

Associating the Visual Representation of User Interfaces
with their Internal Structures and Metadata

ABSTRACT
Pixel-based methods are emerging as a new and promising
way to develop new interaction techniques on top of exist-
ing user interfaces. However, in order to maintain platform
independence, other available low-level information about
GUI widgets, such as accessibility metadata, was neglected
intentionally. In this paper, we present a hybrid framework,
PAX, which associates the visual representation of user
interfaces (i.e. the pixels) and their internal hierarchical
metadata (i.e. the content, role, and value). We identify
challenges to building such a framework. We also develop
and evaluate two new algorithms for detecting text at arbi-
trary places on the screen, and for segmenting a text image
into individual word blobs. Finally, we validate our frame-
work in implementations of three applications. We enhance
an existing pixel-based system, Sikuli Script, and preserve
the readability of its script code at the same time. Further,
we create two novel applications, Screen Search and Screen
Copy, to demonstrate how PAX can be applied to devel-
opment of desktop-level interactive systems.
ACM Classification: H5.2. Information interfaces and
presentation: User Interfaces.
General terms: Human Factors, Design
Keywords: Pixel, accessibility API, text detection, text
segmentation, graphical user interfaces
INTRODUCTION
Pixels are the most common characteristic and the ultimate
elements produced by every application with a graphical
user interface (GUI). In late 90’s, researchers proposed
using pixel-based methods for end-user programming and
programming by example on existing user interfaces
[9,10,17]. More recent work explores different possibilities
with pixel-level interpretation for GUI automation, testing,
and customization [3,4,5,16].
However, pixel-based methods have room for improvement

in terms of speed and accuracy. For example, Sikuli Script
[16] is not very fast, because it searches the screenshots of
GUI elements across the whole screen and does not know
how to narrow down the search space. Furthermore, it is
hard to detect and extract the text content from pixel data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’11, October 16–19, 2011, Santa Barbara, CA, USA.
Copyright © 2011 ACM 978-1-4503-0716-1/11/10... $10.00. 	

Figure 2 PAX combines pixels and Accessibility
APIs for more accurate association between the
visual representation and internal structure of a
GUI. It filters accessibility information for only
visible objects (red boxes) and also provides
role, content, location, and size of objects de-
tected by pixel-based methods (green boxes).

Figure 1 The internal structure of a GUI given by
Accessibility APIs (AX) may not necessarily cor-
respond to the actual visual representation of
the GUI. Boxes above indicate the windows and
widgets returned by AX even though they are
not visible to users.

Tsung-Hsiang Chang
MIT CSAIL
32 Vassar St.

Cambridge, MA 02139
vgod@mit.edu

Tom Yeh
University of Maryland

College Park, MD 20742, USA
tomyeh@umd.edu

Rob Miller
MIT CSAIL
32 Vassar St.

Cambridge, MA 02139
rcm@mit.edu

Current Optical Character Recognition (OCR) algorithms
are designed for scanned documents, which are high-
resolution with white background and simple column-based
layouts, but not for on-screen text, which is low-resolution
with colored background and could be randomly placed on
the screen. Using current OCR algorithms on screen text
would generate poor results [14,15].
Current pixel-based systems focus on using pixels as the
sole source of input from the interfaces they operate. In
order to maintain platform independence, these systems
have intentionally neglected the other information that can
be obtained from window managers or accessibility APIs.
Unlike pixels, these extra sources of information are not
necessarily available. For example, accessibility APIs are
the standard hooks for exposing the internal structured
metadata of a GUI to third-party assistive programs, such
as screen readers, but to support such APIs requires engi-
neering effort from individual software developers. As a
result, accessibility hooks may be omitted or added later as
the software matures. Fortunately, many popular commer-
cial applications and built-in software on modern operating
systems are accessibility-enabled. Therefore, why not lev-
erage the accessibility metadata if the target applications
provide them?
This paper introduces PAX, a hybrid framework combining
Pixels and Accessibility APIs. PAX enhances the capabili-
ties of current pixel-based systems and enables new interac-
tive applications on top of existing interfaces. The key in-
sight is that accessibility and pixel interpretations comple-
ment each other. Thus, both of these sources of information
should be used together if possible.
PAX combines pixels with other information sources pro-
vided by GUIs, including accessibility metadata and low-
level rendering data from the window manager, and associ-
ates the pixels with their internal hierarchical and structured
attributes. As a result, PAX not only knows what is visible
to the user on the screen but also understands the content
and structures behind the pixels. We use accessibility
metadata as a convenient and accurate source of widgets’
information. If the accessibility metadata is not available,
PAX automatically switches to pixel-level interpretation
and still returns useful data. Furthermore, we use pixel-
level methods to optimize the accessibility metadata. For
instance, when accessibility APIs are not fine-grained
enough to return the position of each word in a paragraph
of text, we use a pixel-based segmentation algorithm, along
with the known text for the whole paragraph obtained from
the accessibility API, to locate the words with high preci-
sion.
The potential impact of PAX lies in its ability to improve
existing pixel-based systems and to enable implementation
of novel interaction techniques on top of existing interfac-
es. We validate this claim with concrete examples: the en-
hancement of pixel-based GUI automation (i.e., Sikuli
Script [16]) and the implementation of two novel applica-
tions: Screen Search and Screen Copy. Screen Search is an

attempt to allow users to conduct text-based search across
multiple applications over the entire desktop rather than
being limited to a particular window. It is applicable to any
GUI components with text on the screen (e.g. on a title bar
or in a tooltip of a button), even if it is occluded by other
windows. Screen Copy is an attempt to allow users to copy
the text content of a GUI component as well as the compo-
nent itself. Users can paste the copied text into a text editor
or reuse the copied component in a GUI designer applica-
tion. The tool can be applied even when the text is not se-
lectable or when the source code of the GUI is not availa-
ble.
We make the following contributions in this paper:
• A hybrid framework that demonstrates how pixel analy-

sis and accessibility metadata can be used together and
complement each other.

• A text detection algorithm that finds text in screenshots,
even with colorful backgrounds.

• A text segmentation algorithm that segments an image
of a paragraph of text into individual word images, giv-
en known text.

• Validation of the framework in two novel applications
and one enhancement of an existing system.

RELATED WORK
The idea of pixel-based interface interpretation and interac-
tion emerged in the late 90’s. Potter [9] developed a sys-
tem, Triggers, to support application-independent end-user
programming purely based on direct pixel access. Zettle-
moyer and St. Amant [17] developed VisMap and VisS-
cript to interpret pixels as high-level and structured repre-
sentation of user interface objects, and then provided a set
of mouse and keyboard commands (e.g. mouse-move, sin-
gle-click, and double-click) to operate on the interpreted
objects. WinCuts allowed users to cut a sub-region of an
existing window and create an independent live view of the
source, but did not interpret its content [12].
Recently, more pixel-based work has emerged. Screen-
Crayons allows annotation on screen pixels [8]. Mnemonic
Rendering determines the visibility of applications and
shows motion trails of the changes when the hidden parts
of windows are being revealed [1]. Sikuli Search allows
users to search documents using the screen shot of GUI
widgets [16]. Sikuli Script allows users to script user inter-
faces by taking screen shots of the targets the user wants to
control [16]. Sikuli Test uses computer vision algorithms to
analyze the pixels to generate testing scripts automatically
[3]. Prefab interprets the pixels of a GUI and generates a
high-level model of the widgets and their hierarchy [4,5].
The characteristic common to all this prior work is that it is
completely focused on the pixel level. Instead of pure pixel
methods, our work uses a hybrid approach that leverages
pixels, the accessibility API, and the other useful infor-
mation from the operating system to boost the robustness
and performance of existing work and to enable new appli-
cations.

Most modern operating systems and GUI toolkits support
Accessibility APIs, which were originally designed to be a
standard hook for assistive technology applications, such as
screen readers, or for GUI automation tools to communi-
cate with a user interface programmatically. In addition to
the assistive use of accessibility information, Stuerzlinger
et al.’s User Interface Façades uses such information to
allow users to customize an interface with copy-and-paste
[11].
However, accessibility APIs are not widely available in
every application and GUI widget. Hurst et al. reported that
the Microsoft accessibility API can only correctly identify
74% of targets in eight popular applications on Windows
[7]. Thus, they developed a hybrid approach that leverages
the visual representation (i.e. the pixels) of a user interface
to improve the accuracy of accessibility APIs for target
identification. However, their approach does not deal with
content; it is mainly for post-analysis of interaction logs to
identify what targets the users might have clicked. In con-
trast, our approach is designed for real-time use to associate
GUI widgets’ internal metadata and their pixel representa-
tion. Chang et al.’s Deep Shot was a framework and an
interaction technique that mixed pixel-based methods and
accessibility APIs [2]. Deep Shot used visual features to
identify which portion of the screen the user is looking at
through a camera, and then found the application in that
area using accessibility APIs. In addition, accessibility in-
formation was a backup channel if the target application of
interest did not support the Deep Shot framework. Our
work is a new abstraction layer that provides extra accessi-
bility information to pixel-based systems and also expands
the coverage for accessibility-based applications by provid-
ing the pixel interpretation of an interface with the same
API.
PIXEL ANALYSIS VERSUS ACCESSIBILITY API
In this section, we describe the advantages and disad-
vantages of pixel-based methods and how we can use ac-
cessibility APIs to enhance the capabilities and perfor-
mance of those methods.
Pixel Analysis
Pixels are the most common output medium of current
computing devices. Every GUI application is eventually
rendered as pixels on a screen. Unlike the pixels perceived
from the real world and generated by a digital camera, the
pixels generated by a computer itself have no noise, no
distortion, and no other source of interference. Thus, early
systems were able to use naïve bitmap matching to find
targets on a screen [9,17]. Furthermore, Prefab has demon-
strated that a UI model can be built from pixels in real-time
so that researchers can build new interaction techniques on
top of existing interfaces [4,5].
In contrast to understanding the UI model behind pixels,
Sikuli Script takes a different approach to automate existing
interfaces. In order to let users use loosely-bounded screen-
shots of automation targets, Sikuli uses template matching
to fuzzily find the screenshots on the whole screen.

While they hold promise, the effectiveness of pixel-based
methods can be challenged by four factors:
1. Visibility constraints. Invisible information, such as

the items out of the current scrolling area or even the
targets that are occluded by other windows, cannot be
detected by pixel-based methods.

2. Visual variations. The accuracy of pixel analysis de-
pends heavily on the look of target interfaces. If the us-
er makes dramatic changes to the color scheme or the
application theme, neither Prefab’s trained prototypes
nor Sikuli Script’s fuzzy template matching screenshots
can deal with the visual variations that result from such
changes.

3. Exhaustive screen search. Pixel analysis is a potential-
ly expensive operation, especially in high-resolution
and multiple monitor environments with many millions
of pixels. However, existing pixel-based methods such
as Sikuli and Prefab often need to consider every pixel
on the screen indiscriminately in order to locate certain
targets, unless there is an external mechanism to direct
their attention to specific regions on the screen.

4. Low-resolution text. The text content of an interface is
hard to extract purely from pixels. Existing OCR en-
gines are designed for high-resolution (150 to 300 DPI)
scanned documents with white background and simple
column-based layouts, but not for low-resolution
screens (72 or 96 DPI) with colorful backgrounds and
arbitrary layout. Simply plugging an existing OCR en-
gine into a pixel-based system does not immediately
work.

Accessibility API
Accessibility APIs are the standard interfaces built in mod-
ern desktop operating systems for assistive applications,
such as screen readers, to access the low-level information
of a user interface. Accessibility metadata is hierarchical,
structured, and precise. For example, for an “OK” button in
a confirmation dialog, we can get its role (AXButton), role
description for humans, title, help message (the tooltip),
enabled or disabled state, parent component, parent win-
dow, position, size, etc.
Accessibility APIs provide a convenient way to access
many low-level attributes of existing software. However, to
support such an API, application developers have to put in
extra engineering effort to correctly expose the internal
data. As a result, not every application and GUI widget
supports accessibility APIs.
Fortunately, there are many applications that already acces-
sibility-enabled. Hurst et al. reported that 74% of the widg-
ets in eight popular applications were correctly identified
by the accessibility API [7].
We conducted our own investigation into the current acces-
sibility APIs for Mac OS X and Microsoft Windows (Mi-
crosoft Active Accessibility) regarding their capabilities
and application compliance. We identified five challenges:

1. Indifference to visibility. Accessibility APIs does not
know if a window or a GUI component is visible or not
(see Figure 1). The location and the size of a minimized
window would be returned as its original place and size
before minimizing. If items are out of a scrolling area,
they still can be reached by the accessibility API, and
there is no way to tell which of them are visible to the
user. This can lead to excessive and incorrect infor-
mation when the developer just wants information
about those the visible objects.

2. Point-based object access. Accessibility APIs support
hit testing to gain access to an interface object shown on
the screen. However, this ability is point-based and is
limited to a single object; it is not possible to access a
group of objects in a given region.

3. Incomplete support. Even applications that support
accessibility APIs may not do so completely. An appli-
cation may include new or complicated widgets that do
not provide any accessibility metadata because they are
not in the standard widget set.

4. Coarse granularity. The granularity of accessibility
metadata may not fulfill the developer’s needs. For ex-
ample, the text content of a document may be returned
as a block of text, where an novel interface technique
may need the location of each individual word.

5. Inconsistent text. The text shown on an interface is not
necessary consistent with the accessibility metadata, as
it can be reformatted in an unknown way. For example,
a date in accessibility metadata is “Friday, April 15,
2011 10:48:27 PM ET” but could be displayed as “To-
day, 10:48PM” on the screen.

Recognizing the respective strengths and weaknesses of
pixels and accessibility APIs, we believe it would be ideal
to combine them in a complementary manner, offering both
generality from pixels and precision from accessibility
metadata at the same time.
PAX: A HYBRID FRAMEWORK
We propose PAX, a Pixel+Accessibility hybrid framework
that associates the high-level visual representation of GUI
widgets with their low-level structured and hierarchical
information. PAX has three sources of input: pixels, acces-
sibility APIs, and window managers. PAX consolidates the
information from these three sources into a new API that
allows developers to easily access not only the pixels of the
GUI widgets on the screen but also their internal infor-
mation.
PAX associates the pixel representation of each GUI ele-
ment on the screen with its underlying attributes, such as its
role (which could be a button, a text field, etc.) and its text
content or value. The underlying attributes are retrieved
from the accessibility API if available. If not, PAX at-
tempts to infer the role of the element from its pixel repre-
sentation using template matching and uses pixel-based
algorithms to detect and recognize the text (see Figure 3).

PAX can improve the effectiveness of existing systems that
are based purely on accessibility APIs or on pixels. On the
one hand, systems based on accessibility APIs can benefit
from the knowledge of the GUI’s apparent visual represen-
tation to resolve certain ambiguities. On the other hand,
pixel-based systems can use PAX to improve speed and
accuracy. For example, PAX enables identification of a
particular UI element using an XPath. Sikuli Script can
store the XPath to a target UI component when taking the
screen shot of it along with the screen shot image (e.g. in
the header of the PNG file) and later use that path to locate
the component without running template matching on the
whole screen, or to constrain the search in a smaller region.
Furthermore, PAX enables Sikuli Script to accept simple
commands, e.g. find().value(),
to easily retrieve the value of a slider without calculating
the position of the thumb to infer it.
Designing PAX
There are three design goals for PAX:
1. The framework should enable existing pixel-based sys-

tems to easily access internal widget information given
a region or a point on the screen.

2. The framework should simplify the difficulty and com-
plexity in implementing novel interaction techniques on
existing interfaces.

3. The framework should automatically give the most ac-
curate results from available resources (either from ac-
cessibility metadata or pixel reverse engineering).

PAX maintains a tree of UIElement objects shown on the
screen. The root of this tree is a virtual node, which does
not represent any physical GUI elements. The root returns

Root

Application Application Application

Window Window Window

Toolbar SplitPanel

Button ButtonButton Table

Row Row

Window

PxCheckbox PxButtonPxText

Figure 3 The tree of PAX UI elements. The yel-
low nodes, created using accessibility and win-
dow manager information, do not require any
support from application developers. The red
nodes are the elements exposed using accessi-
bility APIs, while the green ones are reverse en-
gineered from pixels.

all running applications as its children and can be obtained
by calling a global function getUIElementRoot(). Each
application is also a UI element, which returns its opened
windows. Each window recursively contains the same hier-
archical structure of its title bar, tool bar, and all the other
UI elements.
PAX distinguishes three different visibility levels for a UI
element:

• Visible. This element can be seen on the screen.
• Virtually visible. This element is meant to be visible

on the screen but is partially or entirely occluded by
other windows in front of it because of limited screen
space; if the screen was infinitely large and no win-
dows needed to overlap, this element would be visible.

• Invisible. This element is not meant to be seen by us-
ers because it is scrolled out of view, in a minimized
window, or hidden by design.

Therefore, each UI element has three different methods to
get its children according to their visibility: getVisi-
bleChildren(), getVirtuallyVisibleChildren(), getChildren(),
where they return the visible children, virtually visible
children, and all children, respectively. Because a UI ele-
ment may be partially invisible, PAX also provides two
methods, getVisibleBounds(), which returns the bounds of
the visible part of a UI element, and getBounds(), which
returns the original bounds.
Like accessibility APIs, PAX provides getRole(), getText(),
and getValue(), for getting the role, the text, and the value
of a UI element, respectively. A role represents the type of
a component, e.g. a button or a list item. Text can be the
label or the string value of a component. A value is a num-
ber that is only meaningful for some components, e.g. a
slider or a check box. These values are retrieved from ac-
cessibility APIs if they are available; otherwise pixel re-
verse engineering techniques are used. Further, PAX also
provides getVisibleText(), which returns the text actually
shown to the user.
In addition to the standard accessibility attributes, each UI
element has a getScreenshot() method for getting the screen
shot of the element even it is only virtually visible, and
getXPath(), which returns an XPath to the element, such as
/Application[name=“Word”]/Window[1]/TabGroup[1]/Gro
up[text=“Paragraph”]/MenuButton[text=“Bulleted List”].
The name attribute in an XPath is only valid for Applica-
tions nodes, whereas text and value can be used in the re-
maining nodes. Developers can save the path and locate the
same element quickly with a global function locateUIEle-
ment(xpath).

To find particular elements, two methods can be used, by
screen location or by content. PAX supports single-point
hit testing with getUIElementAtPoint(x, y), which re-
turns the element at the given point, and getUIElemen-
tsInRect(rectangle), which returns all the visible ele-
ments in the given rectangle on the screen. To find by con-
tent, each UI element has the three methods findChil-

dren(pattern), findVisibleChildren(pattern) and findVirtu-
allyVisibleChildren(pattern), which return all, visible, and
virtually visible children whose text content matches the
given regular expression pattern.
Finally, to better support advanced interaction techniques,
each UI element has a method focus(), which sets the key-
board focus to that element and also brings its parent win-
dow to the front at the same time. This is particularly useful
when the developers need to perform further interaction on
a UI element.
Bridging between Accessibility APIs and Pixels
One of this framework’s goals is to automatically give the
most accurate results from the available resources. There-
fore, PAX constructs the UI element tree from all running
applications and their corresponding accessibility handles.
If an application has exposed all necessary accessibility
hooks, its descendants in the PAX tree are simply copied
from the accessibility tree and wrapped up with a UIEle-
ment interface. Sometimes a few widgets or even the entire
application do not support accessibility APIs, and in this
case, each of these widgets or windows looks like a black
hole, with only a single node in the accessibility tree to
record its boundaries.
When PAX walks down the accessibility tree and reaches a
leaf node, it determines if there is a need to reverse engi-
neer the pixel contents of the node with three simple rules:
(1) if the node is a text component (e.g. a text label, a text
field, or a text area), run our text segmentation algorithm to
breaks the text into word component pieces; (2) if the
node’s role is not a container and not a text component (e.g.
it is a check box, a radio button, etc.), do nothing; (3) oth-
erwise run pixel reverse engineering methods on the node’s
screenshot. The text segmentation algorithm is useful for
higher-granularity information about text components, and
will be described later in this section.
With pixel reverse engineering methods, such as Prefab, we
still can provide similar information to the accessibility
metadata even if we reach a dead end in the accessibility
tree. In our current prototype, we did not attempt to com-
pletely build the hierarchy of UI widgets from pixels using
Prefab’s method, but we used Sikuli’s template matching to
find a small set of GUI widgets (e.g. radio buttons, check
boxes, sliders) instead. Furthermore, we developed a new
algorithm for locating arbitrary text content in a complicat-
ed component, e.g. a web view.
A PAX tree is lazily generated on demand. Once parts of it
are generated, the results are cached for fast response. The
developer can explicitly request the cache to be updated.
With proper event hooks that monitor the updates of the
corresponding UI, the cache can be updated automatically
after the UI is changed. For the reverse-engineered compo-
nents, the tree can be automatically updated by comparing
the consecutive screen shots. Comparing two 1680x1050
screenshots takes only 30ms on a modern PC; therefore, it
is feasible to use this technique to continuously monitor the
changes of a UI.

In the last parts of this section, we discuss how we have
dealt with the challenges mentioned above as well as the
text segmentation and detection algorithms.
Determining the Visibility of UI Elements
With only accessibility APIs, we cannot tell if a window or
a component is visible or not. To address this problem, our
solution is to request the z-order of each window from the
window manager, and create “masks” to cover the occupied
areas of each window from top to bottom. Thus, if a com-
ponent is not fully covered by the masks and also intersects
with its parent’s visible bounds, it is visible from the user’s
point of view.
For virtually visible elements, we only care if a UI element
intersects with its parent’s bounds. If so, it is virtually visi-
ble; otherwise it is invisible.
Region-based Hit Testing
Accessibility APIs usually support hit testing, which is
used for getting the accessibility information on a particular
point on the screen. Unfortunately, this feature is limited to
a single point and a single object.
To get multiple elements in a region, a naïve method is to
run the single-point hit testing on each point in that region.
However, this is inefficient because a region could have
millions of points. Another method is to traverse the com-
ponent tree and find all visible elements that intersect with
the given region. But this is not possible with pure accessi-
bility APIs, because they do not know if a component is
visible or not.
Fortunately, PAX already has precise information about the
visibility of each UI element. Therefore, PAX provides a
function that enables developers to get the internal infor-
mation of multiple objects in a given region on the screen.
Text Detection and Extraction From Pixels
Current pixel reverse engineering techniques, such as Pre-
fab, can locate common GUI widgets and extract their tex-
tual content. However, Prefab’s method requires text be
located over predictable backgrounds that Prefab can model
based on provided examples. If the text is on a background
for which Prefab has not been trained, or a complicated
background that Prefab cannot model (e.g., a photographic
wallpaper), it will not find the text. Recently, computer
vision researchers have conducted research on segmenta-
tion and recognition methods for small screen-rendered text
and reported accuracy achieved of 99.2346% [13,14,15].
However, they assumed the position of the text is known
and did not address the problem of text detection. To com-
plement these pixel reverse engineering techniques, we
have developed a text detection algorithm that locates text
in arbitrary position in a screen image.
Given a screen image, the algorithm for converting it to
words has three major steps: (A1) segment the image into
disjoint blobs of pixels, (A2) merge character blobs into
word blobs, and finally apply OCR to extract words.

A1. Salient Component Detection
The goal of this step is to decompose a screen image into a
set of salient components, each of which is composed of a
blob of foreground pixels. Given a screen image as input,
we first convert the image from color to grayscale. We ap-
ply an adaptive threshold to filter out low-contrast pixels.
Figure 4-2 gives an example of the image after this process.
Many container widgets such as panels have large areas of
plain background pixels that can be easily filtered out in
this way. From the high-contrast foreground pixels that are
left, we detect long lines that might be window borders or
grouping cues. These long lines are then removed so that
components close to those lines would not be mistakenly
interpreted as being connected by the lines. After this pro-
cess, text elements turn into a set of blobs, each of which
correspond to a character, whereas image elements turn
into a set of disjoint parts.
A2. Text Extraction
Next, we merge blobs of individual characters into larger
blobs of words and use OCR to extract text from each word
blob. To merge blobs, we apply a dilation operator to ex-
pand the extent of each blob horizontally. If a blob is a
character, horizontal dilation will connect it with the char-
acters before and after, as long as the amount of dilation
exceeds the amount of character spacing. This spacing de-
pends on the font size, which can be estimated from the
height of the blob. Figure 4-3 shows the output of this
merging process. Then, given a string of connected blobs,
we check two properties to decide whether it is likely to be
text. First, we check if these blobs share a common height
and baseline. Next, we check if the color variation among
the foreground pixels is low, since GUI text tends to be

Figure 4 Text Detection process. (1) Given an
image, (2) foreground pixels are extracted as
small blobs. (3) Blobs are connected to form
larger blobs, (4) which are classified into text
(red), icon (green), or photo blobs (blue).

rendered in a single, solid color to improve readability.
Blobs satisfying both conditions are considered to be text
blobs (red pixels in Figure 4-4) and passed to the OCR en-
gine to extract words from them.
We did not implement Wachenfeld’s screen text recogni-
tion algorithms [13,14,15], but used the Tesseract OCR
engine (http://code.google.com/p/tesseract-ocr/) in our cur-
rent prototype instead. If it were given the whole screen
image as input, the Tesseract OCR engine would perform
poorly because it assumes the text is in a single column. If
we segment screen images into blocks of words that are
processed individually by the OCR engine, the overall per-
formance is better.
Text Image Segmentation Given the Text
The minimum granularity returned by accessibility APIs is
one UI component. This may be not enough if developers
need the location and the bounds of each individual word or
even each character in a text component. Therefore, we
have developed an algorithm that segments the image of a
text component into individual word blobs. Unlike other
text segmentation algorithms, the text string is known from
the accessibility API, so we have additional clues to locate
each word more accurately. Furthermore, since this algo-
rithm runs on the leaf nodes in accessibility trees, we can
assume the text is on a GUI widget with a simple or gradi-
ent background for the sake of readability. If the text has a
complicated background, our algorithm would not work.
Given that the text is already known (except for some in-
consistent cases, e.g. reformatted dates), this problem is not
as hard as the original text segmentation problem in OCR.
We describe this algorithm in two steps: (B1) segment im-
ages into N blobs, where N is the number of words in the
given text; (B2) sort and match each blob to its correspond-
ing word in the text.
B1. Text Segmentation
By assuming the background of the text is a solid or gradi-
ent color, we look for a vertical or horizontal line for which
each pixel is the same color, in a descendent or an ascend-
ant order in the given region. Once we have found such a
line, we create a background by repeating this line to fill
the size of the image, and then subtract the original image
with this background to get an image with pure text pixels.
We use a top-down approach that is modified from recur-
sive X-Y cut [6] to break a text image into word blobs. We
assume the text could be split into multiple lines, but no
single word is broken with hyphens. The idea of this algo-
rithm is to calculate the sum of the pixels in each horizontal
and vertical line to produce a density graph of white space.
This graph shows several peaks that define horizontal or
vertical gaps between lines or words, which are also the cut
points we need to segment the image into smaller pieces.
Our algorithm finds the largest gap, defined by its number
of pixels, in the image, and cuts the image horizontally or
vertically until the number of pieces remaining equals the
number of expected words.

B2. Matching each word with a blob
After the first step, we have N small blobs, each of which
corresponds to a word. Next, we sort these blobs vertically
and group them into lines with similar baselines. Blobs in a
line group are then sorted horizontally to match the writing
order of western text.
Matching Accessibility Metadata with What Users See
The getVisibleText() method of a UIElement should return
the text that users see on the screen. One goal of PAX is to
deliver the most accurate results. Therefore, we should use
the text from the accessibility API if possible. However, the
text shown on the screen is not necessary consistent with
the one returned by the accessibility API.
A common example is automatic truncation when a string
is too long. For example, “a very very very long file
name.txt” may appear on the screen as “a very
very…name.txt”. Another example is time and date for-
mation. For instance, “Friday, April 15, 2011 10:48:27 PM
ET” could be shown as “Today, 10:48PM” on the screen.
To address this inconsistency, we compare the text from the
accessibility API and the text from OCR. If the edit dis-
tance between these two strings is smaller than a threshold
that is proportional to the length of the OCR string, we in-
fer that no inconsistency exists and return the accessibility
string as the visible text. Otherwise, when the strings are
inconsistent, the OCR text is returned. Note the developer
does not necessarily need the visible text, which is why we
provide getVisibleText() and getText() for developers to
choose according to their scenario.
EVALUATION OF TEXT ALGORITHMS
In this section, we describe the evaluation of our text detec-
tion and segmentation algorithms in PAX.
Text Detection Algorithm
To test the performance of our text detection algorithm, we
constructed a dataset that consists of six high-resolution
screenshots downloaded from the Internet. This dataset
covers a variety of GUI widgets and text content on three
major platforms (Mac OSX, Ubuntu Linux, and Windows
7). Each word in the screenshots was located and labeled
manually as ground truth. The total number of visible
words in this dataset is 1141. The number of visible win-

1
2

3

4
5

6
7

8
9

10 11

12 13
14

15

Figure 5 Text segmentation algorithm. Each
number represents the order of the cut. (blue is
vertical, red is horizontal)

dows is 16. This dataset was held back while we were de-
veloping the text detection algorithm; we used screenshots
of our own computers for training purpose and preserved
this collection only for testing.
During testing, we manually cropped the images of the 16
windows (since window bounds are available in PAX) and
applied our text detection algorithm to each image. Our
algorithm made 1236 detections. We compared the results
to the ground truth and found our algorithm was able to
achieve a precision of 84.39% (1043/1236) and a recall of
91.41% (1043/1141). The most common errors were isolat-
ed digits that were too small and were repeatedly mistaken
by the algorithm as noise for 32 times (2.81%).
Text Segmentation Algorithm
To evaluate the performance of our text segmentation algo-
rithm, we built a dataset of 331 images each of which is a
tightly bound block of text. This dataset was split into train-
ing and test sets to prevent overfitting when developing the
algorithm. The former has 546 words in 57 images and the
latter has 2046 words in 274 images. Each image block has
at least two words. These images were collected from our
own Mac computers and covered popular desktop applica-
tions and web sites (e.g., Microsoft Word, twitter.com,
cnn.com). We applied the text segmentation algorithm to
each image and manually verified the results. We found
only 30 words out of 2046 words were incorrectly seg-
mented, which represents an accuracy of 98.55%.
VALIDATION THROUGH EXAMPLE APPLICATIONS
To validate the usefulness of PAX, we present three novel
applications enabled by PAX: enhanced Sikuli Script,
Screen Search and Screen Copy.
Sikuli Script
Sikuli Script, developed by Yeh et al., is a pixel-based ap-
proach to GUI automation that lets users take a screenshot
of a target to direct mouse or keyboard inputs to that target
[16]. It was deployed in early 2010 and a sizable user
community has grown since. The discussions on its user
forum suggest some difficulties of using Sikuli in practice.
First, full-screen matching leads to ambiguity and slow
performance. Users need an efficient way to constrain the
search space to a certain application. Second, screen match-
ing fails if the target window is occluded by other win-
dows. It would be better if the matching worked even when
the target window is only virtually visible. Finally, users
need a reliable method to read the text from applications
and can accept poor OCR results as better than nothing.
To demonstrate the validity of PAX, we enhanced Sikuli
Script by addressing the above issues using the system.
First, we added a new App class, which manages the infor-
mation about an application and its window. App provides
methods to open, close, and switch focus to a certain appli-
cation by giving its name or a disk path. Once an applica-
tion has opened, the corresponding App instance saves a
reference to the UIElement of that application. Thus, a user
may call app.window(n) to get the nth window as a Sikuli
region and then all subsequent pixel computation can be

constrained to this region for improved efficiency. This
App class uses applications’ accessibility information pro-
vided by PAX to enable Sikuli Script to constrain the
matching area within an application window dynamically
instead of using a fixed region on the screen, and also ad-
dresses the performance and ambiguity problem.
Second, we enhanced Sikuli’s screen capture interface and
searching algorithm with PAX. In the screen capture inter-
face, we use PAX’s hit testing to automatically identify the
target’s boundaries as the mouse cursor moves (see Figure
6). A user can simply click on a target to take its screen-
shot, or use the original method of dragging out a rectangle
around the target. When a screenshot is taken, the XPath to
the target’s UIElement is also saved along with the screen-
shot (as metadata of the PNG file). Later, when the script is
executed, Sikuli Script attempts to find the target with its
XPath using PAX first, and then uses the original template
matching method if the XPath fails or is unavailable.
Unlike the first enhancement that requires explicit use, this
implicitly speeds up the time spent searching for a target
and removes the ambiguity. If the complete XPath is not
available, because the target widget does not support acces-
sibility APIs, the enhancement still helps because we can at
least know which application the target belongs to and con-
strain the search within the region of that application. This
enhancement also addresses the second issue to allow Siku-
li to search virtually visible windows, whose screen content
can be seen from PAX even when they are overlapped by
others.
Finally, we enhanced Sikuli’s region-based operation by
linking each region with the corresponding UIElements and
propagating the value and text from leaf components to
their logical group. This allows a script to read text from a
region or get the value of a component. For example,
find().value() can be used to
read the value of a slider. Similarly, text also can be read by
region.text(). Although PAX tries to unify pixels and ac-
cessibility metadata so that Sikuli users can be unaware of
PAX, there are some notable differences when using differ-
ent source of underlying information together. In the slider
example we just mentioned, if the slider exists in the acces-
sibility tree, PAX simply returns its absolute value. How-

Figure 6 As the cursor moves, the boundaries of
the target can be identified automatically in Siku-
li Script. After the user clicks to capture a
screenshot, the XPath to this target is also
stored with the screenshot image for future use.

ever, if it does not exist, there is no way to read its absolute
value from the pixels. In this case, PAX returns a value
between 0 and 1 by measuring the distance from the thumb
to the two ends of the slider.
Our enhancements have addressed several practical issues
in Sikuli Script. At the same time, the readability and the
learnability of Sikuli code are preserved.
Screen Search
Search is a common and important feature in almost every
application. However, it is usually limited to the applica-
tion’s text content. There is no general method to search the
GUI components in a user interface. For example, the text
in a text field or in a text area is searchable, but the buttons
on a toolbar or the text label on a check box are not. As
GUI applications become large and complicated, searching
GUI components is especially useful for the users who are
not familiar with an interface. For instance, toolbars are
widely used in many applications, but the image icons on
them are not necessarily easy to understand. In these cases,
a user must move the mouse cursor to hover over each but-
ton and wait for the tooltip to learn its meaning. The ability

to search components by their label or description would be
a solution for this problem.
We have created Screen Search as a sample application to
demonstrate how PAX can support building new interac-
tion techniques on existing user interfaces. Screen Search
enables a user to search not only text but also all GUI com-
ponents on the screen by keywords.
Unlike the usual search bound to a single application,
Screen Search is a global function that searches the content
and UI of multiple applications at the same time. Further-
more, it allows a user to quickly navigate or switch the
keyboard focus to any components found by Screen Search.
In other words, this feature enables the use of a keyboard to
navigate a user interface in a non-sequential order. For ex-
ample, a user can search for “indent” to locate the “Increase
Indent” and the “Decrease Indent” buttons on a toolbar, and
hit the Enter key to select the highlighted one (Figure 7).
Screen Search has two modes: searching only the visible
objects (the ones that can be seen on the screen), or virtual-
ly visible objects (the ones can be seen or are just over-
lapped by other windows). Each mode has a different way
to present matched objects. Because the matched objects in
the first mode are visible on the screen, we simply highlight
them using a yellow box. In the second mode, matched
objects are not necessarily visible, so we cannot just draw a
box at each position. Instead, we draw a thumbnail of each
window that has matched objects in a row and a big pre-
view window with the current selected object. The user can
press the Tab key to switch the focus among all matched
objects and also bring their parent window to the preview
position.
With PAX, the implementation of Screen Search is
straightforward because PAX has decided the best source
for obtaining the metadata of a component. A naïve imple-
mentation is calling findVisibleChildren or findVirtu-
allyVisibleChildren of the root of the UIElement tree, de-

Figure 8 Screen Search finds the given keyword
in multiple applications and shows the matched
components and their windows at the same time.

Figure 7 The two buttons with only image icons “De-
crease Indent” and “Increase Indent” can be searched
with Screen Search.

Figure 9 Screen Copy can be used to select and
copy columns of a table or a list view.

pending on the search mode, to retrieve the matched com-
ponents in each window. However, to support incremental
search, we traverse all nodes in the UIElement tree and
build an index of the text in each node in a background
thread periodically. This requires more complexity but pro-
vides a better interface that suggests how many and which
objects are matched as a user types.
Screen Copy
Screen Copy is a novel application we have built using
PAX. Screen Copy allows a user to select a rectangular
area on the screen and copies not only the text but also the
GUI widgets within that area into the system clipboard.
Figure 10 shows an example where the interface for setting
the appearance on Mac OS X can be copied and pasted into
a WYSIWYG HTML editor.
Screen Copy does not simply copy GUI widgets inde-
pendently, but preserves the hierarchy of widgets and their
logical grouping. In the example shown in Figure 10, the
two sets of radio buttons are correctly grouped together.
Thus, only one button in each group can be selected at a
time.
Screen Copy is useful for copying an existing interface
without its source code and converting it into another for-
mat of representation. For example, we could train a library
of Flex/Flash widgets using template matching or methods
based on machine learning such as Prefab, and then use
Screen Copy to convert a Flex/Flash interface to HTML.
Screen Copy also provides a rectangular selection model to
existing programs that only have the common text selection
implementation. For example, in a web browser, it is very
hard to select and copy any non-text objects, such as a table
or a form with pictures. The selection is constrained by the
flow of text and the underlying structure of HTML. Thus,
one can not easily select only one column of a table or two
objects across their different containers. However, these

can be achieved with the rectangular selection model pro-
vided by Screen Copy (see Figure 9).
Screen Copy is straightforward to implement with PAX.
Using PAX’s rectangular hit testing, the corresponding
UIElements within the selected area can be retrieved easily.
With the selected objects, Screen Copy transforms each
UIElement to HTML tags according to its role and content.
Finally, the HTML is copied into the system clipboard and
a proper MIME type of the data is set so other applications
can then convert it into their own format.
Screen Copy only copies the static interface of an applica-
tion. It does not copy the dynamic behavior or animated
effect on the interface. Additionally, some items that re-
quire more interactions to see (such as a drop-down box or
a context menu) cannot be copied, so the drop-down boxes
in Figure 9 were populated with only the one item that was
visible at that time. Currently, as a tool implemented to
demonstrate PAX, it does not copy widgets that cannot be
represented in standard HTML tags. However, in the fu-
ture, more complex transformations can be implemented to
support non-standard widgets.
CONCLUSION AND FUTURE WORK
We have described PAX, a hybrid framework that uses
pixels and accessibility metadata to complement each other.
We proposed and evaluated two new algorithms for detect-
ing text on screen and segmenting a text image into word
blobs assuming the text is known. We validated our
framework by implementing three applications: improving
Sikuli Script, Screen Search, and Screen Copy. While
promising, PAX has several limitations for future work:
First, in our prototype system, we used template matching
to identify GUI widgets from pixels as a proof of concept.
The modular design of our framework makes it possible to
integrate other powerful pixel reverse engineering methods
such as Prefab in the future.

! !

Figure 10 With Screen Copy, one can copy a Mac OS X user interface and paste it into a WYSIWYG HTML editor to
create an HTML version of the same interface.

Second, the developers who use PAX need to be aware of
the uncertainty due to OCR errors. As future work, more
robust OCR algorithms can be integrated with PAX to min-
imize this uncertainty.
Third, PAX currently uses the accessibility APIs provided
by each OS. However, other sources of hierarchical UI rep-
resentation, such as DOM, can also be integrated nicely
with PAX to further improve coverage. For example, on
Mac OS X, the built-in browser Safari has implemented a
transformation that converts a DOM to an accessibility tree,
making this integration possible.
Lastly, PAX currently uses the most common set of acces-
sibility metadata for maximum compatibility on each plat-
form. If more platform-specific metadata and APIs can be
used, this opens the door for a diverse body of research. For
example, we can add more actions, such as push buttons, or
open a drop down menu, to each UIElement, so PAX could
be a UI automation framework that automatically uses ac-
cessibility APIs or Sikuli Script as its backend. PAX could
also support UI customization that provides set methods on
each UIElement and draw a customized UI on top of the
existing one to show different layout or effects.
ACKNOWLEDGMENTS
We thank the anonymous reviewers and UID group for
great suggestions and feedback. This work was support-
ed in part by by the National Science Foundation under
award number IIS-0447800 and by Quanta Computer as
part of the TParty project. Any opinions, findings, conclu-
sions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views
of the sponsors.
REFERENCES
[1] Bezerianos, A. and Dragicevic, P. Mnemonic Render-

ing. UIST 2006.
[2] Chang, T. and Li, Y. Deep Shot: A Framework for

Migrating Tasks Across Devices Using Mobile Phone
Cameras. CHI 2011.

[3] Chang, T., Yeh, T. and Miller, R. GUI Testing Using
Computer Vision. CHI 2010.

[4] Dixon, M. and Fogarty, J. 2010. Prefab: Implementing

Advanced Behaviors using Pixel-based Reverse Engi-
neering of Interface Structure. CHI 2010.

[5] Dixon, M., Leventhal, D. and Fogarty, J. Content and
Hierarchy in Pixel-Based Methods for Reverse Engi-
neering Interface Structure. CHI 2011.

[6] Ha, J. and Haralick, R. Recursive XY Cut using
Bounding Boxes of Connected Components. ICDAR
1995.

[7] Hurst, A. and et al. Automatically Identifying Targets
Users Interact with during Real World Tasks. IUI
2010.

[8] Olsen, D.R., Jr, Taufer, T. and Fails, J.A. Screen-
Crayons: Annotating Anything. UIST 2004.

[9] Potter, R.L. Pixel Data Access: Interprocess Commu-
nication in the User Interface for End-User Program-
ming and Graphical Macros. Ph.D. Thesis, University
of Maryland at College Park. 1999.

[10] St Amant, R., Lieberman, H., Potter, R. and Zettle-
moyer, L. Visual Generalization in Programming by
Example. Communications of the ACM. 43, 3 (2000),
107-114.

[11] Stuerzlinger, W., Chapuis, O., Phillips, D. and Rous-
sel, N. User Interface Façades: Towards Fully Adapt-
able User Interfaces. UIST 2006.

[12] Tan, D.S. WinCuts: Manipulating Arbitrary Window
Regions for More Effective Use of Screen Space. CHI
2004.

[13] Wachenfeld, S. and Fleischer, S. A Multiple Classifier
Approach for the Recognition of Screen-Rendered
Text. Computer Analysis of Images and Patterns, Vol
4673, 921-928, 2007.

[14] Wachenfeld, S., Fleischer, S. and Klein, H. Segmenta-
tion of Very Low Resolution Screen-Rendered Text.
ICDAR 2007.

[15] Wachenfeld, S., Klein, H.-. and Jiang, X. Recognition
of Screen-Rendered Text. ICPR 2006.

[16] Yeh, T., Chang, T. and Miller, R. Sikuli: Using GUI
Screenshots for Search and Automation. UIST 2009.

[17] Zettlemoyer, L. A Visual Medium for Programmatic
Control of Interactive Applications. CHI 1999.

