python, which gives its user the full power of a programming language to author an au-
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Figure 1-1: Sikuli IDE is a script editor specifically designed for writing screenshot-based
scripts.

tomation script. With Sikuli Script, we can ask the computer to “move all Word documents

to the recycle bin” by using a command dragDrop and taking screenshots of a word

document and a trash can respectively.

To facilitate writing automation scripts with screenshots, I developed Sikuli IDE, which

is a development environment specifically designed for writing screenshot-based automa-

tion scripts (See Figure 1-1). In Sikuli IDE, screenshots are first-class objects, which can

be assigned to variables, returned from a function, or passed as parameters. Every time a

user needs to refer to a GUI element in a script, he/she can take a screenshot of the element

by pressing the "Take screenshot" button on the toolbar or a hot key. The screenshot will be

shown directly in the IDE and then can be used as a first-class object or be moved around

in the script.

More details about Sikuli Script and IDE will be discussed in Chapter 3.
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1.2.3 GUI Testing

Testing a GUI’s visual behavior typically requires human testers to interact with the GUI

and to observe whether the expected results of interaction are presented. This is a labor

intensive task and has been a hard problem to automate because of the natural difficulty of

GUI automation. However, since Sikuli Script has dealt with the problem of GUI automa-

tion with screenshots, it is natural to extend it beyond automation.

Based on Sikuli Script, I developed Sikuli Test, a system that allow GUI developers and

QA testers to create test scripts to verify GUI behavior without writing code. Sikuli Test

provides a new interaction model called Test By Demonstration, which generates Sikuli

scripts along with the necessary screenshots by recording both the user’s input and screen

images.

Screenshots play the key role in Sikuli Test. In Sikuli Script, one only can write scripts

and take screenshots manually. In contrast, in Sikuli Test, one can either use the old method

or use the new recording mechanism, which continuously takes full screenshots and auto-

matically crops the parts of target elements with computer vision algorithms.

In Chapter 4, I show screenshots can be effectively used to test a variety of GUI behavior

and discuss how this approach can facilitate good testing practices, such as unit testing,

regression testing, and test-driven development.

1.2.4 Task Migration Across Devices

A user task often spans multiple heterogeneous devices, e.g., working on a PC in the office

and continuing the work on a laptop or a mobile phone while commuting on a shuttle.

However, there is a lack of support for users to easily migrate their tasks across devices. To

address this problem, I created Deep Shot, a framework for capturing the user’s work state

that is needed for a task (e.g., the specific part of a webpage being viewed) and resuming it

on a different device.

Deep Shot provides two novel camera-based interaction techniques, deep shooting and

deep posting. These two techniques allow seamless and intuitive migration of user tasks

from one device to another by one uniform operation: taking pictures. Deep shooting
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Figure 1-2: A user takes a picture of the screen of her computer and then sees the appli-
cation with the current state on her phone. Our system recognizes the application that the
user is looking through the camera, automatically migrates it onto the mobile phone, and
recovers its state.
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allows a user to capture and to persist the deep information, i.e., the information behind

the raw pixels, such as application states, with a camera-like mobile phone application in a

single click (see Figure 1-2). The work state captured with Deep Shooting can be resumed

immediately on the mobile phone, opened later, or migrated to another device with deep

posting. In contrast to with Deep Shooting, Deep posting uses a camera to push deep

information (i.e. the work state) to another device and allows a user to resume the work on

that device.

In Deep Shot, screenshots are used to identify the region of interest on a screen and

also are the visual references to the target information. Unlike Sikuli Script and Test, the

screenshot-driven interaction in Deep Shot is not triggered by taking a screenshot in a

computer, but done by taking a photo of the screen using a different device.

We demonstrate that Deep Shot can be used to support a range of everyday tasks mi-

grating across devices. More details of Deep Shot are discussed in Chapter 5.

1.2.5 Combining Pixels and Accessibility Metadata

The screenshot-driven model is emerging as a new and promising way to develop new

interaction techniques on top of existing user interfaces. However, in order to maintain

platform independence, other available low-level information about GUI widgets, such as

accessibility metadata, was neglected intentionally.

We observe that pixel representation of a user interface and its internal structures and

metadata, such as accessibility information, complement each other. We present a hybrid

framework, PAX, which combines pixels and Accessibility APIs to enhance the capabilities

of current pixel-based systems and enables new interactive applications on top of existing

interfaces.

PAX not only knows what is visible to the user on the screen but also understands the

content and structures behind the pixels (Figure 1-3). We use accessibility metadata as a

convenient and accurate source of widgets’ information. If the accessibility metadata is not

available, PAX automatically switches to pixel-level interpretation and still returns useful

data. Furthermore, we use pixel-level methods to optimize the accessibility metadata. For
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(a) The internal structure of a GUI given by Accessibility APIs (AX) may not necessarily correspond to the
actual visual representation of the GUI. Boxes above indicate the windows and widgets returned by AX even
though they are not visible to users.

(b) PAX combines pixels and Accessibility APIs for more accurate association between the visual representa-
tion and internal structure of a GUI. It filters accessibility information for only visible objects (red boxes) and
also provides role, content, location, and size of objects detected by pixel-based methods (green boxes).

Figure 1-3: Comparison between Accessibility metadata and PAX.
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instance, when accessibility APIs are not fine-grained enough to return the position of each

word in a paragraph of text, we use a pixel-based segmentation algorithm, along with the

known text for the whole paragraph obtained from the accessibility API, to locate the words

with high precision.

PAX can be used to enhance existing pixel-based systems. For example, we enhance

Sikuli Script so that it can read the value of a slider on a GUI, which is not shown on

the screen at all, and preserve the readability of its script code at the same time. We also

create two novel applications, Screen Search and Screen Copy, to demonstrate how PAX

can be applied to development of desktop-level interactive systems. The details of PAX are

discussed in Chapter 6.

1.3 Common Pitfalls and Remedies

As we develop new systems with the screenshot-driven model, we see new interesting

and promising applications as well as pitfalls due to the nature of pixel matching. We

categorize these pitfalls into four common problems as follows, where the target is defined

as the screenshot taken by the user.

• The target is not visible.

• The target changes its look over time.

• The target can not be uniquely identified.

• The target is indistinguishable in different states.

These problems can be caused by various reasons. For example, the invisibility problem

could be caused by occlusion or scrolling out of view. For each problem, we suggest some

design principles to overcome it from the perspective of the system designers as well as the

users. Each of these design principles are discussed in Chapter 7.
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1.4 Contribution

In this thesis, I contribute the following ideas, designs, and systems.

• The idea of using screenshots as visual references in user interface design.

• A new interaction model, Screenshot-driven Interaction.

• The design and implementation of Sikuli Script’s API and Sikuli IDE.

• Sikuli Test: using screenshots to support GUI testing.

• Deep Shot: using screenshots to support task migration across devices.

• PAX: associating screenshots and their internal metadata to enhance pixel-based sys-

tems.

• A list of common pitfalls in pixel-based systems and their remedies.
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Chapter 2

Related Work

2.1 Screenshot-Driven Interaction

The idea of supporting interactions by analyzing the visual patterns rendered on the screen

was examined in the late 90’s. Potter [34] was the first to explore this idea and referred

to it as direct pixel access. He also championed its potential for supporting application-

independent end-user programming. His Triggers system supported novel visual tasks such

as graphical search-and-replace and simulated floating menus. While Triggers can be con-

figured through an interactive dialog to perform some basic tasks similar to the Sikuli Script

examples presented earlier, it is not a full scripting language and does not support fuzzy

matching.

Zettlemoyer & St. Amant [51] described VisMap and VisScript. VisMap inferred high-

level, structured representations of interface objects from their appearances using a rule-

based system and generated mouse and keyboard gestures to manipulate these objects.

However, VisMap is not independent of platforms and requires lots of rules to define each

individual GUI widget. VisScript provided a basic set of scripting commands (mouse-

move, single-click, double-click and move-mouse-to-text) based on the output of VisMap,

but was not integrated with a full-feature scripting language. WinCuts allowed users to cut

a sub-region of an existing window and create an independent live view of the source, but

did not interpret its content [42].

While these early pioneering works shed light on the potential of image-based interac-
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tion, they led to almost no follow-up work, mostly because the practicality was limited by

the hardware and computer vision algorithms of the time. However, faster hardware and

recent advances in vision algorithms particularly those based on invariant local features

have now presented us with an opportunity to reexamine this idea and develop practical

image-based interactive applications.

2.2 Visual References in Programming and GUI Testing

Conventional programming languages are difficult to learn and use, and may require months

to years of training. Visual Programming systems have been attempting to simplify pro-

gramming using images and graphics since 1980s [18, 31]. These systems allow users to

create a program in a two-dimensional canvas, which makes programming easier but also

difficult to scale. Simonyi introduced a notion called Intentional Programming [38], which

separates source code storage and presentation so a piece of code can have different views

depending on its scenario. For example, a function can be viewed as a mathematical for-

mula or a circuit diagram depending on which kind of code it is. Barista [22] provides a

highly visual and interactive code editor that shows images, mathematical formulas, or a

"match form" view of a logical expression to improve people’s comprehension over their

textual versions.

Inspired by these prior works, Sikuli IDE shows screenshots as visual references in

its code editor for better readability of scripts. Although a user still needs to type com-

mands and take a screenshot of the targets, there is no need to be familiar with additional

application interfaces for merely automation.

The barrier to learn programming could be overcome by creating a Programming By

Demonstration (PBD) system based on screenshots. As early as early 90’s, Singh et al.

[39] proposed the Sage system that can capture and store GUI interactions demonstrated

by users as reusable templates. Wilcox et al. [47] illustrated the value of visual feedback in

programming by demonstration tools especially during the testing process, a finding val-

idates the design decision of Sikuli Test to embed visual feedback directly in test scripts.

Given the popularity of Web-based applications, the Koala system by Little et al. [26] and

25



the CoScripter system by Leshed et al. [23] both aim to enable Web users to capture,share,

automate, and personalize business processes. Based on VisMap, St. Amant et al. [40] then

described several techniques of visual generalization for PBD by observing user behavior

and inferring general patterns based on the visual properties and relationships of user in-

terface objects. Their work then enlightened the possibility of real-time screen analysis of

screen images by PBD systems.

In relation to these works, Sikuli Test extends PBD to serve a new purpose — GUI

testing, and is also applicable to any Web-based GUI as long as its visual feedback is

observable.

2.3 Screenshot-Driven Information Migration

Several research projects have addressed the issues of migrating information across de-

vices. Pick-and-drop [35] is a direct-manipulation technique to pick up an object on a

computer and drop it on another using a pen. Hyperdragging [36] is a technique like drag-

and-drop that transfers information across devices. However, these two techniques require

special, uncommon devices (pen devices and augmented tabletops) so they cannot be easily

deployed to the real world.

Remote Clip [30] is a simple way to share information via a synchronized clipboard

across multiple personal computers. Unlike Pick-and-drop and Hyperdragging, there are

no special hardware requirements for Remote Clip. However, this technique is only feasible

for copying textual or selectable objects.

Some tools [9, 42] allow users to control applications remotely. In contrast, we propose

Deep Shot in this thesis to allow users to interact with the same content via native appli-

cations running on a local device, which eliminates the need to have a constant network

connection.

Associating physical tags or bar codes to digital files is also a way to migrate infor-

mation. Want et al. [46] describes using RFID tags to link physical objects to network

services. Android and iPhone users can install an application by scanning a QR code. The

downside of these techniques is that they require special tags or codes that can only be read
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by machines. In contrast, graphical user interfaces are already there on the screen for being

used by humans. The screenshots of the GUI can also be recognized by machines and do

not occupy additional spaces on the screen.

On the other hand, some techniques based on only visual features have been proposed.

PACER [25] allows a user to interact with a paper’s digital version based on its visual

features on a mobile phone. Shoot & Copy [8] allows a user to take a picture of file icons

on a large display with a mobile phone, and the list of files will be stored in the phone.

The list of files can then be transfered to another computer using Bluetooth. Shoot & Copy

uses ad-hoc image processing algorithms specifically designed for file icons on a solid-

color desktop. Therefore, it can not be extended to migrate general information or even

application states across devices.

Liu et al. described a system to drag and drop documents with a mobile camera [27].

This system requires the user to take one picture of the source document and another of the

destination computer. Once the source and the destination are identified, the document is

transfered across these two devices through WiFi.

Compared to these systems, we used similar feature matching algorithms in Deep Shot.

However, these techniques only focused on file transfer or document manipulation for cer-

tain applications. In contrast, Deep Shot provides an extensible framework that enables

an arbitrary application to migrate not only its content but also its runtime states across

devices using a mobile phone camera.

2.4 Connecting Screenshots and the Metadata of a UI

Recently, more pixel- or screenshot-based work has emerged. Screen-Crayons allows a user

to create annotation or highlight on any type of document with pixel-based techniques [32].

Mnemonic Rendering determines the visibility of applications and shows motion trails of

the changes when the hidden parts of windows are being revealed [6]. Prefab interprets

the pixels of a GUI and generates a high-level model of the widgets and their hierarchy

[14, 15]. The characteristic common to all this prior work is that it is completely focused

on the pixel level. Instead of pure pixel methods, we propose a hybrid approach in this
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thesis that leverages pixels and other structured information (e.g. accessibility metadata)

from the operating system to boost the robustness and performance of existing work and to

enable new applications.

Most modern operating systems and GUI toolkits support Accessibility APIs, which

were originally designed to be a standard hook for assistive technology applications, such

as screen readers, or for GUI automation tools to communicate with a user interface pro-

grammatically. In addition to the assistive use of accessibility information, Stuerzlinger et

al.’s User Interface Facades uses such information to allow users to customize an interface

with copy-and-paste [41].

However, accessibility APIs are not widely available in every application and GUI wid-

get. Hurst et al. reported that the Microsoft accessibility API can only correctly identify

74% of targets in eight popular applications on Windows [21]. Thus, instead of using only

accessibility API, they developed a hybrid approach that feeds the visual representation (i.e.

the pixels) of a user interface as well as accessibility metadata into machine learning algo-

rithms to identify GUI targets with higher accuracy. However, their approach does not deal

with content; it is mainly for post-analysis of interaction logs to identify what targets the

users might have clicked. In contrast, the approach in this thesis is designed for real-time

use to associate GUI widgets’ internal metadata and their pixel representation.
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Chapter 3

Sikuli

Sikuli 1 is our first attempt to apply screenshot-driven interaction to search documentation

and GUI automation. 2 Sikuli allows users or programmers to make direct visual reference

to GUI elements. To search a documentation database about a GUI element, a user can

draw a rectangle around it and then Sikuli takes a screenshot as a query. Similarly, to

automate interactions with a GUI element, a user can take a screenshot of the element and

specify what keyboard or mouse actions to invoke when this element is seen on the screen.

Compared to the non-visual alternatives, taking screenshots is an intuitive way to specify

a variety of GUI elements. Also, screenshots are universally accessible for all applications

on all GUI platforms, since it is always possible to take a screenshot of a GUI element.

In this chapter, two systems derived from the idea of Sikuli will be described.

The first system is Sikuli Search, which enables users to search a large collection of

online documentation about GUI elements using screenshots. In this thesis, I will only

discuss the screenshot-driven interaction used in Sikuli Search but not the algorithm design

and implementation of the whole system, as those details are already covered in Yeh’s

doctoral dissertation [48].

The second system is Sikuli Script and IDE, a scripting system that enables program-

1In Huichol Indian language, Sikuli means “God’s Eye”, symbolic of the power of seeing and understand-
ing things unknown.

2 The work described in this chapter are collaborated with Tom Yeh, who designed and implemented the
back-end computer vision algorithms of Sikuli Search and Sikuli Script. I designed and implemented the
front-end of the systems, which includes their user interfaces and the API of Sikuli Script.
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mers to use screenshots of GUI elements to control them programmatically. The system

incorporates a full-featured scripting language (Python) and an editor interface specifically

designed for writing screenshot-based automation scripts. Likewise, in this thesis, I will

only focus on the user interfaces and the screenshot-driven interaction techniques in Sikuli

Script and IDE. The details of computer vision algorithms used in this system are covered

in [48].

3.1 Sikuli Search

The development of Sikuli Search is motivated by the lack of an efficient and intuitive

mechanism to search for documentation about a GUI element, such as a toolbar button,

icon, dialog box, or error message. The ability to search for documentation about an arbi-

trary GUI element is crucial when users have trouble interacting with the element and the

application’s built-in help features are inadequate. Users may want to search not only the

official documentation, but also computer books, blogs, forums, or online tutorials to find

more help about the element.

Current approaches require users to enter keywords for the GUI elements in order to

find information about them, but suitable keywords may not be immediately obvious. For

example, for the users who are not familiar with Photoshop, it is unlikely they know how

to use this tool , nor how to find information about it using keywords.

Instead of querying with keywords, we use a screenshot of the element as a query. Given

their graphical nature, GUI elements can be most directly represented by screenshots. In

addition, screenshots are accessible across all applications and platforms by all users, in

contrast to other mechanisms, such as tooltips and help hotkeys (F1), which may or may

not be implemented by the application.

3.1.1 Screenshot-Driven Search

Sikuli Search allows a user to select a region of interest on the screen, submit the image

in the region as a query to the search engine, and browse the search results. To specify

the region of interest, a user presses a hot-key to switch to Sikuli Search mode and begins
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Figure 3-1: Sikuli Search allows users to search documentation and save custom annota-
tions for a GUI element using its screenshot (i.e., red rectangle).

to drag out a rubber-band rectangle around it (Figure 3-1). After the rectangle is drawn, a

search button appears next to it, which submits the image in the rectangle as a query to the

search engine and opens a web browser to display the results.

The backend database in Sikuli Search indexes screenshots extracted from a wide vari-

ety of resources using three kinds of features described as follows.

1. The text surrounding the screenshots in the source document, which is a typical ap-

proach taken by current keyword-based image search engines.

2. The SIFT feature descriptor [28] extracted from salient image locations of the screen-

shots, which is robust against variations in scale, translation, brightness, and rotation.

3. The embedded text in the screenshots extracted by optical character recognition

(OCR) engines.

With these features of screenshots, users do not need to fit the rectangle perfectly around

a GUI element while taking the screenshot. As a result, the whole interaction of searching

with screenshots can be much faster than traditional keyword queries. According to the
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user study reported in [49], the average time of a screenshot-based search costs less than

half time of a keyword-based query, whereas the quality of their search results have no

significant differences.

3.2 Sikuli Script and IDE

The development of our visual scripting API for GUI automation is motivated by the de-

sire to address the limitations of current automation approaches. Current approaches tend

to require support from application developers. For example, AppleScript, Apple Au-

tomator, and Windows Scripting all require applications to provide APIs. Some systems

(e.g. DocWizards [5], Chickenfoot [7], and CoScripter [23]) require accessible text labels

for GUI elements. Some macro recorders (e.g. Jitbit 3 and QuicKeys 4) achieve cross-

application and cross-platform operability by capturing and replaying low-level mouse and

keyboard events on a GUI element based on its absolute position on the desktop or relative

position to the corner of its containing window. However, these positions may become

invalid if the window is moved or if the elements in the window are rearranged due to

resizing.

Therefore, we use screenshots of GUI elements directly in an automation script to pro-

grammatically control the elements with low-level keyboard and mouse input. (See Fig-

ure 3-2 for examples) Since screenshots are universally accessible across different appli-

cations and platforms, this approach is not limited to a specific application. Furthermore,

the GUI element a programmer wishes to control can be dynamically located on the screen

by its visual appearance, which eliminates the movement problem suffered by existing ap-

proaches.

3.2.1 Visual Scripting API

Sikuli Script provides a set of visual scripting API for GUI automation. The goal of this API

is to give an existing full-featured programming language a set of image-based interactive

3http://www.jitbit.com/macrorecorder.aspx
4http://www.startly.com/products/qkx.html
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Figure 3-2: Examples of Sikuli commands. The first line finds all PDF icons on the screen
and save them into a variable pdfs. Line 4 clicks on a drop-down box named Location and
open it up. Line 7 drags a file “readme.txt” to a Dropbox folder. Line 9 types “something”
into a search box.

capabilities. Although our API is currently optimized for Jython (the Python implementa-

tion on Java Virtual Machines), it should be straightforward to adapt it to other languages

running on a JVM since it is built in Java.

The Sikuli Script API has several key components. The find() function takes a

target pattern and returns screen a region matching the pattern. The Pattern and Match

classes represent the target pattern and matching screen regions, respectively. A set of

action commands invoke mouse and keyboard actions on screen regions. Finally, a visual

hash table stores key-value pairs using images as keys. We describe these components in

more detail below.

Find

The find function locates a particular GUI element to interact with. It takes a visual pattern

that specifies the element’s appearance, searches the whole screen or part of the screen, and

returns regions matching this pattern or null if no such region can be found. For example,

find( ) finds regions containing a Word document icon on the whole screen. In addi-
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tion to find, another function findAll returns a list of all matching regions instead of

the best one.

Pattern

The Pattern class is an abstraction for visual patterns. A pattern object can be created in

three ways: taking a screenshot, from an image file, or from a string of text. When creating

from an image, we use a computer vision algorithm template matching to find matching

screen regions. When created from a string, OCR is used to find screen regions matching

the text of the string. A pattern object has methods for tuning how general or specific

matches must be. They are listed as follows.

• exact(), which indicates the pattern must be exactly matched;

• similar(similarity), which specifies how general (from 0.0 to 1.0) the matches can be;

• anyColor(), which indicates the pattern can match the same shape in any colors;

• anySize(), which indicates the pattern can match the same shape in any sizes;

• targetOffset(x, y), which specifies the click offset to the target (instead of the center

by default).

Each method produces a new pattern, so they can be chained together. For example,

Pattern( ).similar(0.8).anyColor() matches screen regions that are 80% of

pixels similar to of any color composition.

Region and Match

The Region class defines a rectangular region on a screen. Its attributes are x and y coordi-

nates, height, width. The Match class extends the Region class and provides an abstraction

for the screen region(s) returned by the find() function matching a given visual pattern.

It has an additional attribute: similarity score. Typically, a Match object represents the

best match, for example, m = find( ) stores the region found to look most like the

icon in the variable m.
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Another use of a Region object is to constrain the search to a particular region instead

of the entire screen. For example, find( ).find( ) constrains the search

space of the second find for the ok button to only the region occupied by the dialog box

returned by the first find().

To support other types of constrained search, our visual scripting API provides a ver-

satile set of constraint operators: left, right, above, below, nearby, inside, outside in 2D

screen space. (See Figure 3-3.)

These operators can be used in combination to express a rich set of search semantics

For example,

find( ).inside().find( ).right().find( ) finds for the office tool-

bar first and then constrains the following searches within this matched area. The second

find() searches for the office home button, and finally searches the disk icon within the

region on the home button’s right.

Action

The action commands specify what keyboard and/or mouse events to be issued to the center

of a region found by find(). The core set of commands in our API are:

• click(Pattern|Region, [Modifiers]), doubleClick(Region, [Modifiers]): These two

commands issue mouse-click events to the center of a target region. For example,

click( ) performs a single click on the best-matched close button found on the

screen. If there are multiple matches with the same similarity score, the command

clicks on any one of them randomly. Modifier keys such as Ctrl and Command can

be passed as a second optional argument.

• dragDrop(Pattern|Region target, Pattern|Region destination): This command drags

the element in the center of a target region and drops it in the center of a destination

region. For example, dragDrop( , ) drags a word icon and drops it in the

recycle bin.
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Figure 3-3: Spatial operators are used to constrain matching regions. This figure lists
the corresponding regions created with applying each spatial operator on the region "Alter
volume".
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• type(Pattern|Region target, String text): This command enters a given text in a target

region by sending keystrokes to its center. For example, type(

,"Sikuli") types the “Sikuli” in the Google search box.

Visual Hash Table

A visual hash table can be used to store key-value pairs using images as keys. It uses the

same syntax as a typical Hash table in Python to create tables and to store values that need

to be quickly retrieved (i.e., sub-linear time) by images. For example, h = { : "word",

: "powerpoint"} creates a visual hash table associating two application names with

their icon images. Then, h[ ] retrieves the string word, h[ ] = "excel" adds the string

"excel" under its icon image, and h[ ] returns a null object.

The visual hash table is useful for mapping a screenshot to an object. For example,

when a user wants to write a poker robot script, a card on the screen needs to be interpreted

as a suit and a number. This can be done with a visual hash table stored with 52 pairs of

card images and their corresponding suits and numbers.

3.2.2 New API

Since we released Sikuli Script in 2009, its API has grown and becomes much more com-

plete to be applied in many different scenarios and environments. The new set of API added

since then are as follows.

• App class, which will be described in Chapter 6;

• global hotkeys, which allows a user to register a Sikuli function on a particular hotkey

dynamically in a script;

• visual assertions, which will be described in Chapter 4;

• creating annotations and contextual help, which is described in a conference paper

[50].

The comprehensive and up-to-date documentation of Sikuli Script can be found at

http://sikuli.org/docx/.
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(a) A Sikuli script being viewed in a text editor. (b) The same Sikuli script being viewed in Sikuli
IDE.

Figure 3-4: Comparison between textual view and visual view of a Sikuli script.

3.2.3 Sikuli IDE

To facilitate writing screenshot-based scripts, we have developed Sikuli IDE. (Figure 1-1).

Even without Sikuli IDE, a user still can write a Sikuli script with any text editor, as it is

just a Jython script. However, Sikuli IDE provides two key functions that greatly lower the

barrier to read and write such scripts.

Reading Screenshot-based Scripts

Screenshots are the key components in Sikuli scripts. Internally, a screenshot is simply

represented as a string literal, which stores the path to the image file of the screenshot. In

plain text or code editors, a script is shown as lines of textual strings. When users refer to a

screenshot in such environments, they are actually using the string as an indirect reference

to the image.

For example, in Figure 3-4(a), each line of code contains a string literal, which refers

to an image file. If the images are well named, the user may be able to guess which GUI

component on the screen the image refers to. However, a good naming mechanism needs

some effort from script authors and can not be guaranteed. In the cases as the line 7 and 8

in Figure 3-4(a), there is no way to tell what the images are actually referring to.

To overcome this problem, I developed Sikuli IDE specifically for viewing and editing

Sikuli scripts. In Sikuli IDE, screenshots are embedded in code as direct visual references

(Figure 3-4(b)). This eliminates the problem that the user needs to guess which GUI ele-

ment an image file actually refers to from its file name. The user can know exactly how the

image files looks like directly in the editor.

38



Figure 3-5: The similarity threshold for matching (.90 in this example) and the point of
click (the red cross) can also be shown with screenshots.

Screenshots are used as visual patterns in Sikuli. Besides screenshots themselves, the

similarity threshold for matching can also be shown with the images in the editor as in

Figure 3-5.

3.2.4 Writing Screenshot-based Scripts

Embedding screenshots directly in Sikuli IDE enhances the readability of Sikuli scripts,

but, how about writing such scripts?

As we mentioned earlier, the file name to a screenshot file is an indirect reference.

Therefore, to fully employ the idea of using screenshots as visual references, it is neces-

sary to avoid using file names in the interaction process. As a result, the process of taking

screenshots in Sikuli IDE has been simplified into only two steps: 1) enter the screen cap-

ture mode by pressing either a hotkey or the button on the toolbar; and 2) drag a rectangular

area around the target.

Once a user has taken a screenshot using Sikuli IDE, the screenshot is saved as an image

file in the PNG format within the same folder of the script. The file name of the image file

is determined automatically with a timestamp by default. In this way, the user does not

need to come up with a name for the screenshot as well as where to save the file. The user

only needs to care if the image shown in the editor can well represent the target on the

screen.

In the capture mode of Sikuli IDE, the user only has one shot to stretch a rectangle

around the target. In other words, once the mouse button is released, the rectangular area

selected by the user is automatically captured. This design not only simplifies the capture

process, but also forces the user not to carefully adjust the boundaries as Sikuli’s fuzzy
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matching algorithm does not require strict boundaries.

3.2.5 Running and Debugging Scripts

A script can be run in two different modes in Sikuli IDE. One is normal mode, which runs

the script in full speed as a usual Jython script.

While running a script, Sikuli’s automation engine visually identifies the target GUI

component’s current location (x′, y′) by searching the current screen for an image region

matching the target image I . To find a given pattern, we apply the template matching tech-

nique with the normalized correlation coefficient implemented in OpenCV in our current

system [49]. This technique treats the pattern as a template and compares the template to

each region with the same size in an input image to find the region most similar to the tem-

plate. Then, the click event is delivered to the center of the best matched region to simulate

the desired user interaction.

The other one is “slow motion” (or debug) mode, which slows down the automation and

highlights the best match of each target found on the screen. This mode effectively helps

the user to debug the script and figure out if the visual patterns really match the expected

target on the screen.

As for debugging, it is essential to know a visual pattern matches which portions of

the screen and adjust the similarity threshold as needed. Sikuli IDE can preview how a

pattern matches the current desktop (see Figure 3-6) under different similarity thresholds,

so that these can be tuned to include only the desired regions. The editor also allows users

to specify an arbitrary region of screen to confine the search to that region.

The editor also helps adjusting the click offset to the target. This is particularly useful

when one wants to change the click position to somewhere else instead of the center of the

target (Figure 3-7).
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(a) The target
being searched
for in 3-6(b)

(b) Preview the matching result of a visual pattern. The
red rectangle is the best match, and the other purple ones
are partially matched with a low score.

(c) The slider for adjusting the similarity threshold.

Figure 3-6: The user can adjust the similarity threshold and preview the results under
different settings. Here, the threshold is too low so there are many false positives (the
purple areas).

Figure 3-7: The user can adjust the click offset to the target in the Sikuli IDE.
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Chapter 4

GUI Testing with Screenshots and

Computer Vision

Quality Assurance (QA) testers are critical to the development of a GUI application. Work-

ing closely with both programmers and designers, QA testers make efforts to ensure the

GUI application is correctly implemented by following the design specification. Without

such efforts, there is no guarantee the usability promised by a good design is fully realized

in the implementation.

However, GUI testing is a labor intensive task. Consider the following GUI behavior

defined in a design specification of a video player: click the button and it becomes .

To test if this behavior is correctly implemented, a tester must look for the “play” button

on the screen, click on it, and see if it is replaced by the “pause” button. Every time this

behavior needs to be tested again, the tester must manually repeat the same task all over

again.

While GUI testers often toil in their tedious tasks, testers of non-GUI applications have

been enjoying the convenience of tools to automate their tasks. For example, to test if the

function call addOne(3) behaves correctly, a tester can write a script that makes this func-

tion call, followed by an assertion function call, such as assert(addOne(3) == 4),

to check if the result is equal to 4 and report an error if not. This script can be run automat-

ically as many times as desired, which greatly reduces the tester’s effort.

In this chapter, we present Sikuli Test, a new approach to GUI testing that uses screen-
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Figure 4-1: GUI testing (left) traditionally requires human testers to operate the GUI and
verify its behavior visually. Our new testing framework allows the testers to write visual
scripts (right) to automate this labor-intensive task.

shots and computer vision to help GUI testers automate their tasks. Sikuli Test enables

GUI testers to write visual scripts using images to define what GUI widgets to be tested

and what visual feedback to be observed. For example, to automate the task of testing the

behavior of the video player described above, a tester can write the following script:

1 button = find( )

2 click(button)

3 assert button.exists( )

4 assert not button.exists( )

When this script is executed, it will act like a robotic tester with eyes to look for the

“play” button on the screen, click on it, and see if it is replaced by the “pause” button, as if

the human tester is operating and observing the GUI him- or herself (Figure 4-1).

This chapter is outlined with the following sections.

Interview study with GUI testers We examine the limitations of current testing tools and

suggest design requirements for a new testing framework.

Automation of visual assertion Based on the visual automation API provided by Sikuli

Script [49], a set of visual assertion API is added to determine if expected outputs
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are shown or not. The extension of visual assertion fulfills the automation of GUI

testing by using images for verifying outputs in addition to directing inputs.

Test-By-Demonstration Testers can interact with a GUI and record the actions they per-

form and visual feedback they see. Test scripts can be automatically generated to

reproduce the actions and verify the visual feedback for testing purposes.

Support of good testing practices Features are introduced to support good testing prac-

tices including unit testing, regression testing, and test driven development.

Comprehensive evaluation We analyze the testability of a wide range of visual behavior

based on five actual GUI applications. Also, we examine the reusability of test scripts

based on two actual GUI applications evolving over many versions.

4.1 Interview Study

To guide the design and development of our new GUI testing tool, we conducted informal

interviews with four professionals of GUI testing from academia and industry. Questions

asked during the interviews were centered on three topics: current testing practices, use of

existing tools, and experience with existing tools.

In terms of testing practices, we found most of our subjects are involved in the early

design process to coordinate and formulate workable test plans to ensure quality and testa-

bility. Testing is performed frequently (often daily) on the core components. For example,

underlying APIs are tested with simulated inputs and checked if they produce expected out-

puts. But testing the outward behavior of GUIs is less frequent, usually on major milestones

by a lot of human testers. Some of them regularly apply good testing practices such as unit

testing, regression testing, and test-driven development; but the scope of these practices is

limited to the parts without GUI.

In terms of the use of testing tools, some have developed customized automation tools.

They write scripts that refer to GUI objects by pre-programmed names or by locations to

simulate user interactions with these objects. Some have been using existing tools such
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as Autoit [1], a BASIC-like scripting language designed to automate user interactions for

Windows GUI applications.

In terms of experience with these tools, our subjects expressed frustration and described

their experience as sometimes “painful”, “slow”, and “too much manual work.” Several

problems with current automatic testing tools were identified by the subjects, which might

explain this frustration. First, whenever the GUI design is modified and the positions of

GUI components are rearranged, automatic tools based on the absolute position of compo-

nents often fail and would actually “slow down the testing process” because of the need to

modify the test scripts. Second, while automatic tools based on component naming may

avoid this problem, many components simply can not or have not been named.

Based on the findings of this interview, we identified the following five design goals to

guide the design and development of our new GUI testing tool:

• (G1) The tool should allow testers to write scripts to automate tests.

• (G2) The tool should not require testers to refer GUI components by names or by

locations.

• (G3) The tool should minimize the instances when test scripts need to be modified

due to design changes.

• (G4) The tool should minimize the effort of writing test scripts.

• (G5) The tool should support good testing practices such as unit testing, regression

testing, and test-driven development.

4.2 Testing By Visual Automation

We present Sikuli Test, a testing framework based on computer vision that enables develop-

ers and QA testers to automate GUI testing tasks. Consider the following task description

for testing a particular GUI feature:

Click on the color palette button. Check if the color picking dialog appears.
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Figure 4-2: Sikuli Test interface consists of a test script editor and an information panel
summarizing the test result.

To carry out this test case, QA testers need to manually interact with the GUI and

visually check if the outcome is correct. Using Sikuli Test, the testers can automate this

process by converting the task description into an automation script. This script consists

of action statements to simulate the interactions and assertion statements to visually verify

the outcomes of these interactions. For example, the above task description can be easily

translated into a test script as:

1 click( )

2 assertExist( )
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By taking this image-based scripting approach, Sikuli Test meets the first three design

goals: it allows testers to write visual scripts to automate tests (G1), to refer to GUI objects

by their visual representation directly (G2), and to provide robustness to changes in spatial

arrangements of GUI components (G3). The details of how to write test scripts using action

statements and assertion statements are given next.

4.2.1 Simulating Interactions using Action Statements

To simulate interactions involved in a test case, QA testers can write action statements

using the Sikuli Script API, which is described in Chapter 3.

Since Sikuli Script is based on a full scripting language, Python, it is possible for QA

testers to programmatically simulate a large variety of user interactions, simple or complex.

4.2.2 Verifying Outcomes using Visual Assertion Statements

Sikuli Test introduces two visual assertion functions. QA testers can include these func-

tions in a test script to verify whether certain GUI interaction generates the desired visual

feedback. These two assertion functions are:

assertExist(image or string [, region])

asserts that an image or string that should appear on screen or in a specific screen region

assertNotExist(image or string [, region])

asserts that an image or a string should not appear on screen or in a specific screen region

The image is specified as URL or a path to an image file. It also can be captured by a

screenshot tool provided in our Integrated Development Environment (IDE). When a string

is specified, OCR (Optical Character Recognition) is performed to check if the specified

string can be found in the screen region. The optional parameter region is specified as a

rectangular area on the screen (i.e., x, y, width, height). If not specified, the entire screen

is checked. Alternatively, the region can be specified as a second image, in which case the

entire screen is searched for that image and the matching region is searched for the first

image. Spatial operators such as inside, outside, right, bottom, left, and top can be further

applied to a region object to derive other regions in a relative manner.
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4.2.3 Examples

We present examples to illustrate how test scripts can be written to verify visual feedback.

1. Appearance

1 type(":p")

2 assertExist( )

In some instant messengers, textual emoticons, e.g. smiley face :), are replaced by

graphical representations automatically. This example shows how to test the appearance

of the corresponding graphical face once the textual emoticon is entered in Windows Live

Messenger.
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2. Disappearance

1 blueArea = find( )[0]

2 closeButton =

3 click(closeButton)

4 assertNotExist(closeButton, blueArea)

5 assertNotExist("5", blueArea)

In this example, the close button is expected to clear the content of the text box as

well as itself. Suppose the GUI is already in a state that contains a "5", at first we find the

blue text box on the screen and store the matched region that has the highest similarity in

blueArea. Then, after clicking the close button, two assertNotExist statements are used to

verify the disappearance in the blue area.

3. Replacement

1 button = find( )

2 click(button)

3 assertExist( , button)

4 assertNotExist( , button)

Typical media players have a toggle button that displays the two possible states of the

player, playing or pause. In this example, we demonstrate a test case that tests the typical
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toggle button on youtube.com, a popular website of video collection. This script finds the

play button first, and save its match region in the variable button. After clicking on the play

button, all following assertions are restricted within that matched region in order to verify

the replacement behavior.

4. Scrolling/Movement

1 sunset =

2 old_x = find(()sunset)[0].x

3 click( )

4 assert(find(()sunset)[0].x > old_x)

Since Sikuli Test is independent of any GUI platform, it also can be used to test mobile

applications running on an emulator. This example shows how to test scrolling and move-

ment on an Android emulator. This test case works by comparing the position of the target

before and after an action that should move the target. After clicking on the left button, we

expect the series of images to scroll rightward. Therefore, the new x coordinate should be

larger than the old one. We choose the image of sunset to be the target. Its x coordinate that

derived from the most similar match of find() is stored in old_x. After clicking on the left

50



button, its new x coordinate derived from find() again is compared with old_x for verifying

the correctness of the implementation.

4.3 Testing By Demonstration

Sikuli Test provides a record-playback utility that enables QA testers to automate GUI

testing by demonstration. The operation of a GUI can be described as a cycle consisting

of actions and feedback. Given a test case, the testers follow the given actions to operate

a GUI, and verify if the visual feedback is the same as expected. If so, they proceed to do

the next actions and to verify further feedback.

With the record-playback mechanism, the testers can demonstrate the interactions in-

volved in the test case. The actions as well as the screen are recorded and translated into

a sequence of action and assertion statements automatically. The action statements, when

being executed, can replicate the actions, as if the testers are operating the GUI themselves.

The assertion statements can verify if the automated interactions lead to the desired visual

feedback, as if the testers are looking at the screen themselves.

The test-by-demonstration capability of Sikuli Script satisfies the design goal of mini-

mizing the effort needed to write test scripts (G4). Details of how demonstration is recorded

and how actions and assertions are automatically generated from the recorded demonstra-

tion will be given next.

4.3.1 Recording Demonstration

As QA testers demonstrate a test case, a recorder is running in the background to capture

the actions they perform and the visual feedback they see. To capture actions, the recorder

hooks into the global event queue of the operating system to listen for input events related

to the mouse and the keyboard. The list of mouse events recorded includes mouse_down,

mouse_up, mouse_move, and mouse_drag. Each mouse event is stored with the cursor

location (x, y) and the state of buttons. The keyboard events recorded include key_down

and key_up, stored together with key codes. All events include a timestamp that is used to

synchronize with the screen recording. To capture screens, the recorder grabs the screen-
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shot of the entire screen from the video buffer in the operating system periodically. In our

prototype, the recording can be done at 5 fps at a resolution of 1280x800 on a machine with

2Ghz CPU and 2GB memory.

4.3.2 Generating Action Statements

Given a series of screen images and input events captured by the recorder, action statements

can be generated to replay the interactions demonstrated by the testers. For example, a

single mouse click recorded at time t at location (x, y) can be directly mapped to click(I)

where I is the image of the GUI component that was clicked. The image I can be obtained

by cropping a region around (x, y) from the screen image captured at time t−1 right before

the click event.

The timing to capture the screen images could be more complicated if there are multiple

targets involved in one action statement, such as dragDrop. As a user interact with GUI

components, some visual feedback that changes the look of the GUI may be triggered by

the user’s mouseover events. Therefore, both the images of the source and the target should

be captured before the drag-and-drop begins.

In our current implementation, a constant-size (80x50) region around the input location

is cropped to represent the target GUI component receiving the input. Even though the

region may not necessarily fit the target component perfectly, often it contains enough

pixels to uniquely identify the component on the screen. If ambiguity arises, the user can

adjust the cropping area to include more pixels of the component or the context to resolve

the ambiguity at any time.

Some input events may need to be grouped into a single action statement. For example,

two consecutive mouse clicks in a short span of time is mapped to doubleClick(). Keyboard

typing events can be clustered to form a string and mapped to type(string). A mouse_down

event at one location followed by a mouse_up event at another location can be mapped

to dragDrop(I,J) where I and J denote the images extracted from the locations of the two

mouse events respectively.
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4.3.3 Generating Assertion Statements

Assertion statements can also be automatically derived from the screen images captured

during the demonstration. We developed and implemented a simple vision algorithm to

accomplish this. We assume any salient change between the two images is very likely

to be the visual feedback caused by an input event. Our algorithm compares the screen

images It and It+1 where t is the time of a recorded input event, and identifies pixels that

are visually different. It then clusters the changed pixels in close proximity and merges

them into the same group. Each group of pixels would probably correspond to the same

GUI component. Finally, it computes a bounding rectangle around each group and obtains

a cropped image containing the visual feedback of each GUI component visually affected

by the input event. If the cropped boundaries are bad, the user can adjust the cropping area

anytime on the recorded images.

An assertion statement that can be later used to check the presence of the visual feed-

back can be generated with this algorithm. Figure 4-3 shows an example of deriving the

visual feedback where a drop-down box is opened by clicking. Often, more than one GUI

component can exhibit visual feedback as the result of a single input event. In this case,

our algorithm results in a compound assertion statement including multiple cropped image

regions. For example, Figure 4-4 shows a dialog box with a checkbox that can be used to

enable several GUI components at once. Checking this checkbox will cause all previously

greyed out components in a panel to regain their vivid colors.

An optional step for the tester to increase the reliability of the automatic visual feedback

detector is to provide hints to where it should look for the visual feedback. After performing

an interaction and before moving on to the next, the tester can move the mouse cursor to

the area where the visual feedback has occurred and press a special key, F5, to trigger a

hint. The detector can use the location of the cursor to extract the relevant visual feedback

more reliably and generates an appropriate assertion statement.

While we can identify many cases in which visual assertion statements can be created

automatically in this manner, there remain a few challenges. First, periodic changes in the

desktop background, such as those related to the system clock or the wireless signal indi-
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Figure 4-3: An example of taking the difference between two screens to derive the visual
feedback automatically

cator, may be inadvertently detected but irrelevant to the GUI to be tested. One solution

would be to ask the testers to specify the boundary of the GUI beforehand so that back-

ground noises can be filtered out. Second, certain actions might take longer to obtain any

visual feedback; the screen image captured immediately after the action might not contain

the visual feedback. One solution would be to wait until a significant change is detected.

Third, some visual feedback may involve animation spanning several frames, for example,

a large window appearing in a blind-rolling-down fashion. One solution would be to wait

until the screen has stabilized and focus only on the final visual feedback. However, while

it is possible to test the final feedback, testing the intermediate steps of an animation can

still be unreliable, because it is difficult to synchronize between the frames sampled during

the demonstration time and those sampled during the test time.

4.4 Supporting Good Testing Practices

Sikuli Test comes with a set of features to help GUI developers and QA testers engage in

good testing practices such as unit testing, regression testing, and test-driven development,

satisfying the last design goal (G5).

4.4.1 Unit Testing

When a GUI is complex, to make sure it is tested thoroughly requires a systematic ap-

proach. One such approach is to break the GUI down into manageable units, each of which

targets a particular part, feature, or scenario. This approach is known as unit testing.

To support unit testing for GUI, Sikuli Test draws many design inspirations from JUnit,
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Figure 4-4: Example of automatic generation of assertion statements from detected visual
feedback.

a popular unit testing framework for Java programming:

1. Testers can define each test as a function written in Python. Every test function is

meant to be run independently without relying on the side-effects of another test

function. For example, after testing the exit button, which has the side effect of

closing the application, no more tests can be run unless the GUI is restarted. There-

fore, to run every test independently, Sikuli Test provides two functions setUp() and

tearDown() that can be overridden by testers to set up and to clean up the testing

environment. A typical way to achieve the independence is always starting the GUI

in a fresh configuration before running a test.

2. Testers can define common action functions to automatically advance the GUI to a

particular state in order to run certain tests only relevant in that state. Common action

functions can be shared among all test cases in the same script to reduce redundant

code and to prevent future inconsistency. For example, suppose the Save Dialog
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box is relevant to several test cases, the tester can write a common action function

to open the Save Dialog that contains a click() on the File menu followed by

another click() on the Save item. On the other hand, testers can also define shared

assertion functions to verify the same visual feedback that are derived from different

actions. For example, the appearance of a save dialog box can be caused by a hotkey

Ctrl-S, by a icon on the toolbar, or by the Save item in the File menu; all could be

verified by assertSaveDialog().

3. Testers can run a test script and monitor the progress as each test function in the script

is run. They can see the summary showing whether each test has succeeded or failed

as well as the total number of successes and failures.

4. When errors are found, testers can communicate the errors to programmers effec-

tively. On the one hand, testers are encouraged to assign each test function a mean-

ingful name, such as test_click_play_button. On the other hand, the images embed-

ded in each function make it visually clear which GUI components and what visual

feedback are involved in the errors.

4.4.2 Regression Testing

When a new feature is implemented, in addition to verifying whether the implementation

is correct, it is equally important to ensure that it does not break any existing feature that

used to be working. This practice is often known as regression testing in software engi-

neering. Many software projects use daily builds to automatically check out and compile

the latest development version from the version control system. The daily build is tested

by automated unit testing suites to validate the basic functionality. However, because of

the weaknesses of automatic testing tools for GUI, current regression testing process is

limited to work only on internal components but not on GUI. Therefore, regression testing

becomes a tedious practice that requires QA testers to manually repeat the same set of tests

whenever there is a modification to the GUI.

Sikuli Test is a labor-saving and time-saving tool enabling QA testers to automate re-

gression testing. Using Sikuli Test, the testers only need to program test cases once and
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those test cases can be repeatedly applied to check the integrity of the GUI. To show the

feasibility of Sikuli Test for supporting regression testing, an evaluation will be given later.

4.4.3 Test-Driven Development

While our testing framework is originally designed for QA testers, it can be used by both

GUI designers and programmers during the development process. In large GUI projects

where the separation between design and implementation is clearer, designers can create

test cases based on design illustrations or high-fidelity prototypes. For example, a designer

can use a graphic editor such as Photoshop to create a picture illustrating the GUI’s desired

visual appearance. Based on this picture, the designer can crop representative images of

operable GUI components such as buttons to compose action statements. The designer can

also graphically illustrate the expected visual feedback when these GUI components are

operated. Again, this graphical illustration can be used directly in assertion statements. Test

cases can be created and handed to programmers to implement the GUI’s outward visual

behavior. These test cases will initially fail because none of the desired visual behavior

has been implemented yet. As more features are implemented, more test cases can be

passed. When all the test cases are passed, the implementation is not only complete but

also thoroughly tested. This practice is often known as test-driven development, which

has been widely adopted by non-GUI development projects. Our visual testing framework

initiates an opportunity for GUI designers and programmers to engage in this good practice

of software engineering.

Even in small projects when a programmer often doubles as a designer and a tester,

test-driven development can still be practiced. For example, given a design specification, a

program can create the skin of a GUI without any functionality using a Rapid Application

Development (RAD) tool. Then, before the actual implementation, the programmer can

take the screenshots of the skin to write test cases and start writing GUI code to pass these

test cases.
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Table 4.1: The testability of GUI visual behavior under Sikuli Test. The numbers (1 to 4)
indicate the combination of the widget and the visual behavior can be tested with Sikuli
Test in the corresponding application. The triangles △ indicate theoretically testable, and
the red Fs mean not testable by Sikuli Test. The rest of the cells marked with an X indicates
they are rarely paired together.

4.5 Evaluation

To evaluate Sikuli Test, we performed testability analysis—how diverse the visual behavior

GUI testers can test automatically, and reusability analysis—how likely testers can reuse a

test script as a GUI evolves.

4.5.1 Testability Analysis

We performed testability analysis on a diverse set of visual behavior. Each visual behavior

can be defined as a pairing of a GUI widget and a visual effect rendered on it. We consid-
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ered 27 common widgets (e.g., button, check box, slider, etc.) and 25 visual effects (e.g.,

appearance, highlight, focus, etc.). Out of the 675 possible pairings, we identified 368 to

be valid, excluding those that are improbable. We began the analysis by applying Sikuli

Test to test the visual behavior exhibited by four real GUI applications (i.e., 1: Capivara, 2:

jEdit, 3: DrJava, and 4: System Preferences on Mac OS X).

For each pair of a GUI widget and a visual effect, we wrote a script for it using Sikuli

Test to confirm if it is testable. For example, say we would like to know if “text changed”

in a text field is testable, we first found an application that has this combination of visual

behavior, which is (2) jEdit in our experiment. Then we wrote a script, which changed the

text in a text field in jEdit and used an assertExists statement to verify it. If the script can

successfully test this change, we say this pair is testable.

Some pairs of visual behavior are rarely combined together. We call them improbable.

For example, the pair of scrolling bars and font changing is improbable, because there is

even no fonts or text in scrolling bars. Therefore, this pair of visual behavior is unlikely to

be combined together in most GUI applications.

Table 4.1 summarizes the result of the testability analysis. Each cell corresponds to a

visual behavior. Out of 368 valid visual behaviors, 139 (indicated by the number of the

application used to be tested) are empirically testable, visual behavior was found in the

four applications and could be tested; 181 (indicated by a triangle △) are theoretically

testable, visual behavior was not found in the four applications but could be inferred from

the testability of other similar visual behavior; and 48 (indicated by an “F”) are not testable

by Sikuli Test. In addition to these valid visual behaviors, there are 307 rarely paired

improbable visual behaviors indicated by an “X”.

As can be seen, the majority of the valid visual behavior considered in this analysis

can be tested by Sikuli Test. However, complex visual behavior such as those involving

animations (i.e., fading, animation) are currently not testable, which is a topic for future

work.
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4.5.2 Reusability Analysis

We performed reusability analysis of test scripts based on two real GUI applications: Capi-

vara, a file synchronization tool, and jEdit, a rich-text editor. These two applications were

selected from the popular downloads on SourceForge.net with two criteria: it must have a

rich set of GUI widgets, and it must have at least 5 major releases available for download.

First, we focused on the two earliest versions that can be downloaded of the two ap-

plications. For Capivara, we chose versions 0.5.1 (Apr. ’05) and 0.6 (June ’05) (Figure

4-5 a,b). For jEdit, we chose versions 2.3 (Mar. ’00) and 2.41 (Apr. ’00) (Figure 4-5 d,e).

Since there were modifications to the user interface between these two versions, we were

interested in whether test cases written for the first version can be applied to the second

version to test the unmodified parts of the application. We created 10 and 13 test cases

for Capivara and jEdit respectively. Most of the test cases were created using the test-

by-demonstration tool, while some required manual adjustments such as giving hints and

removing excess contexts from the detected visual feedback. Examples of the test cases

can be seen in Figure 4-6.

Table 4.2 summarizes our findings. These two tables include the first two versions, plus

a later version that showed drastic change in the GUI for Capivara and jEdit respectively.

The column of the first version shows how each test case is made: A denotes automat-

ically generated, AM denotes automatically generated with some modifications, such as

giving hints and removing excess contexts from the detected visual feedback, and M de-

notes manually written. Each column of the other two versions shows the result of each

test case at the version: P denotes passed, whereas F1 - F5 denote failure. (The cause of

each failure will be explained later.)

Between the first two versions of Capivara, we observed one modification to the UI: the

size limitation of the panel splitter was different. Thus, we only needed to update 1 of the

10 original test cases to reflect this modification. In other words, we were able to apply the

other 9 test cases against the second version to test the correctness of unmodified features.

Similarly, in the case of jEdit, we observed 3 modifications among the features covered by

the original 13 test cases. Again, we were able to apply the remaining 10 test cases against
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(a) Capivara 0.5.1 (1st) (b) Capivara 0.6.0 (2nd)

(c) Capivara 0.8.0 (4th) (d) jEdit 2.3 (1st)

(e) jEdit 2.4.1 (2nd) (f) jEdit 2.6 (4th)

Figure 4-5: GUI applications used to evaluate the reusability of Sikuli Test scripts as these
applications evolve. Between (a) and (b), there is only one minor change in the connection
settings dialog (a new button below Favourites), but the dialog has significant changes in
(c). As for jEdit, between (d) and (e), a major change is the disappearance of the tool bar.
However, it comes back with a different style in (f).
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(a) Example of an automatically generated test
case

(b) Example of a manual written test case

Figure 4-6: Example test cases for Capivara

the second version.

Next, we examined the long-term reusability of test cases as the applications undergo

multiple design changes. For Capivara, we considered two additional major versions: 0.7.0

(Aug. ’05) and 0.8.0 (Sep. ’06), whereas for jEdit, we considered five more: 2.5.1 (Jul.

’00), 2.6final (Nov. ’00), 3.0.1 (Jan. ’01), 3.1 (Apr. ’01), and 3.2.1 (Sep. ’01). We tested

whether each of the original test cases was still reusable to test the later versions and for

those no longer reusable, identified the causes.

Figure 4-7 summarizes our findings. To show the reusability of the test cases, we ar-

ranged each version across the horizontal axis. For each version, the height of the baseline

region (blue) indicates the number of the original test cases still being reusable for that

version. This region exhibits a downward slope toward the direction of the newer versions,

reflecting the fact that fewer and fewer of the original test cases remained applicable. The

sharpest drop-off can be observed at version 0.8.0 for Capivara (Figure 4-5.c) and at 2.6fi-

nal for jEdit (Figure 4-5.C), which can be attributed to the change of major design in these

versions. The lesson that can be drawn from this observation is that as long as the design

of a GUI evolve incrementally, as often the case, a significant number of test cases can be

reusable, which is important for supporting regression testing.

Also, we identified five major causes for a test case to become unusable: (F1) change

in the visual style, e.g. skin, size, font, etc.; (F2) removal of the action component, e.g. a

button or a checkbox to be clicked; (F3) removal of the expected visual feedback, e.g. a

dialog or some text appears; (F4) change in the surrounding of the target components; and

(F5) change in internal behavior.
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(a) Test Capivara with Sikuli Test (b) Test Capivara with position-based actions

(c) Test jEdit with Sikuli Test (d) Test jEdit with position-based actions

Figure 4-7: Long-term regression testing for Capivara and jEdit. (a) and (c) are tested with
Sikuli Test, while (b) and (d) are done with position-based actions. P denotes the test was
passed, and F1 to F6 are six different causes of failures: (F1) change in the visual style, e.g.
skin, size, font, etc.; (F2) removal of the action component; (F3) removal of the expected
visual feedback; (F4) change in the surrounding of the target components; (F5) change
in internal behavior; and (F6) change of widget position (only occurred in position-based
tests).

63



Test Cases of Capivara (1st) (2nd) (4th)
0.5.1 0.6.0 0.8.0

connection-setting-cancel A P P
connection-setting-ok A P P
new-host-in-favorites AM P F1
text-changed-in-status-and-tab A P F1
menu-exit-dialog AM P F2
toolbar-sync-dialog A P P
name-size-column-in-listbox A P F1
menu-options-tree AM P F4
enabled-disabled-buttons AM P F1
splitter-resize M F3 F3
Test Cases of jEdit (1st) (2nd) (4th)

2.3final 2.4.1 2.6final
textarea-add-del-by-key AM P F1
textarea-add-del-by-menu AM P F1
new-tab-by-key A P P
new-tab-by-menu AM P P
new-tab-by-toolbar AM F2 F1
find-by-key AM P F1
find-by-menu AM P F1
find-by-toolbar AM P F2
textfield-on-toolbar AM F5 F3
toolbar-print-dialog A F2 F1
menu-submenu AM P P
scroll-textarea M P F1
quit-cancel A P F1

Table 4.2: Test cases created for the first version automatically (A), semi-automatically
(AM) or manually (M) and their reusability (Pass or Fail) in subsequent versions (2nd and
4th).

Each cause of test failures is represented in the figure as one of the colored regions

above the baseline region, with its height indicating the number of unusable test cases

attributed to it. As can be expected, the most dominant cause is change in visual style

(F1, orange), since our testing framework is largely driven by high-level visual cues. One

surprising observation is an unusual upward slope of F2 occurred at jEdit 2.5.1, indicating

that test cases that were not reusable in the previous version became reusable. Upon close

examination, we found that toolbar icons were removed at 2.4.1 but reintroduced at 2.5.1,

making the test cases targeting toolbar icons reusable again. While such reversal of GUI

design is rare in practice, when it does happen, Sikuli Test is able to capture it.
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To compare the performance of Sikuli Test with existing position-based methods (i.e.

locating widget using fixed coordinates in the scripts instead of using screenshots), an extra

set of experiments are done by replacing each screenshot in the action statements with the

coordinate of the center of the location where the screenshot is taken. Figure 4-7 (b) and (d)

show the result of this experiment, where F6 represents the failures caused by the change of

widgets’ location. This comparison shows that Sikuli Test effectively reduces the failures

caused by the fixed-position method and extends the life of the test cases.

4.6 Conclusion

We presented Sikuli Test, a new approach to GUI testing using computer vision. Besides

meeting the five design goals identified in an interview study with GUI testers, Sikuli Test

offers three additional advantages:

1. Readability of test cases: The semantic gap between the test scripts and the test

tasks automated by the scripts is small. It is easy to read a test script and understand

what GUI feature the script is designed to test.

2. Platform independence: Regardless of the platform a GUI application is devel-

oped on, Sikuli Test can be used to test the GUI’s visual feedback. We have shown

the examples of test scripts written to test traditional desktop GUI applications on

Windows and Mac OS X, as well as Web applications in a browser and mobile appli-

cations in an Android emulator. Even though Sikuli Test is not designed to let users

write scripts once and use them across multiple platforms, it is still possible to do so

as long as the appearance of the applications looks the same.

3. Separation of design and implementation: Test cases can be generated by design-

ers and handed to programmers to implement features that must pass the test cases,

to eliminate the biases that may arise when programmers are asked to test their own

implementation.

However, Sikuli Test currently has two major limitations that can be improved upon in

the future. First, while Sikuli Test can assert what visual feedback is expected to appear or
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to disappear, it is unable to detect unexpected visual feedback. For example, if a program-

mer accidentally places a random image in a blank area, it is an undetectable error since no

one would have anticipated the need to test that area with assertions. One solution would

be to run the visual feedback detector at the test time to see if there is any detected visual

feedback not covered by an assertion statement. Second, Sikuli Test is designed to test a

GUI’s outward visual feedback and is thus unable to test the GUI’s internal functionalities.

For example, while Sikuli Test can check if a visual feedback is correctly provided to the

user who clicks the save button, it does not know if the file is indeed saved. One solution

would be to treat Sikuli Test not as a replacement of but a complement to an existing testing

tool. Together they make sure both the outward feedback and inward functionalities of a

GUI can be sufficiently tested, a task neither can accomplish alone.
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Chapter 5

Deep Shot

The landscape of personal computing has shifted from one computer per user to multiple

heterogeneous devices per user [13]. To carry out an everyday task, such as finding a

restaurant for dinner, a user often switches from one device to another according to the

situation. For example, a user has looked up the directions to the restaurant on her PC at

home but then redoes the search on her phone for navigation in her car. A recent study

found that this and other common tasks, such as email and web browsing, were the source

of the most frustration while switching between different devices [24].

The lack of tool support for migrating tasks across devices has also been pointed out

by several previous studies. A survey [35] conducted in 1997 showed that 62.9% of people

stated they transferred information for completing a task on other devices “by hand”, i.e.,

reading a text string on a display and typing it on another computer. A non-trivial number

of people transferred data through shared files, FTP, or emails. Surprisingly, a more recent

study in 2008 [13] showed that people were still using these old-fashioned mechanisms

plus emerging cloud services (e.g., Google Docs) to transfer information across devices.

Although cloud services and ubiquitous access to the Internet seem to be an antidote, the

study found people were still frustrated as they have to manually reconstruct their work

state, e.g., opening and locating the part of a PDF article that was viewed on the previous

computer to continue reading. Furthermore, moving between heterogeneous devices (e.g.,

a PC and a mobile phone) amplifies the task resumption overhead due to various contextual

and resource constraints [3, 2, 24].
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Prior work made substantial progress in providing more integrated user experience for

task migration across devices (e.g., [16, 30, 33, 37]). However, existing solutions are in-

sufficient in two ways. First, some prior work primarily focused on infrastructure for trans-

ferring data across devices, not user interaction. Compared to moving data or application

windows around on a single computer by drag-and-drop, there is no similarly easy method

for cross-device migration. Secondly, existing tools focusing on user interaction are mostly

document-centric with little support for recovering a work state [30, 3, 2]. Manually recov-

ering a work state requires users to deal with many details that can distract them from the

task that they want to resume.

To address these issues, we present Deep Shot, a framework that supports task migration

by allowing users to transfer not only documents but also application states across devices

using a mobile phone camera. Deep Shot provides two novel camera-based interaction

techniques, deep shooting and deep posting. These two techniques allow seamless and

intuitive migration of user tasks from one device to another by one uniform operation:

taking pictures.

Deep shooting allows a user to capture and to persist the deep information, i.e., the

information behind the raw pixels, such as application states, with a camera-like mobile

phone application in a single click (see Figure 1-2). The captured work state can be resumed

immediately on the mobile phone, opened later, or migrated to another device with deep

posting, which pushes deep information to a device with a camera as well.

To support deep shooting and deep posting, we created a framework, Deep Shot, for

application developers to easily incorporate these techniques into their applications. It

includes two key ideas. First, Deep Shot uses robust computer vision algorithms to identify

what portion of the screen the user is looking at through the camera. We conducted two

experiments to show the feasibility of this technology. Second, Deep Shot requires the

applications to encode the deep information as Uniform Resource Identifiers (URIs) to

respond requests from deep shooting or posting so that a task can be resumed even using

different applications, such as viewing a Microsoft Outlook contact’s information with a

native Android application.

In the rest of this chapter, we first clarify our motivation using a running example in
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which a user searches for a restaurant and discuss how Deep Shot supports this task by

allowing a user to easily migrate the task across devices. Next, we discuss the design of

our framework, and implementation details. We also show how developers can leverage

our framework to enable deep shooting and posting in their applications. We then discuss

the range of scenarios that Deep Shot can address. Finally, we describe an evaluation of

our techniques and framework, and conclude with related and future work.

5.1 Motivation

Here we discuss why it is important to address task migration across devices. Let us assume

a user, Bob, is searching for a restaurant for dinner on Yelp at home. Bob has read several

reviews of a restaurant on his desktop computer. He decides to try one restaurant and clicks

on the map on the review page to read the driving directions. Everything is going smoothly

until he needs to leave home and move the directions to his mobile phone for navigation in

his car. How can Bob open the same region of the map on his phone?

Bob could manually type the restaurant’s address or name and search on the phone. Or

he could click “Link” on Google Maps to get a bookmarkable URL of the current region,

and email that URL to himself so that he can look for the email and open the URL in it

on his phone later. These approaches generally require the user to perform two steps: 1)

inspecting the internal state of the application, e.g., the URL, and 2) copying it by hand or

via a temporary medium, e.g., a file or an email, from one device to another.

The inspecting step varies widely depending on the applications. In a web page or web

application, the Uniform Resource Locator (URL) on the address bar often represents the

application state that a user intends to transfer. However, in many web applications using

Ajax, the URL no longer represents the current state of the application. A user is often

required to perform extra steps to retrieve the real “bookmarkable” URL, such as what Bob

would do in Google Maps. However, many Ajax and desktop applications do not have a

URL that represents what the user is viewing and working on. Tools have been developed to

overcome this problem by recording the commands needed to return a page [20]. However,

a desktop application’s state is generally inaccessible by end users.
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The copying step requires a user to either manually re-enter the information on another

device, e.g., when transferring a small piece of information such as a short URL or the

name of a landmark, or understand and deal with low-level operations such as how to save

information in files and use file transferring software.

Anecdotally, people sometimes take a picture of a particular region of interest (ROI) on

the monitor using a camera, which is generally available on modern mobile phones. This

method utilizes the camera as a physical tool to directly inspect and copy the information

at the same time and saves the user’s time from retyping the information on another device.

In Bob’s scenario, he could capture the portion of the map he needs in one simple step, i.e.,

taking a picture. This method is simple, independent of the application the user is using,

and avoids many of the hassles of manual inspection and copying. However, it is limited

in that information being transferred is encoded in raw pixels and will not allow a user to

perform further interaction, e.g., panning or zooming a map.

5.2 Deep Shooting and Posting

Inspired by the picture-shooting metaphor above, we designed and implemented deep

shooting and posting, two novel techniques that are as simple to perform as taking a pic-

ture, but copy deep information behind the raw pixels of the captured region, that is, the

application state.

With deep shooting (see Figure 5-1 ), Bob can copy a specific region of the map dis-

played on his computer’s screen to his mobile phone by simply taking a picture of it with

the phone’s camera. The same region is then shown on the phone automatically. More

importantly, the captured map remains interactive on the mobile phone. In other words,

Bob can pan the map to see the area that is not originally captured by the camera, or zoom

in to see more details of the streets.

Based on the picture captured with deep shooting, our system automatically identifies

the captured area on the screen and the front-most application containing that area. Our

system then pulls information from the application and sends it to the mobile phone that

took the picture. The information is encoded as a URI, which has been accepted as a stan-
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Figure 5-1: A user takes a picture of the screen of her computer and then sees the appli-
cation with the current state on her phone. Our system recognizes the application that the
user is looking through the camera, automatically migrates it onto the mobile phone, and
recovers its state.
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dard way to launch applications on contemporary mobile operating systems such as Apple

iOS and Android. Therefore, the user can view or manipulate the extracted information on

the mobile phone with native applications.

As a complement to deep shooting, deep posting allows a user to push information from

a mobile phone to another device. Let us assume Bob has opened the restaurant review page

on his mobile phone to write a review, but soon decides he would rather continue this task

on his desktop computer, where it is easier to type. To do so, Bob aims the mobile phone

camera at the computer screen with the review page still shown on the phone. Once deep

posting is activated (e.g., via a hot-button on the phone), the review page becomes semi-

transparent so that the user can see through it and know which part of the screen he is

targeting at. Based on the screen region as seen through the camera, once Bob confirms,

deep posting identifies the intended computer screen and automatically opens the same

review page on it.

Deep posting employs the same mechanism as deep shooting in identifying the target

computer screen and the specific region on the screen that the user sees through the camera.

However, unlike deep shooting, deep posting does not need to identify which application

the user is looking at, since the application for handling the information being posted may

not be running.

The deep shooting application running on the mobile phone maintains the history of

deep shots that a user has taken. Similar to browsing photos in a photo gallery application,

a user can browse all of his deep shots (see Figure 5-2 ). Each shot in this gallery shows

the title and the thumbnail of the captured application. With the gallery, a user can directly

launch a desired application with its captured state on the phone. The gallery provides a

simple interface for users to manage their tasks and switch between them.

Currently, the Deep Shot framework is designed for migrating tasks across personal

devices. Thus, before using deep shooting or posting, a user needs to log into a remote

server with the user’s credential on each personal device, and the credentials can be stored

in the devices thereafter. Therefore, this authentication step only needs to be performed

once for each device. We will discuss the possibilities of eliminating the authentication

process in the Future Work section.
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Figure 5-2: The Deep Shot gallery allows a user to quickly launch an application with a
previously captured work state. A user can flip left or right on the touch screen to browse
the gallery.

5.3 The Deep Shot Framework

To support deep shooting and posting, we designed the underlying Deep Shot framework

with two goals in mind. First, from the user’s perspective, deep shooting and posting

should be as easy to use as taking a picture with an ordinary camera. Therefore, the user

should not have to do any network configuration beforehand nor pair any devices to use

Deep Shot. Second, from the developer’s perspective, the Deep Shot framework should

be easy to integrate with an application. Developers should not need to worry about the

communication between devices nor understand how to detect what portion of screen the

user is looking at through the camera.

To achieve these goals, we have to carefully choose the technologies for the link layer

and the network layer. Many options exist for the link-layer technologies, such as IrDA,

USB, FireWire, Ethernet, Bluetooth and WiFi. We chose WiFi/Ethernet for their ubiquity

on almost all devices and then we can utilize the standard TCP/IP stacks. For the net-

work layer, device discovery and association are still challenging obstacles today. Since

we want to focus on migration across personal devices, we decided to base our framework

on an instant messaging (IM) architecture, which was previously used in cross-device in-
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frastructures such as PIE [33]. Thus, we can build on top of standard TCP/IP and avoid the

problems of dynamic IP addresses, private IP addresses behind Network Address Transla-

tion (NAT) gateways, and firewalls that block connections from the outside. However, this

architecture requires an authentication step before using our system. Fortunately, authenti-

cation only needs to be performed once for each device and does not add any cost for using

Deep Shot thereafter.

We chose Extensible Messaging and Presence Protocol (XMPP), also known as Jabber,

for our IM protocol. One reason is that XMPP supports logging in with the same user ac-

count from multiple different devices. A user account with a device has a unique identifier

of the form "user@server/device." This allows users to set up all of their devices with the

same user name. Since XMPP can list all of a user’s presences across devices, users do

not have to manually add their devices into their contact list. Also, the size of a XMPP

message is not limited, which means we can send relatively large data, e.g., a JPEG photo,

through a typical message packet without hacking the protocol.

5.3.1 System Components

Deep Shot’s architecture is shown in Figure 5-3. The pink components are required for deep

posting, whereas the yellow ones are required for deep shooting. There are five roles in our

system: a shooter, a poster, a dispatcher, launchers and applications (apps). The shooter

and the poster only run on a capturing device, e.g., a mobile phone equipped with a camera.

The dispatcher runs on a target device, which accepts a deep shooting or posting request

from a capturing device. The launchers run on both sides of the system. On the capturing

device, the launcher launches mobile applications to recover a work state captured by deep

shooting, whereas on the target device it launches desktop applications to present a work

state that is posted by deep posting.

5.3.2 Protocol Design

Here we describe the protocols between each pair of system components. To simplify the

design of our protocols, the messages exchanged among all components are structured and
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Figure 5-3: The system architecture of Deep Shot. Solid lines represent direct messages
between components, whereas dotted lines represents the launching signal sent from the
launcher.
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encoded in the JavaScript Object Notation (JSON) key-value pairs. Besides, all binary data,

e.g. images, are encoded in Base64 so we can include them in standard XMPP messages.

Deep Shooting: Shooter-Dispatcher Protocol

Once a user uses the shooter to take a picture of the region of interest on a computer

monitor, an XMPP message with the picture and a subject deepshot.req indicating a deep

shooting request is broadcast to all available devices.

When the dispatchers running on the target devices receive the request message, they

immediately take a screenshot of the entire screen of their devices. Each dispatcher then

matches the picture it receives against the screenshot. The matching algorithms (described

in the next section) locate the region that the user was looking at through the camera. Then

the dispatcher sends a new message with the x-y coordinates of the corners of the region

and the central point of the region to the front-most application overlapping the center

point, through a WebSocket connection.

After the application has handled the message and returned a response, the dispatcher

inserts the application name, and the thumbnail of the matched region on the screenshot.

Both are useful for browsing the deep shooting history on the capturing device. Finally, the

dispatcher sends the response to the shooter via the XMPP server. If the picture matches

on two different dispatchers, both send the response back and the client would pick the first

response from them.

Deep Shooting: Application-Dispatcher Protocol

The dispatcher is designed as a daemon that always runs in the background on all personal

devices. The dispatcher has the user’s credentials, so it is always connected to the XMPP

server. Therefore, any device can obtain the availability of any other device from the XMPP

server.

The dispatcher communicates with each application using a dedicated WebSocket con-

nection. WebSocket is a new protocol that supports full-duplex and bi-directional com-

munication over a TCP socket. We choose WebSocket for two reasons. First, it is being

standardized by the IETF and W3C, and modern browsers already support WebSocket.
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Thus, we can easily implement a browser extension as a second-level dispatcher for web

applications. Second, since the traditional TCP socket is the most pervasive inter-process

communication (IPC) mechanism, and WebSocket is a simple extension of TCP sockets,

traditional desktop applications can support it easily.

Each time an application that supports Deep Shot is launched, it registers itself with

the dispatcher through a WebSocket connection on a TCP port. A registration process

starts after the standard WebSocket handshaking. The application sends out a registration

message with its name. If the dispatcher accepts the registration, it returns an OK message,

or else it returns a decline message indicating the reason and closes the connection. To

support deep posting, an application sends the command “accept URI_SCHEME”, which

indicates what types of URI schemes it accepts. For example, an email client can register

the “mailto:” scheme, and a web browser can register the “http:” and “https:” schemes.

Once the registration is completed, this WebSocket connection should be kept persistent

until the application is closed so the dispatcher can proactively notify the application when

a request is coming.

Once an application has dealt with the dispatcher’s request, it replies with a message

consisting of at least a URI that encodes the state of the application or the information

to expose. If needed, the application can attach offline resources or files in the response

message. Each attached file is stored in a JSON structure with the file name and the content

of the file.

Deep Shooting: Dispatcher-Launcher Protocol

After the dispatcher receives a reply message from the application, it routes that message

with a subject “deepshot.resp” back to the capturing device that sent out the request.

On the capturing device, a launcher waits for the “deepshot.resp” messages. Once a

response message arrives, the launcher decodes the message and writes all attachments to

the storage on the device. Finally, it opens an appropriate application that handles the URI

replied from the target device to recover the work state and resume the task flow.
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Deep Posting Protocol

The deep posting protocol is based on the same foundation we used in deep shooting,

including JSON structures and XMPP communication. The key role in our system for deep

posting is the poster that runs on a capturing device. The poster accepts requests from the

applications that support our Deep Shot framework. The posting requests should consist of

at least a URI representing the internal state of the application.

Once the poster receives a posting request from an application, it opens the camera and

overlaps the screenshot of the application on the viewfinder so that a user can see the target

device and the information to post at the same time. After the user has confirmed the target

device through the viewfinder, the poster creates a “deeppost.req” message with the picture

taken by the camera and the request from the application. Finally, this message is sent to

all available devices, in the same way as deep shooting.

After the dispatchers running on the user’s other devices receive the “deeppost.req”

message, each of them runs the same vision algorithm used for deep shooting to match the

picture taken by the user against its screenshot. If a dispatcher finds a match, it routes the

request to the launcher.

As we mentioned before, applications register the types of URI schemes they support.

The deep posting launcher requires this information to launch an appropriate application

for the given URI in the request. Each application may register multiple URI schemes.

If a URI scheme can be accepted by multiple applications, the launcher either opens a

dialog so the user can choose an application or just launches a previously specified default

application.

5.3.3 Screen Matching Algorithms

Once a device receives a Deep Shot request, it takes a screenshot of the entire monitor.

It then extracts visual features from the screenshot and the picture taken by the camera,

using a computer vision algorithm, Speeded-Up Robust Features (SURF) [4]. SURF is

robust against scaling and rotation, and faster and more robust than Scale-Invariant Feature

Transform (SIFT) [28], another popular feature extraction algorithm.

78



Figure 5-4: The screen matching algorithms match the picture (at the top) against the
screenshot (at the bottom) and find a projective plane (the orange convex) on it.

We use SURF to detect the key points, which are represented by feature vectors, on the

screenshot and on the picture respectively (see Figure ??). We then compute the cosine

similarity between each pair of key points and find the nearest neighbor for each point.

Finally, with the paired key points, a homography (the perspective transformation between

two planes) can be calculated to find the projective plane on the screen image. Thus, the

region of the screen that the user sees through the camera can be located.
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5.3.4 Content and State Encoding

A migration process of an application consists of transferring not only its content but also

its states. With our framework, developers can store arbitrary offline content, e.g., files,

as an attachment in a Deep Shot request and encode the application states into a URI. A

URI is the key element to resuming a work state in Deep Shot. A URI can be application

independent. For instance, “content://contacts/15” opens a contact manager to show the

person with the id 15; “geo:latitude,longitude” shows the given location in a map applica-

tion; and “document://chi2011.pdf/3” represents the third page of the file “chi2011.pdf”.

Furthermore, developers can append the zoom level, the scrolling position, and all neces-

sary information of this document to the URI as needed. We do not limit the length of a

URI so arbitrary states of an application can be encoded.

Recently, some application frameworks such as Three20 (http://three20.info) have started

to support URL-based navigation in traditional applications. Mobile operating systems

such as Android and iOS also support launching applications with standard URIs (e.g.,

http:, tel: and geo:). Deep Shot allows applications to create their own URIs, although it is

advisable to be compatible with public standards.

5.3.5 Bootstrapping with a Default Responder

To handle the work state of various applications, the Deep Shot framework, needs to be

integrated into those applications by their developers. To deploy such a framework, we need

to address how to bootstrap its usage when application developers have not yet adopted the

framework. Therefore, we implemented a default responder in the dispatcher to handle the

case in which the target application does not support Deep Shot.

If the application that the user is taking a photo of is not registered with the dispatcher,

the default responder replies the screenshot of the entire screen to the capturing device as

well as the coordinates of the matched region. Therefore, users can acquire a clear version

of the screen, i.e., without any noise and distortion caused by the physical camera. They

can also zoom in to see more detail and pan to other parts of the screen that were not in the

original picture. In addition, as the dispatcher takes the screenshot, it also detects clickable
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URLs and information of interest such as phone numbers or addresses, using the operating

system’s accessibility API. These metadata are also transferred along with the screenshot,

so the user can tap on a URL or a phone number on the screenshot to launch a browser or

dial the number directly.

5.3.6 Supporting Web and Desktop Applications

Deep Shot is a general framework that supports traditional desktop applications as well as

web applications. We discuss how Deep Shot supports these two kinds of applications in

this section.

Most modern web applications are written in JavaScript and run inside a web browser,

while their data are stored on remote servers. To further bootstrap the Deep Shot framework

and support this kind of application, we created a web dispatcher, implemented as a Google

Chrome browser extension, which has three important features.

First, the web dispatcher acts as a second-level dispatcher. It routes messages from

the first-level dispatcher to the appropriate web page and sends reply messages back (see

Figure 5-3).

Second, the web dispatcher is a default responder for all web applications that do not

support Deep Shot. If the web dispatcher gets a request asking for data from a site that does

not register itself with Deep Shot (discussed in a later section), it will only return the URL

to that site as a default response. The URL on the address bar often maps to the state of

the current web application. However, some Ajax applications do not have this property or

hides their real URL on purpose. Fortunately, the last feature of our dispatcher addresses

this problem.

Last, the web dispatcher can inject a script into a web application that allows Deep Shot

to extract the application’s state, without the application knowing about Deep Shot. This

is possible because, as a browser extension, the web dispatcher is capable of injecting any

content into any web page from the browser.

In addition to web applications, desktop applications could be more difficult to migrate

since their developers need to make additional effort to encode the application states into
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a URI. Fortunately, most mobile versions of a desktop application are simplified and only

provide the key features on the mobile devices. This means the developers do not need to

encode the complete state of their applications, but can focus on a small set of key states.

For example, the key states of a word processor may only consist of the cursor position, the

zoom level, and the scrolling position of the document. The other states, such as the view

mode and the toolbar’s style, could be unimportant because the mobile word processor does

not have these adjustable features.

5.4 Implementation

We implemented Deep Shot to support both deep shooting and posting. On the mobile

side, we chose the Android platform and implemented the system in Java on a Google

Nexus One phone. On the other side, we implemented the dispatcher and the launcher

in Python on a laptop computer. We also set up a XMPP server using Jabber on a Linux

machine. Besides disabling the message size limit in Jabber’s default configuration, we did

not modify Jabber.

5.5 Developing Deep Shot Extensions

To minimize the effort for developers to incorporate Deep Shot into their applications, we

created a Java library that implements the dispatcher-application protocol and hides the

WebSocket connection inside the library.

The library has a DeepShot class that has one public method, addListener (defined

as follows), for applications to register themselves to listen to Deep Shot requests.

void addListener(Listener listener, String app_name, String[] accepted_uris)

The Listener interface has only one method, DeepShot.Response

onShot(DeepShot.Request req), where the Response contains a URI and op-

tional file attachments, and the Request contains the four corner points and the center

point of the ROI. Deep posting also has a similar API, void post(DeepPost.Request
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req) in a class DeepPost, where DeepPost.Request contains a URI and optional file

attachments.

For web developers, we also provides a JavaScript function, DeepShot.addListener(listener),

from a browser extension, so web developers can simply hook their web applications into

Deep Shot. For example, Google Maps does not show the URL of the current region of the

map in the address bar. To extract the real URL of the current map, we inject the following

script:

if(window.DeepShot){

DeepShot.addListener(function(request){

return {"uri": document.getElementById("link").href};

});

}

With this script, even if Google Maps does not support Deep Shot, users can still use

deep shooting to open any computer map on their phone.

5.6 Scenarios

In this section, we illustrate four typical scenarios that can be accomplished by deep shoot-

ing and posting.

Scenario 1: Taking information to go (PC to mobile phone)

This is the classic scenario that motivated us to develop deep shooting. People usually

work on desktop computers or laptops at work or home. Before moving to another place,

they may look up the information related to that place on their computers. However, as the

information may be hard to remember, they often write down the information on a piece

of paper or look up the same information again on their mobile phones. In this scenario,

people can take the information with them using deep shooting. For example, people could

carry a part of a map or the address of the next meeting place so that they do not need to
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look it up again. People could even capture a YouTube video being played and later resume

watching the video from where they left off on a mobile phone.

Scenario 2: Viewing or saving mobile phone content on PCs (mobile phone to PC)

People generate various kinds of lightweight information on mobile phones, such as photos,

contacts, or unfinished readings. For lightweight tasks, such as transferring a photo in a

phone to a PC so that more people can see it, using existing software tools for syncing

up mobile phones with PCs is cumbersome (e.g., a user might need to plug in the cable

and find the right folder). With deep posting, users can simply aim their camera at the

target computer monitor with the photo still shown on the mobile phone. The photo will

be automatically transferred and opened on the target monitor. Deep posting also allows an

application to post information at a specific position and size, as seen through the camera,

on the target screen, e.g., a Post It application, which cannot be achieved by Bluetooth-

based sync tools.

Scenario 3: Using mobile phones as a bridge between PCs (PC to PC via a mobile

phone)

USB flash drives are widely used to share files among computers. People are used to saving

the information they want to share as files onto a USB drive, and then taking the drive to

another computer. In this kind of scenario, deep shooting can be used to extract information

from an application (e.g., running on an office PC) and automatically transfer it to a mobile

device. The user can then take this mobile device to a home PC and post the extracted

information or work states onto it with deep posting.

Scenario 4: Sharing content between mobile phones (mobile phone to mobile phone)

Although it is still rare to share information between multiple personal mobile devices, it

is common to share information between mobile phones owned by different people. Re-

searchers have developed techniques to address this need. For example, bumping is a syn-

chronous gesture to connect two mobile devices [19]. Although the current Deep Shot
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framework does not support communication between multiple users’ devices, deep shoot-

ing and posting can be used to locate the devices as well as the region of information to

share across multiple users. For example, a user could take a picture of a contact displayed

on another person’s mobile phone with deep shooting, and then the full contact informa-

tion would be automatically transferred to our phone. This scenario potentially requires a

different authentication mechanism though.

5.7 Usability Analysis and Technical Evaluation

We analyze and evaluate this work from three perspectives. From a user’s perspective,

we analyze the interaction model and the usability of deep shooting and posting. From a

developer’s perspective, we analyze the usability and the utility of the API that we provide

for developers. Lastly, from a technical perspective, we evaluate the performance of our

framework and the feasibility of using a camera to locate a region on a monitor.

5.7.1 Interaction Model and Usability Analysis

Traditional GUI applications on PCs provides an action such as “send this to . . . ” in their

menus to let users send local files to remote devices. However, we argue this model is less

intuitive than the deep shooting and posting. For the same task of migrating applications

across devices, in the traditional model, a user would need to select the source application,

the data of interest, and the target device from a list of names or identifiers in multiple

steps with a GUI, which can distract the user from the task. In contrast, deep shooting and

deep posting adopts an old technique - taking pictures using a camera - to simultaneously

identify the source device, the data to transfer, and the target device, all in one action of

taking pictures of computer screens, which is just as easy as doing so of the real world.

This is consistent with the informal feedback we collected from users.

Since there is no extra step beyond taking pictures, the learnability and the memorability

of our techniques are as good as using ordinary cameras on mobile phones. The efficiency

of our techniques is related to two factors. One is the steps performed by the user, and

the other is the performance of our system in terms of speed and accuracy. To do a deep
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shooting or a deep posting, a user needs to perform three steps: launching our application

on a phone, locating the target window on a device through the viewfinder, and pressing the

shutter. These steps are exactly the same as taking a picture using a camera application on

a phone. Therefore, our techniques are as fast as taking a picture from a user’s perspective.

The other factor, the speed and accuracy of our system, will be discussed later from the

technical perspective. Finally, because the steps a user needs to perform are minimized, the

type of error that may occur is taking a wrong region on the screen. However, the user can

simply discard an incorrect capture and redo the procedure. In addition to user errors, our

system may have errors while matching pictures against screenshots. We will examine this

kind of error with a controlled experiment in the following sections.

5.7.2 Technical Evaluation

Finally, we evaluate our system from a technical perspective. We set up two experiments to

explore whether using a camera to locate a region on a monitor is feasible in terms of speed

and accuracy. The first experiment was to test the speed of our system, and the second one

was to test the accuracy of our image-matching algorithm.

Experiment 1: Speed Performance

We used a laptop, a 15-inch MacBook Pro with a high-resolution 1680Œ1050 monitor as

the target device, and a Nexus One running Android 2.2 as the capturing device that takes

512x384 pictures. The capturing device was held by the experimenter at a distance of 20

to 40 cm and a pitch angle of ±20◦ so that about 1
3

of the screen could be seen through the

viewfinder.

We tested four target applications: photos (from Google Street View), short textual

information (from Yelp.com), long textual article with a few images (from CNN.com),

and maps (from Google Maps). For each application three photos were taken using deep

shooting under the setting described above.

The average time of the whole procedure across 12 trials (3 pictures for 4 applications)

was 7.7 seconds (SD 0.3 seconds). By examining the average time of each step, we found
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Figure 5-5: The setup of the reliability experiment.

the network transmission occupied about 50% of the total time, while the rest of processing

time was spent on the target device (34%) and the capturing device (16%). The transmis-

sion caused a significant portion of the latency because our current implementation attaches

raw images captured by the camera in the messages and these messages were routed via

an external server. As a result, we can significantly reduce the latency of our system by

improving the transmission efficiency, e.g., using only visual features instead of the entire

image and not using a third-party server. We will discuss the possibilities in the Future

Work section.

Experiment 2: Reliability

In this experiment, we wanted to test the accuracy of our image-matching algorithm under

typical conditions for taking a picture of a screen as well as extreme conditions that are not

so common. Our experimental setup is shown in Figure 5-5. We used a 15-inch MacBook

Pro laptop so that we could easily adjust and measure the pitch angle of the screen. We

tested four pitch angles for the screen with respect to the phone: −20◦, 0◦, 20◦, and 40◦.

The laptop shows a full-screen browser (Google Chrome) with a web page of the most

popular local restaurant on Yelp, which is a typical webpage consisting of text and images.

An Android phone, Google Nexus One, was tied to an L-square ruler that is perpendicular
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Figure 5-6: The results of the reliability experiment. The total number of trials for each
setting is 20.

to the floor. The height of the camera, which was measured from the surface of the laptop

keyboard to the center of the camera lens, was fixed at 19 cm while the pitch angle was 0◦ or

20◦, and 14.5 cm while the pitch angle was −20◦ or 40◦. These height settings allowed the

camera to focus around the same target on the screen, namely the name of the restaurant.

We set the phone in front of the screen with a distance of 5 to 50 cm, as measured from the

screen shaft to the camera lens. Finally, for each pitch angle, we took five pictures for every

5 cm between 5 cm and 50 cm, which resulted in a total of 200 pictures. This experiment

was conducted in an office with ceiling fluorescent lights.

We used the algorithm mentioned before to match each picture against the screen dis-

played on the laptop. If the center of the matched region overlapped the expected region

on the screen, it was considered as a successful match.

The results of this experiment are summarized in Figure 5-6. The chart shows the num-

ber of successful matches for each adjusted distance to the screen, instead of the distance

measured to the screen shaft. Because the screen was tilted, we adjust the distance to the

shaft by adding h tan θ, where h is the height of the phone and θ is the pitch angle. With
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Figure 5-7: The regions the camera sees with a distance 5 to 50 cm away from the screen
while the monitor is parallel to the phone.

this adjustment, we only show the results between 15 cm and 40 cm where all the settings

have valid measurements.

The experiment showed that the matching algorithm was highly robust with a 97%

success rate, when the camera was parallel to the monitor and the distance between them

ranged between 10 and 40 cm. This range is sufficient to cover everything from a small

region, such as a restaurant’s name, to the entire screen (see Figure 5-7). Even when the

camera was tilted, taking pictures in the range of 20 to 30 cm was still robust (96.7%

success). The accuracy significantly decreased when the camera is too close to (< 10 cm)

or too far (> 40 cm) from the screen, but these conditions are uncommon as users can seek

the appropriate size of the target through the camera. The results of this experiment showed

that using a camera with our algorithm was robust enough to locate a region on a monitor.
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5.8 Conclusion and Future Work

We conclude by discussing the limitation of Deep Shot and possible extensions for future

work.

Multiple users: Our current system finds possible target devices from a list of the

user’s online devices. It is easy to add other users’ devices into the user’s “friend list,” so

that they can be notified when a capture event happens. However, this would add extra

effort of managing the device list. A possible solution is to replace the XMPP layer with a

local service discovery protocol, such as Apple Bonjour, and broadcast the request to local

devices.

Transmitting visual features instead of pictures: In the current implementation, we

send pictures directly in a request, which raise privacy concerns since the devices that re-

ceive the request can “see” the pictures, especially for a multiple-user environment. There-

fore, a possible solution is to extract the visual features directly on the capturing device

and only send the feature vectors in a request. This could dramatically speed up the perfor-

mance and also prevent malicious request sniffers. In addition, this could enable real-time

matching feedback on the target screen, so users can be confident that the matching is

successful and also know which region of the screen will be captured.

Limitation on feature matching: Feature matching may not work in some scenarios.

For example, nothing can be extracted and matched if a user intends to capture a blank

region. However, we can assume that no valuable information exist in this area and sim-

ply show the photo she took back to her. A more common problem is unfocused photos,

although this could be solved with the real-time matching feedback we mentioned above.

This chapter presented two novel interaction techniques, deep shooting and deep post-

ing, to migrate a task across devices and a robust and extensible framework to support

them called Deep Shot. We demonstrated that Deep Shot is reliable and feasible to support

a range of everyday tasks migrating across devices using one simple gesture.
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Chapter 6

PAX

Pixels are the most common characteristic and the ultimate elements produced by every

application with a graphical user interface (GUI). However, pixel-level interpretation for

GUI automation, testing, and customization have room for improvement in terms of speed

and accuracy. For example, Sikuli Script (described in Chapter ?? is not very fast, because

it searches the screenshots of GUI elements across the whole screen and does not know

how to narrow down the search space. Furthermore, it is hard to detect and extract the

text content from pixel data. Current Optical Character Recognition (OCR) algorithms

are designed for scanned documents, which are high-resolution with white background

and simple column-based layouts, but not for on-screen text, which is low-resolution with

colored background and could be randomly placed on the screen. Using current OCR

algorithms on screen text would generate poor results [45, 43]. (See Figure 6-4 for an

example.)

In order to maintain platform independence, current pixel-based systems have inten-

tionally neglected the other information that can be obtained from window managers or

accessibility APIs. Unlike pixels, these extra sources of information are not necessarily

available. For example, accessibility APIs are the standard hooks for exposing the internal

structured metadata of a GUI to third-party assistive programs, such as screen readers, but

to support such APIs requires engineering effort from individual software developers. As

a result, accessibility hooks may be omitted or added later as the software matures. Fortu-

nately, even not all applications, some popular commercial applications and built-in soft-
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ware on modern operating systems are accessibility-enabled. Hurst et al. reported that 74%

of the widgets in eight popular applications were correctly identified by the accessibility

API [21]. Therefore, why not leverage the accessibility metadata if the target applications

provide them?

This chapter introduces PAX, a hybrid framework combining Pixels and Accessibility

APIs. PAX enhances the capabilities of current pixel-based systems and enables new in-

teractive applications on top of existing interfaces. The key insight is that accessibility and

pixel interpretations complement each other. Thus, both of these sources of information

should be used together if possible.

PAX combines pixels with other information sources provided by GUIs, including ac-

cessibility metadata and low-level rendering data from the window manager, and associates

the pixels with their internal hierarchical and structured attributes. As a result, PAX not

only knows what is visible to the user on the screen but also understands the content and

structures behind the pixels. We use accessibility metadata as a convenient and accurate

source of widgets’ information. If the accessibility metadata is not available, PAX automat-

ically switches to pixel-level interpretation and still returns useful data. Furthermore, we

use pixel-level methods to optimize the accessibility metadata. For instance, when accessi-

bility APIs are not fine-grained enough to return the position of each word in a paragraph of

text, we use a pixel-based segmentation algorithm, along with the known text for the whole

paragraph obtained from the accessibility API, to locate the words with high precision.

The potential impact of PAX lies in its ability to improve existing pixel-based systems

and to enable implementation of novel interaction techniques on top of existing interfaces.

We validate this claim with concrete examples: the enhancement of pixel-based GUI au-

tomation (i.e., Sikuli Script [49]) and the implementation of two novel applications: Screen

Search and Screen Copy. Screen Search allows users to conduct text-based search across

multiple applications over the entire desktop rather than being limited to a particular win-

dow. It is applicable to any GUI components with text on the screen (e.g. on a title bar or

in a tooltip of a button), even if it is occluded by other windows. Screen Copy allows users

to copy the text content of a GUI component as well as the component itself. Users can

paste the copied text into a text editor or reuse the copied component in a GUI designer
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application. The tool can be applied even when the text is not selectable or when the source

code of the GUI is not available.

We make the following contributions in this chapter:

• A hybrid framework that demonstrates how pixel analysis and accessibility metadata

can be used together and complement each other.

• A text detection algorithm that finds text in screenshots, even with colorful back-

grounds.

• A text segmentation algorithm that segments an image of a paragraph of text into

individual word images, given known text from the accessibility metadata.

• Validation of the framework in two novel applications and one enhancement of an

existing system.

6.1 Pixel Analysis Versus Accessibility API

In this section, we describe the advantages and disadvantages of pixel-based methods and

how we can use accessibility APIs to enhance the capabilities and performance of those

methods.

6.1.1 Pixel Analysis

Pixels are the most common output medium of current computing devices. Every GUI

application is eventually rendered as pixels on a screen. Unlike the pixels perceived from

the real world and generated by a digital camera, the pixels generated by a computer itself

have no noise, no distortion, and no other source of interference. Thus, early systems were

able to use naïve bitmap matching to find targets on a screen [34, 51]. Furthermore, Prefab

has demonstrated that a UI model can be built from pixels in real-time so that researchers

can build new interaction techniques on top of existing interfaces [14, 15].

In contrast to understanding the UI model behind pixels, Sikuli Script takes a different

approach to automate existing interfaces. In order to let users use loosely-bounded screen-
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shots of automation targets, Sikuli uses template matching to fuzzily find the screenshots

on the whole screen.

While they hold promise, the effectiveness of pixel-based methods can be challenged

by four factors:

• Visibility constraints. Invisible information, such as the items out of the current

scrolling area or even the targets that are occluded by other windows, cannot be

detected by pixel-based methods.

• Visual variations. The accuracy of pixel analysis depends heavily on the look of

target interfaces. If the user makes dramatic changes to the color scheme or the

application theme, neither Prefab’s trained prototypes nor Sikuli Script’s fuzzy tem-

plate matching screenshots can deal with the visual variations that result from such

changes.

• Exhaustive screen search. Pixel analysis is a potentially expensive operation, espe-

cially in high-resolution and multiple monitor environments with many millions of

pixels. However, existing pixel-based methods such as Sikuli and Prefab often need

to consider every pixel on the screen indiscriminately in order to locate certain tar-

gets, unless there is an external mechanism to direct their attention to specific regions

on the screen.

• Low-resolution text. The text content of an interface is hard to extract purely from

pixels. Existing OCR engines are designed for high-resolution (150 to 300 DPI)

scanned documents with white background and simple column-based layouts, but not

for low-resolution screens (72 or 96 DPI) with colorful backgrounds and arbitrary

layout. (See Figure 6-1 for examples of low-resolution text.) Simply plugging an

existing OCR engine into a pixel-based system does not immediately work.

6.1.2 Accessibility API

Accessibility APIs are the standard interfaces built in modern desktop operating systems for

assistive applications, such as screen readers, to access the low-level information of a user
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(a) x-height=4 (b) x-height=5 (c) x-height=6

(d) x-height=7

Figure 6-1: Low-resolution and antialiased text on the screen is very difficult to be recog-
nized with off-the-shelf OCR engines.

interface. Accessibility metadata is hierarchical, structured, and precise. For example, on

Mac OS X, for an “OK” button in a confirmation dialog, we can get its role (AXButton),

role description for humans, title, help message (the tooltip), enabled or disabled state,

parent component, parent window, position, size, etc.

Accessibility APIs provide a convenient way to access many low-level attributes of

existing software. However, to support such an API, application developers have to put

in extra engineering effort to correctly expose the internal data. As a result, not every

application and GUI widget supports accessibility APIs. Hurst et al. reported that only 74%

of the widgets in eight popular applications were correctly identified by the accessibility

API [21].

We conducted our own investigation into the current accessibility APIs for Mac OS X

and Microsoft Windows (Microsoft Active Accessibility) regarding their capabilities and

application compliance. We identified five challenges:

• Indifference to visibility. Accessibility APIs does not know if a window or a GUI

component is visible or not (see Figure 1-3(a)). The location and the size of a min-

imized window would be returned as its original place and size before minimizing.

If items are out of a scrolling area, they still can be reached by the accessibility API,

and there is no way to tell which of them are visible to the user. This can lead to ex-
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cessive and incorrect information when the developer just wants information about

those the visible objects.

• Point-based object access. Accessibility APIs support hit testing to gain access to

an interface object shown on the screen. However, this ability is point-based and is

limited to a single object. In many scenarios, such as in Deep Shot and Sikuli Script,

the user could select an arbitrary region on the screen, which consists of multiple

objects within that region. Therefore, we need a mechanism to allow accessing a

group of objects in a given region.

• Incomplete support. Even applications that support accessibility APIs may not do

so completely, as confirmed in the study of Hurst et al. [21]. An application may

include new or complicated widgets that do not provide any accessibility metadata

because they are not in the standard widget set.

• Coarse granularity. The granularity of accessibility metadata may not fulfill the

developer’s needs. For example, the text content of a document may be returned

as a block of text, where a novel interface technique may need the location of each

individual word.

• Inconsistent text. The text shown on an interface is not necessary consistent with the

accessibility metadata, as it can be reformatted in an unknown way. For example, a

date in accessibility metadata is “Friday, April 15, 2011 10:48:27 PM ET” but could

be displayed as “Today, 10:48PM” on the screen.

Recognizing the respective strengths and weaknesses of pixels and accessibility APIs,

we believe it would be ideal to combine them in a complementary manner, offering both

generality from pixels and precision from accessibility metadata at the same time.

6.2 PAX: A Hybrid Framework

We propose PAX, a Pixel+Accessibility hybrid framework that associates the high-level

visual representation of GUI widgets with their low-level structured and hierarchical infor-
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Figure 6-2: The tree of PAX UI elements. The yellow nodes, created using accessibility
and window manager information. The red nodes are the elements exposed using accessi-
bility APIs, while the green ones are reverse engineered from pixels.

mation. PAX has three sources of input: pixels, accessibility APIs, and window managers.

PAX consolidates the information from these three sources into a new API that allows de-

velopers to easily access not only the pixels of the GUI widgets on the screen but also their

internal information.

PAX associates the pixel representation of each GUI element on the screen with its

underlying attributes, such as its role (which could be a button, a text field, etc.) and its

text content or value. The underlying attributes are retrieved from the accessibility API if

available. If not, PAX attempts to infer the role of the element from its pixel representation

using template matching and uses pixel-based algorithms to detect and recognize the text

(see Figure 6-2).

PAX can improve the effectiveness of existing systems that are based purely on ac-

cessibility APIs or on pixels. On the one hand, systems based on accessibility APIs can

benefit from the knowledge of the GUI’s apparent visual representation to resolve certain
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ambiguities. On the other hand, pixel-based systems can use PAX to improve speed and

accuracy. For example, PAX enables identification of a particular UI element using an

XPath. Sikuli Script can store the XPath to a target UI component when taking the screen

shot of it along with the screen shot image (e.g. in the header of the PNG file) and later use

that path to locate the component without running template matching on the whole screen,

or to constrain the search in a smaller region. Furthermore, PAX enables Sikuli Script

to accept simple commands, e.g. find( ).value(), to

easily retrieve the value of a slider without calculating the position of the thumb to infer it.

6.2.1 Designing PAX

There are three design goals for PAX:

1. The framework should enable existing pixel-based systems to easily access internal

widget information given a region or a point on the screen.

2. The framework should simplify the difficulty and complexity in implementing novel

interaction techniques on existing interfaces.

3. The framework should automatically give the most accurate results from available

resources (either from accessibility metadata or pixel reverse engineering).

PAX maintains a tree of UIElement objects shown on the screen. The root of this tree

is a virtual node, which does not represent any physical GUI elements. The root returns

all running applications as its children and can be obtained by calling a global function

getUIElementRoot(). Each application is also a UI element, which returns its opened

windows. Each window recursively contains the same hierarchical structure of its title bar,

tool bar, and all the other UI elements.

PAX distinguishes three different visibility levels for a UI element:

• Visible. This element can be fully seen on the screen, or partially seen because of

parts of it are scrolled out.
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• Virtually visible. This element is meant to be visible on the screen but is partially or

entirely occluded by other windows in front of it because of limited screen space; if

the screen was infinitely large and no windows needed to overlap, this element would

be completely visible.

• Invisible. This element is not meant to be seen by users because it is scrolled out of

view, in a minimized window, or hidden by design.

Therefore, each UI element has three different methods to get its children according

to their visibility: getVisibleChildren(), getVirtuallyVisibleChildren(), getChildren(), where

they return the visible children, virtually visible children, and all children, respectively.

Because a UI element may be partially invisible, PAX also provides two methods, getVisi-

bleBounds(), which returns the bounds of the visible part of a UI element, and getBounds(),

which returns the original bounds.

Like accessibility APIs, PAX provides getRole(), getText(), and getValue(), for getting

the role, the text, and the value of a UI element, respectively. A role represents the type

of a component, e.g. a button or a list item. Text can be the label or the string value of a

component, such as a text label or text field. A value is a number that is only meaningful for

some components, e.g. a slider or a check box. These values are retrieved from accessibility

APIs if they are available; otherwise pixel reverse engineering techniques are used. Further,

PAX also provides getVisibleText(), which returns the text actually shown to the user.

In addition to the standard accessibility attributes, each UI element has a getScreen-

shot() method for getting the screen shot of the element even it is only virtually visible, and

getXPath(), which returns an XPath to the element, such as /Application[name=“Word”]/Window[1]

/TabGroup[1]/Group[text=“Paragraph”]/MenuButton[text=“Bulleted List”]. The name

attribute in an XPath is only valid for Applications nodes, whereas text and value can be

used in the remaining nodes. Developers can save the path and locate the same element

quickly with a global function locateUIElement(xpath).

To find particular elements, two methods can be used, by screen location or by con-

tent. PAX supports single-point hit testing with getUIElementAtPoint(x, y), which returns

the element at the given point, and getUIElementsInRect(rectangle), which returns all the
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visible elements in the given rectangle on the screen. To find by content, each UI element

has the three methods findChildren(pattern), findVisibleChildren(pattern) and findVirtual-

lyVisibleChildren(pattern), which return all, visible, and virtually visible children whose

text content matches the given regular expression pattern.

Finally, to better support advanced interaction techniques, each UI element has a method

focus(), which sets the keyboard focus to that element and also brings its parent window to

the front at the same time. This is particularly useful when the developers need to perform

further interaction on a UI element.

6.2.2 Bridging between Accessibility APIs and Pixels

One of this framework’s goals is to automatically give the most accurate results from the

available resources. Therefore, PAX constructs the UI element tree from all running ap-

plications and their corresponding accessibility handles. If an application has exposed all

necessary accessibility hooks, its descendants in the PAX tree are simply copied from the

accessibility tree and wrapped up with a UIElement interface. Sometimes a few widgets or

even the entire application do not support accessibility APIs, and in this case, each of these

widgets or windows looks like a black hole, with only a single node in the accessibility tree

to record its boundaries.

When PAX walks down the accessibility tree and reaches a leaf node, it determines if

there is a need to reverse engineer the pixel contents of the node with three simple rules:

(1) if the node is a text component (e.g. a text label, a text field, or a text area), run our text

segmentation algorithm to breaks the text into word component pieces; (2) if the node’s

role is not a container and not a text component (e.g. it is a check box, a radio button, etc.),

do nothing; (3) otherwise run pixel reverse engineering methods on the node’s screenshot.

The text segmentation algorithm is useful for higher-granularity information about text

components, and will be described later in this section.

With pixel reverse engineering methods, such as Prefab, we still can provide similar

information to the accessibility metadata even if we reach a dead end in the accessibility

tree. In our current prototype, we did not attempt to completely build the hierarchy of UI

100



widgets from pixels using Prefab’s method, but we used Sikuli’s template matching to find a

small set of GUI widgets (e.g. radio buttons, check boxes, sliders) instead. Furthermore, we

developed a new algorithm for locating arbitrary text content in a complicated component,

e.g. a web view.

A PAX tree is lazily generated on demand. Once parts of it are generated, the results

are cached for fast response. The developer can explicitly request the cache to be updated.

With proper event hooks that monitor the updates of the corresponding UI, the cache can be

updated automatically after the UI is changed. For the reverse-engineered components, the

tree can be automatically updated by comparing the consecutive screen shots. Comparing

two 1680x1050 screenshots takes only 30ms on a modern PC; therefore, it is feasible to

use this technique to continuously monitor the changes of a UI.

In the last parts of this section, we discuss how we have dealt with the challenges

mentioned above as well as the text segmentation and detection algorithms.

6.2.3 Determining the Visibility of UI Elements

With only accessibility APIs, we cannot tell if a window or a component is visible or not.

To address this problem, our solution is to request the z-order of each window from the

window manager, and create “masks” to cover the occupied areas of each window from top

to bottom. Thus, if a component is not fully covered by the masks and also intersects with

its parent’s visible bounds, it is visible from the user’s point of view.

For virtually visible elements, we only care if a UI element intersects with its parent’s

bounds. If so, it is virtually visible; otherwise it is invisible.

6.2.4 Region-based Hit Testing

Accessibility APIs usually support hit testing, which is used for getting the accessibility

information on a particular point on the screen. Unfortunately, this feature is limited to a

single point and a single object.

To get multiple elements in a region, a naïve method is to run the single-point hit testing

on each point in that region. However, this is inefficient because a region could have
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millions of points. Another method is to traverse the component tree and find all visible

elements that intersect with the given region. But this is not possible with pure accessibility

APIs, because they do not know if a component is visible or not.

Fortunately, PAX already has precise information about the visibility of each UI el-

ement. Therefore, PAX provides a function that enables developers to get the internal

information of multiple objects in a given region on the screen.

6.2.5 Text Detection and Extraction From Pixels

Current pixel reverse engineering techniques, such as Prefab, can locate common GUI wid-

gets and extract their textual content. However, Prefab’s method requires text be located

over predictable backgrounds that Prefab can model based on provided examples. If the

text is on a background for which Prefab has not been trained, or a complicated back-

ground that Prefab cannot model (e.g., a photographic wallpaper), it will not find the text.

Recently, computer vision researchers have conducted research on segmentation and recog-

nition methods for small screen-rendered text and reported accuracy achieved of 99.2346%

[45, 43, 44]. However, they assumed the position of the text is known and did not address

the problem of text detection. To complement these pixel reverse engineering techniques,

we have developed a text detection algorithm that locates text in arbitrary position in a

screen image.

Given a screen image, the algorithm for converting it to words has three major steps:

(A1) segment the image into disjoint blobs of pixels, (A2) merge character blobs into word

blobs, and finally apply OCR to extract words.

A1. Salient Component Detection

The goal of this step is to decompose a screen image into a set of salient components, each

of which is composed of a blob of foreground pixels. Given a screen image as input, we

first convert the image from color to grayscale. We apply an adaptive threshold to filter out

low-contrast pixels. Figure 6-3-2 gives an example of the image after this process. Many

container widgets such as panels have large areas of plain background pixels that can be
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Figure 6-3: Text Detection process. (1) Given an image, (2) foreground pixels are extracted
as small blobs. (3) Blobs are connected to form larger blobs, (4) which are classified into
text (red), icon (green), or photo blobs (blue).

easily filtered out in this way. From the high-contrast foreground pixels that are left, we

detect long lines that might be window borders or grouping cues. These long lines are then

removed so that components close to those lines would not be mistakenly interpreted as

being connected by the lines. After this process, text elements turn into a set of blobs, each

of which correspond to a character, whereas image elements turn into a set of disjoint parts.

A2. Text Extraction

Next, we merge blobs of individual characters into larger blobs of words and use OCR to

extract text from each word blob. To merge blobs, we apply a dilation operator to expand

the extent of each blob horizontally. If a blob is a character, horizontal dilation will connect

it with the characters before and after, as long as the amount of dilation exceeds the amount

of character spacing. This spacing depends on the font size, which can be estimated from

the height of the blob. Figure 6-3-3 shows the output of this merging process. Then, given a

string of connected blobs, we check two properties to decide whether it is likely to be text.

First, we check if these blobs share a common height and baseline. Next, we check if the
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color variation among the foreground pixels is low, since GUI text tends to be rendered in

a single, solid color to improve readability. Blobs satisfying both conditions are considered

to be text blobs (red pixels in Figure 6-3-4) and passed to the OCR engine to extract words

from them.

We did not implement Wachenfeld’s screen text recognition algorithms [45, 43, 44],

but used the Tesseract OCR engine (http://code.google.com/p/tesseract-ocr/) in our current

prototype instead. If it were given the whole screen image as input, the Tesseract OCR

engine would perform poorly because it assumes the text is in a single column. (Figure 6-

4) If we segment screen images into blocks of words that are processed individually by the

OCR engine, the overall performance is better.

6.2.6 Text Image Segmentation Given the Text

The minimum granularity returned by accessibility APIs is one UI component. This may

be not enough if developers need the location and the bounds of each individual word or

even each character in a text component. Therefore, we have developed an algorithm that

segments the image of a text component into individual word blobs. Unlike other text

segmentation algorithms, the text string is known from the accessibility API, so we have

additional clues to locate each word more accurately. Furthermore, since this algorithm

runs on the leaf nodes in accessibility trees, we can assume the text is on a GUI widget with

a simple or gradient background for the sake of readability. If the text has a complicated

background, our algorithm would not work.

Given that the text is already known (except for some inconsistent cases, e.g. reformat-

ted dates), this problem is not as hard as the original text segmentation problem in OCR.

We describe this algorithm in two steps: (B1) segment images into N blobs, where N is the

number of words in the given text; (B2) sort and match each blob to its corresponding word

in the text.
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(a) The screenshot to be recognized with Tesseract-OCR.

(b) The poorly recognized output from Tesseract-OCR.

Figure 6-4: An example of applying Tesseract-OCR 3.01 to a whole screen image gener-
ates very poor results.
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B1. Text Segmentation

By assuming the background of the text is a solid or gradient color, we look for a vertical

or horizontal line for which each pixel is the same color, in a descendent or an ascendant

order in the given region. Once we have found such a line, we create a background by

repeating this line to fill the size of the image, and then subtract the original image with

this background to get an image with pure text pixels.

We use a top-down approach that is modified from recursive X-Y cut [17] to break a

text image into word blobs. We assume the text could be split into multiple lines, but no

single word is broken with hyphens. The idea of this algorithm is to calculate the sum of

the pixels in each horizontal and vertical line to produce a density graph of white space.

This graph shows several peaks that define horizontal or vertical gaps between lines or

words, which are also the cut points we need to segment the image into smaller pieces. Our

algorithm finds the largest gap, defined by its number of pixels, in the image, and cuts the

image horizontally or vertically until the number of pieces remaining equals the number of

expected words.

B2. Matching each word with a blob

After the first step, we have N small blobs, each of which corresponds to a word. Next, we

sort these blobs vertically and group them into lines with similar baselines. Blobs in a line

group are then sorted horizontally to match the writing order of western text.

6.2.7 Matching Accessibility Metadata with What Users See

The getVisibleText() method of a UIElement should return the text that users see on the

screen. One goal of PAX is to deliver the most accurate results. Therefore, we should use

the text from the accessibility API if possible. However, the text shown on the screen is not

necessary consistent with the one returned by the accessibility API.

A common example is automatic truncation when a string is too long. For example,

“my doctoral thesis revision 3.txt” may appear on the screen as “ my doctoral thesis . . . ion

3.txt”. Another example is time and date formation. For instance, “Friday, April 15, 2011
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10:48:27 PM ET” could be shown as “Today, 10:48PM” on the screen.

To address this inconsistency, we compare the text from the accessibility API and the

text from OCR. If the edit distance between these two strings is smaller than a threshold

(20% in PAX, which is proportional to the length of the OCR string), we infer that no

inconsistency exists and return the accessibility string as the visible text. Otherwise, when

the strings are inconsistent, the OCR text is returned. Note the developer needs to be aware

that OCR text could be noisy due to OCR errors. In some cases, the developer does not

necessarily need the visible text, which is why we provide getVisibleText() and getText() for

developers to choose according to their scenario.

6.3 Evaluation of Text Algorithms

In this section, we describe the evaluation of our text detection and segmentation algorithms

in PAX.

6.3.1 Text Detection Algorithm

To test the performance of our text detection algorithm, we constructed a dataset that con-

sists of six high-resolution screenshots downloaded from the Internet. This dataset covers

a variety of GUI widgets and text content on three major platforms (Mac OSX, Ubuntu

Linux, and Windows 7). Each word in the screenshots was located and labeled manually

as ground truth. The total number of visible words in this dataset is 1141. The number

of visible windows is 16. This dataset was held back while we were developing the text

detection algorithm; we used screenshots of our own computers for training purposes and

preserved this collection only for testing.

During testing, we manually cropped the images of the 16 windows (since window

bounds are available in PAX) and applied our text detection algorithm to each image. Our

algorithm made 1236 detections. We compared the results to the ground truth and found our

algorithm was able to achieve a precision of 84.39% (1043/1236) and a recall of 91.41%

(1043/1141). The most common errors were isolated digits that were too small and were
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Figure 6-5: An example from the text detection experiment. Red labels are false detec-
tion, and the dark blue one is missed. All the other labels are correctly detected, but not
necessarily correctly recognized.

repeatedly mistaken by the algorithm as noise for 32 times (2.81%). An example of the

testing results can be see in Figure 6-5.

6.3.2 Text Segmentation Algorithm

To evaluate the performance of our text segmentation algorithm, we built a dataset of 331

images each of which is a tightly bound block of text. This dataset was split into training

and test sets to prevent overfitting when developing the algorithm. The former has 546

words in 57 images and the latter has 2046 words in 274 images. Each image block has at

least two words. These images were collected from our own Mac computers and covered
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(a) An example of correct segmentation.

(b) An example of incorrect segmentation.

Figure 6-6: Two examples show correct and incorrect segmentation results. The failure
in this example is caused by the width betwee the two 1’s in 2011 is larger than the one
betwee "–" and "Updated".

popular desktop applications and web sites (e.g., Microsoft Word, twitter.com, cnn.com).

We applied the text segmentation algorithm to each image and manually verified the results.

We found only 30 words out of 2046 words were incorrectly segmented, which represents

an accuracy of 98.55%. Examples of correct and incorrect segmentations can be seen in

Figure 6-6.

6.4 Validation Through Example Applications

To validate the usefulness of PAX, we present three novel applications enabled by PAX:

enhanced Sikuli Script, Screen Search and Screen Copy.

6.4.1 Sikuli Script

Since Sikuli Script was deployed in early 2010, the discussions on its user forum suggest

some difficulties of using Sikuli in practice. First, full-screen matching leads to ambiguity

and slow performance. Users need an efficient way to constrain the search space to a

certain application. Second, screen matching fails if the target window is occluded by other

windows. It would be better if the matching worked even when the target window is only

virtually visible. Finally, users need a reliable method to read the text from applications

and can accept poor OCR results as better than nothing.

To demonstrate the validity of PAX, we enhanced Sikuli Script by addressing the above

issues using the system. First, we added a new App class, which manages the information

about an application and its window. App provides methods to open, close, and switch
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Figure 6-7: As the cursor moves, the boundaries of the target can be identified automati-
cally in Sikuli Script. After the user clicks to capture a screenshot, the XPath to this target
is also stored with the screenshot image for future use.

focus to a certain application by giving its name or a disk path. Once an application has

opened, the corresponding App instance saves a reference to the UIElement of that appli-

cation. Thus, a user may call app.window(n) to get the nth window as a Sikuli region and

then all subsequent pixel computation can be constrained to this region for improved ef-

ficiency. This App class uses applications’ accessibility information provided by PAX to

enable Sikuli Script to constrain the matching area within an application window dynami-

cally instead of using a fixed region on the screen, and also addresses the performance and

ambiguity problem.

Second, we enhanced Sikuli’s screen capture interface and searching algorithm with

PAX. In the screen capture interface, we use PAX’s hit testing to automatically identify the

target’s boundaries as the mouse cursor moves (see Figure 6-7). A user can simply click on

a target to take its screenshot, or use the original method of dragging out a rectangle around

the target. When a screenshot is taken, the XPath to the target’s UIElement is also saved

along with the screenshot (as metadata of the PNG file). Later, when the script is executed,

Sikuli Script attempts to find the target with its XPath using PAX first, and then uses the

original template matching method if the XPath fails or is unavailable.

Unlike the first enhancement that requires explicit use, this implicitly speeds up the

time spent searching for a target and removes the ambiguity. If the complete XPath is not

available, because the target widget does not support accessibility APIs, the enhancement

still helps because we can at least know which application the target belongs to and con-

strain the search within the region of that application. This enhancement also addresses the

second issue to allow Sikuli to search virtually visible windows, whose screen content can

be seen from PAX even when they are overlapped by others.
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Figure 6-8: The two buttons with only image icons “Decrease Indent” and “Increase In-
dent” can be searched with Screen Search because they have the word “indent” in their
accessibility metadata.

Finally, we enhanced Sikuli’s region-based operation by linking each region with the

corresponding UIElements and propagating the value and text from leaf components to

their logical group. This allows a script to read text from a region or get the value of a

component. For example, find( ).value() can be used to

read the value of a slider. Similarly, text also can be read by region.text(). Although PAX

tries to unify pixels and accessibility metadata so that Sikuli users can be unaware of PAX,

there are some notable differences when using different source of underlying information

together. In the slider example we just mentioned, if the slider exists in the accessibility

tree, PAX simply returns its absolute value. However, if it does not exist, there is no way

to read its absolute value from the pixels. In this case, PAX returns a value between 0 and

1 by measuring the distance from the thumb to the two ends of the slider.

Our enhancements have addressed several practical issues in Sikuli Script. At the same

time, the readability and the learnability of Sikuli code are preserved.

6.4.2 Screen Search

Search is a common and important feature in almost every application. However, it is

usually limited to the application’s text content. There is no general method to search the
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GUI components in a user interface. For example, the text in a text field or in a text area

is searchable, but the buttons on a toolbar or the text label on a check box are not. As GUI

applications become large and complicated, searching GUI components is especially useful

for the users who are not familiar with an interface. For instance, toolbars are widely used

in many applications, but the image icons on them are not necessarily easy to understand.

In these cases, a user must move the mouse cursor to hover over each button and wait for the

tooltip to learn its meaning. The ability to search components by their label or description

would be a solution for this problem.

We have created Screen Search as a sample application to demonstrate how PAX can

support building new interaction techniques on existing user interfaces. Screen Search en-

ables a user to search not only text but also all GUI components on the screen by keywords.

Unlike the usual search bound to a single application, Screen Search is a global function

that searches the content and UI of multiple applications at the same time. Furthermore, it

allows a user to quickly navigate or switch the keyboard focus to any components found

by Screen Search. In other words, this feature enables the use of a keyboard to navigate a

user interface in an arbitrary order. For example, a user can search for “indent” to locate

the “Increase Indent” and the “Decrease Indent” buttons on a toolbar, and hit the Enter key

to select the highlighted one (Figure 6-8).

Screen Search has two modes: searching only the visible objects (the ones that can be

seen on the screen), or virtually visible objects (the ones can be seen or are just objects in

the first mode are visible on the screen, we simply highlight them using a yellow box. In

the second mode, matched objects are not necessarily visible, so we cannot just draw a box

at each position. Instead, we draw a thumbnail of each window that has matched objects

in a row and a big preview window with the current selected object. The user can press the

Tab key to switch the focus among all matched objects and also bring their parent window

to the preview position.

With PAX, the implementation of Screen Search is straightforward because PAX has

decided the best source for obtaining the metadata of a component. A naïve implementation

is calling findVisibleChildren or findVirtuallyVisibleChildren of the root of the UIElement

tree, depending on the search mode, to retrieve the matched components in each window.
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Figure 6-9: Screen Search finds the given keyword in multiple applications and shows the
matched components and their windows at the same time.

However, to support incremental search, we traverse all nodes in the UIElement tree and

build an index of the text in each node in a background thread periodically. This requires

more complexity but provides a better interface that suggests how many and which objects

are matched as a user types.

6.4.3 Screen Copy

Screen Copy is a novel application we have built using PAX. Screen Copy allows a user

to select a rectangular area on the screen and copies not only the text but also the GUI

widgets within that area into the system clipboard. Figure 6-11 shows an example where

the interface for setting the appearance on Mac OS X can be copied and pasted into a

WYSIWYG HTML editor.

Screen Copy does not simply copy GUI widgets independently, but preserves the hier-

archy of widgets and their logical grouping. In the example shown in Figure 6-11, the two

sets of radio buttons are correctly grouped together. Thus, only one button in each group

can be selected at a time.

Screen Copy is useful for copying an existing interface without its source code and
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converting it into another format of representation. For example, we could train a library

of Flex/Flash widgets using template matching or methods based on machine learning such

as Prefab, and then use Screen Copy to convert a Flex/Flash interface to HTML.

Screen Copy also provides a rectangular selection model to existing programs that only

have the common text selection implementation. For example, in a web browser, it is very

hard to select and copy any non-text objects, such as a table or a form with pictures. The

selection is constrained by the flow of text and the underlying structure of HTML. Thus,

one can not easily select only one column of a table or two objects across their different

containers. However, these can be achieved with the rectangular selection model provided

by Screen Copy (see Figure 6-10).

Screen Copy is straightforward to implement with PAX. Using PAX’s rectangular hit

testing, the corresponding UIElements within the selected area can be retrieved easily. With

the selected objects, Screen Copy transforms each UIElement to HTML tags according to

its role and content. Finally, the HTML is copied into the system clipboard and a proper

MIME type of the data is set so other applications can then convert it into their own format.

Screen Copy only copies the static interface of an application. It does not copy the

dynamic behavior or animated effect on the interface. Additionally, some items that require

more interactions to see (such as a drop-down box or a context menu) cannot be copied, so

the drop-down boxes in Figure 6-10 were populated with only the one item that was visible

at that time. Currently, as a tool implemented to demonstrate PAX, it does not copy widgets

that cannot be represented in standard HTML tags. However, in the future, more complex

transformations can be implemented to support non-standard widgets.

6.5 Conclusion and Future Work

We have described PAX, a hybrid framework that uses pixels and accessibility metadata

to complement each other. We proposed and evaluated two new algorithms for detecting

text on screen and segmenting a text image into word blobs assuming the text is known.

We validated our framework by implementing three applications: improving Sikuli Script,

Screen Search, and Screen Copy. While promising, PAX has several limitations for future
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Figure 6-10: Screen Copy can be used to select and copy columns of a table or a list view.

Figure 6-11: With Screen Copy, one can copy a Mac OS X user interface and paste it into
a WYSIWYG HTML editor to create an HTML version of the same interface.
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work:

First, in our prototype system, we used template matching to identify GUI widgets from

pixels as a proof of concept. The modular design of our framework makes it possible to

integrate other powerful pixel reverse engineering methods such as Prefab in the future.

Second, the developers who use PAX need to be aware of the uncertainty due to OCR

errors. As future work, more robust OCR algorithms can be integrated with PAX to mini-

mize this uncertainty.

Third, PAX currently uses the accessibility APIs provided by each OS. However, other

sources of hierarchical UI representation, such as DOM, can also be integrated nicely with

PAX to further improve coverage. For example, on Mac OS X, the built-in browser Safari

has implemented a transformation that converts a DOM to an accessibility tree, making this

integration possible.

Lastly, PAX currently uses the most common set of accessibility metadata for maximum

compatibility on each platform. If more platform-specific metadata and APIs can be used,

this opens the door for a diverse body of research. For example, we can add more actions,

such as push buttons, or open a drop down menu, to each UIElement, so PAX could be

a UI automation framework that automatically uses accessibility APIs or Sikuli Script as

its backend. PAX could also support UI customization that provides set methods on each

UIElement and draw a customized UI on top of the existing one to show different layout or

effects.
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Chapter 7

Common Pitfalls and Design Principles

The systems built with the screenshot-driven model are discussed in Chapter 3 to 6. As I

described, this model is promising for creating new interaction techniques on any existing

UIs. However, while exploring the design of these systems, we found that many users of

our systems may encounter some common pitfalls caused by the nature of pixel matching

and the screenshot-driven model. As the designers of these screenshot-driven systems, we

also faced many challenges while developing them.

For example, once screenshots in Sikuli scripts are taken, the user who writes the script

would expect it would work every time in the future. However, the look of the user’s

desktop changes very often, e.g., opening a new application creates a new window on top

of some windows and this may occlude targets in the scripts written by the user. Even

scrolling a file list view may stop a script that looks for a specific file icon in that window

from working normally.

In this chapter, I discuss the pitfalls we met and also provide design principles as solu-

tions to future designers of such systems. We figure that system designers could incorporate

these principles into their design of screenshot-based systems to improve the usability of

the systems.

Each design principle is noted with a header as the following, which includes the name

and the executor of the principle. The executor could be system designers or users, which

suggests who should take care of that principle.
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Design Principle: An Example Executor: system designers or users

7.1 Invisible Targets

A screenshot-driven technique is, by definition, triggered by taking a screenshot of a target

object. Typically, this screenshot is later used as an image pattern to match against the

whole screen to locate the target. However, while matching the pattern, the target may no

longer exist on the screen. That is, it becomes invisible somehow.

The most common reasons that cause this problem are,

• Occlusion, there are other windows, applications, or widgets in front of the target;

• Out-of-view, the target is in a scrolling view and has been scrolling out of the view,

or the target is dragged out of off the screen;

• Hidden or Minimized, the target is hidden or minimized due to its nature of design

(e.g., dropdown items, menu items, or minimized windows).

Occlusion is a very common problem for Sikuli Script and Test. Opening a new window

or bringing a window to the front hide everything behind that window, and therefore cause

this problem.

Out-of-view is another common problem. As screen real estate is limited, scrollable

views can display a component that is large or has dynamic size depending on its content.

Furthermore, the whole screen is also a view in which limits the number of components

displayed. When a target is out of a view, it is invisible to the user as well as to screenshot-

driven systems.

Finally, a target could be hidden or minimized because it is designed to be capable of

these functionality.

We propose two design principles for these two problems.

Design Principle: Dedicated Channel Executor: system designers
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Sometimes, even a target is occluded by some windows, it is still possible to “see” it

through special dedicated channels. For example, Mac OS X accepts an option

kCGWindowListOptionIncludingWindow in its screen capture API to request the

screenshot of a particular window even it is minimized, occluded, or off-screen. For the

scrolling-off problem, there are some special APIs for capturing the image of the whole

area within a scrolling pane. With those APIs, we can bypass the limitation of the size of

the screen and the scrollable view.

Another way to deal with the occlusion problem is to prevent the occlusion in the first

place using a dedicated channel that shows only the window containing the target. For

example, Virtual Network Computing (VNC), X server, or virtual machines are solutions

for creating such a channel. While using Sikuli Script or Test for test automation, a common

requirement is to test the system under test (SUT) in a controlled environment that no other

windows could cover the SUT. In this case, a dedicated channel such as VNC is a perfect

solution.

Design Principle: Scripting Executor: system designers, users

Scripting is the most general solution requiring no special channels or APIs to the oc-

clusion and the scrolling-off problems. For the occlusion problem, we can script a target

by bringing it to the front or moving it to an empty place. Alternatively, we can script the

windows on top of the target by minimizing or hiding them. For the scrolling-off problem,

we can script the scrolling pane to reveal the hidden areas.

While developing Sikuli IDE, a problem we encountered in the early design phase was

that the IDE covered almost the whole desktop so that the user could not take screenshots

of the windows underneath it. Similarly, while running a script, the IDE also occlude a

large space of the desktop. To deal with this problem, we used this principle to script the

Sikuli IDE itself by minimizing it before taking a screenshot and running a script.

In PAX, we add an App class to Sikuli Script in order to let the users bring a particular

to the front easily. For example, App.focus("Firefox") switches the focus to the

first Firefox window and brings it to the front. With this command, the user can be sure the
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Firefox window is not occluded by other windows.

7.2 Dynamic Appearance

While matching a screenshot, the target may look different over time. The difference may

appear in the target itself, or in the surrounding pixels. There are many potential causes of

this problem, for example,

• animation, the target itself is an animation and changes its look over time;

• different context, the target may be moved to a different place than the one where

the screenshot of it was taken;

• different skin, the skin or the theme of the GUI toolkit may be changed so that the

target looks different;

• different data, the target may contain GUI components which are populated with

different data;

• different state, the target may contain GUI components whose states are changed,

e.g. being selected or highlighted;

• environment noise, the target may be rendered in an environment with noise, e.g. in

a photo of the screen.

We propose the following design principles to deal with these problems.

Design Principle: Fuzzy Matching Executor: system designers, users

Image matching algorithms play the key role in a screenshot-driven system. As the

appearance of the target or its surrounding may change over time, the matching algorithms

must be robust against the changes to some extent. In Sikuli Script and Test, we used tem-

plate matching with correlation coefficients and set a default threshold 0.7 to allow 30%
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differences while matching an image pattern. This design allows the user to take screen-

shots in a sloppy manner, and therefore greatly lowers the barrier to script user interfaces

with screenshots. Unlike Sikuli Script and Test, in Deep Shot, we had to use a more sophis-

ticated algorithm SURF as the matching algorithm. The main reason was that we needed to

match a photo taken by a camera, rather than a clear screenshot, against the screen. There-

fore, we needed to be robust against environment noise, rotation and scaling, and SURF

was the best choice given these constraints.

Although system designers can choose the appropriate algorithm for their screenshot-

driven systems, the users may still need to adjust how similar an image pattern can match

by themselves. For example, while writing a Sikuli script, if the user would like to use

a sloppily-cropped PDF icon to match all PDF icons on all kinds of backgrounds, it is

necessary to lower the similarity threshold of the icon pattern. To simplify this process, we

design a preview tool in Sikuli IDE so that the user can adjust the similarity threshold of an

image pattern and preview how well it matches the screen. Similarly, if the user expect the

pattern to match all the PDF icons in different colors, .anyColor() method needs to be

called.

Design Principle: Content Understanding Executor: system designers

Many GUI widgets are designed to present dynamic text or data to users, e.g. text

labels, text fields, drop-down boxes, and menus. These widgets can look very different

when they are populated with different data. In some cases, fuzzy matching still can locate

the desired target if the image pattern contains sufficient “background pixels” that do not

change with data population. However, matching with background pixels could easily

cause false positives.

There are some techniques for understanding the content of GUI widgets so that the

users can focus on what they really want to find or match on the screen. For example, PAX

(Chapter 6) allows a user to locate a GUI widget using the XPath to it in the accessibility

tree. Furthermore, PAX also allows one to search a particular widget according to its

content or text data.
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Optical Character Recognition (OCR) is another technique that can be used for this

problem. However, traditional OCR algorithms are not designed for detecting and recog-

nizing text on GUIs. In PAX, we introduced a new text detection algorithm for locating

text in screenshots. With this algorithm, we are able to locate the text and then use off-shelf

OCR engines with some image processing techniques to recognize them.

7.3 Ambiguity

GUI widgets are designed to be used repeatedly so people do not have to learn how to use

a user interface from scratch every time. As a result, it is common to see multiple instances

of the same widget on a screen. With screenshot-driven systems, users are often confused

with this ambiguous situation if they only want to match a particular target.

Design Principle: Constraint on Patterns Executor: users

Most ambiguity problems can be resolved by taking a larger screenshot consisting of

more pixels. In particular, the user can include a unique label or object in the screenshot

to reduce ambiguities while matching. For example, Figure 7-1(a) is a pattern that is too

small and can lead to ambiguities while matching against Figure 7-1(c). A better pattern is

Figure 7-1(b), which includes a unique label “Documents.” In addition to reducing ambigu-

ities, including a unique label in image patterns also makes the pattern easier to understand

for the user.

Design Principle: Constraint on Matching Region Executor: system designers and users

Besides adding constraints on image patterns, it is also possible to constrain matching

areas. For example, with the App class we introduced to Sikuli Script, a user can get the

boundaries of a particular window and then limit the image matching within that region. A

screenshot-driven system can even record which application a screenshot is taken and then

match the screenshot only within that application later.
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(a) Ambiguous pattern (b) A pattern including a unique label

(c) The screen that have many drop-down boxes

Figure 7-1: Including a unique label in image patterns can reduce ambiguities effectively.

Constraining using the App class prevents external ambiguities, which occur outside

of the working application. However, internal ambiguities may still exist. In order to help

users to deal with this problem, we designed spatial operators to constrain the matching

area to a region next to a reference region. For example, in Figure 7-2, there are two sliders

that look exact the same. How do we refer to the particular thumb of the “Alert volume”

slider? With spatial operators, we use the “Alert volume” label as a pointer, and then use

the right operator to constrain the matching area within the region to the right of the label.

The corresponding Sikuli script command is find( ).right().find( ).

Similarly, we can also use above, below, or left to specify the corresponding regions.

7.4 Self-Ambiguity

We have described that ambiguities can be caused by many GUI widgets that look the

same. Sometimes ambiguities may come from the target itself in different states. For

example, when a widget is disabled and grayed out, it may still look very similar to itself

in the normal (enabled) state. With the fuzzy matching algorithms we described earlier,

the algorithms may mistakenly find the disabled one using a pattern in the normal state. In

addition to the enabled/disabled states, focus and selection could also cause this problem.

Design Principle: Exact Matching Executor: users
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Figure 7-2: Spatial operators are used to constrain matching regions.
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Fuzzy matching is suitable for most cases in screenshot-driven systems. However, to

match GUI widgets in a particular state, the system should use exact matching algorithms

instead of fuzzy ones. Although a screenshot-driven system can provide both the exact and

the fuzzy matching algorithms, the user is still responsible to tell the system which one to

use depending on his/her intention.

In Sikuli Script and Test, we use fuzzy matching as the default algorithm. At the same

time, we also provide a method .exact() in the Pattern class for the users to specify if

they want the image pattern to be matched in an exact manner. Besides this, the users also

can raise the similiarity threshold of a very high value using the preview dialog in Sikuli

IDE (Figure 3-6) to distinguish between different states of the widget.

7.5 Conclusion

In this chapter, we have discussed four common pitfalls in screenshot-driven systems,

which include invisible targets, dynamic appearance, ambiguity, and self-ambiguity. We

also provided various design principles for system designers and users to overcome these

problems.
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Chapter 8

Conclusion

In this thesis, I have presented the notion of using screenshots as visual references in user

interface design and the interaction model driven by screenshots. I also described the po-

tential applications, frameworks and algorithms to facilitate the interaction driven by taking

screenshots.

For the applications, I have described how I applied the screenshot-driven model for the

Sikuli project, which includes searching documentation and GUI automation using screen-

shots. Based on Sikuli Script, I described a GUI testing system for GUI developers and QA

testers to verify GUI behavior without writing code. Except for augmenting the interaction

within a computer, I described Deep Shot, which expands the screenshot-driven model to

task migration across multiple devices.

For the frameworks and algorithms, I have described PAX, which is a hybrid framework

that associates the visual representation of user interfaces and their internal hierarchical

metadata. This framework augments the existing pixel-based systems and allow them to

access the pixels as well as the internal structured data of a user interface. To build PAX,

I also described two algorithms: 1) a text detection algorithm that locates text in arbitrary

position in a screen image; 2) a text segmentation algorithm that segments the image of a

text component into individual word blobs given the underlying text string is known.

Finally, we identified common pitfalls in screenshot-driven systems and provided de-

sign principles for system designers or users to deal with them.

There are many promising future directions for further exploration on this topic.
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Visual Memory

Nothing would ever be forgotten after seeing it once if we have photographic memory,

whether it is an important number, date, image, or phrase. With modern computers and

software technologies, it is possible to record screen pixels continuously and make them

searchable. In Sikuli Search, we have explored searching a collection of documents using

screenshot. We can further extend this notion to search information along the time dimen-

sion. For example, we can search a particular web page or document we have seen by text

or images. We also can search and restore old configuration settings that broke something

accidentally.

Creating Automation Scripts with Block Programming and Screenshots

In Sikuli IDE, we introduced using screenshots as first-class objects in a textual script

editor. However, it is still difficult for novices to write a script in a text editor without

syntax errors. One solution for this is to further extend the scripting environment to a

visual programming editor, for example, a block programming user interface in Scratch

[29]. With this way, a user can drag a desired command block out of a palette and drop it

into other blocks to form a sequence of commands.

Annotation on Existing User Interfaces

With the screenshot-driven model we described, it is possible to let users create annota-

tions on existing user interfaces using screenshots. One application of this is for creating

contextual help on any GUI. Yeh et al. [50] have initiated building a tool to support users

with common computer skills to create contextual help. An extension of this idea could

be automatically converting tutorials consisting of screenshots into Sikuli-style scripts that

create contextual help on actual user interfaces.
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8.1 Summary

To conclude, this thesis has introduced a new notion of using screenshots as visual refer-

ences and an interaction model driven by taking screenshots. I presented many applications

that embody this notion as well as their common pitfalls. I hope to inspire others to explore

this new area of research and find out more potential applications based on this idea.
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