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ABSTRACT 
Pixel-based methods are emerging as a new and promising 
way to develop new interaction techniques on top of exist-
ing user interfaces. However, in order to maintain platform 
independence, other available low-level information about 
GUI widgets, such as accessibility metadata, was neglected 
intentionally. In this paper, we present a hybrid framework, 
PAX, which associates the visual representation of user 
interfaces (i.e. the pixels) and their internal hierarchical 
metadata (i.e. the content, role, and value). We identify 
challenges to building such a framework. We also develop 
and evaluate two new algorithms for detecting text at arbi-
trary places on the screen, and for segmenting a text image 
into individual word blobs. Finally, we validate our frame-
work in implementations of three applications. We enhance 
an existing pixel-based system, Sikuli Script, and preserve 
the readability of its script code at the same time. Further, 
we create two novel applications, Screen Search and Screen 
Copy, to demonstrate how PAX can be applied to devel-
opment of desktop-level interactive systems. 
ACM Classification: H5.2. Information interfaces and 
presentation: User Interfaces. 
General terms: Human Factors, Design 
Keywords: Pixel, accessibility API, text detection, text 
segmentation, graphical user interfaces 
INTRODUCTION 
Pixels are the most common characteristic and the ultimate 
elements produced by every application with a graphical 
user interface (GUI). In late 90’s, researchers proposed 
using pixel-based methods for end-user programming and 
programming by example on existing user interfaces 
[9,10,17]. More recent work explores different possibilities 
with pixel-level interpretation for GUI automation, testing, 
and customization  [3,4,5,16]. 
However, pixel-based methods have room for improvement 

in terms of speed and accuracy. For example, Sikuli Script 
[16] is not very fast, because it searches the screenshots of 
GUI elements across the whole screen and does not know 
how to narrow down the search space. Furthermore, it is 
hard to detect and extract the text content from pixel data. 
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Figure 2 PAX combines pixels and Accessibility 
APIs for more accurate association between the 
visual representation and internal structure of a 
GUI. It filters accessibility information for only 
visible objects (red boxes) and also provides 
role, content, location, and size of objects de-
tected by pixel-based methods (green boxes). 

 

 
Figure 1 The internal structure of a GUI given by 
Accessibility APIs (AX) may not necessarily cor-
respond to the actual visual representation of 
the GUI. Boxes above indicate the windows and 
widgets returned by AX even though they are 
not visible to users. 
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Current Optical Character Recognition (OCR) algorithms 
are designed for scanned documents, which are high-
resolution with white background and simple column-based 
layouts, but not for on-screen text, which is low-resolution 
with colored background and could be randomly placed on 
the screen. Using current OCR algorithms on screen text 
would generate poor results [14,15]. 
Current pixel-based systems focus on using pixels as the 
sole source of input from the interfaces they operate. In 
order to maintain platform independence, these systems 
have intentionally neglected the other information that can 
be obtained from window managers or accessibility APIs. 
Unlike pixels, these extra sources of information are not 
necessarily available. For example, accessibility APIs are 
the standard hooks for exposing the internal structured 
metadata of a GUI to third-party assistive programs, such 
as screen readers, but to support such APIs requires engi-
neering effort from individual software developers. As a 
result, accessibility hooks may be omitted or added later as 
the software matures. Fortunately, many popular commer-
cial applications and built-in software on modern operating 
systems are accessibility-enabled. Therefore, why not lev-
erage the accessibility metadata if the target applications 
provide them? 
This paper introduces PAX, a hybrid framework combining 
Pixels and Accessibility APIs. PAX enhances the capabili-
ties of current pixel-based systems and enables new interac-
tive applications on top of existing interfaces. The key in-
sight is that accessibility and pixel interpretations comple-
ment each other. Thus, both of these sources of information 
should be used together if possible. 
PAX combines pixels with other information sources pro-
vided by GUIs, including accessibility metadata and low-
level rendering data from the window manager, and associ-
ates the pixels with their internal hierarchical and structured 
attributes. As a result, PAX not only knows what is visible 
to the user on the screen but also understands the content 
and structures behind the pixels. We use accessibility 
metadata as a convenient and accurate source of widgets’ 
information. If the accessibility metadata is not available, 
PAX automatically switches to pixel-level interpretation 
and still returns useful data. Furthermore, we use pixel-
level methods to optimize the accessibility metadata. For 
instance, when accessibility APIs are not fine-grained 
enough to return the position of each word in a paragraph 
of text, we use a pixel-based segmentation algorithm, along 
with the known text for the whole paragraph obtained from 
the accessibility API, to locate the words with high preci-
sion. 
The potential impact of PAX lies in its ability to improve 
existing pixel-based systems and to enable implementation 
of novel interaction techniques on top of existing interfac-
es. We validate this claim with concrete examples: the en-
hancement of pixel-based GUI automation (i.e., Sikuli 
Script [16]) and the implementation of two novel applica-
tions: Screen Search and Screen Copy. Screen Search is an 

attempt to allow users to conduct text-based search across 
multiple applications over the entire desktop rather than 
being limited to a particular window. It is applicable to any 
GUI components with text on the screen (e.g. on a title bar 
or in a tooltip of a button), even if it is occluded by other 
windows. Screen Copy is an attempt to allow users to copy 
the text content of a GUI component as well as the compo-
nent itself. Users can paste the copied text into a text editor 
or reuse the copied component in a GUI designer applica-
tion. The tool can be applied even when the text is not se-
lectable or when the source code of the GUI is not availa-
ble.  
We make the following contributions in this paper: 
• A hybrid framework that demonstrates how pixel analy-

sis and accessibility metadata can be used together and 
complement each other. 

• A text detection algorithm that finds text in screenshots, 
even with colorful backgrounds. 

• A text segmentation algorithm that segments an image 
of a paragraph of text into individual word images, giv-
en known text. 

• Validation of the framework in two novel applications 
and one enhancement of an existing system. 

RELATED WORK 
The idea of pixel-based interface interpretation and interac-
tion emerged in the late 90’s. Potter [9] developed a sys-
tem, Triggers, to support application-independent end-user 
programming purely based on direct pixel access. Zettle-
moyer and St. Amant [17] developed VisMap and VisS-
cript to interpret pixels as high-level and structured repre-
sentation of user interface objects, and then provided a set 
of mouse and keyboard commands (e.g. mouse-move, sin-
gle-click, and double-click) to operate on the interpreted 
objects. WinCuts allowed users to cut a sub-region of an 
existing window and create an independent live view of the 
source, but did not interpret its content [12]. 
Recently, more pixel-based work has emerged. Screen-
Crayons allows annotation on screen pixels [8]. Mnemonic 
Rendering determines the visibility of applications and 
shows motion trails of the changes when the hidden parts 
of windows are being revealed [1]. Sikuli Search allows 
users to search documents using the screen shot of GUI 
widgets [16]. Sikuli Script allows users to script user inter-
faces by taking screen shots of the targets the user wants to 
control [16]. Sikuli Test uses computer vision algorithms to 
analyze the pixels to generate testing scripts automatically  
[3]. Prefab interprets the pixels of a GUI and generates a 
high-level model of the widgets and their hierarchy [4,5]. 
The characteristic common to all this prior work is that it is 
completely focused on the pixel level. Instead of pure pixel 
methods, our work uses a hybrid approach that leverages 
pixels, the accessibility API, and the other useful infor-
mation from the operating system to boost the robustness 
and performance of existing work and to enable new appli-
cations.  



 

 

Most modern operating systems and GUI toolkits support 
Accessibility APIs, which were originally designed to be a 
standard hook for assistive technology applications, such as 
screen readers, or for GUI automation tools to communi-
cate with a user interface programmatically. In addition to 
the assistive use of accessibility information, Stuerzlinger 
et al.’s User Interface Façades uses such information to 
allow users to customize an interface with copy-and-paste 
[11]. 
However, accessibility APIs are not widely available in 
every application and GUI widget. Hurst et al. reported that 
the Microsoft accessibility API can only correctly identify 
74% of targets in eight popular applications on Windows 
[7]. Thus, they developed a hybrid approach that leverages 
the visual representation (i.e. the pixels) of a user interface 
to improve the accuracy of accessibility APIs for target 
identification. However, their approach does not deal with 
content; it is mainly for post-analysis of interaction logs to 
identify what targets the users might have clicked. In con-
trast, our approach is designed for real-time use to associate 
GUI widgets’ internal metadata and their pixel representa-
tion. Chang et al.’s Deep Shot was a framework and an 
interaction technique that mixed pixel-based methods and 
accessibility APIs [2]. Deep Shot used visual features to 
identify which portion of the screen the user is looking at 
through a camera, and then found the application in that 
area using accessibility APIs. In addition, accessibility in-
formation was a backup channel if the target application of 
interest did not support the Deep Shot framework. Our 
work is a new abstraction layer that provides extra accessi-
bility information to pixel-based systems and also expands 
the coverage for accessibility-based applications by provid-
ing the pixel interpretation of an interface with the same 
API.  
PIXEL ANALYSIS VERSUS ACCESSIBILITY API 
In this section, we describe the advantages and disad-
vantages of pixel-based methods and how we can use ac-
cessibility APIs to enhance the capabilities and perfor-
mance of those methods. 
Pixel Analysis 
Pixels are the most common output medium of current 
computing devices. Every GUI application is eventually 
rendered as pixels on a screen. Unlike the pixels perceived 
from the real world and generated by a digital camera, the 
pixels generated by a computer itself have no noise, no 
distortion, and no other source of interference. Thus, early 
systems were able to use naïve bitmap matching to find 
targets on a screen [9,17]. Furthermore, Prefab has demon-
strated that a UI model can be built from pixels in real-time 
so that researchers can build new interaction techniques on 
top of existing interfaces [4,5]. 
In contrast to understanding the UI model behind pixels, 
Sikuli Script takes a different approach to automate existing 
interfaces. In order to let users use loosely-bounded screen-
shots of automation targets, Sikuli uses template matching 
to fuzzily find the screenshots on the whole screen.  

While they hold promise, the effectiveness of pixel-based 
methods can be challenged by four factors:  
1. Visibility constraints. Invisible information, such as 

the items out of the current scrolling area or even the 
targets that are occluded by other windows, cannot be 
detected by pixel-based methods. 

2. Visual variations. The accuracy of pixel analysis de-
pends heavily on the look of target interfaces. If the us-
er makes dramatic changes to the color scheme or the 
application theme, neither Prefab’s trained prototypes 
nor Sikuli Script’s fuzzy template matching screenshots 
can deal with the visual variations that result from such 
changes. 

3. Exhaustive screen search. Pixel analysis is a potential-
ly expensive operation, especially in high-resolution 
and multiple monitor environments with many millions 
of pixels. However, existing pixel-based methods such 
as Sikuli and Prefab often need to consider every pixel 
on the screen indiscriminately in order to locate certain 
targets, unless there is an external mechanism to direct 
their attention to specific regions on the screen.  

4. Low-resolution text. The text content of an interface is 
hard to extract purely from pixels. Existing OCR en-
gines are designed for high-resolution (150 to 300 DPI) 
scanned documents with white background and simple 
column-based layouts, but not for low-resolution 
screens (72 or 96 DPI) with colorful backgrounds and 
arbitrary layout. Simply plugging an existing OCR en-
gine into a pixel-based system does not immediately 
work. 

Accessibility API 
Accessibility APIs are the standard interfaces built in mod-
ern desktop operating systems for assistive applications, 
such as screen readers, to access the low-level information 
of a user interface. Accessibility metadata is hierarchical, 
structured, and precise. For example, for an “OK” button in 
a confirmation dialog, we can get its role (AXButton), role 
description for humans, title, help message (the tooltip), 
enabled or disabled state, parent component, parent win-
dow, position, size, etc. 
Accessibility APIs provide a convenient way to access 
many low-level attributes of existing software. However, to 
support such an API, application developers have to put in 
extra engineering effort to correctly expose the internal 
data. As a result, not every application and GUI widget 
supports accessibility APIs. 
Fortunately, there are many applications that already acces-
sibility-enabled. Hurst et al. reported that 74% of the widg-
ets in eight popular applications were correctly identified 
by the accessibility API  [7]. 
We conducted our own investigation into the current acces-
sibility APIs for Mac OS X and Microsoft Windows (Mi-
crosoft Active Accessibility) regarding their capabilities 
and application compliance. We identified five challenges: 



 

 

1. Indifference to visibility. Accessibility APIs does not 
know if a window or a GUI component is visible or not 
(see Figure 1). The location and the size of a minimized 
window would be returned as its original place and size 
before minimizing. If items are out of a scrolling area, 
they still can be reached by the accessibility API, and 
there is no way to tell which of them are visible to the 
user. This can lead to excessive and incorrect infor-
mation when the developer just wants information 
about those the visible objects. 

2. Point-based object access. Accessibility APIs support 
hit testing to gain access to an interface object shown on 
the screen. However, this ability is point-based and is 
limited to a single object; it is not possible to access a 
group of objects in a given region. 

3. Incomplete support. Even applications that support 
accessibility APIs may not do so completely. An appli-
cation may include new or complicated widgets that do 
not provide any accessibility metadata because they are 
not in the standard widget set. 

4. Coarse granularity. The granularity of accessibility 
metadata may not fulfill the developer’s needs. For ex-
ample, the text content of a document may be returned 
as a block of text, where an novel interface technique 
may need the location of each individual word. 

5. Inconsistent text. The text shown on an interface is not 
necessary consistent with the accessibility metadata, as 
it can be reformatted in an unknown way. For example, 
a date in accessibility metadata is “Friday, April 15, 
2011 10:48:27 PM ET” but could be displayed as “To-
day, 10:48PM” on the screen. 

Recognizing the respective strengths and weaknesses of 
pixels and accessibility APIs, we believe it would be ideal 
to combine them in a complementary manner, offering both 
generality from pixels and precision from accessibility 
metadata at the same time. 
PAX: A HYBRID FRAMEWORK 
We propose PAX, a Pixel+Accessibility hybrid framework 
that associates the high-level visual representation of GUI 
widgets with their low-level structured and hierarchical 
information. PAX has three sources of input: pixels, acces-
sibility APIs, and window managers. PAX consolidates the 
information from these three sources into a new API that 
allows developers to easily access not only the pixels of the 
GUI widgets on the screen but also their internal infor-
mation. 
PAX associates the pixel representation of each GUI ele-
ment on the screen with its underlying attributes, such as its 
role (which could be a button, a text field, etc.) and its text 
content or value. The underlying attributes are retrieved 
from the accessibility API if available. If not, PAX at-
tempts to infer the role of the element from its pixel repre-
sentation using template matching and uses pixel-based 
algorithms to detect and recognize the text (see Figure 3). 

PAX can improve the effectiveness of existing systems that 
are based purely on accessibility APIs or on pixels. On the 
one hand, systems based on accessibility APIs can benefit 
from the knowledge of the GUI’s apparent visual represen-
tation to resolve certain ambiguities. On the other hand, 
pixel-based systems can use PAX to improve speed and 
accuracy. For example, PAX enables identification of a 
particular UI element using an XPath. Sikuli Script can 
store the XPath to a target UI component when taking the 
screen shot of it along with the screen shot image (e.g. in 
the header of the PNG file) and later use that path to locate 
the component without running template matching on the 
whole screen, or to constrain the search in a smaller region. 
Furthermore, PAX enables Sikuli Script to accept simple 
commands, e.g. find(  ).value(), 
to easily retrieve the value of a slider without calculating 
the position of the thumb to infer it. 
Designing PAX 
There are three design goals for PAX: 
1. The framework should enable existing pixel-based sys-

tems to easily access internal widget information given 
a region or a point on the screen. 

2. The framework should simplify the difficulty and com-
plexity in implementing novel interaction techniques on 
existing interfaces. 

3. The framework should automatically give the most ac-
curate results from available resources (either from ac-
cessibility metadata or pixel reverse engineering). 

PAX maintains a tree of UIElement objects shown on the 
screen. The root of this tree is a virtual node, which does 
not represent any physical GUI elements. The root returns 

Root

Application Application Application

Window Window Window

Toolbar SplitPanel

Button ButtonButton Table

Row Row

Window

PxCheckbox PxButtonPxText

 
Figure 3 The tree of PAX UI elements. The yel-
low nodes, created using accessibility and win-
dow manager information, do not require any 
support from application developers. The red 
nodes are the elements exposed using accessi-
bility APIs, while the green ones are reverse en-
gineered from pixels. 



 

 

all running applications as its children and can be obtained 
by calling a global function getUIElementRoot(). Each 
application is also a UI element, which returns its opened 
windows. Each window recursively contains the same hier-
archical structure of its title bar, tool bar, and all the other 
UI elements. 
PAX distinguishes three different visibility levels for a UI 
element:  

• Visible. This element can be seen on the screen.  
• Virtually visible. This element is meant to be visible 

on the screen but is partially or entirely occluded by 
other windows in front of it because of limited screen 
space; if the screen was infinitely large and no win-
dows needed to overlap, this element would be visible.  

• Invisible. This element is not meant to be seen by us-
ers because it is scrolled out of view, in a minimized 
window, or hidden by design.  

Therefore, each UI element has three different methods to 
get its children according to their visibility: getVisi-
bleChildren(), getVirtuallyVisibleChildren(), getChildren(), 
where they return the visible children, virtually visible 
children, and all children, respectively. Because a UI ele-
ment may be partially invisible, PAX also provides two 
methods, getVisibleBounds(), which returns the bounds of 
the visible part of a UI element, and getBounds(), which 
returns the original bounds. 
Like accessibility APIs, PAX provides getRole(), getText(), 
and getValue(), for getting the role, the text, and the value 
of a UI element, respectively. A role represents the type of 
a component, e.g. a button or a list item. Text can be the 
label or the string value of a component. A value is a num-
ber that is only meaningful for some components, e.g. a 
slider or a check box. These values are retrieved from ac-
cessibility APIs if they are available; otherwise pixel re-
verse engineering techniques are used. Further, PAX also 
provides getVisibleText(), which returns the text actually 
shown to the user. 
In addition to the standard accessibility attributes, each UI 
element has a getScreenshot() method for getting the screen 
shot of the element even it is only virtually visible, and 
getXPath(), which returns an XPath to the element, such as 
/Application[name=“Word”]/Window[1]/TabGroup[1]/Gro
up[text=“Paragraph”]/MenuButton[text=“Bulleted List”]. 
The name attribute in an XPath is only valid for Applica-
tions nodes, whereas text and value can be used in the re-
maining nodes. Developers can save the path and locate the 
same element quickly with a global function locateUIEle-
ment(xpath). 

To find particular elements, two methods can be used, by 
screen location or by content. PAX supports single-point 
hit testing with getUIElementAtPoint(x, y), which re-
turns the element at the given point, and getUIElemen-
tsInRect(rectangle), which returns all the visible ele-
ments in the given rectangle on the screen. To find by con-
tent, each UI element has the three methods findChil-

dren(pattern), findVisibleChildren(pattern) and findVirtu-
allyVisibleChildren(pattern), which return all, visible, and 
virtually visible children whose text content matches the 
given regular expression pattern. 
Finally, to better support advanced interaction techniques, 
each UI element has a method focus(), which sets the key-
board focus to that element and also brings its parent win-
dow to the front at the same time. This is particularly useful 
when the developers need to perform further interaction on 
a UI element. 
Bridging between Accessibility APIs and Pixels 
One of this framework’s goals is to automatically give the 
most accurate results from the available resources. There-
fore, PAX constructs the UI element tree from all running 
applications and their corresponding accessibility handles. 
If an application has exposed all necessary accessibility 
hooks, its descendants in the PAX tree are simply copied 
from the accessibility tree and wrapped up with a UIEle-
ment interface. Sometimes a few widgets or even the entire 
application do not support accessibility APIs, and in this 
case, each of these widgets or windows looks like a black 
hole, with only a single node in the accessibility tree to 
record its boundaries. 
When PAX walks down the accessibility tree and reaches a 
leaf node, it determines if there is a need to reverse engi-
neer the pixel contents of the node with three simple rules: 
(1) if the node is a text component (e.g. a text label, a text 
field, or a text area), run our text segmentation algorithm to 
breaks the text into word component pieces; (2) if the 
node’s role is not a container and not a text component (e.g. 
it is a check box, a radio button, etc.), do nothing; (3) oth-
erwise run pixel reverse engineering methods on the node’s 
screenshot. The text segmentation algorithm is useful for 
higher-granularity information about text components, and 
will be described later in this section. 
With pixel reverse engineering methods, such as Prefab, we 
still can provide similar information to the accessibility 
metadata even if we reach a dead end in the accessibility 
tree. In our current prototype, we did not attempt to com-
pletely build the hierarchy of UI widgets from pixels using 
Prefab’s method, but we used Sikuli’s template matching to 
find a small set of GUI widgets (e.g. radio buttons, check 
boxes, sliders) instead. Furthermore, we developed a new 
algorithm for locating arbitrary text content in a complicat-
ed component, e.g. a web view. 
A PAX tree is lazily generated on demand. Once parts of it 
are generated, the results are cached for fast response. The 
developer can explicitly request the cache to be updated. 
With proper event hooks that monitor the updates of the 
corresponding UI, the cache can be updated automatically 
after the UI is changed. For the reverse-engineered compo-
nents, the tree can be automatically updated by comparing 
the consecutive screen shots. Comparing two 1680x1050 
screenshots takes only 30ms on a modern PC; therefore, it 
is feasible to use this technique to continuously monitor the 
changes of a UI. 



 

 

In the last parts of this section, we discuss how we have 
dealt with the challenges mentioned above as well as the 
text segmentation and detection algorithms. 
Determining the Visibility of UI Elements 
With only accessibility APIs, we cannot tell if a window or 
a component is visible or not. To address this problem, our 
solution is to request the z-order of each window from the 
window manager, and create “masks” to cover the occupied 
areas of each window from top to bottom. Thus, if a com-
ponent is not fully covered by the masks and also intersects 
with its parent’s visible bounds, it is visible from the user’s 
point of view. 
For virtually visible elements, we only care if a UI element 
intersects with its parent’s bounds. If so, it is virtually visi-
ble; otherwise it is invisible. 
Region-based Hit Testing 
Accessibility APIs usually support hit testing, which is 
used for getting the accessibility information on a particular 
point on the screen. Unfortunately, this feature is limited to 
a single point and a single object. 
To get multiple elements in a region, a naïve method is to 
run the single-point hit testing on each point in that region. 
However, this is inefficient because a region could have 
millions of points. Another method is to traverse the com-
ponent tree and find all visible elements that intersect with 
the given region. But this is not possible with pure accessi-
bility APIs, because they do not know if a component is 
visible or not. 
Fortunately, PAX already has precise information about the 
visibility of each UI element. Therefore, PAX provides a 
function that enables developers to get the internal infor-
mation of multiple objects in a given region on the screen. 
Text Detection and Extraction From Pixels 
Current pixel reverse engineering techniques, such as Pre-
fab, can locate common GUI widgets and extract their tex-
tual content. However, Prefab’s method requires text be 
located over predictable backgrounds that Prefab can model 
based on provided examples. If the text is on a background 
for which Prefab has not been trained, or a complicated 
background that Prefab cannot model (e.g., a photographic 
wallpaper), it will not find the text. Recently, computer 
vision researchers have conducted research on segmenta-
tion and recognition methods for small screen-rendered text 
and reported accuracy achieved of 99.2346% [13,14,15]. 
However, they assumed the position of the text is known 
and did not address the problem of text detection. To com-
plement these pixel reverse engineering techniques, we 
have developed a text detection algorithm that locates text 
in arbitrary position in a screen image.  
Given a screen image, the algorithm for converting it to 
words has three major steps: (A1) segment the image into 
disjoint blobs of pixels, (A2) merge character blobs into 
word blobs, and finally apply OCR to extract words. 

A1. Salient Component Detection 
The goal of this step is to decompose a screen image into a 
set of salient components, each of which is composed of a 
blob of foreground pixels. Given a screen image as input, 
we first convert the image from color to grayscale. We ap-
ply an adaptive threshold to filter out low-contrast pixels. 
Figure 4-2 gives an example of the image after this process. 
Many container widgets such as panels have large areas of 
plain background pixels that can be easily filtered out in 
this way. From the high-contrast foreground pixels that are 
left, we detect long lines that might be window borders or 
grouping cues. These long lines are then removed so that 
components close to those lines would not be mistakenly 
interpreted as being connected by the lines. After this pro-
cess, text elements turn into a set of blobs, each of which 
correspond to a character, whereas image elements turn 
into a set of disjoint parts. 
A2. Text Extraction 
Next, we merge blobs of individual characters into larger 
blobs of words and use OCR to extract text from each word 
blob. To merge blobs, we apply a dilation operator to ex-
pand the extent of each blob horizontally. If a blob is a 
character, horizontal dilation will connect it with the char-
acters before and after, as long as the amount of dilation 
exceeds the amount of character spacing. This spacing de-
pends on the font size, which can be estimated from the 
height of the blob. Figure 4-3 shows the output of this 
merging process. Then, given a string of connected blobs, 
we check two properties to decide whether it is likely to be 
text. First, we check if these blobs share a common height 
and baseline. Next, we check if the color variation among 
the foreground pixels is low, since GUI text tends to be 

 
Figure 4 Text Detection process. (1) Given an 
image, (2) foreground pixels are extracted as 
small blobs. (3) Blobs are connected to form 
larger blobs, (4) which are classified into text 
(red), icon (green), or photo blobs (blue). 

 



 

 

rendered in a single, solid color to improve readability. 
Blobs satisfying both conditions are considered to be text 
blobs (red pixels in Figure 4-4) and passed to the OCR en-
gine to extract words from them. 
We did not implement Wachenfeld’s screen text recogni-
tion algorithms [13,14,15], but used the Tesseract OCR 
engine (http://code.google.com/p/tesseract-ocr/) in our cur-
rent prototype instead. If it were given the whole screen 
image as input, the Tesseract OCR engine would perform 
poorly because it assumes the text is in a single column. If 
we segment screen images into blocks of words that are 
processed individually by the OCR engine, the overall per-
formance is better. 
Text Image Segmentation Given the Text 
The minimum granularity returned by accessibility APIs is 
one UI component. This may be not enough if developers 
need the location and the bounds of each individual word or 
even each character in a text component. Therefore, we 
have developed an algorithm that segments the image of a 
text component into individual word blobs. Unlike other 
text segmentation algorithms, the text string is known from 
the accessibility API, so we have additional clues to locate 
each word more accurately. Furthermore, since this algo-
rithm runs on the leaf nodes in accessibility trees, we can 
assume the text is on a GUI widget with a simple or gradi-
ent background for the sake of readability. If the text has a 
complicated background, our algorithm would not work. 
Given that the text is already known (except for some in-
consistent cases, e.g. reformatted dates), this problem is not 
as hard as the original text segmentation problem in OCR. 
We describe this algorithm in two steps: (B1) segment im-
ages into N blobs, where N is the number of words in the 
given text; (B2) sort and match each blob to its correspond-
ing word in the text. 
B1. Text Segmentation 
By assuming the background of the text is a solid or gradi-
ent color, we look for a vertical or horizontal line for which 
each pixel is the same color, in a descendent or an ascend-
ant order in the given region. Once we have found such a 
line, we create a background by repeating this line to fill 
the size of the image, and then subtract the original image 
with this background to get an image with pure text pixels. 
We use a top-down approach that is modified from recur-
sive X-Y cut  [6] to break a text image into word blobs. We 
assume the text could be split into multiple lines, but no 
single word is broken with hyphens. The idea of this algo-
rithm is to calculate the sum of the pixels in each horizontal 
and vertical line to produce a density graph of white space. 
This graph shows several peaks that define horizontal or 
vertical gaps between lines or words, which are also the cut 
points we need to segment the image into smaller pieces. 
Our algorithm finds the largest gap, defined by its number 
of pixels, in the image, and cuts the image horizontally or 
vertically until the number of pieces remaining equals the 
number of expected words. 

B2. Matching each word with a blob 
After the first step, we have N small blobs, each of which 
corresponds to a word. Next, we sort these blobs vertically 
and group them into lines with similar baselines. Blobs in a 
line group are then sorted horizontally to match the writing 
order of western text.  
Matching Accessibility Metadata with What Users See 
The getVisibleText() method of a UIElement should return 
the text that users see on the screen. One goal of PAX is to 
deliver the most accurate results. Therefore, we should use 
the text from the accessibility API if possible. However, the 
text shown on the screen is not necessary consistent with 
the one returned by the accessibility API. 
A common example is automatic truncation when a string 
is too long. For example, “a very very very long file 
name.txt” may appear on the screen as “a very 
very…name.txt”. Another example is time and date for-
mation. For instance, “Friday, April 15, 2011 10:48:27 PM 
ET” could be shown as “Today, 10:48PM” on the screen. 
To address this inconsistency, we compare the text from the 
accessibility API and the text from OCR. If the edit dis-
tance between these two strings is smaller than a threshold 
that is proportional to the length of the OCR string, we in-
fer that no inconsistency exists and return the accessibility 
string as the visible text. Otherwise, when the strings are 
inconsistent, the OCR text is returned. Note the developer 
does not necessarily need the visible text, which is why we 
provide getVisibleText() and getText() for developers to 
choose according to their scenario. 
EVALUATION OF TEXT ALGORITHMS 
In this section, we describe the evaluation of our text detec-
tion and segmentation algorithms in PAX. 
Text Detection Algorithm 
To test the performance of our text detection algorithm, we 
constructed a dataset that consists of six high-resolution 
screenshots downloaded from the Internet. This dataset 
covers a variety of GUI widgets and text content on three 
major platforms (Mac OSX, Ubuntu Linux, and Windows 
7). Each word in the screenshots was located and labeled 
manually as ground truth. The total number of visible 
words in this dataset is 1141. The number of visible win-
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Figure 5 Text segmentation algorithm. Each 
number represents the order of the cut. (blue is 
vertical, red is horizontal) 

 



 

 

dows is 16. This dataset was held back while we were de-
veloping the text detection algorithm; we used screenshots 
of our own computers for training purpose and preserved 
this collection only for testing. 
During testing, we manually cropped the images of the 16 
windows (since window bounds are available in PAX) and 
applied our text detection algorithm to each image. Our 
algorithm made 1236 detections. We compared the results 
to the ground truth and found our algorithm was able to 
achieve a precision of 84.39% (1043/1236) and a recall of 
91.41% (1043/1141). The most common errors were isolat-
ed digits that were too small and were repeatedly mistaken 
by the algorithm as noise for 32 times (2.81%). 
Text Segmentation Algorithm 
To evaluate the performance of our text segmentation algo-
rithm, we built a dataset of 331 images each of which is a 
tightly bound block of text. This dataset was split into train-
ing and test sets to prevent overfitting when developing the 
algorithm. The former has 546 words in 57 images and the 
latter has 2046 words in 274 images. Each image block has 
at least two words. These images were collected from our 
own Mac computers and covered popular desktop applica-
tions and web sites (e.g., Microsoft Word, twitter.com, 
cnn.com). We applied the text segmentation algorithm to 
each image and manually verified the results. We found 
only 30 words out of 2046 words were incorrectly seg-
mented, which represents an accuracy of 98.55%. 
VALIDATION THROUGH EXAMPLE APPLICATIONS 
To validate the usefulness of PAX, we present three novel 
applications enabled by PAX: enhanced Sikuli Script, 
Screen Search and Screen Copy. 
Sikuli Script 
Sikuli Script, developed by Yeh et al., is a pixel-based ap-
proach to GUI automation that lets users take a screenshot 
of a target to direct mouse or keyboard inputs to that target 
[16]. It was deployed in early 2010 and a sizable user 
community has grown since. The discussions on its user 
forum suggest some difficulties of using Sikuli in practice. 
First, full-screen matching leads to ambiguity and slow 
performance. Users need an efficient way to constrain the 
search space to a certain application. Second, screen match-
ing fails if the target window is occluded by other win-
dows. It would be better if the matching worked even when 
the target window is only virtually visible. Finally, users 
need a reliable method to read the text from applications 
and can accept poor OCR results as better than nothing. 
To demonstrate the validity of PAX, we enhanced Sikuli 
Script by addressing the above issues using the system. 
First, we added a new App class, which manages the infor-
mation about an application and its window. App provides 
methods to open, close, and switch focus to a certain appli-
cation by giving its name or a disk path. Once an applica-
tion has opened, the corresponding App instance saves a 
reference to the UIElement of that application. Thus, a user 
may call app.window(n) to get the nth window as a Sikuli 
region and then all subsequent pixel computation can be 

constrained to this region for improved efficiency. This 
App class uses applications’ accessibility information pro-
vided by PAX to enable Sikuli Script to constrain the 
matching area within an application window dynamically 
instead of using a fixed region on the screen, and also ad-
dresses the performance and ambiguity problem. 
Second, we enhanced Sikuli’s screen capture interface and 
searching algorithm with PAX. In the screen capture inter-
face, we use PAX’s hit testing to automatically identify the 
target’s boundaries as the mouse cursor moves (see Figure 
6). A user can simply click on a target to take its screen-
shot, or use the original method of dragging out a rectangle 
around the target. When a screenshot is taken, the XPath to 
the target’s UIElement is also saved along with the screen-
shot (as metadata of the PNG file). Later, when the script is 
executed, Sikuli Script attempts to find the target with its 
XPath using PAX first, and then uses the original template 
matching method if the XPath fails or is unavailable.  
Unlike the first enhancement that requires explicit use, this 
implicitly speeds up the time spent searching for a target 
and removes the ambiguity. If the complete XPath is not 
available, because the target widget does not support acces-
sibility APIs, the enhancement still helps because we can at 
least know which application the target belongs to and con-
strain the search within the region of that application. This 
enhancement also addresses the second issue to allow Siku-
li to search virtually visible windows, whose screen content 
can be seen from PAX even when they are overlapped by 
others. 
Finally, we enhanced Sikuli’s region-based operation by 
linking each region with the corresponding UIElements and 
propagating the value and text from leaf components to 
their logical group. This allows a script to read text from a 
region or get the value of a component. For example, 
find(  ).value() can be used to 
read the value of a slider. Similarly, text also can be read by   
region.text(). Although PAX tries to unify pixels and ac-
cessibility metadata so that Sikuli users can be unaware of 
PAX, there are some notable differences when using differ-
ent source of underlying information together. In the slider 
example we just mentioned, if the slider exists in the acces-
sibility tree, PAX simply returns its absolute value. How-

 
Figure 6 As the cursor moves, the boundaries of 
the target can be identified automatically in Siku-
li Script. After the user clicks to capture a 
screenshot, the XPath to this target is also 
stored with the screenshot image for future use. 

 



 

 

ever, if it does not exist, there is no way to read its absolute 
value from the pixels. In this case, PAX returns a value 
between 0 and 1 by measuring the distance from the thumb 
to the two ends of the slider.  
Our enhancements have addressed several practical issues 
in Sikuli Script. At the same time, the readability and the 
learnability of Sikuli code are preserved. 
Screen Search 
Search is a common and important feature in almost every 
application. However, it is usually limited to the applica-
tion’s text content. There is no general method to search the 
GUI components in a user interface. For example, the text 
in a text field or in a text area is searchable, but the buttons 
on a toolbar or the text label on a check box are not. As 
GUI applications become large and complicated, searching 
GUI components is especially useful for the users who are 
not familiar with an interface. For instance, toolbars are 
widely used in many applications, but the image icons on 
them are not necessarily easy to understand. In these cases, 
a user must move the mouse cursor to hover over each but-
ton and wait for the tooltip to learn its meaning. The ability 

to search components by their label or description would be 
a solution for this problem. 
We have created Screen Search as a sample application to 
demonstrate how PAX can support building new interac-
tion techniques on existing user interfaces. Screen Search 
enables a user to search not only text but also all GUI com-
ponents on the screen by keywords.  
Unlike the usual search bound to a single application, 
Screen Search is a global function that searches the content 
and UI of multiple applications at the same time. Further-
more, it allows a user to quickly navigate or switch the 
keyboard focus to any components found by Screen Search. 
In other words, this feature enables the use of a keyboard to 
navigate a user interface in a non-sequential order. For ex-
ample, a user can search for “indent” to locate the “Increase 
Indent” and the “Decrease Indent” buttons on a toolbar, and 
hit the Enter key to select the highlighted one (Figure 7).  
Screen Search has two modes: searching only the visible 
objects (the ones that can be seen on the screen), or virtual-
ly visible objects (the ones can be seen or are just over-
lapped by other windows). Each mode has a different way 
to present matched objects.  Because the matched objects in 
the first mode are visible on the screen, we simply highlight 
them using a yellow box. In the second mode, matched 
objects are not necessarily visible, so we cannot just draw a 
box at each position. Instead, we draw a thumbnail of each 
window that has matched objects in a row and a big pre-
view window with the current selected object. The user can 
press the Tab key to switch the focus among all matched 
objects and also bring their parent window to the preview 
position. 
With PAX, the implementation of Screen Search is 
straightforward because PAX has decided the best source 
for obtaining the metadata of a component. A naïve imple-
mentation is calling findVisibleChildren or findVirtu-
allyVisibleChildren of the root of the UIElement tree, de-

 
Figure 8 Screen Search finds the given keyword 
in multiple applications and shows the matched 
components and their windows at the same time. 

 

 
Figure 7 The two buttons with only image icons “De-
crease Indent” and “Increase Indent” can be searched 
with Screen Search. 

  
Figure 9 Screen Copy can be used to select and 
copy columns of a table or a list view. 



 

 

pending on the search mode, to retrieve the matched com-
ponents in each window. However, to support incremental 
search, we traverse all nodes in the UIElement tree and 
build an index of the text in each node in a background 
thread periodically. This requires more complexity but pro-
vides a better interface that suggests how many and which 
objects are matched as a user types. 
Screen Copy 
Screen Copy is a novel application we have built using 
PAX. Screen Copy allows a user to select a rectangular 
area on the screen and copies not only the text but also the 
GUI widgets within that area into the system clipboard. 
Figure 10 shows an example where the interface for setting 
the appearance on Mac OS X can be copied and pasted into 
a WYSIWYG HTML editor. 
Screen Copy does not simply copy GUI widgets inde-
pendently, but preserves the hierarchy of widgets and their 
logical grouping. In the example shown in Figure 10, the 
two sets of radio buttons are correctly grouped together. 
Thus, only one button in each group can be selected at a 
time. 
Screen Copy is useful for copying an existing interface 
without its source code and converting it into another for-
mat of representation. For example, we could train a library 
of Flex/Flash widgets using template matching or methods 
based on machine learning such as Prefab, and then use 
Screen Copy to convert a Flex/Flash interface to HTML. 
Screen Copy also provides a rectangular selection model to 
existing programs that only have the common text selection 
implementation. For example, in a web browser, it is very 
hard to select and copy any non-text objects, such as a table 
or a form with pictures. The selection is constrained by the 
flow of text and the underlying structure of HTML. Thus, 
one can not easily select only one column of a table or two 
objects across their different containers. However, these 

can be achieved with the rectangular selection model pro-
vided by Screen Copy (see Figure 9).  
Screen Copy is straightforward to implement with PAX. 
Using PAX’s rectangular hit testing, the corresponding 
UIElements within the selected area can be retrieved easily. 
With the selected objects, Screen Copy transforms each 
UIElement to HTML tags according to its role and content. 
Finally, the HTML is copied into the system clipboard and 
a proper MIME type of the data is set so other applications 
can then convert it into their own format. 
Screen Copy only copies the static interface of an applica-
tion. It does not copy the dynamic behavior or animated 
effect on the interface. Additionally, some items that re-
quire more interactions to see (such as a drop-down box or 
a context menu) cannot be copied, so the drop-down boxes 
in Figure 9 were populated with only the one item that was 
visible at that time. Currently, as a tool implemented to 
demonstrate PAX, it does not copy widgets that cannot be 
represented in standard HTML tags. However, in the fu-
ture, more complex transformations can be implemented to 
support non-standard widgets.  
CONCLUSION AND FUTURE WORK 
We have described PAX, a hybrid framework that uses 
pixels and accessibility metadata to complement each other. 
We proposed and evaluated two new algorithms for detect-
ing text on screen and segmenting a text image into word 
blobs assuming the text is known. We validated our 
framework by implementing three applications: improving 
Sikuli Script, Screen Search, and Screen Copy. While 
promising, PAX has several limitations for future work: 
First, in our prototype system, we used template matching 
to identify GUI widgets from pixels as a proof of concept. 
The modular design of our framework makes it possible to 
integrate other powerful pixel reverse engineering methods 
such as Prefab in the future.  

! !
 

Figure 10 With Screen Copy, one can copy a Mac OS X user interface and paste it into a WYSIWYG HTML editor to 
create an HTML version of the same interface. 

 



 

 

Second, the developers who use PAX need to be aware of 
the uncertainty due to OCR errors. As future work, more 
robust OCR algorithms can be integrated with PAX to min-
imize this uncertainty. 
Third, PAX currently uses the accessibility APIs provided 
by each OS. However, other sources of hierarchical UI rep-
resentation, such as DOM, can also be integrated nicely 
with PAX to further improve coverage. For example, on 
Mac OS X, the built-in browser Safari has implemented a 
transformation that converts a DOM to an accessibility tree, 
making this integration possible.  
Lastly, PAX currently uses the most common set of acces-
sibility metadata for maximum compatibility on each plat-
form. If more platform-specific metadata and APIs can be 
used, this opens the door for a diverse body of research. For 
example, we can add more actions, such as push buttons, or 
open a drop down menu, to each UIElement, so PAX could 
be a UI automation framework that automatically uses ac-
cessibility APIs or Sikuli Script as its backend. PAX could 
also support UI customization that provides set methods on 
each UIElement and draw a customized UI on top of the 
existing one to show different layout or effects. 
ACKNOWLEDGMENTS 
We thank the anonymous reviewers and UID group for 
great suggestions and feedback. This work was support-
ed in part by by the National Science Foundation under 
award number IIS-0447800 and by Quanta Computer as 
part of the TParty project. Any opinions, findings, conclu-
sions or recommendations expressed in this publication are 
those of the authors and do not necessarily reflect the views 
of the sponsors. 
REFERENCES 
[1] Bezerianos, A. and Dragicevic, P. Mnemonic Render-

ing. UIST 2006. 
[2] Chang, T. and Li, Y. Deep Shot: A Framework for 

Migrating Tasks Across Devices Using Mobile Phone 
Cameras. CHI 2011. 

[3] Chang, T., Yeh, T. and Miller, R. GUI Testing Using 
Computer Vision. CHI 2010. 

[4] Dixon, M. and Fogarty, J. 2010. Prefab: Implementing 

Advanced Behaviors using Pixel-based Reverse Engi-
neering of Interface Structure. CHI 2010. 

[5] Dixon, M., Leventhal, D. and Fogarty, J. Content and 
Hierarchy in Pixel-Based Methods for Reverse Engi-
neering Interface Structure. CHI 2011. 

[6] Ha, J. and Haralick, R. Recursive XY Cut using 
Bounding Boxes of Connected Components. ICDAR 
1995. 

[7] Hurst, A. and et al. Automatically Identifying Targets 
Users Interact with during Real World Tasks. IUI 
2010. 

[8] Olsen, D.R., Jr, Taufer, T. and Fails, J.A. Screen-
Crayons: Annotating Anything. UIST 2004. 

[9] Potter, R.L. Pixel Data Access: Interprocess Commu-
nication in the User Interface for End-User Program-
ming and Graphical Macros. Ph.D. Thesis, University 
of Maryland at College Park. 1999. 

[10] St Amant, R., Lieberman, H., Potter, R. and Zettle-
moyer, L. Visual Generalization in Programming by 
Example. Communications of the ACM. 43, 3 (2000), 
107-114. 

[11] Stuerzlinger, W., Chapuis, O., Phillips, D. and Rous-
sel, N. User Interface Façades: Towards Fully Adapt-
able User Interfaces. UIST 2006. 

[12] Tan, D.S. WinCuts: Manipulating Arbitrary Window 
Regions for More Effective Use of Screen Space. CHI 
2004. 

[13] Wachenfeld, S. and Fleischer, S. A Multiple Classifier 
Approach for the Recognition of Screen-Rendered 
Text. Computer Analysis of Images and Patterns, Vol 
4673, 921-928, 2007. 

[14] Wachenfeld, S., Fleischer, S. and Klein, H. Segmenta-
tion of Very Low Resolution Screen-Rendered Text. 
ICDAR 2007. 

[15] Wachenfeld, S., Klein, H.-. and Jiang, X. Recognition 
of Screen-Rendered Text. ICPR 2006. 

[16] Yeh, T., Chang, T. and Miller, R. Sikuli: Using GUI 
Screenshots for Search and Automation. UIST 2009. 

[17] Zettlemoyer, L. A Visual Medium for Programmatic 
Control of Interactive Applications. CHI 1999. 

  

 
 


