
Theseus: Understanding
Asynchronous Code

Tom Lieber
MIT CSAIL
Cambridge, MA 02139 USA
tl@csail.mit.edu

Figure 1: Theseus with two pseudo-breakpoints active

Copyright is held by the author/owner(s).
CHI 2013 Extended Abstracts, April 27–May 2, 2013, Paris,
France.
ACM 978-1-4503-1952-2/13/04.

Abstract
The behavior of JavaScript is difficult to understand due
to the language’s asynchronous and dynamic nature. In
particular, chains of event handlers pose difficulties
because they cannot be stepped through with a debugger,
and determining where a chain is broken requires
instrumenting every link in the chain with a breakpoint or
log statement. The aim of this work is to create a
debugging interface that helps users understand
complicated control flow in languages like JavaScript.
Theseus uses program traces to provide real-time in-editor
feedback so that programmers can answer questions
quickly as they write new code and interact with their
application. The call graph is augmented with semantic
edges that allow users to make intuitive leaps through
program traces, such as from the start of an AJAX
request to its response.

Author Keywords
programming; debugging; code understanding

ACM Classification Keywords
D.2.5 [Testing and Debugging]: Debugging aids.



Introduction
In JavaScript on the web, and many other environments,
event-driven and asynchronous code is common.
Examples include handling events in a graphical user
interface, requesting data from a network resource, and
responding to HTTP requests. When these asynchronous
operations depend on one another, the result is sometimes
called ‘callback hell’1 and it can be difficult to understand
due to its convoluted, non-linear control flow [6].

When seeking to understand code, programmers ask a
multitude of questions [7]. Reachability questions, which
concern control flow, are among the most difficult to
answer without specialized tools [2]. An example
reachability question is, “Are any network calls made
directly or indirectly from this method?” Answering
questions like these can be difficult without tools
specifically designed for them. For instance, a step
debugger would force the user to perform an in-order
traversal of the call graph. Sequences of event handler
registrations and activations (i.e. callback chains) are
discontiguous in a program trace and are even more
difficult to follow.

Theseus, the software presented in this paper, is a
debugging interface for making sense of control flow and
addressing the aforementioned difficulties. It uses two
means to accomplish that task:

• It presents a streamlined interface for executing queries
over program traces.

• It augments the call graph with semantic edges
representing high-level connections such as callbacks.

Theseus uses code coloring and a breakpoint-like interface

1http://callbackhell.com/

to answer developers’ questions. Its information comes
from program traces that are updated in real-time as the
code is executed. It allows users to inspect the program’s
run-time state, similar to a step debugger. However, using
program traces gives Theseus the ability to present
aggregate information about state and control flow, and
summarize past and future control flow from any given
point. Users interact with the trace using queries
consisting of an ordered set of pseudo-breakpoints they
place in the code.

To address the problem of complex, event-driven control
flow, Theseus augments the call graph with edges that
correspond to high-level leaps through the program trace,
such as from the start of an AJAX request to its response.
Those semantic edges allow the user to walk along
execution paths that are implied by the code structure, not
just the path that is actually traversed by the computer.

Theseus is ongoing research. The interface is available as
an extension2 to the Brackets text editor3. It collects
information by way of a proxy server that adds
trace-collecting code to all JavaScript on a web page. A
series of four prototypes has been created as part of an
iterative design process. Several graduate students with
asynchronous programming experience informally
evaluated all four prototypes to guide the interface design.
Three professional JavaScript developers at Adobe
provided feedback on the fourth prototype. The fifth
prototype, which is under development, is presented here.

2http://github.com/adobe-research/theseus/
3http://brackets.io/

http://callbackhell.com/
http://github.com/adobe-research/theseus/
http://brackets.io/


1) Code that has yet to be
executed is given a gray back-
ground.

2) Pills like appear
next to functions to display
the number of times they have
been called. When the user
clicks to add them to the query,
they turn green.

3) Call counts become rela-
tive to the root of the query
when one is active. The
trace containing a call to
mouseDownActionPerformed

also contains a call to the
mouseMoveTrigger callback,
so it reads ‘got here 1/1’.

4) The query automatically
extends to every function in
the program, making their call
counts relative as well, reducing
the need to click them.

5) Functions and page events
that are part of the query show
up here with the values of
variables that were in scope,
where they can be inspected.

1

2
3

4

5

Figure 2: The Theseus user interface running as a Brackets extension



Example Usage Scenario
Theseus is designed to become part of the
edit-compile-test loop by answering questions about
run-time behavior as quickly as possible. In this section,
we show how Theseus is a benefit to Max, whose task is
to fetch search results with an AJAX request when a
button is pressed.

Max begins by connecting an event handler to a search
button. Once he has entered the code to the best of his
ability, he wants to verify that he made no mistakes. To
do so, Max reloads the page, clicks the search button, and
returns to the IDE. The coloring and call counts indicate
that the code that registered the event handler, and the
event handler itself, were both executed.

Next, Max needs to request the search results. He arrives
at the code below by customizing a snippet he finds on the
web. Max refreshes the page and clicks the search button
again. From the coloring of the source code, he sees right
away that the success event handler was never called.

To figure out why, Max checks the ‘AJAX’ box under
‘Page Events’ to add AJAX events to the Log. To focus
on the AJAX events resulting from the search button, he

clicks the pill next to the button’s click handler.
That adds the invocation of the click handler to the
timeline and nests the related AJAX calls underneath.

Max sees that the AJAX request resulting from the
button press returned a ‘404 Not Found’ error, calling his
attention to a typo in the URL (serch instead of
search). He refreshes the page and verifies that the
problem is fixed when all the call count pills turn blue.

To display the search results, Max needs to know how the
data is passed to the AJAX callback. He clicks the
pill next to the callback function. Theseus records the
values of unnamed function arguments, which he inspects
to discover that the first argument contains the desired
data. He gives a name to that argument and writes the
code to display it on the page.



Discussion
Theseus provides several forms of feedback that would
have been difficult or tedious for Max to gather without
it. He is able to see whether lines of code had executed
using color, instead of sprinkling the file with breakpoints,
log statements, or calls to alert(). He is able to
correlate page events, such as AJAX responses, with
events in his code. He is able to inspect the values of
variables without explicit instrumentation.

Theseus is able to associate AJAX events with the button
click event by looking for the signs of the start of an
asynchronous operation. In this case, Theseus detected
the creation of an XMLHttpRequest object. Theseus will
make a similar connection when it detects the creation of
a closure, which is common for callbacks that are defined
inline.

Interface Design
A session with Theseus starts when a user opens a web
page from within the editor. When the user clicks one of
the call count pills in the gutter of the code editor, that
sets what we call a pseudo-breakpoint. A regular
breakpoint halts execution when the breakpoint is reached
so that program state can be inspected. A
pseudo-breakpoint does not halt execution, but it
retroactively adds all of the local state that could have
been inspected to the Log panel at the bottom of the
window.

In effect, setting a pseudo-breakpoint creates a query for
all traces that pass through a particular point in the code.
When the user sets another pseudo-breakpoint without
clearing the first, that creates a query that matches traces
that pass through both pseudo-breakpoints in sequence.
This is analogous to halting at the first breakpoint, then

stepping through the code to the second breakpoint.
Theseus saves the user time by showing them much of the
information they could have gathered from that process
after two clicks.

Clicking the checkbox next to a page event is like setting
a pseudo-breakpoint at all instances of that type of event.

Future Work
Theseus currently answers only a subset of the
reachability questions that LaToza and Myers identified as
difficult to ask, which I plan to correct in later prototypes
[2]. In particular, Theseus queries require both ends of the
query to be specified (except in the case of page events),
making it unsuitable for finding traces that involve many
functions.

The scenario presented in this paper contained several
instances of the user needing to refresh the page in order
to test changes to the code. I plan to extend Theseus to
collect a more complete trace with which new code can be
evaluated as if it had existed all along. That would
provide users with the limited ability to use Theseus’
reachability coloring and data inspection facilities without
needing to reload the page. A more complete trace would
also allow the user to evaluate arbitrary expressions in the
log window, which would enable new styles of exploratory
development similar to working at a read-eval-print loop
(REPL).

As Theseus nears maturity, I am planning lab and field
studies to evaluate its effectiveness. I hypothesize that
Theseus will decrease the amount of time it takes
developers to answer questions about run-time behavior of
their code, leading to a decrease in the amount of time it
takes to write code and fix bugs, and an increase in the
success rate at fixing bugs. I will test this hypothesis



directly with lab studies using small programming tasks. I
have also released the extension publicly to gather
qualitative feedback from developers in the field.

Related Work
Theseus’ interface was informed by research into the types
of questions programmers ask while programming, as well
as our observations of the tasks JavaScript programmers
seem to find difficult or tedious. Some of the most
relevant research, and its relationship to Theseus, is
described in this section.

Whyline [1] is a debugging interface users can ask
questions like, “Why is this widget blue?” Whyline
answers by generating a program slice of all the events
that determined the line’s color. Theseus, the work
presented here, brings invisible state and behavior to the
surface, providing more topics for users to ask about. For
example, a grayed-out function is an opportunity to ask
Whyline, “Why wasn’t this function called?”

Reacher [3] answers reachability questions by presenting a
compact graph representation of the interactions between
several functions. The difference between Reacher’s
visualizations and those of Theseus stem largely from the
difference in how data is obtained: statically versus
dynamically. Theseus and Reacher provide complementary
views of the same kind of information.

ZStep [4] is an omniscient step debugger that has
commands for jumping around program traces similar to
using semantic edges. A ZStep user can step forward and
backward by line or expression, but also non-linearly, such
as to the point when a given expression was evaluated, to
the next time the GUI changed, or to when a particular
screen element was drawn. IntelliTrace [5] is similar in
that it allows users to index into a program trace by

selecting an event, such as a button click or an exception.

Acknowledgements
I thank my advisors Robert C. Miller and Joel Brandt for
their guidance. This work was supported in part by
Adobe, and by the National Science Foundation under
award number SOCS-1111124. Any opinions, findings,
conclusions, or recommendations in this thesis are the
author’s, and they do not necessarily reflect the views of
the sponsors.

References
[1] Ko, A. J., and Myers, B. A. Designing the Whyline: A

Debugging Interface for Asking Questions about
Program Behavior. In Proc. SIGCHI 2004, vol. 6
(2004).

[2] LaToza, T. D., and Myers, B. A. Developers Ask
Reachability Questions. In Proc. ICSE 2010, vol. 1,
ACM Press (New York, New York, USA, 2010).

[3] LaToza, T. D., and Myers, B. A. Visualizing Call
Graphs. In Proc. VL/HCC 2011, Ieee (Sept. 2011).

[4] Lieberman, H., and Fry, C. Bridging the Gulf Between
Code and Behavior in Programming. In Proc. SIGCHI
1995, CHI ’95, ACM Press/Addison-Wesley Publishing
Co. (New York, NY, USA, 1995).

[5] Microsoft. Debug Your App by Recording Code
Execution with IntelliTrace. http://msdn.microsoft.

com/en-us/library/vstudio/dd264915.aspx.
[6] Myers, B. A. Separating Application Code From

Toolkits: Eliminating the Spaghetti of Call-backs. In
Proc. UIST ’91 (1991).

[7] Sillito, J., Murphy, G. C., and De Volder, K. Asking
and Answering Questions during a Programming
Change Task. IEEE Transactions on Software
Engineering 34, 4 (July 2008).

http://msdn.microsoft.com/en-us/library/vstudio/dd264915.aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd264915.aspx

	Introduction
	Example Usage Scenario
	Discussion

	Interface Design
	Future Work
	Related Work
	Acknowledgements
	References

