
Debug Tutor: Automated Deliberate Debugging
Practice for Undergraduate Programmers

by

Gabrielle E. Ecanow

B.S., Computer Science and Engineering
Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Gabrielle E. Ecanow. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Gabrielle E. Ecanow
Department of Electrical Engineering and Computer Science
May 12, 2023

Certified by: Robert C. Miller
Distinguished Professor of Computer Science
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee



2



Debug Tutor: Automated Deliberate Debugging Practice for

Undergraduate Programmers

by

Gabrielle E. Ecanow

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Novice programmers struggle with debugging. Despite a rich literature of research on
the effectiveness of teaching debugging, debugging is often not taught systematically
in computer science curricula. This thesis presents the Debug Tutor, an automated
debugging tutor for explicit debugging practice at the college level. The Debug Tu-
tor’s suite of exercises drill particular microskills essential for competent debugging,
and it offers automated expert hints and feedback by observing students’ debugging
actions in real time. The Debug Tutor was incorporated into MIT’s undergraduate
Software Construction course (6.102, formerly 6.031) in the Spring 2023 term. The
Debug Tutor’s effectiveness at teaching important low-level debugging skills was inves-
tigated by analyzing exercise completion statistics and subsequent debugging-related
quiz scores of the over 500 MIT students enrolled in the undergraduate course. The
analysis revealed that completing Debug Tutor exercises was positively correlated
with performance on debugger-related exam questions, regardless of students’ prior
comfort levels with using a debugger. Furthermore, the software design of the Debug
Tutor as a tutoring architecture with event tracking support was shown to be robust
in capturing specific student actions to compare against exercise event patterns, flex-
ible enough to handle a wide range of unexpected action sequences and on-the-fly
updates, and extensible to domains other than the use of the debugger.

Thesis Supervisor: Robert C. Miller
Title: Distinguished Professor of Computer Science

3



4



Acknowledgments

I would, first and foremost, like to thank the staff and students of the Spring 2023

semester of 6.102. To the staff, your patience and feedback helped shaped the Debug

Tutor into what it is now. To the students, I only hope the Debug Tutor was a positive

learning experience overall, despite the inevitable hiccups of a version 1 release!

I would especially like to thank Rob Miller, my thesis advisor and the incredi-

ble solo-flying professor of 6.102 (at least for Spring 2023—Max, you were missed!).

Thank you for your guidance, quick feedback, and encouragement, and for letting me

release the Debug Tutor to the students of 6.102. I am inspired by your dedication

to 6.102, a course that has had a profound impact on my experience at MIT and, no

doubt, on my software engineering career to come.

To Mario, the other half of the Praxis duo. Thank you for chatting with me every

week about automated tutoring for the past year.

To Milka, my co-head 6.102 TA. Thank you for being my sounding board, for

patiently listening to all of my rants, for being an early and continuous Debug Tutor

tester, and for all of your invaluable feedback. Thank you for generally keeping me

sane this past year.

I would like to thank my prior teachers: Herbert Lichtman, for introducing me

to software engineering, and Tom Bredemeier, for encouraging me to teach software

engineering. You showed me early on how great teachers inspire students to want to

learn.

Last but not least, I would like to thank my family. To my siblings, Eli and Naomi

(and Jeff!), and to my parents, Marci and Jacob: Thank you for being my biggest

supporters and cheerleaders. I could not have gotten through these last five years at

MIT without you.

5



6



Contents

1 Introduction 15

2 Related Work 19

2.1 Understanding Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Understanding Debugging . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 The Debugging Process . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 On Teaching Debugging . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Existing Tools for Teaching Debugging . . . . . . . . . . . . . . . . . 24

2.6 Applying Deliberate Practice to Debugging . . . . . . . . . . . . . . . 26

3 Design 29

3.1 A Debug Concept Map . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Design of Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 It’s Time for an Update . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Implementation 47

4.1 History Event Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Authoring Exercises with History Events . . . . . . . . . . . . 49

4.1.2 Adopting Event Patterns in the Tutor . . . . . . . . . . . . . 55

4.2 The Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Concrete Exercises . . . . . . . . . . . . . . . . . . . . . . . . 57

7



4.2.2 A Concrete Concept Map . . . . . . . . . . . . . . . . . . . . 62

4.2.3 Uploading to the Server . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Answer Checking 2.0 . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 The Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 The Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Event Tracking API . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 extension.ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3 Concrete Trackers . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Version 1 Complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Deployment 81

5.1 Debugging Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Staff Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Official Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Evaluation 85

6.1 Student Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 Self-Reported Data . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.2 Problem Reports . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Tutor Exercise Completion . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Time Spent & Attempts Per Exercise . . . . . . . . . . . . . . 93

6.3 Course Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.1 Class 9 Nanoquiz Results . . . . . . . . . . . . . . . . . . . . . 97

6.3.2 Quiz 1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.3 Impact of the Debug Tutor . . . . . . . . . . . . . . . . . . . . 104

6.4 Summary & Main Takeaways . . . . . . . . . . . . . . . . . . . . . . 112

7 Conclusion 115

7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8



7.2.1 Extension Updates . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.2 Concept Map Updates . . . . . . . . . . . . . . . . . . . . . . 118

7.2.3 Realtime Hints . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.4 A Hypothetical Case Study: Extending to Git . . . . . . . . . 119

9



10



List of Figures

1-1 Full VS Code window in student view, with level 0 completed, level 1

unlocked, and levels 2-5 locked . . . . . . . . . . . . . . . . . . . . . . 17

1-2 A debugger exercise with a hint displayed after an incorrect attempt . 18

3-1 Debug Tutor Concept Map . . . . . . . . . . . . . . . . . . . . . . . . 30

3-2 Full VS Code window in student view, with level 0 completed, level 1

unlocked, and levels 2-5 locked . . . . . . . . . . . . . . . . . . . . . . 37

3-3 Example exercise when a concept group is first opened . . . . . . . . 38

3-4 Basic Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3-5 Setup Required Workflow . . . . . . . . . . . . . . . . . . . . . . . . 41

3-5 Setup Required Workflow (cont.) . . . . . . . . . . . . . . . . . . . . 42

3-6 Start Over Required Workflow . . . . . . . . . . . . . . . . . . . . . . 43

3-7 On A Correct Submission . . . . . . . . . . . . . . . . . . . . . . . . 44

4-1 The Debug Tutor (Praxis) Architecture. . . . . . . . . . . . . . . . . 47

4-2 Regular Object Matching Algorithm . . . . . . . . . . . . . . . . . . 54

4-3 The Praxis Tutor Webapp Event Loop . . . . . . . . . . . . . . . . . 69

4-4 The Editor Namespace in event-tracking-api.ts . . . . . . . . . . 72

4-5 The Tutor Tracker interface in event-tracking-api.ts . . . . . . . 73

5-1 Clip of Reading 9 Scientific Method Subsection . . . . . . . . . . . . 82

6-1 Student Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6-2 Prior Debugger Experience . . . . . . . . . . . . . . . . . . . . . . . . 87

6-3 Prior Debugger Skill Experience . . . . . . . . . . . . . . . . . . . . . 87

11



6-4 Prior Debugger Comfort Level . . . . . . . . . . . . . . . . . . . . . . 88

6-5 Problem Report Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 88

6-6 Per-Exercise Pass Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6-8 Matrix-mix Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6-7 Matrix-mix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6-9 First-time passer Matrix-mix students split by approach and binary

prior debugger comfort level . . . . . . . . . . . . . . . . . . . . . . . 92

6-10 Time Spent Per Exercise . . . . . . . . . . . . . . . . . . . . . . . . . 94

6-11 Attempts Per Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6-12 Student Data (without the top 0.01 quantile) . . . . . . . . . . . . . 96

6-13 Clip of Class 9 Nanoquiz and Solutions . . . . . . . . . . . . . . . . . 98

6-14 NQ Grade, broken down by concept . . . . . . . . . . . . . . . . . . . 99

6-15 Nanoquiz average grade by concepts passed . . . . . . . . . . . . . . 100

6-16 Quiz 1 sub-question 4.2 and sample answers . . . . . . . . . . . . . . 101

6-17 Quiz q4.2 grade and answer distribution . . . . . . . . . . . . . . . . 101

6-18 Quiz q4.2 average by highest completed debugger level . . . . . . . . 102

6-19 Effect of Particular Exercise on Quiz Answer . . . . . . . . . . . . . . 103

6-20 Prior experience on combined quiz grade . . . . . . . . . . . . . . . . 104

6-21 Effect of Prior Comfort and Highest Level Completed on Combined

Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6-22 Effect of Particular Exercise on Quiz Answer . . . . . . . . . . . . . . 108

6-23 Prior experience with breakpoints and Backgammon-breakpoint-continue-

navigation on quiz answer . . . . . . . . . . . . . . . . . . . . . . . . 110

6-24 Prior experience with single stepping and Backgammon-step-in-out-

navigation on quiz answer . . . . . . . . . . . . . . . . . . . . . . . . 111

12



List of Tables

3.1 Debug Tutor Concept Map . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Example Debugger Event History Patterns . . . . . . . . . . . . . . . 52

4.2 Concrete Pattern Streams & Events . . . . . . . . . . . . . . . . . . . 53

4.3 Webapp-Server Routes . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Webapp-Host Plugin API . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Event Tracking API’s HostIDE Exports . . . . . . . . . . . . . . . . . 71

13



14



Chapter 1

Introduction

Debugging, the art of finding and fixing bugs in code, is an integral part of the soft-

ware engineering process. Yet novice programmers struggle with debugging. More

specifically, they lack the systematic approach to debugging that expert program-

mers exhibit. While debugging is a skill closely related to programming, research

finds that the skills necessary for competent debugging are separate from those found

in competent programming [1][17]. And, although research on teaching debugging

finds that student programmers benefit from explicit debugging instruction, most

high school and college curricula lack dedicated time towards debugging instruction.

There is much work left to be done in crafting an appropriate method of debugging

instruction for undergraduate computer science curricula.

Like building competency in both the syntax and semantics of programming,

building competency in debugging requires learning a wide range of skills across ab-

straction levels. A debugging curriculum should include instruction in high-level

expert approaches, such as defensive programming and the scientific method for de-

bugging, as well as practice in low-level skills like test-case reduction, print debugging,

and use of the debugger, not to mention employing these together to build intuition

in finding and fixing bug. While many undergraduate courses address at least some

high-level debugging practices, most lack any explicit instruction in low-level tool-

ing, nor do they include any sustained, feedback-oriented practice in debugging. The

Debug Tutor, therefore, aims to offer such practice in low-level debugging microskills.

15



One generally effective method of instruction is deliberate practice [7]. Deliberate

practice describes how to systematically master a new skill by performing inten-

tional exercises with immediate and expert feedback, repeated regularly and for an

extended period of time. Deliberate practice is the basis behind the MIT CSAIL

Usable Programming Group’s Praxis Tutor, an educational framework for automat-

ically applying deliberate practice to any skill whose practice and feedback can be

mechanized. For example, the Praxis framework drives the TypeScript Tutor, a Vi-

sual Studio Code (VS Code) plugin currently used in MIT’s undergraduate 6.102

Software Construction course for learning the syntax of the TypeScript language.

The Debug Tutor is an extension of the Praxis framework applied to debugging.

The Debug Tutor hosts a suite of debugging exercises that target concepts necessary

for mastering low-level debugging skills, including interpretation of stack traces, me-

thodical print debugging, and the use of the debugger. These concepts are organized

into related concept groups, which are split into levels, each of which cannot be ac-

cessed until the previous level is completed. The Debug Tutor is accessed as a plugin

to any supported code editor, such as VS Code. In the Debug Tutor, a student must

first complete exercises in error interpretation. Next, the student must complete ex-

ercises in effective use of print statements and in print debug strategies. Finally, the

student must work through a series of concept groups exercising use of the debugger.

Fig. 1-1 displays the Debug Tutor with all concept groups visible in VS Code.

Within each concept group, students must complete a certain number of concrete

exercises, each drilling one or more abstract concepts. For example, an exercise

drilling the use of certain single step actions in the debugger might ask the student to

watch as a breakpoint is automatically set in a code file. Then, the exercise might ask

the student to begin a debug session and use some sequence of debugger actions to

change and observe how the debug session state updates based on the actions taken.

The Debug Tutor provides expert feedback and hints based on observing debug-

ging actions in real time. Exercise authors define each exercise’s solution pattern as

an ordered event list, where each event includes an action and its data, such as setting

a breakpoint on a certain line. Exercise authors can use the same pattern format to

16



Figure 1-1: Full VS Code window in student view, with level 0 completed, level 1
unlocked, and levels 2-5 locked

define hints triggered by an incorrect action sequence and warnings triggered by a

correct, but non-expert, sequence. As the student works through an exercise, the De-

bug Tutor observes and logs relevant actions in real time. To check a submission, the

Debug Tutor uses a custom pattern matcher to compare the student event sequence

and the solution event pattern. Fig. 1-2 displays an example exercise drilling the use

of the step over action, with a hint displayed after an incorrect attempt was made.

This thesis evaluates the effectiveness of the Debug Tutor as used in MIT’s 6.102

Software Construction Spring 2023 term, where it attempted to improve both the skill

and self-efficacy in debugging for the over 500 students enrolled. Each Debug Tutor

level was recommended to students at appropriate points throughout a reading assign-

ment dedicated to teaching high-level debugging approaches, therefore blending the

abstract high-level and hands-on low-level instruction into a single assignment. After

completing the reading, students were also asked about their prior experience using

a debugger. During the following lecture dedicated to debugging, students were eval-

uated on their knowledge of single stepping in the debugger on a nanoquiz. Students

17



Figure 1-2: A debugger exercise with a hint displayed after an incorrect attempt

were re-evaluated on similar content two weeks later on the first quiz. Comparing

the quiz scores of the student population split by prior debugger comfort levels and

number of Debug Tutor concept groups completed revealed that, regardless of prior

comfort, completing more concept groups was correlated with higher quiz scores.

Furthermore, most Debug Tutor exercises had a pass rate well above 80%, but

only a small minority passed each exercise on the first try. Therefore, the design

of the event pattern language and event tracking API introduced into the Praxis

architecture was robust enough to ensure that concepts were sufficiently practiced,

yet flexible enough to account for a range of potential student approaches, even during

multi-step exercises. The incorporation of event tracking in the Praxis architecture,

including trackers for both the debugger and the terminal, opens the possibility of

adding new Tutors for other event-based learning domains in the future.

18



Chapter 2

Related Work

In order to set the stage for the design and development of a debugging tutor, one

must first understand bugs: What are bugs, and when do they occur?

2.1 Understanding Bugs

Bugs in computer programs come in a variety of flavors. The literature largely does

not have a standard way of categorizing bugs [17], instead focusing on unique catego-

rizations to support an end-goal, such as understanding what kinds of bugs typically

plague novice programmers [1]. At a high level, bugs are typically divided between

logical or semantic errors that do not affect the running of the program, per se, but

instead arise from a discrepancy in what the programmer intended for the program to

do versus what the program actually does; compile-time bugs, which arise at compile

time; and runtime bugs, which arise during runtime. For the Debug Tutor, logical will

refer to bugs that do not halt the program, runtime will refer to bugs that halt the

program during runtime, and compile-time will refer to bugs that halt the program

during compile time.

Spohrer & Soloway (1986), found that novices suffered primarily from non-language-

construct bugs [20]. Ahmadzadeh et al. (2005) similarly found that a majority of over

100,000 recorded bugs in student code was a result of semantic errors, where they

define semantic to be any inconsistency with the language, as opposed to only incon-

19



sistencies that do not halt the program [1]. Exercises for the Debug Tutor contain

only logical or runtime errors.

2.2 Understanding Debugging

Debugging, the act of finding and fixing bugs in code, is an essential skill for a suc-

cessful programmer, with some sources claiming that over 50% of work days are spent

debugging [12][22]. As expected, novice programmers struggle more with debugging

than professional software engineers, but perhaps surprisingly, studies have found

that the root of this disparity does not lie in programming ability alone [1].

Ahmadzadeh et al. (2005) conducted a study asking students to debug logic errors

and found that a majority of students who successfully found and corrected these

errors were also competent programmers [1]. But the same was not true the other

way around: while a good debugger was a clear sign of a good programmer, being

good at programming did not imply a similar proficiency at debugging. In other

words, a knowledge gap existed between what drove the successful programming

versus the successful debugging. Others have since come to the same conclusion:

that debugging is a distinctly separate skill from programming [17]. In order to teach

debugging, therefore, just knowing the types of bugs that novices struggle with is not

enough; understanding what is missing from novices’ mental models when debugging

is equally crucial. What are the building blocks for an expert debugging process, and

where do novices fail?

2.3 The Debugging Process

Mccauley et al. consolidated and summarized the literature on the debugging process

[16], finding that, in general, the debugging process consistently followed four steps:

understanding the system, testing the system, locating the error, and fixing the error.

Importantly, the first three stages were the biggest hurdles during the debugging

process [16].

20



Several studies compared the process of expert and novice debuggers. One study

found that experts use seven types of knowledge when locating bugs: (1) knowledge

of the intended program; (2) knowledge of the actual program; (3) an understanding of

the implementation language; (4) general programming expertise; (5) knowledge of the

application domain; (6) knowledge of bugs ; and (7) knowledge of debugging methods

([6] Table 2-1). The seventh type, debugging methods, includes knowledge about the

availability and use of tools such as a tracer, an early form of a debugger that included

step-by-step tracing and breakpoints [6]. Nanja & Cook (1987) similarly found that

the expert debuggers in their study tended to use an online debugger tool, whereas

neither the novice nor the intermediate debuggers took advantage of such tooling,

sometimes even opting for hand-written notes tracing the program evolution instead

[19]. In line with this research, the proposed Debug Tutor places a big emphasis on

learning to use the debugger.

Many studies attributed the difference in expert and novice debuggers to a lack

of overall program comprehension [1][19][21]. Vessey (1985) found that this lack in

program comprehension caused the difference in the approach to debugging. While

the experts used a breadth-first approach that began with general program compre-

hension before sourcing the bug, novices instead went with a depth-first approach.

Likewise, Nanja & Cook (1987) found that experts spent more time simply reading

the code before attempting to debug, and, perhaps more importantly, the experts

read the code in execution order, while the novices read the code in line order [19].

Blending these different approaches and knowledge gaps into a single framework,

Li et al. [14] adapted Jonassen & Hung (2006)’s categories of knowledge required for

general troubleshooting to debugging:

• Domain: Understanding the programming language

• System: Understanding the program to be debugged, including both topological

knowledge (the architecture diagram of the program) and functional knowledge

(the causal relationship between components of the program—i.e., comprehen-

sion of the program)

21



• Procedural: Knowing how to use the IDE’s debugger or how to set up a test

suite

• Strategic: Knowing how to employ global strategies (such as use of the de-

bugger for tracing, or, e.g., following a breadth-first search strategy) and local

strategies (such as context-dependent placement of print or log statements)

• Experience: Being able to draw on prior experience debugging [8]

Jonassen & Hung (2006)’s categories are useful for identifying what gaps in knowl-

edge the proposed Debug Tutor aims to drill [8]. The Debug Tutor aims to drill

procedural knowledge—that is, the use of the debugger—as well as some aspects of

system knowledge, such as interpretation of stack traces and call stacks.

Evidently, expert and novice debuggers differ significantly in their mental repre-

sentations during debugging, their approach to debugging, and the tools used during

debugging. Given these findings, how has teaching debugging evolved, and what

approaches already exist for teaching debugging?

2.4 On Teaching Debugging

Many studies agree that explicit instruction of debugging helps students become bet-

ter debuggers [1][3][4][5][14][17]. In general, most studies on teaching debugging fall

into one of two categories: long-term learning, in which students spend an extended

period of time on debugging exercises without the direct help or guidance of an ex-

pert, and short-term teaching, in which students spend a single session being taught

a systematic approach to debugging.

Taking the long-term learning approach, Chmiel & Loui (2004) found that debug-

ging exercises incorporated into a semester-long undergraduate course on assembly

language improved debugging skill in students [4]. One exercise type asked students

to perform code review on buggy code, i.e., identify errors without running the code.

The second exercise type asked students to debug buggy code, with the option of

using a debugger tool for single stepping, setting breakpoints, and observing memory

22



or register contents. The authors found that students who completed these exercises

debugged significantly faster than students who did not, regardless of aptitude, and

they urged instructors to “integrate activities throughout an entire curriculum” be-

cause debugging “is an important, complicated skill that requires repeated practice”

[4]. The Debug Tutor, following their suggested approach, is intended to be used

repeatedly and can be integrated across a CS curriculum.

On the other hand, Carver & Risinger (1987) employed a short-term teaching

approach, opting to teach a systematic method in the course of one session [3]. They

gave sixth grade students a flow chart diagramming a procedure for debugging and

found that, later, students did continue to use the systematic approach unlike the

control group’s brute force approach. Michaeli & Romeike (2019) ran a similar study

teaching a scientific method (observe, hypothesize, experiment, repeat) approach,

varied slightly for compile time, runtime, and logical bugs:

1. Compile: Compile-time errors

(a) Is the program compiling successfully? [Observe]

i. If necessary, revert changes.

(b) Read and understand error messages.

(c) Adjust your program. [Experiment & Repeat ]

2. Run: Runtime errors

(a) Does the program run without errors? [Observe]

i. If necessary, revert changes.

(b) Read and understand the first error message.

(c) “What’s the cause?”

i. Modify your assumption or make a new one. [Hypothesize]

(d) Determine the error and find the relevant lines of code.

(e) Adjust your program. [Experiment & Repeat ]

23



3. Compare: Logical errors

(a) Do expected and actual behavior match?

i. If necessary, revert changes.

(b) “Why is this the case?”

i. Modify your assumption or make a new one. [Hypothesize]

(c) Determine the error and find the relevant lines of code.

(d) Adjust your program. [Experiment & Repeat ]

4. Done! (Systematic debugging process presented by [17])

They, too, found that teaching this approach over the course of only one session

improved both self-efficacy (self-reliance) and skill (performance) in students. In-

terestingly, in order to circumvent the apparent lack of program comprehension and

tool-use skills in these novice debuggers, they designed their exercises to be short pro-

gram prototypes that successively build off previous prototypes, such that no large

chunk of code was ever new for the students. The Debug Tutor borrows from that

approach as well, opting to use shorter, easier-to-understand chunks of buggy code in

the exercises, although it uses this approach precisely to hone in on building skills in

the use of tools without the need for advanced program comprehension skills.

Previously, MIT’s undergraduate Software Construction course (6.102, formerly

6.031) curriculum included one reading assignment and associated class session de-

voted to debugging with the scientific method 1. By designing Tutor exercises devoted

to aspects of the reading, the deployment of the Debug Tutor in 6.102 blends these

two long-term and short-term teaching approaches.

2.5 Existing Tools for Teaching Debugging

Li et al. used their knowledge characterization (Domain, System, Procedural, Strate-

gic, Experience) not just for categorizing novice versus experts, but also to categorize
1https://web.mit.edu/6.102/www/sp23/classes/09-debugging/

24



existing tools [14]. They found that most tools teach domain knowledge in the form of

reading and writing code. They also mentioned that few tools are language-agnostic;

the Debug Tutor indeed has this feature.

Other tools, like Gidget [13]) and RoboBUG [18], gamify the instruction of de-

bugging. While both tools support some debugger tools like setting breakpoints, the

Debug Tutor serves exercises inside Microsoft’s Visual Studio Code editor, a popu-

lar IDE used by many professional software engineers 2, for the express purpose of

exposing novices to readily available and widely used tools.

A handful of existing tools target system knowledge. For example, ViLLE [11]), a

general-purpose education framework, has programming exercises with system archi-

tecture visualizations built up frame-by-frame from the call stack, which help students

develop a mental model of the program. DebugIt [12] and Debug-ITS [2], tools that

targets system and experiential knowledge, are similar to the proposed Debug Tutor

in that they host a suite of exercises with short programs and automated feedback.

However, unlike the Tutor, the exercises are not hosted in a general-purpose IDE,

they ask the student to find and fix the error (rather than target a microskill, such as

placement of breakpoints), and do not encourage use of a debugger tool. Intelligent

Tutoring System [10], likewise, has a suite of exercises with automated feedback, but,

unlike the Debug Tutor, is not aimed at drilling debugging-specific microskills.

LadeBug [15] is a novel debugging tutor that uses an omniscient debugger. Unlike

a typical debugger, which only supports forward stepping, an omniscient debugger

supports forwards and backwards stepping by recording the entire execution trace.

Like the Debug Tutor, LadeBug hosts a suite of exercises that staff can easily add,

edit, or delete from, encourages repeated practice, and provides automated feedback.

Unlike the Debug Tutor (which only asks students to drill a microskill or locate a

bug), though, LadeBug asks students to both find and fix errors, and it currently

2Ranked the top preferred IDE according to StackOverflow surveys in 2018
(https://insights.stackoverflow.com/survey/2018/#development-environments-and-tools), 2019
(https://insights.stackoverflow.com/survey/2019#development-environments-and-tools), 2021
(https://insights.stackoverflow.com/survey/2021#most-popular-technologies-new-collab-tools),
and 2022 (https://survey.stackoverflow.co/2022/#section-most-popular-technologies-integrated-
development-environment)

25



only supports Python code.

Furthermore, although omniscient debugging is growing more mainstream with

companies such as Replay 3 making them more practical and widely available, om-

niscient debuggers are still far from the norm when it comes to general debugging

approaches. Tools taught by the Debug Tutor should already be widely available and

applicable in industry, which is why it is built on debuggers that are available through

VS Code. However, were VS Code to ever support omniscient debugging, the Debug

Tutor would be able to as well, since it can plug into any method exposed by the

vscode.debug Application Programming Interface (API). 4

IDE Embedded Tutorials [9] perhaps comes closest to the Debug Tutor, as it

embeds debugging tutorials in the popular IDE IntelliJ IDEA. However, unlike the

drill-based exercises of the Debug Tutor, the IDE Embedded Tutorials exercises are

tutorial walkthroughs. The system is also not yet deployed, and is only an early

prototype linked to planned research for the author’s dissertation project.

Finally, one-off debugging assignments such Maze solver 5 and Binary Bomb6 (from

the SIGCSE Nifty Assignment session 7) differ from the Debug Tutor in that they are

not completed over a semi prolonged period of time. Some debugging textbooks do

exist, such as Why Programs Fail: A Guide to Systematic Debugging [22] for learning

systematic debugging, complete with exercise assignments at the end of each chapter.

However, they are mostly aimed at advanced undergraduates and professions, and, of

course, do not provide automatic feedback.

2.6 Applying Deliberate Practice to Debugging

No solution thus far has put deliberate practice at the heart of a debugging tutor,

despite the fact that debugging is a clear candidate for this type of practice. With

the core principles of long-term repeated drilling, automatic expert feedback, and

3https://www.replay.io
4https://code.visualstudio.com/docs/editor/debugging#_debugger-extensions
5http://nifty.stanford.edu/2008/blaheta-maze/
6http://csapp.cs.cmu.edu/public/labs.html
7http://nifty.stanford.edu

26



microskill-targeted exercises, the Debug Tutor meshes together several of the required

techniques for successfully teaching debugging. Indeed, Li et al. notes that they "are

not aware of any research that focuses on teaching students to acquire [procedural

knowledge such as knowing how to use the features of an IDE] in a debugging context"

[14]. The Debug Tutor aims to do just that.

27



28



Chapter 3

Design

The Debug Tutor extends the Praxis framework, which organizes teachable skills using

a map of concepts. Each concept is described using a path to indicate its hierarchy

of concepts. For example, in the Typescript Tutor, the string::length concept is the

length sub-concept of the more general string concept in the Typescript language.

Each concrete exercise given to the user drills a specific concept.

A concept group organizes concepts into a coherent set. Each concept group man-

ifests as a set of exercises drilling concepts from the group. A student must complete

a certain number of these exercises for the concept group to be marked as finished,

i.e., sufficiently practiced. Concept groups are organized into levels, described by

the concept map. Initially, the student has access to only the groups in level 0 and

can choose to work through them in any order. Level 𝑖 becomes unlocked—that is,

accessible to the student—when all the groups in level 𝑖−1 are finished. The concept

map is the primary method by which the Praxis framework organizes the skills being

taught and measures student progress.

3.1 A Debug Concept Map

The backbone of the Debug Tutor as an educational tool is the design of its concept

map. The debug concepts are intended to be specific microskills necessary for com-

petent debugging. Similar to how Typescript Tutor exercises teach syntax and are

29



incorporated into readings on software design, the Debug Tutor concepts drill the use

of debugging tools and are embedded into a reading on systematic debugging. Fig.

3-1 shows the Debug Tutor’s concept map.

Figure 3-1: Debug Tutor Concept Map

Table 3.1 lists the Debug Tutor concept map in full, detailing the microskills

associated with each concept, listed by concept group, and organized by level.

Level 0: Error Interpretation

Students are first drilled in interpreting runtime error messages. All runtime errors

emit a stack trace, which includes the thrown error and a trace through code file

locations that led to the thrown error. The trace includes the entry point, the last

line executed, and, if applicable, the failed assert statement in buggy code. Experts in

debugging are able to interpret these stack traces quickly, accurately identifying the

flow of execution and most relevant lines. Most modern editors also support terminal

30



Table 3.1: Debug Tutor Concept Map

Level Concept Group Concept Skill Exercised Microskill

0
Error
Interpretation
Interpreting Runtime
Error Messages

runtime-error::last-line-
executed

Navigate to the last line executed via a
runtime error.

runtime-error::entry-point Navigate to the entry point via a run-
time error.

runtime-error::failed-assert Navigate to a failed assert statement via
a runtime error.

1

Effective Print
Probes
Print Debugging

print::probes::fstring Print using an fstring template.

print::probes::object-log Print objects effectively.

Print Debug
Strategies
Strategic & safe printing

print:strategy::state-before-
return

State return values safely.

print:strategy::confirm-called Printing checkpoints.

print:strategy::state-
parameters

State parameters effectively.

2
Basic Debugger
Introduction to the
Debugger

warmup::set-breakpoint Set breakpoints.

warmup::remove-breakpoint Remove breakpoints.

warmup::begin-debug-session Launch a debug session.

3

Debug Session
Introduction to single
stepping.

breakpoints::drive::step-into Step in during a debug session.

breakpoints::drive::step-over Step over during a debug session.

breakpoints::drive::step-out Step out during a debug session.

breakpoints::drive::continue Continue during a debug session.

breakpoints::drive::set-
breakpoint

Set a breakpoint during a debug session.

breakpoints::drive::stop Stop a debug session.

breakpoints::drive::restart Restart a debug session.

The Debug REPL
The read-eval-print-loop.

breakpoints::drive::evaluate Evaluate variables and expressions with
the Debug REPL during a debug ses-
sion.

4 Intermediate
Debug Sessions

breakpoints::advanced-
drive::step-in

Step in indefinitely to achieve a goal dur-
ing a debug session.

breakpoints::advanced-
drive::continue

Continue indefinitely to achieve a goal
during a debug session.

breakpoints::advanced-
drive::mixed-intro

Introduce mixed uses of debug tools to
achieve a goal.

5 Advanced Debug
Sessions

breakpoints::advanced-
drive::mix

Mixed uses of debug tools to achieve a
goal.

31



links within the stack trace, which are clickable paths that, when clicked, move the

cursor to the specified file, line, and, sometimes, exact character.

Level 1: Effective Print Probes & Print Debug Strategies

The next two concept groups focus on print debugging, also known as printf debug-

ging for historical reasons. Probably the most widely used debugging strategy, print

statements are added to code as probes during a debug session. As the code executes,

the print statements are printed to the console, thereby relaying information about

state throughout code execution. Once the bug is found and fixed, the probes are

then removed from the code.

Effective Print Probes covers effective uses of print statements. One such mi-

croskill is the use of template strings, or fstrings, which are strings that allow variable

value insertions. The second microskill in this concept group, print::probe:object-log,

is how to effectively use a language’s built-in constructs to print objects meaningfully,

rather than, say, printing a default [Object object] string.

Print Debug Strategies covers strategic and safe print debugging approaches. The

state-before-return concept is the practice of saving the return value to print and

return, rather than executing the return value twice. The confirm-called concept is

checkpoint printing—that is, inserting print statements to declare the current execu-

tion trace, such as print("inside while loop of computeProgress")—throughout

a logically buggy program to confirm that certain points in a program are indeed

reached. Finally, the state-parameters concept is the strategic printing of parameters

within the function call.

Level 2: Basic Debugger

The Basic Debugger concept group is an introduction to three fundamental skills

necessary to run a debug session: setting a breakpoint (warmup::set-breakpoint),

removing a breakpoint (warmup::remove-breakpoint), and launching a debug session

(warmup::launch-debug-session).

32



Level 3: Debug Session & The Debug REPL

Debug Session concepts introduce single stepping, which include stepping into, step-

ping over, stepping out, continuing, setting a breakpoint and continuing to it, stop-

ping, and restarting. The Debug REPL’s concept, breakpoints::drive::evaluate, is

evaluation with the debug read-eval-print-loop (REPL) during a debug session.

Level 4: Intermediate Debug Sessions & Level 5: Advanced Debug Sessions

The final two concept groups drill the integrated use of debugger tools to achieve

an abstract goal. The Intermediate breakpoints::advanced-drive::step-in concept cov-

ers stepping in indefinitely to achieve a goal, such as understanding the depth of

called functions. breakpoints::advanced-drive::continue covers continuing indefinitely

to achieve a goal, such as reaching a certain loop state. Finally breakpoints::advanced-

drive::mixed-intro introduces mixed use of single stepping to achieve an abstract goal.

Advanced Debug Session’s breakpoints::advanced-drive::mix provide even less di-

rection to the student and often allow freedom in how the student achieves a goal. The

concept is the first effort towards open-ended debugging practice, but stops just short

of covering actually finding and fixing bugs (which, as it stands, would be difficult for

the Tutor to verify).

The Broad Application of Concepts

The concepts throughout the Debug Tutor concept map are agnostic to both the lan-

guage of the exercise files and the specific features of the IDE in which it is embedded.

Most widely-used languages support all of the runtime error and print concepts. As

well, most standard debuggers across all IDEs and languages support all of the run-

time error, print debugging, warmup, single stepping, and evaluation concepts. Each

concept should therefore be general enough to be implemented by exercises in any

widely-used language and deployed in any standard IDE. The following section de-

scribes the design behind the exercises implemented for each concept group.

33



3.2 Design of Exercises

At a high level, each exercise drills a specific concept by expressing an abstract goal.

For example, when drilling warmup::set-breakpoint, an exercise prompt might read

Set a breakpoint where the variable total is defined as opposed to Set a breakpoint

on line 5. Although exercises do not necessarily ask the student to find a bug, they

may nonetheless be drilled on buggy code.

Error Interpretation To drill both interpretation of stack traces and efficient use

of the IDE terminal, each exercise in the Error Interpretation group asks the student

to navigate to a logical location rather than a specific file and line (i.e. the entry

point rather than line 9 in Computation.ts ) and requires navigating there using the

terminal link in the stack trace.

Each exercise begins with displaying the exercise file in the editor. The student

is asked to click Start in the Tutor window and is directed to watch closely as the

file is automatically compiled and executed on the command line. The buggy code

then emits a stack trace for the student to interpret. The code itself is inspired by

common bugs often faced in the wild, such as aliasing or off-by-one errors.

Print Debugging All exercises in the Effective Print Probes and Print Debug

Strategies groups use a fill-in-the-blank style of exercise. These exercises bootstrap

off of a student’s purported knowledge of Python, a prerequisite of the 6.102. A

student is presented a code file with one or more lines of code blanked out—that is,

replaced with a series of periods. The exercise asks the student to fill in the blanks

based on either a general end-goal (such as, print the value of x ) or given a Python

line that must be converted to TypeScript.

Exercises of the print::probes::fstring concept in the Effective Print Probes group

ask students to practice using TypeScript template strings of the form `${x}$`.

Exercises of the print::probes::object-log concept, on the other hand, use TypeScript’s

console library to effectively print objects by passing in comma-separated strings and

objects to console.log values rather than a concatenated string and object-string.

34



Exercises for the state-before-return concept in Print Debug Strategies ask that

the student practice saving the return value to a variable, printing the variable,

and then returning the variable, as opposed to executing the return value both for

printing and again for returning. Exercises drilling the confirm-called concept ask

the student to plant checkpoint print statements—that is, print statements that

declare the current state of the program, such as print("inside while loop of

computeProgress")—throughout a logically buggy program. Finally, exercises for

the state-parameters concept drill the strategic printing of parameters within the

function call.

Basic Debugger Each concept in the Basic Debugger concept group is imple-

mented by one concrete exercise. The first exercise shown to the student, one for

warmup::set-breakpoint, asks students to set a breakpoint. Building on the set break-

point exercise, the following exercise, one for warmup::remove-breakpoint, automati-

cally adds a breakpoint and then asks the student to remove that breakpoint. The

third and final exercise, one for warmup::begin-debug-session, again automatically

adds a breakpoint, but then asks students to launch a debug session and observe as

it pauses at that breakpoint.

Exercises that require launching a debug session come pre-packaged with a debug-

ger launch configuration for the open file. Students are instructed to begin sessions

using this configuration, entitled PraxisTutor-DebugCurrentFile. Pre-packaging the

exercises with a launch configuration gives the exercise author control over the con-

figuration of the debug sessions.

Debug Session & The Debug REPL Four of the seven concepts in the Debug

Session group—step-into, step-over, continue, and stop—are implemented in exercises

that automatically set breakpoints and launch a debug session, and then prompt the

student to perform the single step action. Step-out is implemented by an exercise

that automatically sets a breakpoint, launches a debug session, and then steps in

once, so that students need only step out. Exercises for the final two concepts—set-

35



breakpoint and restart—automatically set breakpoints and launch a debug session,

and then ask the student to perform two actions: For set-breakpoint, the student is

asked to set another breakpoint and then continue to that breakpoint, to practice

setting breakpoints mid-execution. For restart, the student is asked to step over and

then restart.

Exercises implemented for the Debug REPL’s one concept, drive::evaluate, each

automatically set breakpoints and launch debug sessions and then ask the student to

evaluate expressions with the Debug REPL. Some exercises practice evaluating whole

objects and others practice evaluating object properties.

Intermediate & Advanced Debug Sessions Intermediate debug sessions drill

concepts one level more abstract than single stepping. For example, an exercise may

ask the student to set a breakpoint on a line specified by some condition in a loop (e.g.

where values are pushed to deltas ), and continue indefinitely until some condition is

met (e.g., when value becomes undefined). Another exercise might ask the student

to indefinitely step in until execution is paused inside a specific function.

Exercises implemented for the Advanced concept group’s advanced-drive::mix con-

cept go one step further. For example, part of an exercise may ask the student mid-

session to get the program execution paused on the first line of some function, without

specifying which debugger tools to use or how. Although these exercises are certainly

more elaborate than the typical Praxis Tutor exercise, they serve to drill practice in

the use of the debugger as an integrated tool during a controlled session.

Automatic Setup As described, the design of many exercises includes an auto-

mated setup process to bring the code execution to a certain state, after which the

student is asked to complete a task. For example, the setup may include automatically

launching a debug session, at which point the student is asked to continue debugging

to achieve a certain goal or state. The automated setup allows the student to focus

completely on practicing a specific microskill, without worrying about compiling and

executing code until the state at which the microskill is necessary.

36



3.3 User Interface

The Praxis Tutor and its exercises are implemented as an extension for VS Code,

Microsoft’s popular, free, and widely-used code editor.1 The installation process is

detailed for students on the 6.102 website.2

For the debugging exercises in particular, students are asked to move the Praxis

Tutor window to the right sidebar so that it is visible with the Run and Debug pane

is displayed on the left sidebar. The Tutor displays its Home UI. All concept groups

are visible, but only unlocked concept groups are clickable. Fig. 3-2 shows the what

the installed Debug Tutor would look like after a student dragged the window to the

rightside bar and then completed the concept group in level 0.

Figure 3-2: Full VS Code window in student view, with level 0 completed, level 1
unlocked, and levels 2-5 locked

1Praxis Tutor also works on VSCodium, a “freely-licensed binary distribution of Microsoft’s editor
VS Code” (https://vscodium.com). Both are available for Mac, Windows, and Linux.

2The Spring 2023 installation guide can be found at https://web.mit.edu/6.102/www/sp23/tools/getting-
started/#praxis-tutor

37



3.3.1 Exercises

When a student clicks on a concept group, they are shown an exercise for some

concept in the group. Exercises are ordered by a priority level set by the exercise

author, and exercises with the same priority are randomly ordered when the concept

group is clicked. The exercise code file is automatically opened in the text editor

alongside the Tutor window.

For a given exercise, along with the prompt, students have the option to Start

(if the exercise has automated setup), Check, Start Over, Report A Problem, or

Quit. Start, Check, and Start Over appear in the bottom grey bar below the prompt,

Report A Problem appears below the bottom grey bar, and Quit appears above the

prompt. After a first attempt is made, a hidden Show Answer button is enabled,

which will display a textual description of the correct answer when clicked. Exercises

can also include online tutorial links, displayed below the main prompt. Fig. 3-3

shows an example of an exercise displayed when the Debug Session concept group is

first clicked.

Figure 3-3: Example exercise when a concept group is first opened

Initially, Praxis Tutor exercises were all of the save flavor: along with the exercise,

the student was shown a code file with some fill-in-the-blanks, and the student had the

38



ability to edit the file and click Check at any point to check their work. If incorrect,

the Tutor exercise view would highlight in red and might show hints, and the student

could continue editing clicking Check. If correct, the view would highlight in green

and might show warnings, and the student could click Continue.

With the introduction of event tracking in the Debug Tutor, new exercises might

instead require automated setup, such as automatically launching a code file or setting

a breakpoint, and might require starting over, such as a simple debug action that,

if done incorrectly, requires re-starting the exercise from the beginning. To support

these new exercises, two new workflow options were introduced into the Tutor user

interface, for a total of three potential user interface flows.

Basic Workflow: No Required Set Up, No Required Start Over An exercise

that does not require set up immediately displays in a Ready for Interaction UI. There

is no Start button, only an always-enabled Check button. The basic workflow does

not require starting over, so on an incorrect attempt the UI will display hints (if any),

and will otherwise remain ready for more submission attempts. Figure 3-4 shows a

fill-in-the-blank Effective Print Probes prompt on first display and after an incorrect

attempt.

The TypeScript Tutor exercises are all fill-in-the-blanks that follow this flow. In

the Debug Tutor, Effective Print Probes and Print Debug Strategies, which consist

of fill-in-the-blank exercises, as well as exercises that ask the student to perform all

steps, such as some intermediate and advanced exercises, also follow this flow.

Setup Required Exercises that require setup first display with an enabled Start

button next to a disabled Check button. Once the student clicks Start, both buttons

are disabled until setup completes, at which point Check becomes enabled. On an

incorrect attempt, if the exercise does not require starting over, it displays hints (if

any) and otherwise remains ready for more submission attempts. Figure 3-5 shows

a Debug Session prompt in four stages: on first display, during setup, immediately

after setup, and after an incorrect attempt.

39



Figure 3-4: Basic Workflow

40



(a) On First Display

(b) During Setup

Figure 3-5: Setup Required Workflow

41



(c) After Setup Completes

(d) An Incorrect Attempt

Figure 3-5: Setup Required Workflow (cont.)

42



Start Over Required Some Debug Tutor exercises explicitly require starting over.

Forced start over may be enabled regardless of whether the exercise requires setup

or not. In the case of forced start over, on an incorrect attempt, the Start Over

button is made prominent by highlighting it in pink. The Check button is disabled

and hidden, as well as the Start button if it was displayed, thus forcing the student

to start over. On start over, the exercise will appear in its initial state, with a clean

exercise file and either requiring setup or ready for submission. Figure 3-6 shows a

Basic Debugger exercise with required start over prompt after an incorrect attempt.

Importantly, students have the option to start over at any time during the course of

attempting an exercise; The forced start over UI simply makes the button prominent.

Figure 3-6: Start Over Required Workflow

On a Correct Submission On a correct submission, any relevant warnings are

displayed under the prompt and the bottom grey bar only displays a Continue button.

If there are more exercises left in the concept group, clicking Continue displays the

next exercise. Otherwise, clicking Continue displays a minimal congratulatory UI

with a Go Home button to return to the full concept map view UI. Figure 3-7 shows

a completed final Error Interpretation exercise and the congratulatory UI that follows.

43



Figure 3-7: On A Correct Submission

44



3.4 It’s Time for an Update

Aside from the Effective Print Probes and Print Debug Strategies concept groups, all

exercises necessitated significant updates to the Praxis Tutor framework. The new

debug exercises require compiling and executing files, launching debug sessions, and

checking ordered user events rather than just a final state. And, unlike language

tutors, the Debug Tutor needs access to event sources such as the terminal and the

debugger. Exercise authors, meanwhile, need new and flexible models to describe

exercise configurations and solution event patterns. The web user interface needs to

enable automatic set up for some exercises, as well as forced start over for others.

In all, to support the debug concept map and updated user interface, the Praxis ar-

chitecture required significant augmentations across its software stack. The following

chapter details such implementation updates.

45



46



Chapter 4

Implementation

The Praxis Tutor framework has three main parts: (1) The host extension, (2) the

Tutor web application (the webapp), and (3) the server. Figure 4-1 shows the Tutor

architecture.

Figure 4-1: The Debug Tutor (Praxis) Architecture.

In Figure 4-1 time progresses downwards. (1) When a student clicks on a concept

47



group in the webapp, the webapp requests an exercise from the database. (2) Upon

receiving the exercise, the webapp displays the prompt and (3) requests that the

extension perform any necessary setup for the webapp. (4) If an exercise requires

automatic configuration, such as launching a debug session, the webapp displays a

Start button to trigger setup. The host extension informs the webapp when it is done

setting up, at which point (5) the webapp enables the Check button. If the exercise

includes event tracking, the extension observes and logs relevant student actions.

When the student presses Check, (6) the webapp requests the student’s answer from

the extension to (7) compare with the solution pattern stored on the database. (8)

The webapp computes the results and displays the feedback, at which point (9) if

incorrect, the student must try again. Otherwise, the student may continue on to the

next exercise.

The exercises are described in the Praxis codebase using commented code files that

exercise authors upload to the database. The server stores the uploaded exercises in

a Mongo1 database and also performs the solution checking.

The web application is the main driver of the Praxis framework. It communicates

with the server and extension host to request exercises for display and to check if

a student’s answer is correct. It is displayed inside a window of the extension host.

Through this web view, the student can interact with the web app directly, read-

ing exercise descriptions, requesting hints, clicking buttons, receiving feedback, and

generally progressing through exercises.

The extension is a lightweight plugin to a host development environment, such as

the VS Code editor. The extension displays the webapp in a web view and makes

changes to the host on behalf of the webapp displaying code files in the editor and

collecting answer submissions. New for the Debug Tutor, the extension also listens to

debugger events (such as a student setting a breakpoint, starting a debug session, or

stepping through code) and terminal events (such as a student clicking on a terminal

link) and forwards those events to the web app for handling.

In figure 4-1, elements drawn in red describe new functionality added for the

1https://www.mongodb.com

48



Debug Tutor. Elements drawn in purple, on the other hand, were modified to a large

extent to support new interactions required for the debugging exercises. The following

subsections discuss these implementation changes and updates to the exercises, the

server, the webapp, and the extension.

4.1 History Event Patterns

Perhaps the biggest change to the Tutor architecture was the new requirement of

tracking events during exercises rather than just capturing state. To do so, exercise

authors needed a way to describe solution event patterns which could be parsed and

stored in the server. That same scheme would then serve as the format by which

the extension could log observed events to be sent to the server for checking via the

webapp. Indeed, the format used to describe event patterns motivated many of the

changes made across the Praxis architecture for the Debug Tutor.

4.1.1 Authoring Exercises with History Events

The design of the event pattern format had to be flexible enough to allow for a range

of acceptable behaviors from students and on-the-fly updates by exercise authors,

yet granular enough to ensure the skill being taught is sufficiently practiced. Because

exercise concepts span a range of event sources, such as the terminal and the debugger,

the pattern format needed to account for different streams from which events might

be emitted. Within a stream, individual events can be identified by a name, but may

also require matching against specific data values. For example, within a solution

pattern, an exercise author may want to use a set breakpoint event on a specific line.

To capture all of the necessary information in a way still adaptable to any poten-

tial event, the history patterns are described using a flexible structure of the form

[rs]/stream/ [{event1} {event2}...{eventN}] ({eventA} {eventB} ...) .

Streams The stream is the source of metadata to look at. Current concrete

options include debugger, terminal, and editor. A preceding s marks an exact match,

49



whereas a preceding r marks a regular expression (regex) that may match to multiple

streams. For example, r/debugger|terminal/ will pattern match with events in

both the debugger and terminal streams.

Then, an ordered event list is demarcated with square brackets. These events de-

fine the history solution pattern that a student event log must match against to com-

plete the exercise successfully. A second optional unordered event list is demarcated

with parentheses. These events are individually allowable at any time. For example,

a debugger exercise author may want to allow a student to evaluate anything at any

point during the run of the exercise, in which case the pattern might look something

like s/debugger/ [{debugEvent1}...{debugEventN}] ({evaluateEvent}) , where

debugEvent and evaluateEvent are patterns that match to some debug event and some

evaluate event, respectively.

Events Each {event} takes the form {[rs]/eventName/ [dataKey1:dataValue1,

dataKey2:dataValue2, ...]} . eventName is the concrete event to match, such

as setBreakpoint. Like streams, events can also be described with a more general

regex, such as r/step.*/ to match stepIn, stepOut, or stepOver.

dataKey s can be strings (e.g. s/f/ or f to match “f”), regexes (e.g. r/f|g/ ),

or a number (e.g. 46 ). Any of these can be negated—that is, matched to anything

but the value—by sticking a tilde in front (e.g. ∼r/f|g/ to match anything but “f”

or “g”, or ∼/46/ to match any number but 46).

dataValue s, like data keys, can be strings, regexes, or numbers, as well as code

segments marked with a c (e.g. c/let x =/ ) or expressions marked with an e (e.g.

e/{radius:10, x:5, y:3}/ ). Code segments are converted to their corresponding

line number which may be useful, in, say, a set breakpoint event. Expressions are

unique in that string transformers, such as replacing all double quotes with single

quotes to standardize quote usage, are applied to both it and the submitted answer

before comparison. For example, s/debugger/ [{s/continue/ [stopReason:

hitBreakpoint], line:c/let x =/}] matches any single continue event that

halts due to hitting a breakpoint on the line where x is initialized. Code segments

50



and expressions may also be negated with a tilde ( ∼c/../ or ∼e/../ ).

Each event may entirely be negated with a tilde before the curly braces (i.e.

∼{event} ). In that case, any event except those matching {event} will match

∼{event} . Events can also be repeated a certain number of times: {event}! must

be matched exactly once, {event}? can be matched zero or one time, {event}* can

be repeatedly matched zero or more times, and {event}+ can be repeatedly matched

one or more times. Events without a suffix default to the exclamation, so are matched

exactly once. Exercise authors can use {} to match any event, or {}* to match

any sequence of any events. Finally, if data is left out of an event description, it is

assumed to match any values. For example, {s/didEdit/ []} without an onFile

key matches a didEdit event on any file.

Anchoring An event stream is assumed to be unanchored, that is, a match to any

subsequence of a student’s answer is considered a successful match. Exercise authors

can anchor the least recent event with a caret in front (e.g. [̂...] ) and can anchor

the most recent event with a dollar sign in back (e.g. [...]$ ).

Examples Table 4.1 shows two example history streams taken from deployed de-

bugger exercises, while Table 4.2 for a full list of supported events, along with their

respective data keys, per each event stream.

51



Table 4.1: Example Debugger Event History Patterns

Example #1

s/debugger/ [

{r/setBreakpoint/ [line:c/let x/]}!

∼{r/(set|remove)Breakpoint/ [line:c/let x/]}*

]$

Searches in the debugger stream and matches when a student sets a breakpoint on
the line containing the substring let x and then does anything but set or remove a
breakpoint on that line for the rest of the stream.

Example #2

r/debugger/ [

{s/launchSession/ [configurationName:r/PraxisTutor/,

stopReason:s/breakpoint/,

stopsOnLine:c/dotProduct/]},

{}*,
{r/step*|continue/ [stopsOnLine:c//*[1]*/assert/]},

{s/setBreakpoint/ [line:c/return dotProd/]}?,

{s/continue/ [stopsOnLine:c/return dotProd/]},

{s/evaluateOnDebugConsole/ [expression:dotProd, resultingIn:9]}

]$ ({r/evaluate.*/ []})

Searches in the debugger stream and matches when a student launches a PraxisTutor
debug session that pauses on the line with dotProduct, then does anything, even-
tually stepping or continuing to land on the assert statement with /*[1]*/𝑎, then
optionally sets a breakpoint on return dotProd, continues to that breakpoint, and
evaluates dotProd with the debug console. At any point, the student may evaluate
any expression (this is specified by the final evaluate event in the parenthesis)—these
extraneous evaluations will be ignored.

𝑎Concretely, each pattern is parsed in multiple rounds of regular expression matching in or-
der to recognize data values that contain forward slashes. First, all key, value pairs are captured by
detecting space- or comma-separated sequences of the form key:value. Then, each value is parsed by
either removing the leading character plus the immediate following forward slash and final trailing
forward slash if both exist, or else is kept in whole.

52



Table 4.2: Concrete Pattern Streams & Events

Debugger
Events Data
setBreakpoint,
removeBreakpoint

line:number
character:number

launchSession configurationName:string
stopReason:step|hitBreakpoint|disconnected|
ongoing𝑎
stopsOnLine:number

disconnect
stepIn,
stepOver,
stepOut,
continue

stopReason:step|hitBreakpoint|disconnected|
ongoing𝑎
stopsOnLine:number
variable-𝑋𝑏:string

evaluateOnDebugConsole,
evaluateWatch

expression:string
resultingIn:string

Editor
Events Data
didEdit onFile:string
movedCursor onFile:string

anchorLine:number
anchorCharacter:number
activeLine:number
activeCharacter:number

Terminal
Events Data
clickCodeLine inFile:string

line:number
character:number

𝑎The default stopReason is ongoing, meaning the action is still ongoing.
𝑏Captures a variable in the scope after the event, e.g. s/stepOver/ [variable-i:10] matches

when, after stepping over, the variable i equals 10.
𝑐Note: If data is left out of the history stream, it is assumed to match any value. For example,

{s/didEdit/ []} will match a didEdit event on any file.

53



History Pattern Matching

For those familiar with regular expressions, the history stream expression language

hopefully felt similar. In fact, the design borrows many of the basic operators and

features from regular expressions, such as the ?, *, and + repetition characters, ∼

negation, and anchoring. Viewing the history stream language as regular language,

then, the alphabet of this language, rather than mere characters, are objects with a

type and data dictionary. As such, the Tutor’s history pattern format necessitated a

custom regular object matching algorithm, or RegObj matcher for short, to compare

the collected student event logs against the exercise solution patterns.

The RegObj matcher uses a recursive backtracking search algorithm to match

the sequence in full. To compare single event objects, the matcher uses a heavily

modified version of the node-matchr2 library. Algorithm 4-2 describes the RegObj

matching algorithm at a high level. executeMatchHistory is the entry point, with

continueMatching and compare defined as closures inside.

Figure 4-2: Regular Object Matching Algorithm

Algorithm 4-2: Regular Object Matching

procedure executeMatchHistory(𝑣𝑎𝑙𝑢𝑒:any[],
𝑝𝑎𝑡𝑡𝑒𝑟𝑛:ModelHistoryEvent[])

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒← 𝑣𝑎𝑙𝑢𝑒[0]
𝑒𝑣𝑒𝑛𝑡← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛[0]

if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 & 𝑒𝑣𝑒𝑛𝑡 are null then return NullMatch
else if 𝑒𝑣𝑒𝑛𝑡 is null then

if anchorLeastRecentEvent then return FailedMatch
else return NullMatch
end if

else if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is null then return continueMatching(False)
else return continueMatching(compare(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑒𝑣𝑒𝑛𝑡))
end if

end procedure

2Allows free commercial and private use, modification, and distribution under the MIT Software
License. See: https://github.com/moeriki/node-matchr.

54



Clients access the history matcher via a static public method that consumes a

history pattern and returns a matcher on it to use against value arrays, e.g.:

// for pattern:HistoryEvent [],

// and options :{ anchorMostRecentEvent:boolean ,

// anchorLeastRecentEvent:boolean ,

// transformers: Transformer [],

// allowAnywere: HistoryEvent []}

const matcher = RegObj.compileHistory(pattern , options );

// with value: any[]

const matchResult = matcher(value );

Both the history pattern and the value arrays are assumed to be ordered least

recent event to most recent event. If 𝑎𝑛𝑐ℎ𝑜𝑟𝑀𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡 is true, the matching

begins at the value’s tail and returns false if no match is found. Otherwise, the

matching tries successively popping off the tail until there are no more events to try.

4.1.2 Adopting Event Patterns in the Tutor

With the event history format defined and a complementary pattern checker imple-

mented, the next step was integrating them into the Praxis Tutor architecture. Since

the server hosts both the exercise models and the answer checker, the server, perhaps

ironically, was the main client adopting these two updates.

55



Algorithm 4-2, Continued: Regular Object Matching

procedure compare(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒:any, 𝑒𝑣𝑒𝑛𝑡:HistoryEvent)
𝑡𝑦𝑝𝑒𝑀𝑎𝑡𝑐ℎ← regexMatch(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑡𝑦𝑝𝑒, 𝑒𝑣𝑒𝑛𝑡.𝑡𝑦𝑝𝑒)
𝑑𝑎𝑡𝑎𝑀𝑎𝑡𝑐ℎ← objMatch(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑑𝑎𝑡𝑎, 𝑒𝑣𝑒𝑛𝑡.𝑑𝑎𝑡𝑎)
return 𝑡𝑦𝑝𝑒𝑀𝑎𝑡𝑐ℎ && 𝑑𝑎𝑡𝑎𝑀𝑎𝑡𝑐ℎ

end procedure

procedure continueMatching(ℎ𝑒𝑎𝑑𝑠𝑀𝑎𝑡𝑐ℎ:boolean)
if invert then

ℎ𝑒𝑎𝑑𝑠𝑀𝑎𝑡𝑐ℎ←!ℎ𝑒𝑎𝑑𝑠𝑀𝑎𝑡𝑐ℎ
end if

if headsMatch then
𝑚𝑎𝑡𝑐ℎ𝑅𝑒𝑠𝑡← executeMatchHistory(𝑣𝑎𝑙𝑢𝑒[1 :], 𝑝𝑎𝑡𝑡𝑒𝑟𝑛[1 :])
if 𝑚𝑎𝑡𝑐ℎ𝑅𝑒𝑠𝑡 is a match then return Match
end if

end if

if 𝑎𝑛𝑦(compare(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑒𝑣𝑒𝑛𝑡)∀event ∈ allowAnywhere) then
𝑚𝑎𝑡𝑐ℎ𝑆𝑘𝑖𝑝← executeMatchHistory(𝑣𝑎𝑙𝑢𝑒[1 :], 𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
if 𝑚𝑎𝑡𝑐ℎ𝑆𝑘𝑖𝑝 is a match then return Match
end if

end if

if repeat is ! then return FailedMatch
else if repeat is ? then return executeMatchHistory(𝑣𝑎𝑙𝑢𝑒, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛[1 :])
else if repeat is + then

if ! headsMatch then return FailedMatch
else return executeMatchHistory(𝑣𝑎𝑙𝑢𝑒, [𝑒𝑣𝑒𝑛𝑡] + 𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
end if

else ◁ repeat is *
if headsMatch then

𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑀𝑜𝑟𝑒← executeMatchHistory(𝑣𝑎𝑙𝑢𝑒[1 :], 𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
if 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑀𝑜𝑟𝑒 then return Match
end if

end if
return executeMatchHistory(𝑣𝑎𝑙𝑢𝑒, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛[1 :])

end if
end procedure

56



4.2 The Server

Before the Tutor can be deployed to students, an exercise author must first write

the concrete concept map and exercises to load into the server. The concept map

and exercises are defined by YAML3 descriptions and parsed into object models for

storage.

4.2.1 Concrete Exercises

Each exercise is uniquely defined by a YAML description written in a comment at the

top of a code file, within which history event patterns can be specified. For example,

a debugger exercise YAML description at the top of a code file might look like:

//<yaml >

// - id: Matrix -step -in

// conceptIds:

// - breakpoints ::advanced -drive ::step -in

// prompts:

// - >-

// First , click Start and watch carefully as a breakpoint is

// set at <code >column(j,m2)</code > in <code >multiply </code >.

// <br><br>

// Afterwards , your task is to:

// <br >(1) Launch a PraxisTutor debug session;

// <br >(2) Use a sequence of steps <i>in </i> to pause the

// sdebug session inside <code >makeMatrix </code >.

// <br> At that point , press Check to continue.

//

// priority: 0

// explanation: ""

// configuration:

// readonly: true

// debugger:

// breakpoints:

// - code: column(j,m2)

3YAML is a data serialization language similar to JSON

57



// solutionMetadata:

// history:

// - r/debugger/ [

// {s/launchSession/ [

// configurationName:r/PraxisTutor/,

// stopReason:s/breakpoint/,

// stopsOnLine:c/column(j,m2)/

// ]},

// {s/stepIn/ []}*,

// {s/stepIn/ [stopReason:s/step/,

// stopsOnLine:c/const mat /*[1]*//]}

// ]$

// hints:

// - pattern: r/debugger/ [{s/stepOver|continue/ []}*]$

// hint: >-

// In this exercise , do not step over or

// continue. Instead , <i>step in </i> by

// clicking the step into button on the debug

// toolbar

// (<i class=" codicon codicon -debug -step -into"

// style=" color:cornflowerblue "></i>).

// </yaml >

[exercise code omitted]

Because different exercises may use the same code file, multiple exercises can be

described within a single YAML block. On upload, each unique exercise in every

YAML comment is parsed into an Exercise object for storage in the server. The

Praxis framework previously supported the following YAML keys:

• id: A unique exercise ID.

• conceptIds: One or more concept IDs to which this exercise belongs.

• prompts: HTML to display in the webapp, e.g. the exercise task. The first

prompt describes the exercise task, while the remaining prompts are hints.

• priority: Index where the exercise is displayed.

58



• explanation: An explanation of the solution.

• blanks: One or more parts of the code file to replace with blanks (e.g., for x =

5 + y;, a blank at 5 + y would result in the code file displaying x = ......;).

For the debugging exercises, the following keys were added to the YAML:

• configuration: Describes file setup, including:

– readonly: If true, requires that no edits are made to the file during the

duration of the exercise, else the attempt is marked automatically incor-

rect.

– autoreset: If true, requires that the exercise be started over after an

incorrect answer is submitted.

– debugger: Describes debugger-related setup, including:

∗ breakpoints: A list of key,value pairs specifying either the line and

character or matching code in the exercise to set a breakpoint on, e.g.:

· line: 3 will place a breakpoint on line 3, after the YAML com-

ment has been removed.

· code: let x = will place a breakpoint on the first line in the

code containing the substring "let x =".

∗ preLaunchedSession: Describes a debug session to auto launch,

with keys:

· name: The name of the launch configuration, e.g.

PraxisTutor-DebugCurrentFile. The named launch configura-

tion must be present in the exercise directory’s .vscode/launch.json.

· requests: Optional, a list of requests to run, in order, such as

stepIn.

– terminal: Describes terminal-related setup, with keys:

∗ preRunCommand: A command to run on the terminal, e.g. npm

run Rainfalls. The Tutor will first attempt to cd into the Praxis

59



tutor code file directory. The run command must be present in the

exercise directory’s package.json.

• solutionMetadata: Describes the solution event history and state of the code

file, including:

– configuration: The same model as described above, except used instead

to verify the solution configuration. Using the same model allows the

solutionMetadata to be ready for updates as new post-exercise solu-

tion configurations are defined, such as if a new terminal state was added.

However, when parsing configuration for checking exercises, keys relevant

only to setup are ignored (e.g., readonly, autoreset, and preLaunched-

Session).

– history: A list of event patterns to match the student answer against.

– historyAnswer: Optional, a list of strings describing how to perform the

solution histories. If not provided, an automatic solution answer string

will be generated from each history.

– hints: A list of potential triggered hints to display when the student checks

an incorrect answer, each with:

∗ pattern: An event history pattern.

∗ hint: An HTML hint to display when the pattern is matched.

– warnings: A list of potential triggered warnings to display when the stu-

dent checks a correct but non-expert answer. Similar to hints, each con-

tains an event history pattern and an HTML hint string.

– transformers: A list of string transforms of the form r/find/replace/,

specific to this exercise.

All new keys are optional for backwards compatibility. The original blanks key

requirement was relaxed for forward compatibility. Additionally, Microsoft’s Codicon

library was added to the Tutor webapp resources, which exercise authors can make

use of in any HTML block.

60



An Updated Exercise Model

To support the new configuration and solutionMetadata keys, the Exercise

model stores two new properties: a Configuration object and a SolutionMetadata

object. The Configuration object includes Debugger and Terminal objects, among

other properties, and the SolutionMetadata object includes a list of History objects

(for the history key) and two lists of HistoryHint objects (for hints and warn-

ings). Most importantly, the History object includes an eventstream property, an

events property and an allowAnywhere property each listing Event objects, and

boolean flags for anchoring. Finally, the Event object stores a type, data, repeat,

invert, and id.

The Exercise model also has new computed properties—properties computed

based on the YAML description but not explicitly listed therein—including:

• solutionHistoryTemplates: A list of all solution, hint, and warning history

patterns stripped of solution data. For example, the pattern s/debugger/

[{r/setBreakpoint/ [line:c/let x/, character:0]}] would have the tem-

plate s/debugger/ [{r/setBreakpoint/ [line, character]}] .

• requiresSetup: A boolean set to true if and only if the Configuration object

has any keys matching an event stream (concretely, debugger, terminal, or edi-

tor), therefore implying that the exercise has requires automatic setup, such as

an automatically set breakpoint.

• requiresLaunchConfiguration: A boolean set to true if and only if the exer-

cise requires the launch configuration boilerplate file. This is determined by if

the Configuration explicitly calls for automatically pre-launching a debug ses-

sion, or if any history pattern in the SolutionMetadata includes any events

that require debugger functionality (single stepping, evaluation, etc.).

61



4.2.2 A Concrete Concept Map

Like individual exercises, Praxis Tutor concept maps are also realized with YAML

description files and boilerplate project configuration files. The entry point into the

concept map is the file exercises.yaml, which describes the layout of the concepts

and where to find the exercises. Because the exercises.yaml file keys already in use

for the TypeScript Tutor were fully capable of incorporating the debug exercises, the

ConceptMap, ConceptGroup, and Concept models required no format updates.

The exercises.yaml file includes the following keys:

• exerciseFileFormat: Describes where to find exercise descriptions. In the case

of the Debug Tutor TypeScript files, src/*.ts (i.e., files in the src subdirectory

with a .ts file format)

• boilerplateFiles: Lists project boilerplate files, such as a package.json.

• languages: Lists each supported language (such as java). For each language,

lists global transformers (of the form r/find/replace/) to apply when check-

ing student answer code against solution code (e.g. r/’/”/ to standardize all

quotes).

• conceptMap: Defines the concept map. Relevant keys include:

– id: Concept map identifier.

– numberToMaster: The number of exercises required to pass for each

concept difficulty.

– levels: Lists the concept groups in each level. Each level includes:

∗ id: Concept group id.

∗ uiLabel: Concept group label to display in the webapp.

∗ conceptIds: Lists each concept id in this group.

• concepts: Lists all concept ids. Under each concept id, a uiLabel is displayed

in the webapp and an optional numberToMaster gives the number of con-

62



crete exercises required to complete the concept (defaults to the conceptMap’s

numberToMaster key).

• tutorials: List of online tutorials. Each tutorial includes a url, title, a list of

conceptIds for which this tutorial is helpful, a type (e.g. webpage), a source,

and an ok/good/great rating.

Boilerplate files are specific to the extension host and language used. For Type-

Script, the Tutor includes a package.json file and a tsconfig.json file, two stan-

dard configuration files. Aside from some minor updates to these files to support

debugging, the Debug Tutor also required the addition of .vscode workspace set-

ting files, for storing a VS Code debugger launch.json configuration file and a

settings.json file to control what is displayed in VS Code’s file Explorer pane.

Debug Boilerplate Files

To launch debug sessions in VS Code, an opened workspace needs a launch config-

uration.4 Launch configurations are kept in a launch.json file inside a .vscode

directory in the workspace. Exercise authors can customize launch configurations

for different languages and with different settings. To support the Debug Tutor on

TypeScript files, launch.json lists a PraxisTutor-DebugCurrentFile configuration for

launching sessions with the standard JavaScript node debugger. VS Code also sup-

ports a settings.json file in the .vscode directory. The Debug Tutor boilerplate

settings.json file is used to exclude the .praxistutor folder in the Open Edi-

tors pane of the Explorer tab. For VS Code to recognize the .vscode configuration

files, the parent directory (.praxistutor) must be opened as a workspace. The we-

bapp and extension handle inferring when the .praxistutor folder is required and

automatically opening it as a workspace.

4https://code.visualstudio.com/docs/editor/debugging#_launch-configurations

63



4.2.3 Uploading to the Server

The concept map and suite of exercises are written locally and are uploaded to the

server by the exercise author. When uploaded, the concept map is interpreted as

object models representing a ConceptMap of ConceptGroups, each with Concepts,

and the exercises are interpretted as Exercise models. It is these objects specifically

that are stored on the server in the Mongo database.

At the start of each exercise, the server then is responsible for sending the exercise

object models to the webapp upon request, which then parses the relevant information

to share with the extension. Like the Exercise model, the server’s answer checker,

responsible for checking student submissions, required major updates to support the

new solution models and submission structure of the Debug Tutor, specifically by

adopting the new history pattern RegObj matcher.

4.2.4 Answer Checking 2.0

Originally, the Praxis Tutor framework’s solution checking algorithm only compared

filled-in blanks in the student’s code file at the time of submission to the corresponding

code segments in the exercise description. The checker first repeatedly applied any

global and local string transformers to both the student’s submission segments and the

original code segments until the transformations were no longer productive and then

compared the final canonical versions. On a match, the server marked the submission

as correct and then compared the answer to each warning, appending the warning’s

hint to the output if its pattern matched the answer submission. On a mismatch,

the server marked the submission as incorrect and then compared the answer to each

triggered hint, likewise appending the triggered hint’s hint to the output if its pattern

matched the answer submission.

Beyond comparing the state of code, many Debug Tutor exercises require compar-

ing the state of the IDE. Are there breakpoints on the intended lines? Other exercises

require comparing students’ event histories to the solution event history. Did the

student execute the right events in the right order?

64



Adding in IDE state comparisons was somewhat trivial; The solution checker now

accepts an optional final config submission object. If the Exercise’s SolutionMetadata

contains a Configuration object, it is compared to the final config submission. If

there’s a mismatch, an automatic triggered hint is generated based on the difference

between the two configuration objects.

Comparing event histories, on the other hand, required adopting the RegObj

matcher. With the new history matcher, the answer checking proceeds with checking

blanks (if applicable), then checking configurations (if applicable), and finally checking

histories (if applicable), and only returns that the submission is correct if all relevant

checks pass, thus completing the server updates to support the Debug Tutor.

Checking answers on the server is not only useful because it is where the exercise

descriptions are stored, but it also keeps the solutions private. Because solutions are

never sent to the webapp or extension, a crafty student cannot observe solution data in

the communication between these modules, nor on any student-facing frontend code.

The server acts as a firewall, protecting the solutions, ingesting student submissions,

and only outputting relevant, user-facing feedback.

4.3 The Web Application

The webapp is the main interface through which the student interacts with the Tutor.

It drives Praxis Tutor’s event loop—the driver of change during the flow of a user

interaction—and acts as the link between the server and the host extension. As

such, the webapp was updated to accommodate the updates to the event loop and in

communication with the server and extension.

The webapp communicates with the server through POST and GET requests.

To support the updates to the stored exercise model, the webapp was updated to

unwrap optional exercise configuration properties on an exercise request. To support

the new answer checker, the webapp was likewise updated to fold the new optional

configuration properties into the check answer request sent to the server. The new

properties are optional for backwards compatibility. Table 4.3 lists the webapp-to-

65



server routes updated for the Debug Tutor.

Table 4.3: Webapp-Server Routes

Route Specification

GET /exercise/:exerciseID Returns a JSON describing the exercise object
with ID exerciseID.

Updated to include the configuration, the
booleans requiresSetup and requiresLaunchConfig-
uration, solutionHistoryTemplates, and realtime-
hintEventTriggers.

POST /exercise/:exerciseID Checks a student’s submission to the exercise with
ID exerciseID.

The request body was updated to include studen-
tAnswerMetadata, which includes the file configu-
ration and event histories, among other things.

The webapp communicates with the host extension via a plugin API. In the case

of VS Code, the API is activated by VS Code’s Webview API.5 Table 4.4 lists the

updates and additions made to the plugin API, with specific changes highlighted in

orange.

5https://code.visualstudio.com/api/extension-guides/webview

66



Table 4.4: Webapp-Host Plugin API

Plugin API Method Specification

hostStartExercise(

exerciseID:string,

zipFile:string,

blankChar?:string,

solutionHistoryTemplates?:

HistoryTemplateType,

requiresLaunchConfiguration?:

boolean,

clientState?:any,

):void;

Asks the extension host to begin the

exercise with ID exerciseID.

Updated to include solutionHistoryTem-

plates, an optional list of all event his-

tory patterns stripped of solution data,

requiresLaunchConfiguration, a boolean

specifying if the exercise requires a launch

configuration (e.g. for debugging), and

clientState, a package of the necessary in-

formation to restart from this point, e.g.

if the extensions needs to reload.

hostGetStudentAnswer(

exerciseID:string,

callback:(result:string[])

->void

):void;

Fetches the student answer submission

from the extension host and passes it to

callback.

Updated to include solution metadata in

the result array.

hostSetupExercise(

exerciseID:string,

exerciseConfig:Configuration,

callback:(void)->void

):void;

New; Requests the extension host to set

up the exercise with ID exerciseID ac-

cording to the exerciseConfig. The

callback is invoked when the set up com-

pletes.

67



Continuation of Table 4.4

Plugin API Method Specification

hostCloseProject(

didQuit:boolean=false,

):void;

Request the extension host to close the

displayed exercise.

Updated to include the didQuit param-

eter to differentiate between progressing

to the next exercise and quitting. If true,

removes event-tracking listeners, cleans

up file configurations, and stops exercise-

related event tracking.

hostGetRecoverExerciseState(

callback:(clientState:any)

->void

):void;

New; Requests from the host any saved

exercise state, e.g., to restore the Tutor

from that state.

Figure 4-3 presents a state diagram of the webapp event loop. Changes to the

webapp are drawn in orange. The webapp first displays the Home UI with the full

concept map in view (label A). When an unlocked concept group is clicked, the we-

bapp requests exercises from the server and asks the host to display the first one

(label B). Originally, the first state was always Ready for Interaction UI (following

the purple arrow). But new for debugging, if the exercise requires automatic con-

figuration, the webapp will instead progress to the Setup Required UI (following the

orange arrow). The student must then click Start to progress to the Ready for Inter-

action UI. The student can then attempt the exercise. At any point, if Start Over is

clicked, the webapp will ask the host to reset the exercise to the original state. When

ready to submit, the student will click Check, and the webapp sends the submission

to the server for checking. If incorrect (label C), the original webapp added infor-

mative text but stayed in the same Submission Ready UI. New for debugging, if the

exercise requires resetting, the webapp will instead display the Start Over Required

68



Figure 4-3: The Praxis Tutor Webapp Event Loop

UI, in which the only option is to click start over. If correct, the only offered option

is to click Continue. At that point, if there are still exercises left in the group, the

webapp will ask the host to display the next exercise. Otherwise, the webapp enters

the Concept Group Complete UI (the green box at label D), and offers a Go Home

button to return to the Home UI.

index.js, the web entry point that implements the event loop and makes calls to

the server routes and plugin API, was expanded significantly to support the major

changes described and displayed in orange on the state diagram.

Keeping Extensibility In Mind The updates to the exercise description models,

server answer checker, and webapp were purposely implemented with extensibility in

69



mind. The exercise Configuration model is intended to be able to support new and

unforeseen configuration states beyond just the debugger and the terminal. Event

history descriptions and submission checking is likewise ready to extend to any po-

tential event stream, with a variety of potential data keys and values. The webapp

simply acts as the event loop driver, irrespective of the exercise details. The changes

introduced to the extension, detailed in the next section, were designed with the same

extensibility in mind.

4.4 The Extension

Finally, the extension plugin required major updates to support event tracking. Not

lost on a debugging education system, the updates take full advantage of static check-

ing by introducing an API for standardizing event tracking across the Praxis software

stack. All in all, these implementation updates were built with the three pillars of

6.102—safety from bugs, ease of understanding, and readiness for change—at heart.

4.4.1 Event Tracking API

Inside the event tracking API, individual concrete streams must declare a namespace

exporting an enumeration of its concrete events and a type describing an event object.

For example, Figure 4-4 shows the editor namespace.

The core of the event tracking API is the HostIDE namespace, which consolidates

the information in each tracker namespace and holds other general event tracking

types for use in the extension. The HostIDE is exposed to the webapp and server,

which can type inputs and outputs accordingly. Table 4.5 lists the exports from the

HostIDE namespace.

The API exports a few other useful functions for use across the extension and

server and finally defines an interface that every concrete tracker must implement.

Finally, Table 4.2, presented during the introduction of the history event pattern

language, lists the concrete tracked streams, events, and data values currently defined

in and exported by the HostIDE.

70



Table 4.5: Event Tracking API’s HostIDE Exports

Enumeration Description
IDEEventSource An enum identifying the source of the event, which

is either User, i.e. student-initiated, or System.
IDEEventStream An enum of trackable stream types that an event

may belong to, appearing as metatypes in each
stream namespace. All history pattern streams
and configuration object keys must match to an
IDEEventStream, else the extension will have no
way to relate those to their concrete counterparts.
Currently includes debugger, editor, and terminal.

Constant Description
ideEventStreams A string array of all IDEEventStreams.

EXTENSION_EVENTS, a constant object map-
ping each event stream type to a list of its
concrete enum event types.

EXTENSION_EVENTS A constant object mapping each event stream type
to a list of its concrete enum event types.

allEventTypes A string array concatenation of all concrete events
across all streams.

Type Description
TutorEvent A union event type of all stream-specific trackable

event types.
MetadataType For storing tracking information about an exer-

cise, with properties eventLog, fileVersions,
historyTemplates, and didOpenTutor-
Workspace.

freshMetadata A function that generates an fresh object of type
MetadataType.

Log Collection Setting Description
LOG_COLLECTION_OPTIONS For storing options related to collecting and stor-

ing logs, such as shouldKeep, listing data proper-
ties that should be kept regardless of if it appears
in any templates.

IS_STAFF A boolean marking if this user is staff or not.

71



/**
* A namespace for tracking events in the editor.
*/

export namespace IDEEditorTracking {

export enum IDEEditorEvent {
didEdit = "didEdit",
movedCursor = "movedCursor"

}

export type TutorEditorEvent = {
timestamp: number ,
metatype: "editor",
type: string ,
data: any ,
source: HostIDE.IDEEventSource ,

}
}

Figure 4-4: The Editor Namespace in event-tracking-api.ts

72



The Tutor Tracker Interface The Tutor Tracker interface has five methods:

configure, to set up the state according to a configuration object, clean, to clear

out any configuration that may have been set, compileConfiguration, to package

the current configuration, register, to set up and begin tracking, and teardown,

to end tracking and dispose of internal listeners. Figure 4-5 displays the interface in

full. With the Tutor Tracker interface, plugging new trackers into the extension is

seamless, because new trackers need only implement the interface and be declared in

the HostIDE to be included in the extension’s tracking.

// An interface for defining an event tracker that can be
// automatically incorporated into the tutor.
export interface TutorTracker {

/**
* Configures the file according to a tracker -specific
* configuration. Resolves when finished configuring.
*/

configure(config: any , file?: vscode.Uri , args?: any):
Promise <void >;

/**
* Cleans this file of any auto configuration
* that may have been set.
*/

clean(file?: vscode.Uri , args?: any): Promise <void >;

/**
* Compiles a tracker -specific configuration.
*/

compileConfiguration(file?: vscode.Uri , args?: any): any;

/**
* Registers (starts) the tracker with a listener ,
* optionally on a file.
*/

register(listener: (event: HostIDE.TutorEvent) => void ,
onFile ?: vscode.Uri): void;

/**
* Tears down this tracker & disposes of any disposables.
*/

teardown(file?: vscode.Uri , args?: any): Promise <void >;
}

Figure 4-5: The Tutor Tracker interface in event-tracking-api.ts

73



4.4.2 extension.ts

VS Code Extensions are defined inside a extension.ts file. Updates to the extension

file involved reacting to the new Setup Required UI and Start Over Required UI

webapp states, as well as coordinating the tracking of events, and the collection and

preparation of the logs for sending to the webapp.

The extension includes a private, read-only map EVENT_TRACKERS mapping each

HostIDE.IDEEventStream to its respective concrete TutorTracker. The map’s type,

{ [key in HostIDE.IDEEventStream]: TutorTracker }, enforces two important

conditions: First, if a new tracker is added to the enum HostIDE.IDEEventStream

but not to the EVENT_TRACKERS, a compile time error will complain that not all event

types are represented in the map. Second, concrete trackers are forced to implement

the TutorTracker interface. This is the only place in extension.ts where concrete

trackers are listed. Everywhere else, relevant trackers are filter from this map using

Exercise model object properties and by invoking TutorTracker operations. In

short, the use of EVENT_TRACKERS and its typing ensures that, as new event trackers

are introduced by new Praxis Tutor developers, those trackers are guaranteed to be

included in extension.ts.

Reacting to the Webapp Event Loop

As students progress through the webapp’s event loop described in Figure 4-3, the

extension implements a sort of event sequence of its own, triggered by actions in

the webapp. Within the extension’s event sequence, operations are driven by delays

in concurrent code. For example, on the Host Display Exercise transition triggered

by the webapp, the extension proceeds as follows, with steps highlighted in orange

denoting new actions added to support event tracking exercises:

1. await any potential cleanup still in effect from a previous exercise.

2. await tearing down of listeners still in effect from a previous exercise.

3. Unzip the exercise file contents inside the .praxistutor folder.

74



4. Open a background process to npm install the necessary dependencies.

5. If the exercise is marked as requiresLaunchConfiguration but the

.praxistutor workspace is not yet installed, insert the .praxistutor

workspace as the root (i.e. first) workspace. Mark in the global context to

automatically recover with this exercise, as the installation will cause the VS

Code window to reload.

6. Set this exercise with freshMetadata (including a new, empty event log).

7. await opening the exercise files in VS Code.

8. await cleaning the file from any prior configurations.

9. await registering any relevant event trackers.

10. Inform the webapp that Host Display Exercise is complete.

In step (9), the extension filters for relevant trackers by looping through the keys

of EVENT_TRACKERS and registering the respective tracker of each one if and only if the

key matches any listed history stream in the exercise’s solution history templates. For

example, if the only history template listed began with r/debugger|terminal/ , the

extension would find that debugger and terminal, but not editor, match to the event

stream and would register both of their respective trackers. The listener callback

is the same for each tracker: consume a TutorEvent object, filter the event for its

relevant data according to the solution templates, and append it to its metatype’s

event log.

In the Setup Required UI state (Fig. 4-3), when a student clicks Start, the we-

bapp forwards the request the extension, which filters the trackers in much the same

way as registering listeners: for each key of EVENT_TRACKERS, call configure on its

tracker and await its result if and only if that key appears in the exercise config-

uration description, passing in the appropriate configuration[key] config. When

all configurations complete, inform the webapp that host setup is done so that it

completes the transition to the Ready for Interaction UI.

75



The exercise’s MetadataType object maps each tracker type name to an array of

TutorEvents. When a student clicks Check in the webapp, the extension packages the

exercise’s entire event log plus the outputs of the relevant tracker’s compileConfigura-

tion, along with the file source.

If the student clicks Quit, or, on a correct submission, clicks Continue with no more

exercises in the set (part D in Fig. 4-3), the extension will perform one final round of

cleanup followed by tearing down all event tracking, before closing the exercise and

returning to the Home UI.

The Event Log

Compared to computation, user interface rendering can take a long time. Therefore,

for performance reasons, updates to the UI are often handled in sequential parts. For

example, stepping over in the debugger triggers multiple changes in the UI, including

the paused session pointer location (arguably the most important state), local variable

values, and plenty of other minor changes. Were VS Code to halt the debugger until all

changes were rendered, debugging would be aggravatingly slow. Instead, the VS Code

debugger triggers piece-wise updates (step-in-event, update-variable-values-event, ...)

which can each be thrown away if its output is no longer up-to-date. This allows a

user to repeatedly and aggressively step in, because perhaps only the session pointer

location is updated to reflect each step, while the local variable values lag behind

until the final step’s UI updates propagate through fully.

To build the event log, then, trackers must distinguish between user-initiated

events—that is, student actions such as a step in event—and system update events

in response to those actions. That way, the extension can determine when to append

a new student event to the log versus when to update the most recent event on the

log with new data. To that end, TutorEvents are marked with a IDEEventSource

source: User events are appended to the log, while System events replace the most

recent event on the log. It is up to the trackers themselves to format System events

as replacements for the most recent student-initiated event. Defining the event log

protocol in this way has the benefit of always being up-to-date with UI events.

76



4.4.3 Concrete Trackers

Currently, Praxis Tutor supports an editor tracker, a terminal tracker, and a debugger

tracker.

Editor Tracker The editor tracker listens for just two events: the didEdit event,

which plugs in to VS Code’s workspace.onDidChangeTextDocument listener, and the

movedCursor event, which plugs in to VS Code’s window.onDidChangeTextEditor-

Selection listener. The former is used to detect editor changes on readonly exercises,

while the latter is used in triggered hints for Error Parsing exercises.

Terminal Tracker The terminal tracker only listens for one event—the clickCodeLink

event—but is considerably more complicated than the editor tracker because it over-

rides VS Code’s default TerminalLinkProvider.6

For the duration of an exercise with terminal tracking, the tracker implements

its own TerminalLinkProvider, reading in terminal input, interpreting links, and

routing link clicks. Overriding with its own link provider allows the tracker to emit a

clickCodeLink event at the same time it routes link clicks.

The tracker uses the following regular expression to detect links:

/( [ ˆ ∖s(]* ∖. praxistutor ∖S src ∖S ∖w* ∖. ts)
Capturing Group 1

: ( ∖d+ )
2

(:( ∖d+ )
3

)?/g

where each underlined portion represents a distinct capturing group. The first cap-

turing group matches the file path. [ ˆ ∖s(]* excludes starting with whitespace or an

open parenthesis, followed by ".praxistutor", followed by a single non-whitespace sep-

arator ∖S , followed by "src", followed again by a non-whitespace separator, followed

by any character string ∖w* , followed by ".ts". The second and third groups capture

the line number and optional character number, respectively. The trailing flag "g"

instructs the regex to match all occurrences. All together, the regular expression can

match Windows paths such as "C:∖Users∖gecanow∖.praxistutor∖src∖Buggy.ts:5" or

Mac and Linux paths such as "/Users/gecanow/.praxistutor/src/Computation.ts:2:46".

6https://code.visualstudio.com/api/references/vscode-api#TerminalLinkProvider

77



When a matching filepath is clicked in the terminal, the tracker emits an event

containing the file name, line, and character and then moves the student’s cursor to

the clicked location.

Debugger Tracker Unlike for the editor and terminal, the VS Code extension

API does not provide explicit event listeners for debugger single step and evaluate

actions. While there exist listeners for setting breakpoints, removing breakpoints, and

launching debug sessions,7 the value of Debug Tutor exercises comes from observing

all debug events, including single stepping and evaluation with the Debug REPL.

Internally, VS Code communicates with debuggers via the Debug Adaptor Proto-

col (commonly abbreviated to DAP).8 Debug Adaptors powering the debug function-

ality for a specific language can implement the protocol and plug in to the VS Code

runtime environment, automatically making use of VS Code’s generic debug UI. At

its core, VS Code debugging boils down to sequences of well-formed messages sent

back and forth between the VS Code runtime environment and a Debug Adaptor.

VS Code comes with many preexisting Debug Adaptors9, so users can readily start

a debug session for, say, their JavaScript, TypeScript, or Python project. But, it is

worth noting that any obscure language can in theory be debugged in VS Code, so

long as someone authors and publishes a Debug Adaptor for it. Even more exciting,

DAP is supported by a variety of IDEs, not just VS Code.10

These two points—that any language could in theory have a Debug Adaptor and

that DAP is recongized by a variety of IDEs—are particular exciting for the Debug

Tutor, because it means that its debugging exercises can be fully IDE- and language-

agnostic. So long as the editor recognizes DAP and the language has a Debug Adap-

tor, the Tutor extension will be able to observe, parse, and interpret the standard

debug event messages passed between it and the VS Code runtime environment.

7From the vscode.debug API (https://code.visualstudio.com/api/references/vscode-
api#debug), debug.onDidChangeBreakpoints and debug.onDidStartDebugSession

8https://microsoft.github.io/debug-adapter-protocol/
9https://microsoft.github.io/debug-adapter-protocol/implementors/adapters/

10For a list of IDEs recognizing DAP, see https://microsoft.github.io/debug-adapter-
protocol/implementors/tools/

78



To observe the message sent between the Debug Adaptor and VS Code runtime

environment, the debugger tracker implements VS Code’s DebugAdapterTracker11.

The debug tracker has an InterceptedDebugger namespace for organizing its in-

terception and interpretation of messages. All messages are classified as a Request,

Response, or Event, with corresponding classes for interpreting the string message.

The debug tracker takes advantage of these classes by defining three corresponding

classes of its own implementing InterceptedDebugger, each responsible for interpret-

ing messages of its type and returning well-formed TutorDebugEvents marked as User

or System. Then, messages can be passed to InterceptedDebugger’s interpret

method, for appropriate hand-off to the correct subclass.

/**

* Helper function for intercepting and handling DAP messages.

* @param message , the DAP message.

*/

private interpret(message: any): void {

const event = InterceptedDebugger.interpret(message ,

this.lastUserEvent );

if (event) this.post(event );

}

Finally, to ensure that TypeScript files are debuggable by the Node.js debugger,

the clean method forks a background process to compile the exercise files with tsc.12

Put together, the debug tracker is able to observe all messages between the debugger

and the runtime environment in real time, parse them for relevant information, and

log them into an organized student event history.

4.5 Version 1 Complete

With the changes implemented in the exercise models, server, webapp, and extension,

the Praxis architecture could now support the concrete debugging concept map and

11https://code.visualstudio.com/api/references/vscode-api#DebugAdapterTracker
12For more on TypeScript compiling in VS Code, see https://code.visualstudio.com/docs/typescript/type-

script-compiling

79



all the concrete exercises designed for that concept map. Just under 30 exercises were

authored across 11 code files spanning the 23 concepts in the Debug Tutor concept

map for the version 1 release.

80



Chapter 5

Deployment

The Debug Tutor was deployed as part of the 6.102 Spring 2023 curriculum. 6.102

has a dedicated reading and lecture on debugging,1 and because the Tutor is intended

to be incorporated into a larger curriculum, 6.102 provided a suitable environment

for evaluating the effectiveness of the Debug Tutor.

5.1 Debugging Reading

The debugging reading was the ninth in a series of nineteen readings assigned through-

out 6.102’s Spring semester. Every reading accompanies a lecture on the same topic,

during which students get hands-on practice.

In the debugging reading, each concept group in the Debug Tutor is recommended

to be completed following its relevant introductory section. The reading first discusses

how to prevent bugs with techniques like static typing and immutable design. The

reading then describes how to localize bugs by failing fast and with incremental

development, and how to minimize scope through modularity and encapsulation. In

the third section, the reading details the steps in systematic debugging: reproducing

the bug, finding the bug with the scientific method, and fixing it carefully. The

Debug Tutor concept groups are recommended at appropriate points throughout the

1https://web.mit.edu/6.102/www/sp23/classes/09-debugging

81



scientific method section2. Finally, the reading dives deeper into ensuring the bug is

fixed thoroughly and gives some final suggestions on what to do when stuck.

Figure 5-1: Clip of Reading 9 Scientific Method Subsection

The release deadline for the Debug Tutor was therefore the release date of the

ninth reading.3 Before the official release, though, it went through several rounds of

staff testing. Staff were first asked to work through the exercises as an honest student

might, followed by another round of trying to break the Tutor for stress-testing.

5.2 Staff Testing

The Debug Tutor went through three rounds of staff testing before being released.

Due to a more than 50% increase in the 6.102 enrollment from the previous Spring

semester, the Spring 2023 term’s staff was particularly large, with two head TAs, ten

graduate TAs, 13 undergraduate TAs, and 20 undergraduate lab assistants (LAs).

This fortunately allowed for plenty of staff testing before release to students.

2https://web.mit.edu/6.102/www/sp23/classes/09-debugging/#find_the_bug_using_the_scien-
tific_method

3Tuesday, February 28th, 2023

82



Round 1: Some Staff In the first round of staff testing, five TAs were asked to

work through the Debug Exercises. These TAs were chosen because they spanned

different operating systems and level of familiarity with the ideas behind the Debug

Tutor. All testers completed the exercises on their own time and without supervision.

They were asked to give specific feedback about their experience working through

the exercises. The first round led to refinements in the concept map, updates to

individual exercise prompts and hints, additional suggested tutorials, and critical

bug fixes, particularly those only evident on the Windows operating system.

Round 2: All Staff After the first round of testing and subsequent updates,

and once the Debug Tutor had been fully incorporated into the debugging reading,

the reading was released to all staff for another round of playtesting. The staff

were therefore completing the exercises in the same condition as the students would:

working on their own time, without supervision, as properly contextualized in the

course reading on debugging. Releasing to the wider staff not only led to more

critical bug fixes and exercise refinement, but it also confirmed that the Debug Tutor

worked across a variety of development environments and its concept map logically

followed in the course reading.

Round 3: Final Push In the last push, staff were asked to playtest the final

iteration and sign off on releasing to students. 18 staff members responded (two on

Linux, three on Windows 10, two on Windows 11, seven on macOS Monterrey, and

four more on various other macOS releases) and all gave an lgtm.4

5.3 Official Release

The debugging reading was released to students about a week before the scheduled

lecture on debugging and was due at 10pm the night before the lecture.5 Around

400 students completed all Debug Tutor concept groups by the 10pm deadline. 75

4Looks good to me!
5Thursday, March 9th, 2023

83



additional students completed at least one concept by the start of class (45 of which

completed all concept groups). At the data collection cutoff on Sunday of that week,

of the 542 students on the roster at that time, a total of 496 students had attempted

at least one Debug Tutor exercise.

5.3.1 Grading

About 10% of a student’s grade in 6.102 is their classwork grade. Classwork grades

consist of before-class work (e.g. reading exercises) plus in-class collaborative work

and a nanoquiz, for each of the 19 in-person lectures and accompanied readings.

Like the TypeScript Tutor exercises incorporated into earlier readings, the Debug

Tutor exercises were part of the before-class grade for class 9. Completion was graded

out of 7 points, accounting for a little over 10% of class 9’s before-class grade (the

other 90% was from multiple-choice conceptual questions embedded in the reading

itself). In all, the Debug Tutor accounted for less than 0.1% of the class 9 grade.

To test understanding of the debugger, on the class 9 nanoquiz, students were

given two debugger questions (randomly drawn from three options), worth 6 out of

the 12 nanoquiz points. Students were also encouraged to use the debugger during the

in-class collaborative debugging exercises. About two weeks later, one sub-question

on the first quiz tested understanding of the debugger. So, while the actual Debug

Tutor exercises were not worth enough to affect a student’s grade in any meaningful

way, the knowledge it is designed to teach should certainly have aided during class

9’s nanoquiz as well as the subsequent quiz 1 debugger sub-question, not to mention

during problem set debugging and in all future programming pursuits. The following

chapter examines the collected data in an effort to answer these questions.

84



Chapter 6

Evaluation

Following the release of the Debug Tutor in the 6.102 curriculum, several metrics were

collected to evaluate its effectiveness. The release also uncovered a handful of fixable

bugs in the system and in the design of the concept map, which will be updated for

next term. On the whole, the release was a success.

6.1 Student Data

At the beginning of the semester, students were asked to report their class year,

major, and laptop operating system. Of the 492 students who attempted at least one

Debug Tutor exercise, a majority were majoring in course 6-3 (Fig. 6-1a), in their

sophomore year (Fig. 6-1b), and using a laptop running macOS (Fig. 6-1c).

6.1.1 Self-Reported Data

Embedded in reading 9 were several questions asking students to reflect on their

previous debugging experience before using the Debug Tutor. Of the students who

attempted at least one Debug Tutor exercise, about 65% reported prior experience

with any debugging concept (setting and removing breakpoints, single stepping, or

evaluating with Debug REPL), and about 33% (165 students) noted that they had

had prior experience with the VS Code debugger (Fig. 6-2).

85



(a) Major (b) Class Year

(c) Operating System

Figure 6-1: Student Data

86



Figure 6-2: Prior Debugger Experience

Of the 322 students who reported any prior experience, the characterization of

their prior experience is described in Fig. 6-3.

Figure 6-3: Prior Debugger Skill Ex-
perience

About half of the students who attempted

at least one Debug Tutor exercise felt either

"not comfortable" using a debugger or had

never used a debugger before, a quarter felt

"somewhat comfortable", and the remaining

students felt either "comfortable" or "very

comfortable" using a debugger, prior to using

the Debug Tutor (Fig. 6-4).

The self-reported data suggests that, al-

though most students have some experience

with the debugger prior to the 6.102 dedi-

cated lecture on the topic, these students are

not an overwhelming majority and most need

practice. Thus, the sophomore-level 6.102

curriculum can indeed benefit from debugger-

specific exercises, as the Debug Tutor aims to provide.

87



Figure 6-4: Prior Debugger Comfort Level

6.1.2 Problem Reports

Figure 6-5: Problem Report Analysis

As students worked through the Debug

Tutor exercises, they were able to re-

port bugs or issues with an exercise di-

rectly inside the Tutor web view via a

Report A Problem form. 150 problems

were reported, across 51 unique student

reporters. About a third were duplicate

reports. Others warranted new triggered

hints, an update to either the exercise

solution or the exercise prompt, or were

due to user error or a mis-configured setup.

Despite explicit written directions in the reading and inside some early exercises

prompts, the most common user error was students not dragging the Tutor window

to the right sidebar. Luckily, those students who submitted problem reports with

enough time before the deadline were told the quick and easy fix, and were able to

continue working through exercises. Other mis-configured setups included one-off VS

Code issues such as a mis-installed Node package.

88



24 of the problem reports revealed three separate bugs in the extension:

1. A handful of setups did not comply with the automated compiling of the Type-

Script exercise files before launching the Node debugger. Luckily, a manual

workaround allowed the affected students to continue progressing through the

exercises.

2. File paths with spaces were not being properly handled by the Tutor in the

Error Interpretation exercises. The three students who reported having spaces

in their file paths were unable to complete the exercises in that concept group.

3. Due to the nature of decoupling UI actions from resulting internal changes, some

required data values in exercise descriptions were marked as missing even though

the student performed the correct actions. In such cases, students were recom-

mended they work through each exercise slowly as a temporary workaround.

All three extension bugs will be fixed for future use of the Debug Tutor. The

relatively few problem reporters and problem reports in relation to the number of

student attempters (just under 500) and total attempts (around 24,000) indicate

that, on the whole, the Debug Tutor was usable.

6.2 Tutor Exercise Completion

At the time of data collection, three days after the completion deadline, over 90% of

the 542 registered students had attempted at least one exercise. Of those, about 86%

earned all 7 Debug Tutor completion points.

The Debug Tutor exercise pass rates were fairly high. Only a small minority were

unable to pass at all per exercise, while a large majority failed on the first attempt

but passed on a later attempt.

Rainfalls-mix, the conceptually hardest and most involved exercise, had the lowest

pass rate (78.5%). Backgammon-breakpoint-continue-navigation had the second low-

est pass rate (83.0%), followed by Taxes-evaluate (84.8%) and Matrix-mix (87.3%),

89



Figure 6-6: Per-Exercise Pass Rate

90



all more involved exercises that perhaps frustrated students. Surprisingly, Tutorial-

begin-debug-session had the fifth lowest pass rate (87.9%). However, given it is the

first exercise that requires launching a debug session, and extrapolating from the

problem reports, the high failure rate is likely due to a combination of unreported

user errors and unreported cases of the first identified extension bug relating to the

TypeScript file compilation.

Of the two exercises with the highest pass-on-first-try rates, Tutorial-set-breakpoint

and Matrix-mix, the latter is most surprising, while the former is as expected given

the nature of the exercise requiring just one click. Matrix-mix only asks that students

"[use] the debugger" in any way available to "get the debug session paused at the first

line in dotProduct", followed by setting a breakpoint, continuing to that breakpoint,

and evaluating dotProd with the debug REPL. Its first step is unusually lenient,

implying that students perhaps had an easier time comprehending goal-oriented in-

structions and struggled on more detail-oriented exercise prompts.

Analyzing Student Approaches

To drill in to Matrix-mix’s high pass-on-first-try rate, the solution approaches of the

138 student submissions in that category were analysed. The Matrix-mix exercise is

shown in full in Fig. 6-7.

Figure 6-8: Matrix-mix Approaches

The two most common approaches

to reach the first line of dotProduct

were to set a breakpoint on the first

line of dotProduct and continue to it

or to step into and out of column, then

step into and out of row, and then step

into dotProduct. Only 10 students who

passed on the first try used a significantly

more complex sequence of steps to reach

the first line in dotProduct. The split of

approaches used is shown in Fig. 6-8.

91



Figure 6-7: Matrix-mix

Figure 6-9: First-time passer Matrix-mix stu-
dents split by approach and binary prior de-
bugger comfort level

Interestingly, prior debugger com-

fort had no significant effect on the

approach used. When the popu-

lation was split by Matrix-mix ap-

proach and little to no versus moder-

ate to high prior comfort level (Fig.

6-9), a chi-squared test1 yielded a

𝜒2 value of 3.05 with 2 degrees of

freedom and a p-value greater than

0.05. Therefore, the null hypothesis

that the two factors were indepen-

dent cannot be rejected.

The solution pattern for Matrix-mix was r/debugger/ [{s/launchSession/

[configurationName:r/PraxisTutor/, stopReason:s/breakpoint/,

1Results were calculated with Python package scipy.chi2_contingency

92



stopsOnLine:c//*[1]*/dotProduct/]}, {}*, {r/step.*|continue/ [stops-

OnLine:c//*[1]*/assert/]}, {s/setBreakpoint/ [line:c/return dotProd/]

}?, {s/continue/ [stopsOnLine:c/return dotProd/]}, {s/evaluateOnDebug-

Console/ [expression:dotProd, resultingIn:9]} ]$ ({r/evaluate.*/ []},

{r/.*Breakpoint/ []}) . One key takeaway from this analysis is that the Tutor’s

event history pattern matcher was indeed robust enough to handle matching a variety

of correct student action sequences against the pattern in the exercise description.

6.2.1 Time Spent & Attempts Per Exercise

Time spent on each exercise was measured from the time the first GET request was

received until the final POST request was received by the server. Fig. 6-10 displays

box-and-whiskers plots of total time spent per exercise, with the top 5% quantile

removed. The plots are separated by those who passed the exercise either on the first

try or a later try (in white) and those who eventually gave up (in purple).

As expected, students on average spent slightly more time on the more involved

exercises. Across exercises, there is no significant differences between time spent

before giving up and time spent before passing, implying that students most likely

have a set amount of time set aside for at-home Tutor exercises, and either pass or

give up after that amount of time.

Attempts per exercise were measured by the total number of POST requests. Fig.

6-11 displays box-and-whiskers plots of attempts per exercise, again with the top 5%

quantile removed. Similar to the time plots, these are also separated by those who

passed the exercise either on the first try or a later try (in white) and those who

eventually gave up (in purple). The most evident trend appears to be that students

who gave up tended to use more attempts than those who succeeded.

Interestingly, prior comfort level seems to have little effect on the total time spent,

the average time spent per exercise, the number of exercises passed, and the attempts

taken per exercise, as shown by the relative histograms in Fig. 6-12. Evidently, on

average, students spent roughly half an hour working through about 30 exercises.

93



Figure 6-10: Time Spent Per Exercise

94



Figure 6-11: Attempts Per Exercise

95



(a) Total Time (b) Average Time per Exercise

(c) Total Passed Exercises (d) Average Attempts per Exercise

Figure 6-12: Student Data (without the top 0.01 quantile)

96



6.3 Course Metrics

Two course metrics were used to gauge the effectiveness of the Tutor on students’

knowledge of the debugger: part of nanoquiz nine and quiz 1 sub-question 4.2.

6.3.1 Class 9 Nanoquiz Results

455 students took the class nine nanoquiz. Students were shown two of three possible

questions related to the use of the debugger, each worth three points. All three

options and their solutions are shown in Fig. 6-13.

97



Figure 6-13: Clip of Class 9 Nanoquiz and Solutions

98



Each question quizzed multiple concepts. A correct answer may have involved

stepping in or not stepping in, stepping over or not stepping over, and stepping out

or not stepping out. Fig. 6-14 displays the percentages of points earned from each

checkbox grouped by concept. Evidently, the hardest concept was knowing the effect

of stepping in, with over half of the 455 students only earning 1/2 points. However,

looking deeper into the answer submissions of each individual check box, the low

average was due specifically to the third question’s step in checkbox, which only 28%

of students got correct. The other two step in checkboxes had similar pass rates to

those of the step out and step over. Therefore, students most struggled to understand

that stepping in at the end of a function call, like stepping out, will return.

(a) Step In (b) Step Out (c) Step Over

Figure 6-14: NQ Grade, broken down by concept

To investigate the effect of exercise completion on the nanoquiz grade, the stu-

dents were bucketed into five groups: advanced, if the highest completed concept

group was advanced-debug-sessions concept group; else intermediate, if the highest

completed concept group was intermediate-debugger-sessions concept group; else de-

bugger, if the highest completed concept group was debug-session (the debug-repl

concept group was not included, given that it appeared in the same level as debug-

session but its concepts were not quizzed); basic-debugger, if the highest completed

concept group was basic-debugger; otherwise, none, indicating no debugger-specific

levels were completed.

Despite showing a visual bump in average grade from basic-debugger to debugger,

99



(a) Nanoquiz grade by highest debugger level
completed

(b) Nanoquiz grade by binary concepts
passed

Figure 6-15: Nanoquiz average grade by concepts passed

a one-way ANOVA test returned a p-value > 0.05, implying that the groups’ averages

were not sufficiently different from each other (Fig 6-15-a). But, grouping the students

further into binary buckets by combining the first two groups and last three groups

and then running a t-test yielded a p-value less than 0.05, revealing that passing at

least all single step concepts is correlated with a higher nanoquiz grade (Fig 6-15-b).

However, this correlation may also be due to the fact that average-to-high achieving

students are both likely to complete assignments fully and perform well on quizzes.

Takeaway While the nanoquiz asked to consider which step function could be used

to achieve a specific state, the debugger exercises mostly focused on specific steps to

achieve an abstract goal (e.g., step in until X state occurs). Therefore, the moder-

ate performance on the debugger nanoquiz questions implies that several exercises

exploring how certain step functions may or may not achieve specific states should

be incorporated into the concept map. For example, one new exercise might explore

what happens when stepping in on a return statement.

100



6.3.2 Quiz 1 Results

On the first quiz, one sub-question worth four points quizzed students on single

stepping, asking for two different sequences of steps that would pause the debug

session at the next line. Possible answers included a single step over (by far the most

popular answer), a step in then out, and setting a breakpoint followed by a continue

(Fig. 6-16). 529 students took quiz 1, with about 68% earning all four points on

sub-question 4.2.

Figure 6-16: Quiz 1 sub-question 4.2 and sample answers

Figure 6-17: Quiz q4.2 grade and answer distribution

Bucketing the students by highest completed debugger level and running a one-

way ANOVA resulted in a p-value < 0.05, implying that the population means were

101



Figure 6-18: Quiz q4.2 average by highest completed debugger level

different enough to reject the null hypothesis. That is, more completed levels was

correlated with a higher quiz grade. However, observing Fig. 6-18, it is clear that

completing the final advanced concept group provided no additional bump in grade.

One potential reason why the concept group buckets were correlated with quiz

grade but not the nanoquiz grade is because the quiz question was posed in a more

similar fashion to tasks given by the Tutor: given a paused session, how might you

get to the next line?

To that end, one interesting consideration is whether completing some particular

Debug Tutor exercise that stressed some specific step sequence affects whether that

step sequence was given as an answer on the quiz. In particular, Backgammon-

step-in-out-navigation and Backgammon-breakpoint-continue-navigation attempt to

teach the skill of manipulating a debug session state via stepping in and out and via

continuing to breakpoints, respectively.

To compare the populations, a one-way ANOVA test was conducted to determine

if the population means differed significantly for each exercises, as shown in Fig. 6-

19. Setting up the experiment with a null hypothesis 𝐻0 that attempting or passing

the exercise had no effect on quiz answer, the Backgammon-step-in-out-navigation

102



test (6-19-a) returned a p-value less than 0.05, implying that attempting or passing

Backgammon-step-in-out-navigation did have an effect on the quiz answer. In other

words, exposure to and passing the step in, step out exercise did have some correlation

on likeliness of answering with step in, step out on the quiz.

(a) Effect of Step In-Out Exercise on Quiz
Answer

(b) Effect Breakpoint-Continue Exercise on
Quiz Answer

Figure 6-19: Effect of Particular Exercise on Quiz Answer

One potential reason Backgammon-breakpoint-continue-navigation had no signif-

icant effect on the quiz answer is that the sequence was simply answered by fewer

students overall. In rereading the quiz question, although the quiz prompt was open-

ended and asked for any "specific debugger commands" to reach the next line, it is

possible that students were simply more inclined to think of step functions as the

only debugger commands to use.

Takeaway Overall, performance on the quiz debugger question exceeded that of

the nanoquiz debugger question, and passing more Debug Tutor concept groups was

correlated with higher quiz grade. Furthermore, particular debugger exercises may

have influenced students’ ability to recall the sequences those exercises taught in the

new setting on the exam.

103



6.3.3 Impact of the Debug Tutor

While the previous two sections investigate the effect of the Debug Tutor on nano-

and quiz grades, they ignore an essential potential impact factor: prior debugging

experience.

Although prior experience with the VS Code debugger has no impact on com-

bined nanoquiz and quiz score, prior comfort level does have an effect (Fig. 6-12).

An ANOVA test yielded a p-value less than 0.05, implying that the average popu-

lation means are sufficiently different between comfort levels. As expected, as each

population grows in comfort level, so do the combined quiz scores.

(a) Prior VSCD experience on com-
bined quiz grades

(b) Prior debugger comfort level on combined quiz
grades

Figure 6-20: Prior experience on combined quiz grade

To properly assess the impact of the Debug Tutor, multiple two-way ANOVA

experiments were conducted across a variety of population slices.

Prior Debugger Comfort and Highest Level Completed

First, the population was grouped into two debugger comfort levels: those who re-

ported little comfort to no experience and those who reported somewhat comfortable,

104



comfortable, or very comfortable. These populations were then split again by highest

completed debugger concept group. Fig. 6-21 describes the calculated results from

running a two-way ANOVA on the populations.2 Because both none groups had less

than 10 individuals, they were dropped from the ANOVA, though they are still in-

cluded in the graph. Each individual factor—prior comfort level and highest concept

group completed—has a significant impact on combined quiz score, as both p-values

were significant enough to reject the null hypothesis. However, the interaction of the

two factors had a p-value greater than 0.05, so the effect of the factors with each

other was not significant.

Discussion Analyzing the interaction plot, with binary debugger comfort on the

x-axis and average combined quiz score on the y-axis, and each level bucket graph

on its own line, it is evident that prior comfort does have some positive relationship

with quiz score. However, the highest completed level seems to have far more of an

impact, with all three highest levels (debugger, intermediate, and advanced) appear-

ing significantly above the two lowest levels (none and basic-debugger), regardless of

comfort level. Then, for students who had little prior debugger comfort, completing

beyond the debugger level gave almost no significant bump in combined score. On

the other hand, for students who had moderate to high prior comfort, each higher

level completed bumped the grade a non-negligible amount.

One conclusion to draw from this analysis is that, while the debug-session concept

group indeed helped all students learn how to use the debugger regardless of prior

comfort, the highest two Debug Tutor levels—intermediate and advanced—were only

helpful for those who had prior comfort using a debugger. The concept map should

therefore be updated with more exercises at the debugger level, while the last two

concept groups might be simply left as extra practice for motivated students.

2Results were calculated with Python package sm.stats.anova_lm

105



population sum_sq df F PR(>F)
C(binary_prior_debugger_com-
fort_level) 37.980652 1.0 14.523935 0.000160

C(highest_debugger_level_completed) 29.732494 3.0 3.789937 0.010548
C(binary_prior_debugger_com-
fort_level):
C(highest_debugger_level_completed)

11.490901 3.0 1.464720 0.223603

Residual 1077.395898 412.0 NaN NaN

(a) 2-way ANOVA, with statistically significant result highlighted in yellow

(b) Prior comfort level and highest level completed on combined quiz grade

(c) Interaction plot of prior comfort level and highest level completed on combined quiz
grade

Figure 6-21: Effect of Prior Comfort and Highest Level Completed on Combined
Scores

106



Prior Debugger Comfort and Total Time Spent

Next, another two-way ANOVA compared the effect of comfort level and time spent

on the combined quiz score. This time, the sub-populations were split by if they spent

less than the average time (42 minutes and 40 seconds) and more. Fig. 6-22 displays

the results.

Evidently, time spent compared to the mean yielded a p-value greater than 0.05

and thus did not have a significant impact on quiz score. However, both prior comfort

with the debugger and the interaction between prior comfort with time spent com-

pared to the average yield a p-value less than 0.05 and thus have some correlation

with quiz score.

Takeaway Interestingly, the interaction plot shows that, for students who have

moderate to high prior comfort using a debugger, spending less time spent overall

predicts scoring higher. However, this may be due to the fact that the highest speed

is indicative of those who were previously most comfortable using a debugger above

all others. For students with little prior comfort, on the other hand, spending more

time indeed was correlated with a slightly higher combined quiz score, implying that

for those students, more time spent with the Debug Tutor was helpful.

107



population sum_sq df F PR(>F)
C(binary_prior_debugger_comfort_level) 30.666706 1.0 11.135510 0.000921
C(time_compared_to_mean) 3.490754 1.0 1.267542 0.260858
C(binary_prior_debugger_com-
fort_level): C(time_compared_to_mean) 12.851134 1.0 4.666427 0.031311

Residual 1181.447144 429.0 NaN NaN

(a) 2-way ANOVA, with statistically significant result highlighted in yellow

(b) Prior comfort level and total time spent compared to average on com-
bined quiz grades

(c) Interaction plot of prior comfort level and total time spent compared to average on
combined quiz grades

Figure 6-22: Effect of Particular Exercise on Quiz Answer

108



Prior Debugger Experience and Specific Exercise Completion on Quiz An-

swer

Prior experience with specific debugger skills may have also impact quiz results.

Breakpoint, Continue In revisiting the effect Backgammon-breakpoint-continue-

navigation had on the quiz answer, a two-way ANOVA with prior experience with

setting and removing breakpoints revealed that neither sub-population had an iden-

tifiable effect on the answer given in the quiz (Fig. 6-23).

Step In, Step Out In revisiting the effect Backgammon-step-in-out-navigation had

on the quiz answer, a two-way ANOVA with prior experience with single stepping

revealed that performance on the exercise still had an identifiable effect (yielding a

p-value < 0.05) on the answer given in the quiz (Fig. 6-24).

Takeaway Only the exercise on stepping in and out had a noticeable effect on the

quiz answer. But it is encouraging that, regardless, the nature of the Debug Tutor’s

emphasis on micro-skills had some effect on students’ ability to recall such microskill

on the quiz.

109



population sum_sq df F PR(>F)
C(Backgammon_breakpoint_con-
tinue_navigation) 0.032353 2.0 0.068622 0.933690

C(prior_bp_experience) 0.139657 1.0 0.592430 0.441915
C(Backgammon_breakpoint_con-
tinue_navigation):
C(prior_bp_experience)

0.058029 2.0 0.123081 0.884224

Residual 98.773296 419.0 NaN NaN

(a) 2-way ANOVA, no statistically significant results

(b) Average of listing "breakpoint, continue" as an answer on Quiz 4.2

(c) Two-way Interaction Plot

Figure 6-23: Prior experience with breakpoints and Backgammon-breakpoint-
continue-navigation on quiz answer

110



population sum_sq df F PR(>F)
C(Backgammon_step_in_out_nav-
igation) 2.214286 2.0 4.759843 0.011209

C(prior_single_step_experience) 0.190476 1.0 0.818898 0.368289
C(Backgammon_step_in_out_nav-
igation):
C(prior_single_step_experience)

0.023810 2.0 0.051181 0.950138

Residual 18.142857 78.0 NaN NaN

(a) 2-way ANOVA, with statistically significant result highlighted in yellow

(b) Average of listing "step in, step out" as an answer on Quiz 4.2

(c) Two-way Interaction Plot

Figure 6-24: Prior experience with single stepping and Backgammon-step-in-out-
navigation on quiz answer

111



6.4 Summary & Main Takeaways

On the whole, while most students had some form of debugger-related experience

before 6.102 (Fig. 6-2), less than 25% of the class reported being comfortable with

using the debugger prior to trying the Debug Tutor (Fig. 6-4). Regardless of the

Debug Tutor’s effect, given that most students in 6.102 are computer science majors

and already in their Sophomore Spring semesters (Fig. 6-1), the self-reported comfort

level certainly highlights the need for more debugging related training in the computer

science curriculum.

The Debug Tutor exercises had a fairly high pass rate (Fig. 6-6), with the lowest

pass rate still well above 75%. Although most students did not pass on their first try,

almost all were able to pass within five attempts. Whether passing or giving up, most

students spent less than four minutes per exercise. Whether previously comfortable

with debuggers or not, students spent around 33 minutes completing around 30 Debug

Tutor exercises. Therefore, the number of exercises and per-exercise difficulty, on the

whole, were doable as recommended within a single reading assignment.

Three critical bugs were identified through problem report analysis. While frus-

trating for students, two of the bugs at least have workarounds, and all three will be

fixed in the next release of the Tutor. The problem reports also confirmed that, for

exercise authors, the collected data and the way exercise descriptions are formatted

allow for quick and easy updating of exercise prompts and triggered hints based on

unforeseen student answers.

Students’ understanding of breakpoint setting and single stepping was tested on

the ninth nanoquiz and on question 4.2 of the first quiz. While completing at least

all concept groups through the single step group was correlated with a slightly higher

score (Fig. 6-15), overall, performance on the nanoquiz revealed serious holes in the

current concept map that should be addressed in future exercises: namely, the result

of single step actions across various paused session states, such as stepping in when

paused on a line without a function call, or stepping out when at the top of the call

stack.

112



Students performed relatively well on quiz question 4.2, with over 75% giving at

least one correct step sequence (Fig. 6-17). Unlike the nanoquiz, there was a stronger

positive correlation between the quiz score and completing more concept groups (Fig.

6-18), though completing the final concept group provided no additional benefit.

Perhaps more interestingly, performance on exercises that stressed particular step

sequences, such as Backgammon-breakpoint-continue-navigation and Backgammon-

step-in-out-navigation, was correlated with whether that step sequence given as an

answer on the quiz.

The later exercises were among the most difficult (Fig. 6-6) and most time-

consuming (Fig. 6-10), but did not provide much additional benefit to students when

quizzed (Fig. 6-15, 6-18), which suggests that the concept map should include more

exercises focused on basic skills and introductory skill combinations, instead of longer,

integrated exercises such as those in the advanced concept group.

Not surprisingly, previous comfort level was also shown to be correlated with

combined quiz score (Fig. 6-20). To investigate the effect of the Debug Tutor within

each comfort population, the students were grouped into binary comfort levels (high

or low), and then re-examined for effect of highest level completed and total time

spent. Highest level completed was still shown to be correlated with high quiz scores,

but time spent had an inverse relationship for students with moderate to high prior

comfort. This perhaps was due to wasted extra time spent on advanced exercises

that did not boost scores, or confused students gaining no new help from continuous

attempts, perhaps also indicating that additional triggered hints are needed.

All in all, the Debug Tutor showed promising results in helping students under-

stand microskills essential to competent debugging, such as use of the debugger, and

its extensible design proved robust, flexible, and supportive for making updates in

real time.

113



114



Chapter 7

Conclusion

This thesis presented the Debug Tutor, an automated tutor for explicit practice in

debugging aimed for novice computer programmers. The Debug Tutor is an im-

provement on existing debug tutors, designed to drill essential debugging microskills

agnostic to coding environments, such as single stepping in a debugger, yet is realized

as an extension embedded in a widely-used professional code editor, and is therefore

directly applicable beyond the classroom. Because the Debug Tutor gives automatic

feedback and is completed on students’ own time, it can be seamlessly integrated

into the curriculum of classrooms ranging from small interactive discussions to large

lecture-style computer science courses.

7.1 Discussion

The essence of the Debug Tutor is its concept map, which organizes debugger-related

concepts, grouped by similarity, into levels. Each concept is realized by one or more

concrete exercises. Each concept level can then be recommended to students at

appropriate points in the curriculum.

The Debug Tutor was deployed in the Spring 2023 semester of MIT’s 6.102 Soft-

ware Construction class, a required computer science course at the sophomore/ju-

nior level. Students were asked to complete each concept group at applicable points

throughout the course’s ninth reading on debugging, due the night before the corre-

115



sponding lecture on the same topic. Of the 542 students on the roster at the time, 86%

had earned all seven Debug Tutor completion points by the start of class. Students

spent around 35 minutes on around 30 exercises total, with even the hardest exer-

cise yielding an above 75% pass rate. Students were also asked to report their prior

experience with debuggers before use of the Debug Tutor. Although most students

reported some previous experience using a debugger, under 25% reported moderate

to high prior comfort using a debugger. Furthermore, the design of the Debug Tu-

tor concept map and exercise description format proved flexible enough for exercise

authors to add exercises and update existing exercises on-the-fly.

The class nine nanoquiz and part of the first quiz tested students’ knowledge of

single stepping in the debugger. Analysis of the prior comfort level and performance

on the debugger exercises showed that completing more concept groups was positively

correlated with higher quiz scores regardless of prior comfort level. However, the high-

est levels only provided additional benefit for those who were previously comfortable

with using a debugger. Therefore, the Debug Tutor concept map should put more of

an emphasis on shorter step sequences rather than advanced integration exercises.

The Debug Tutor was built on top of the existing Praxis Tutor framework. The

framework’s extension, webapp client, and server were extended significantly to sup-

port event tracking. The extended design was robust enough to handle hundreds of

student attempters of different class years, majors, and operating systems. Further-

more, the event tracking API was implemented in such a way as to readily extended

to new tutoring domains that hinge on event histories.

7.2 Future Work

Despite the overall success of the first Debug Tutor release, several improvements

should be made moving forward.

7.2.1 Extension Updates

Most pressing are the three extension bugs identified in the first release.

116



Bug #1 To patch the automatic TypeScript compilation bug, the extension should

instead compile all TypeScript files before uploading them to the server and should

automatically install the .js files along with the .ts ones. Because debug exercises

are read-only, pre-compiling them will avoid the need to compile in real time.

One way to implement pre-compilation in a language agnostic manner is to define

a new compilation YAML key for each of the languages listed in exercises.yaml,

with a command string and an outFiles list of file patterns. To avoid running the

compilation on exercises that do not need it, a new computed value in the exercise

model (or, in the case of the Tutor, the requiresLaunchConfiguration) can deter-

mine whether to pre-compile the exercise directory or not. Finally, when uploading

exercises, the Tutor can automatically run the compilation command on those ex-

ercise directories and include any files matching the listed outFiles in the zipped

folder after the compilation completes.

Bug #2 The terminal tracker should insert quotes if a path has spaces to avoid

space-related bugs, and must update its link detection code to detect paths with

spaces in them.

Bug #3 Similar to how VS Code decouples UI events from system updates, the

event tracking answer checker should automatically consider all data values optional,

only failing if data is mismatched.

This change would be localized to the RegObj matcher’s individual object match-

ing algorithm. If an exercise author would like to ensure that a data value is captured,

they can do so by introducing latency into the exercise directions, for example by

crafting the exercise such that the event requiring data values occurs at the end of

the pattern, or perhaps even as a directive to the user to pause for a few moments to

reflect on some part of the exercise.

117



7.2.2 Concept Map Updates

Based on performance analysis and quiz evaluation, the concept map should be up-

dated with more single step exercises across a variety of paused session states and

scale back on the more advanced, integrated exercices. These updates will both ad-

dress the missing concepts revealed by the nanoquiz as well as the difficulty of the

final two levels.

As 6.102 turns over new staff, it will also be important to investigate if and how

easily new exercise authors are able to understand event tracking exercise descriptions

and add to the Debug Tutor concept map.

7.2.3 Realtime Hints

With the introduction of event tracking into the Praxis architecture, it was hypoth-

esized that feedback given in real time would greatly help improve the user learning

experience. To that end, in addition to the exercise model’s triggeredHints to dis-

play to the user after an incorrect submission attempt, the updated exercise model

also includes realtimeHints, using same YAML format as triggeredHints, to be

displayed in popups presented to the user at the exact moment the hint is relevant.

The extension was updated to ping the webapp on every relevant event action,

which would in turn ping the server to compare the realtimeHints patterns against

the user event log. Finally, the webapp-extension communication protocol was up-

dated with a showPopup request, which the VS Code extension was updated to rec-

ognize and respond to with a modal or toast notification.

However, pinging the server on every student action is infeasible in a large system.

So, although tested and functional, real-time hints were disabled to reduce the load

on the server, with the exception of edit events during a read-only exercise triggering

a real-time modal notification warning the student that edits are not allowed. In a

future iteration, perhaps some version of an answer checker, at least for real-time hint

checking, can be made available on the client side, thereby removing the need to ping

the server on every action and allowing real-time hints to be re-enabled.

118



Multi-Step Exercises

As discussed earlier, based on the evaluation, the Debug Tutor’s concept map should

pare down the more difficult intermediate and advanced debugger concepts. The

multi-step nature of the exercises implementing these concepts would likely have

benefited the most from real-time hint popups. Perhaps, when the improved client-

only real-time hint design is implemented, it would be worth re-introducing the more

complicated concepts back into the Debug Tutor’s concept map, as the multi-step

exercises would become more accessible to all students.

Another option might be to introduce a multi-check flow into the webapp’s event

loop, to support exercises that require multiple check steps before passing. For exam-

ple, a student might be shown the first half of an exercise prompt and would then have

to click Check and pass before being shown the second half of the exercise prompt. A

final Check and pass would then mark the exercise as complete. However, muli-check

exercises may get complicated if they also require starting over. For example, if a

student fails in the second half, would the exercise start over from half-way or from

the beginning?

7.2.4 A Hypothetical Case Study: Extending to Git

As a final exercise testing the extensibility of the event tracking API, this section

presents a walk through of a hypothetical case study: developing a Git Tutor.

Step 1: Is VS Code’s Git API accessible?

Does VS Code exposes Git state and events? Good news—it does! VS Code comes

pre-packaged with a git extension with an accessible API1, which exposes the

workspace’s open repositories. Each repository object contains state information

like the latest commit, status, and head branch, as well as event listeners such as

onDidRunGitStatus and onDidRunOperation. Perfect!

1Via vscode.extensions.getExtension(’vscode.git’)?.exports; See https://co-
de.visualstudio.com/docs/sourcecontrol/overview and https://github.com/Microsoft/vscode/bl-
ob/main/extensions/git/src/api/git.d.ts

119



Step 2: Update the Event Tracking API.

Define an IDEGitTracker in event-tracking-api.ts with an IDEGitEvent enum

(it may have, for example, getStatus, add, commit, push, etc.) and event type

TutorGitEvent. Once the namespace is defined, HostIDE’s IDEEventType,

EXTENSION_EVENTS, and TutorEvent can be updated accordingly.

Step 3: Add a Git property to the Configuration model.

Next, add a Git property to the Configuration model. It is likely that a

configuration setup will consist of pre-running git commands on a repo (each could

be represented by a GitCommand, similar to the Debugger’s SessionData). Potential

final states might be the branch HEAD or number of commits (which could be

represented by a RepoState, similar to the Debugger’s BreakpointData). So, an

initial pass at a Git model to store inside the Configuration might have a list of

GitCommand preRunCommands and a RepoState repoState.

Step 4: Write a GitTracker.

With the git data organization established, tie the pieces together in a GitTracker

implementing the TutorTracker interface. The Git configuration is defined, so

implement configure and compileConfiguration accordingly. It is unclear

whether git requires explicit cleaning, so leave that empty. Implement register

using the appropriate callbacks and pushing TutorGitEvent of IDEGitEvent types.

An initial pass at teardown should dispose of those listeners. Finally, fix the

compile-time error in extension.ts by adding git:TutorGitTracker.tracker to

the EVENT_TRACKERS.

Step 5: Author some exercises.

Last but not least, author some exercises using the new git configuration and

stream events. For Git in particular, one final change may be explicitly running git

init and git remote add origin in the background (similar to how npm install

is run) for a git exercise—perhaps the exercise model can have a computed property

marking if git is required, similar to requiresLaunchConfiguration.

And of course, the final step: Design the concept map and write some exercises!

120



Bibliography

[1] M. Ahmadzadeh, D. Elliman, and C. Higgins. Novice programmers: An analy-
sis of patterns of debugging among novice computer science students. Inroads,
(37):84–88, 2005.

[2] E. Carter and G. D. Blank. An intelligent tutoring system to teach debugging.
In P. Pavlik, K. Yacef, J. Mostow, H. C. Lane (Eds.), Artificial Intelligence in
Education, 16th International Conference, Memphis, TN, USA, 2013. Springer
Berlin Heidelberg.

[3] S. Carver and S. Risinger. Improving children’s debugging skills. In In G.
Olson, S. Sheppard E. Soloway (Eds.), Empirical studies of programmers, Second
Workshop. Ablex, 1987.

[4] R. Chmiel and M. C. Loui. Debugging: from novice to expert. In Proceedings of
the 35th SIGCSE technical symposium on Computer science education (SIGCSE
’04), pages 17–21, Memphis, TN, USA, 2004.

[5] C. Du. Empirical study on college students’ debugging abilities in computer
programming. First International Conference on Information Science and En-
gineering, pages 3319–3322, 2009.

[6] M. Ducassé and A. M. Emde. Empirical study on college students’ debugging
abilities in computer programming. Proceedings of the 10th international con-
ference on Software engineering, page 162–171. IEEE Computer Society Press,
1988.

[7] Anders Ericsson and Robert Pool. Peak: Secrets from the New Science of Ex-
pertise. Houghton Mifflin Harcourt, 2016.

[8] D. H. Jonassen and W. Hung. Learning to troubleshoot: A new theory-based
design architecture. Educ Psychol Rev, (18):77–114, 2006.

[9] O. Kiljunen. Teaching students to fix programming errors with tutorials em-
bedded in an ide. 21st Koli Calling International Conference on Computing
Education Research, pages 1–3, November 2021.

[10] A. N. Kumar. Model-based reasoning for domain modeling in a web-based in-
telligent tutoring system to help students learn to debug c++ programs. In In

121



S. A. Cerri, G. Gouarderes, F. Paraguacu (Eds.), Intelligent Tutoring Systems,
6th International Conference, page 162–171, Biarritz, France and San Sebastian,
Spain, June 2002. Springer Berlin Heidelberg.

[11] M. Laakso, E. Kaila, and T. Rajala. Ville – collaborative education tool: De-
signing and utilizing an exercise-based learning environment. Educ Inf Technol,
23:1655–1676, 2018.

[12] G. C. Lee and J. C. Wu. Debug it: A debugging practicing system. Computers
Education, 32(2):165–179, 1999.

[13] M. J. Lee. Teaching and engaging with debugging puzzles. PhD thesis, University
of Washington, 2015.

[14] C. Li, E. Chan, P. Denny, A. Luxton-Reilly, and E. Tempero. Towards a frame-
work for teaching debugging. In In Proceedings of the Twenty-First Australasian
Computing Education Conference, ACE ’19, page 79–86, 2019.

[15] A. Luxton-Reilly, E. McMillan, E. Stevenson, E. Tempero, and P. Denny. Lade-
bug: an online tool to help novice programmers improve their debugging skills.
In In Proceedings of the 23rd Annual ACM Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE 2018, page 159–164, 2018.

[16] R. Mccauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L. Thomas,
and C. Zander. Debugging: A review of the literature from an educational
perspective. Computer Science Education, 18(2):67–92, 2008.

[17] T. Michaeli and R. Romeike. Improving debugging skills in the classroom: The
effects of teaching a systematic debugging process. In In Proceedings of the 14th
Workshop in Primary and Secondary Computing Education, WiPSCE’19, page
1–7, 2019.

[18] M. A. Miljanovic and J. S. Bradbury. Robobug: A serious game for learning
debugging techniques. In In Proceedings of the 2017 ACM Conference on Inter-
national Computing Education Research, ICER ’17, page 93–100, 2017.

[19] M. Nanja and C. R. Cook. An analysis of the on-line debugging process. In In
G. Olson, S. Sheppard E. Soloway (Eds.), Empirical studies of programmers,
Second workshop, page 172– 184, 1987.

[20] J. C. Spohrer and E. Soloway. Novice mistakes: are the folk wisdoms correct?
Commun. ACM, 29(7):624–632, 1986.

[21] I. Vessey. Expertise in debugging computer programs: A process analysis. In-
ternational Journal of Man-Machine Studies, 23(5):459–494, 1985.

[22] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Elsevier
Science, 2009.

122


	Introduction
	Related Work
	Understanding Bugs
	Understanding Debugging
	The Debugging Process
	On Teaching Debugging
	Existing Tools for Teaching Debugging 
	Applying Deliberate Practice to Debugging

	Design
	A Debug Concept Map
	Design of Exercises
	User Interface
	Exercises

	It’s Time for an Update

	Implementation
	History Event Patterns
	Authoring Exercises with History Events
	Adopting Event Patterns in the Tutor

	The Server
	Concrete Exercises
	A Concrete Concept Map
	Uploading to the Server
	Answer Checking 2.0

	The Web Application
	The Extension
	Event Tracking API
	extension.ts
	Concrete Trackers

	Version 1 Complete

	Deployment
	Debugging Reading
	Staff Testing
	Official Release
	Grading


	Evaluation
	Student Data
	Self-Reported Data
	Problem Reports

	Tutor Exercise Completion
	Time Spent & Attempts Per Exercise

	Course Metrics
	Class 9 Nanoquiz Results
	Quiz 1 Results
	Impact of the Debug Tutor

	Summary & Main Takeaways

	Conclusion
	Discussion
	Future Work
	Extension Updates
	Concept Map Updates
	Realtime Hints
	A Hypothetical Case Study: Extending to Git



