
Multiverse: Crowd Algorithms on
Existing Interfaces

Kyle I. Murray
MIT CSAIL
Cambridge, MA 02139 USA
kimurray@mit.edu

Multiverse ServerEnd User Machine

Web-
Based 
VNC

Multiverse
System Overview

Virtual Machines
Crowd

Figure 1: End users encapsulate tasks for the crowd in VMs that are then replicated
on the Multiverse server and controlled by crowd workers via a web-based VNC
connection. The server implements crowd algorithms on top of these VMs to ensure
reliability.

Copyright is held by the author/owner(s).
CHI 2013 Extended Abstracts, April 27–May 2, 2013, Paris,
France.
ACM 978-1-4503-1952-2/13/04.

Abstract
Crowd-powered systems implement crowd algorithms
to improve crowd work through techniques like
redundancy, iteration, and task decomposition. Existing
approaches require substantial programming to
package tasks for the crowd and apply crowd
algorithms. We introduce Multiverse, a system that
allows crowd algorithms to be applied to existing
interfaces, reducing one-off programming effort and
potentially allowing end users to directly employ
crowdsourcing on the interfaces they care about.
Multiverse encapsulates existing applications into
cloneable virtual machines (VMs) that crowd workers
control remotely. Because task state is captured in the
VM, multiple workers can operate simultaneously on
separate instances. We demonstrate the utility of this
approach by implementing three existing crowd
algorithms: (i) branch-and-vote, (ii) find-fix-verify, and
(iii) partition-map-reduce. To implement these we
introduce new crowd programming patterns: crowd
merge and crowd annotate.

Author Keywords
Crowdsourcing; human computation; crowd algorithms

ACM Classification Keywords
H.5.2 [User Interfaces]: Graphical user interfaces.



Introduction
Crowd-powered systems can now solve problems too
difficult for automated approaches alone [3, 8, 4]. To
leverage the potential of the crowd, these systems
implement crowd algorithms that improve crowd work
through techniques like redundancy, iteration, and task
decomposition [3, 9, 11]. Existing approaches require
substantial one-off programming effort to package
tasks so that the crowd can work on them and so that
crowd algorithms can be applied. In this paper, we
introduce Multiverse, a system that allows crowd
algorithms to be applied to existing interfaces, reducing
one-off programming effort and potentially allowing end
users to directly employ crowdsourcing on the tasks
and interfaces they care about.

Figure 2: An example run of
Multiverse. The task has been
divided by the end user into
three steps. Three workers
perform each step separately in
a private VM, and then other
workers vote on the best, which
is carried on to the next stage.

Multiverse encapsulates existing applications in virtual
machine (VM) instances that can be copied and
worked on separately by individual crowd workers,
allowing crowd algorithms to operate on the existing
application interfaces contained within the VM (Figure
2). To use Multiverse, an end user first decomposes
her task into a sequence of steps and then initializes a
VM into a good starting state (for instance, if they will
be asking the crowd to do image editing, they might
start up their image editor and load the image).
Multiverse encapsulates this state into a VM file, copies
the VM as appropriate, and allows multiple crowd
workers to independently complete each sub-task
through a Flash-based VNC connection to VM
instances. This allows Multiverse to implement existing
crowd algorithms; for instance, having multiple workers
complete the same task and having a different set of
workers vote on who completed the task best. The
original end user can rejoin the VM when her task is
complete.

The system is called Multiverse because it allows an
operating system to exist in multiple states (or
“universes”) simultaneously through replication of VMs.
The crowd creates and manipulates these universes
and the end user gets the best one at the end.
Multiverse is unable to apply crowd algorithms to steps
that have side effects that escape the system, e.g.
communicating with a remote server that stores its own
data. This limitation is a result of how crowd algorithms
work - using redundancy and layering to improve
reliability.

To implement current crowd algorithms in Multiverse,
manipulating VMs alone is not quite enough and so we
have added two new crowd operations that broaden
the kinds of algorithms that it can run. First, crowd
annotate allows crowd workers to mark up existing
interfaces via a visual drawing surface overlaying their
view of the VM. For instance, for the find-fix-verify
algorithm [3], crowd workers perform the find step by
annotating interface in the overlay. The second
operation is crowd merge which allows workers to
merge portions of the states of multiple VM instances.
This allows for merging (reduce step) in algorithms that
use task decomposition, e.g. CrowdForge [8].

Our contributions are (i) introducing the idea of using
VMs to enable crowd algorithms to be applied to
existing interfaces and the Multiverse system that
implements these ideas, (ii) implementing three
common crowd algorithms on existing interfaces, (iii)
and introducing the crowd annotate and crowd merge
operations that make this possible.



Background
Human computation was introduced to integrate people
into computational processes to solve problems too
difficult for computers, and has been shown useful in a
variety of domains [3, 8, 4, 12, 6]. Soylent was the first
to embed crowd work into an existing interface [3]. End
users can access crowd work from within MS Word to
help them complete tasks too difficult for automation -
shortening, proofreading, and general human macros.
Soylent required significant one-off programming effort
and to appropriately package worker tasks so they
could be completed on web-based crowd marketplaces
like Mechanical Turk, whereas Multiverse allows crowd
algorithms to be applied to any interface.

Figure 3: Multiverse users first
prepare and save a VM in their
OS of choice, and break their
task into a sequence of steps.
Multiverse recruits crowd
workers to do these steps, and
copies and manages
connections to VM instances to
make it work.

The Legion system allows crowds to control existing
interfaces in real-time [11]. Legion workers collectively
control a single interface instance in real-time. Legion
trades accuracy for speed, and most existing crowd
algorithms cannot be used in Legion because they are
based on redundancy and iteration, which take time.

Multiverse is not the first system to copy and manage
VMs, although usually this is usually done for reliability
of the hosted platform [5]. The tutorial-based
applications in T2A [10] allows a single user to explore
variations in an existing application by running that
application in multiple VMs. Its variations are limited to
passing direct input from the end user to the VMs and
automated GUI commands that were programmed for
the system in advance. We believe Multiverse is the
first system to allow the crowd to explore different
courses of action within the same system.

Multiverse
Multiverse consists of 3 components: (i) server-side
infastructure that clones and branches VM instances
and manages crowd workers, (ii) an end user interface
for spawning new multiverses, and (iii) a web-based
crowd worker interface that connects workers to
multiverse(s) via VNC (Figure 1).

Server Infrastructure
The server infrastructure manages VM instances and
recruits crowd workers to complete tasks as needed
using a custom Node.js [1] script. VMs are run in
VMware Workstation [2] and coordination of the virtual
machines is controlled by a custom Node.js script [1].
Multiverse can use any operating system that is
supported by VMware Workstation, including most
versions of Windows, Linux, and OS X.

End User Interface
The end user interface allows users to set a starting
state, specify a crowd algorithm, and describe the task
that is to be completed. Setting a starting state is as
simple as operating the virtual machine. End users can
also elect to simply start the virtual machine from a
fixed initial state and instruct the crowd to initialize the
state, e.g. “Start Powerpoint”, “Start Photoshop and
open flower.jpg.” (Figure 3).

Crowd Worker Interface
The Multiverse interface for crowd workers displays
instructions and one or more VNC interfaces for
workers to control the remote virtual machine
instances. VNC is provided by the Flash-based
FlashLight-VNC client [7]. Specific instructions and the
number and arrangement of the VNC clients are
dependent on the crowd algorithm that is being used.



Crowd Algorithms on Existing Interfaces
In this section, we describe the three existing crowd
algorithms that we implemented in Multiverse, the
features of Multiverse used to support each, and the
alternatives that could have been used. While it takes
some programming effort to adapt a new crowd
algorithm for use within Multiverse, once it has been
adapted it can be applied to any interface.

Branch-Vote-Iterate
A common algorithm used in crowd-powered systems
asks several workers to complete a task, then has
other workers vote on which output was best, and then
(optionally) forwards that output along to a next round.
In Multiverse, this is achieved by branching VMs. The
base VM is suspended so that several copies can be
made. Each of these copies becomes a new branch for
separate worker to pick up and work on. Critically, this
suspension and copying technique for branching allows
the applications within the VM branches to resume at
the exact same point in execution where the base
branch left off. These VMs can be run in parallel.

Find-Fix-Verify
In the find-fix-verify crowd algorithm, a set of workers
finds problems to fix, a disjoint set fixes each problem,
and then another disjoint set verifies that the fixes were
correctly made [3]. When only sharing VMs, there is no
consistent way for crowd workers to share problems
that they find. Our solution to this is to overlay a
drawing surface on top of the interface display to allow
workers to mark up the interface. We call this crowd
annotate. Workers recruited for the find stage are able
to interact with the interface before they choose to start
marking on it. Future versions of Multiverse may allow
workers to switch multiple times between interactive

and marking modes, and may attach annotations to
specific portions of the interface using a pixel-based
approach like Sikuli [13].

Divide-and-Merge
A common approach in crowd-powered systems is to
break a large task into smaller subtasks, have crowd
workers complete the smaller tasks, and then merge
the results back together. Several systems have the
crowd break the large task into subtasks [8, 9].
Multiverse provides a shared clipboard to support an
operation that we call crowd merge. To support this,
crowd workers are connected to two (or more) VMs.
Workers can see and operate all of the VMs on the
page as they run in parallel. A shared clipboard is a
convenient mechanism to support merging across
diverse applications because most applications already
support storing their data on the clipboard. For
instance, in PowerPoint one can copy and paste
individual or groups of slides, drawing programs allow
portions of the drawing to be copy and pasted, and
spreadsheets allow cells to be copied while preserving
underlying semantics. Multiverse implements its
shared clipboard by displaying “copy” buttons next to
all of the VMs except the first one, which is designated
as the “paste” zone by convention. Activating the copy
function in one VM will send a copy command to the
virtualized operating system, serialize the contents of
that machine’s clipboard, and finally send that data to
the designated paste machine’s clipboard to await a
“paste” command from the worker.

Evaluation
Experiments
The Multiverse server for all experiments was a
six-core Intel Core i7 3.8GHz with 16 GB of memory



and a 512GB solid-state drive. This relatively powerful
machine allowed us to run multiple virtual machines in
parallel, and the SSD made copying rather large virtual
machine files much faster. We initially conducted our
experiments with crowd workers drawn from Amazon’s
Mechanical Turk, but we found that crowd workers on
Mechanical Turk did not produce very good results
(perhaps suggesting an avenue for future research),
and so we instead ran our tests with a group of remote
crowd workers recruited manually.

Tasks
We designed two multi-stepped tasks to illustrate the
capabilities of Multiverse. The first shows Multiverse
implementing the find-fix-verify algorithm. Workers
were given a starting state of a simple mathematical
diagram and asked to indicate the error in the diagram
with the the marking tool. A voting step selected which
of the workers’ work from the first step would be used
in the next. Workers were then instructed to fix the
error in the diagram using the tools available in MS
Paint.

The second task incorporated the merging feature to
show how Multiverse can reduce the distributed work
from a decomposed task back into a single state.
Workers were each asked to design a slideshow slide
about a particular themed food dish. In the merge step,
the worker in charge was instructed to copy all of the
slides into one virtual machine.

Discussion & Future Work
Multiverse suggests a number of potential future
research opportunities. Multiverse potentially allows
end users to use crowdsourcing in ways that they have
not been easily able to do before. We have designed

Multiverse to be easy to use – get a VM into a good
starting state by operating it as you would any normal
computer, choose an algorithm, and then list steps that
you would like workers to do. Nevertheless, we plan to
evaluate this with real end users to see both whether it
is easy for them to package tasks in this way, if they
find it useful, and what tasks they want to outsource in
this way.

We have validated Multiverse through several
examples. Future research may look how the design
decisions made in developing Multiverse affects
real-world performance. For instance, instead of
showing screen shots to crowd workers in the
branch-vote-iterate algorithm for voting, we
could have shown a video or even allowed workers to
interactively explore the VM.

Multiverse allows crowd algorithms to be applied to
existing interfaces, but Multiverse may become even
more useful as a component operating alongside other
crowd-powered systems. First, applications that have
side effects that are external to the VM would not be
appropriate to control with Multiverse. Second,
applications that need a response to the end user in
real-time are not appropriate. An interesting direction
for future work is to combine Multiverse with
approaches that allow the crowd to do work in
real-time, such as Legion [11]. A meta-level system
could decide to use Multiverse to complete steps that
do not have side effects and that do not need to be
completed in real-time, whereas it could decide to use
Legion to complete tasks that did. The crowd could
even break down the task themselves so end users
could provide a higher-level description [8, 9].

Multiverse may inspire new crowd algorithms. Just as



the find-fix-verify was initially motivated by text editing
tasks, it may be that new crowd algorithms will be
developed to handle types of tasks or applications that
were inconvenient to explore before. Multiverse may
serve as a platform for experts to provide assistance.
For instance, users may pay an expert crowd worker to
help them apply a difficult operation, e.g. a sequence
of filters in Adobe Photoshop or a non-obvious setup
step in an IDE.

Conclusion
In this paper, we have presented Multiverse, a system
that allows end users to outsource jobs to the crowd on
their existing applications without needing to
repackage the request. We have shown how
Multiverse can be used to apply crowd algorithms to
existing interfaces, and introduced two new crowd
operations, crowd annotate and crowd merge. Finally,
we have demonstrated the utility of this framework by
applying Multiverse on several realistic tasks.

Acknowledgements
We acknowledge advice and guidance from Jeffrey P.
Bigham, Adam Marcus, and Robert C. Miller.

References
[1] Node.js, 2013. http://nodejs.org.
[2] Vmware workstation, 2013.

http://www.vmware.com/products/workstation/.
[3] Bernstein, M. S., Little, G., Miller, R. C.,

Hartmann, B., Ackerman, M. S., Karger, D. R.,
Crowell, D., and Panovich, K. Soylent: a word
processor with a crowd inside. In UIST ’10, ACM
(New York, NY, USA, 2010), 313–322.

[4] Bigham, J. P., Jayant, C., Ji, H., Little, G., Miller,
A., Miller, R. C., Miller, R., Tatarowicz, A., White,
B., White, S., and Yeh, T. Vizwiz: nearly real-time

answers to visual questions. In UIST ’10, ACM
(New York, NY, USA, 2010), 333–342.

[5] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul,
E., Limpach, C., Pratt, I., and Warfield, A. Live
migration of virtual machines. In NSDI’05 (2005),
273–286.

[6] Cooper, S., Khatib, F., Treuille, A., Barbero, J.,
Lee, J., Beenen, M., Leaver-Fay, A., Baker, D.,
Popovic, Z., and Players, F. Predicting protein
structures with a multiplayer online game. Nature
466, 7307 (2010), 756–760.

[7] Fucci, M. Flashlight-vnc, 2012.
http://flashlight-vnc.sourceforge.net.

[8] Kittur, A., Smus, B., and Kraut, R. Crowdforge:
Crowdsourcing complex work. Tech. Rep.
CMUHCII-11-100, Carnegie Mellon University,
2011.

[9] Kulkarni, A., Can, M., and Hartmann, B.
Collaboratively crowdsourcing workflows with
turkomatic. In CSCW ’12, ACM (New York, NY,
USA, 2012), 1003–1012.

[10] Laput, G., Adar, E., Dontcheva, M., and Li, W.
Tutorial-based interfaces for cloud-enabled
applications. In UIST ’12, ACM (Cambridge, MA,
USA, 2012), 113–122.

[11] Lasecki, W. S., Murray, K. I., White, S., Miller,
R. C., and Bigham, J. P. Real-time crowd control
of existing interfaces. In UIST ’11 (2011), 23–32.

[12] von Ahn, L., and Dabbish, L. Labeling images with
a computer game. In CHI ’04, ACM (New York,
NY, USA, 2004), 319–326.

[13] Yeh, T., Chang, T.-H., and Miller, R. C. Sikuli:
using gui screenshots for search and automation.
In UIST ’09, ACM (New York, NY, USA, 2009),
183–192.


	Introduction
	Background
	Multiverse
	Server Infrastructure
	End User Interface
	Crowd Worker Interface

	Crowd Algorithms on Existing Interfaces
	Branch-Vote-Iterate
	Find-Fix-Verify
	Divide-and-Merge

	Evaluation
	Experiments
	Tasks

	Discussion & Future Work
	Conclusion
	Acknowledgements
	References

