
TIOA Simulator Manual

Panayiotis P. Mavrommatis

February 15, 2006

Chapter 1

Case Study: Failure Detection

We provide a simple example of a distributed system with timing guarantees that has been specified,

simulated, checked and proved correct[?] using the TIOA tools. The example is the failure detection

system from [1]. The system consists of three independent components:

• A sending process (P) that sends a message every u1 time units and has the potential of

coming to a stopping failure,

• A channel (C) that delivers all its messages reliably within a time bound of b time units, and

• A timeout process (T) that detects the failure of the sending process by timing out. The

timeout process indicates that a failure has occured in P if u2 > u1 + b time has passed since

it last received a message from P.

In Section 1.1 we specify the primitive automata for the components of the system, provide

sample NDR schedule blocks for each component and show the output of the TIOA Simulator

for these schedules. In Section 1.2 we specify the No Failure and Failure Detection systems using

a composition of the individual components, and illustrate the two different options in simulation

composite automata: schedules in the components or schedule in the composition. Simulator traces

for both systems using both options are also shown. In Section 1.3 we show a paired simulation

between two primitive automata, the hand-composed Failure Detection system’s implementation

and the system’s specification. The NDR schedule in the implementation system and the provided

step correspondence drive the paired simulation.

2

1.1 Simulating Primitive Automata

1.1.1 Periodic Send

In Figure 1.1.1, the PeriodicSend automaton uses the continuous variable clock as a timer to send a

message every u time units. When a send(m) transition occurs, the timer is reset and another send

cannot occur until clock = u. Its trajectory traj must stop when it is time to send a new message.

The provided NDR schedule is a simple infinite loop that follows traj for u time units and fires the

output transition send with a message (m1). Simulation of the PeriodicSend automaton with that

schedule results in the trace shown in Figure 1.1.1. The trace repeats itself every two steps.

vocabulary Messages

types M enumeration[nil, m1]

automaton PeriodicSend

imports Messages

signature
output send(m: M)

states
u: Real := 5,

clock : AugmentedReal := 0

i n i t i a l l y u ≥ 0

transit ions
output send(m)

pre clock = u

e f f clock := 0

tra jector ies
trajdef traj

stop when clock = u

evolve d(clock) = 1

schedule do
while (true) do

follow traj duration u;

f i r e output send(m1)

od
od

Automaton initialized

1: trajectory traj for 5.0 units

2: output transit ion send(m1)

3: trajectory traj for 5.0 units

4: output transit ion send(m1)

...

Figure 1.1: Periodic Send with no failure

1.1.2 Periodic Send with failure

In Figure 1.1.2 the PeriodicSend2 automaton is specified, which is a modification of PeriodicSend

that allows for a stopping failure to occur. The failure is modeled with an input transition (fail)

which sets the failed flag. This disables the send transition and allows the traj trajectory to be

followed for an infinite amount of time. In our sample NDR scheduler, we send two rounds of

messages before failing. After failure we follow the trajectory for \infity time units. The trace for

3

this execution is also shown in Figure 1.1.2.

vocabulary Messages

types M enumeration[nil, m1]

automaton PeriodicSend2 %(u: Real)

imports Messages

signature
input fail

output send(m: M)

states
u: Real := 5,

failed : Bool := false,

clock : AugmentedReal := 0

i n i t i a l l y u ≥ 0

transit ions
output send(m)

pre ¬failed ∧ clock = u

e f f clock := 0

input fail

e f f failed:= true

tra jector ies
trajdef traj

stop when
¬failed ∧ u = clock

evolve
d(clock) = 1

schedule
states

count : Nat := 0,

n: Nat := 2

do
% Send n rounds of messages

while (count < n) do
follow traj duration u;

f i r e output send(m1);

count := count + 1

od;
f i r e input fail;

follow traj duration \ infty

od

Automaton initialized

1: trajectory traj for 5.0 units

2: output transit ion send(m1)

3: trajectory traj for 5.0 units

4: output transit ion send(m1)

5: input transit ion fail

6: trajectory traj for Infinity units

No more steps

No errors

Figure 1.2: Periodic Send with failure

1.1.3 Reliable Channel with deadline guarantees

In Figure 1.1.3 we model a reliable channel that ensures delivery of its messages within b time

units of their receival. We first specify the TimedM type that augments a message with deadline.

The channel enqueues messages it receives through the send input action in a queue, and sets

their deadline to now + b. Its trajectory may be followed for any amount of time when the queue

is empty, otherwise it should stop before or exactly at the time of the first message’s deadline.

Since all messages have the same maximum delay, the deadlines in the queue are monotonically

non-decreasing thus the first element in the queue always has the earliest deadline.

In our sample scheduler, in every phase of the execution (every loop), we randomly decide

whether or not to send a message to the channel. Then, if the queue is empty we follow the

4

trajectory for some amount of time that is less than b (specifically, we chose b/2). Otherwise, we

follow the trajectory up to the point where the the first message’s deadline would be met and

deliver the message. Another possible schedule could deliver the message earlier instead of waiting

until its deadline. For the schedule we provide, we show one sample execution in Figure 1.1.3.

vocabulary Messages

types M enumeration[nil, m1]

vocabulary Timestamp

imports Messages

types TimedM tuple [message : M, deadline : AugmentedReal]

vocabulary Random

operators randomBool : → Bool

automaton TimedChannel %(b: Real)

imports Timestamp , Random

signature
input send(m: M)

output receive(m: M)

states
b: Real := 2,

queue : Seq[TimedM] := {},

now: AugmentedReal := 0

i n i t i a l l y b ≥ 0

transit ions
input send(m)

e f f queue := queue `
[m, now+b]

output receive(m)

pre head(queue). message = m

e f f queue := tail(queue)

tra jector ies
trajdef traj

stop when queue 6= {} ∧
now = head(queue). deadline

evolve d(now) = 1

schedule do
while (true) do

i f randomBool = true then
f i r e input send(m1)

f i ;
i f queue = {} then

follow traj duration b/2

else
follow traj duration

head(queue). deadline - now;

f i r e output
receive(head(queue). message)

f i
od

od

Automaton initialized

1: trajectory traj for 1.0 unit

2: trajectory traj for 1.0 unit

3: trajectory traj for 1.0 unit

4: input transit ion send(m1)

5: trajectory traj for 2.0 units

6: output transit ion receive(m1)

7: trajectory traj for 1.0 unit

8: input transit ion send(m1)

9: trajectory traj for 2.0 units

10: output transit ion receive(m1)

...

Figure 1.3: Reliable Channel with deadline guarantees

5

1.1.4 Failure Detector

The final component of our system is the process that receives the messages and detects any failures.

The Timeout automaton of Figure 1.1.4 maintains a flag called suspected that indicates whether or

not the sending process is suspected to have failed. This becomes true only when u2 time units

have passed without receiving a message. Similar to PeriodicSend, the clock variable is used as a

timer that is reset every time a message is received. The automaton’s trajectory may be followed

for any time duration when the process is suspected, but it should stop if the timer reaches u2, so

that the timeout action can occur.

The provided schedule block randomly decides whether to receive a message in every round. It

then checks whether it has not received a message for the past u2 units, in which case it fires a

timeout action, otherwise it allows u2/2 time to pass before checking again. If the sending process

is already suspected of having failed, it allows an infinite amount of time to pass. Every execution

of this scheduler should result in different traces because of the randomBool operator. We show one

where a message was not received in rounds 1,2,5,6 and 7, and thus a timeout occured in the seventh

round.

6

vocabulary Messages

types M enumeration[nil, m1]

vocabulary Random

operators randomBool : → Bool

automaton Timeout

imports Messages , Random

signature
input receive(m: M)

output timeout

states
u2: Real := 8,

suspected : Bool := false,

clock : AugmentedReal := 0

transit ions
input receive(m)

e f f clock:=0;

suspected:= false

output timeout

pre ¬suspected ∧ clock = u2

e f f suspected := true

tra jector ies
trajdef traj

stop when
¬suspected ∧ clock = u2

evolve
d(clock) = 1

schedule
states done : Bool := false

do while (¬done) do
i f (¬suspected) then

i f randomBool then
f i r e input receive(m1)

f i ;
i f clock = u2 then

f i r e output timeout

else
follow traj duration u2/2

f i
e lse

follow traj duration \ infty;

done := true

f i
od
od

Automaton initialized

1: trajectory traj for 4.0 units

2: trajectory traj for 4.0 units

3: input transit ion receive(m1)

4: trajectory traj for 4.0 units

5: input transit ion receive(m1)

6: trajectory traj for 4.0 units

7: trajectory traj for 4.0 units

8: output transit ion timeout

9: trajectory traj for Infinity units

No more steps

No errors

Figure 1.4: Failure Detector

7

1.2 Simulating Composite Automata

In the previous section we specified and tested all the components of the system independenty.

Testing the system as a whole and the interactions of the components is not possible unless we

perform a composite simulation. In Section 1.2.1 we show the first option in simulating a composite

system, which is to include the schedules for the individual components and not for the composition.

Alternatively, we can test the system by providing a schedule in the composition and not in the

components, as we do in Section 1.2.2. For each option, we test two systems: The No Failure system

where the PeriodicSend process does not fail, and the Failure Detection system in which the sending

process fails.

1.2.1 Schedules in the Components

No Failure In Figure 1.2.1 we provide a composition of one instance of PeriodicSend, TimedChannel

and Timeout automata. The file in which the system is specified also includes the specifications and

NDR schedule blocks of PeriodicSend, TimedChannel and Timeout shown in Figures 1.1.1,1.1.3 and 1.1.4.

The Composition automaton simply specifies one instance of each component and provides values

for their formal parameters.

Simulation of the system results in the trace shown in Figure 1.2.1. After 5 time units, the

component P sends a message. The input action send of the C component is also fired at the same

time. After 2 time units the channel delivers the message to T, and 3 units later the process starts

over again. The trajectories are some times broken into 1-unit steps since the TimedChannel process

follows its trajectory every b/2 units when its queue is empty.

Failure Detection The composite automaton of Figure 1.2.1 is identical to that of Figure 1.2.1

except from the fact that it uses PeriodicSend2 which can fail. The file in which the system is

specified also includes the specifications and NDR schedule blocks of PeriodicSend2, TimedChannel

and Timeout shown in Figures 1.1.2, 1.1.3 and 1.1.4. The Composition automaton simply specifies

one instance of each component and provides values for their formal parameters.

Simulation of the system results in the trace shown in Figure 1.2.1. After 5 time units, the

component P sends a message through the channel. After 2 time units the channel delivers the

message to T. A message is sent once more, as the schedule of PeriodicSend2 specifies, and at that

8

% specifications and schedules of PeriodicSend , TimedChannel and Timeout

% ...

automaton Composition

components
P: PeriodicSend (5: Real);

C: TimedChannel (2: Real);

T: Timeout (8: Real);
Automaton initialized

1: trajectory T.traj, C.traj, P.traj for 1.0 unit

2: trajectory T.traj, C.traj, P.traj for 1.0 unit

3: trajectory T.traj, C.traj, P.traj for 1.0 unit

4: trajectory T.traj, C.traj, P.traj for 1.0 unit

5: trajectory T.traj, C.traj, P.traj for 1.0 unit

6: output transit ion P.send(m1), connected to:
input transit ion C.send(m1)

7: trajectory T.traj, C.traj, P.traj for 1.0 unit

8: trajectory T.traj, C.traj, P.traj for 1.0 unit

9: output transit ion C.receive(m1), connected to:
input transit ion T.receive(m1)

10: trajectory T.traj, C.traj, P.traj for 1.0 unit

11: trajectory T.traj, C.traj, P.traj for 1.0 unit

12: trajectory T.traj, C.traj, P.traj for 1.0 unit

13: output transit ion P.send(m1), connected to:
input transit ion C.send(m1)

14: trajectory T.traj, C.traj, P.traj for 2.0 units

15: output transit ion C.receive(m1), connected to:
input transit ion T.receive(m1)

...

Figure 1.5: No Failure System

9

point P fails (step 14). The message is delivered and 8 (u2) time units after the delivery T times

out. From then on, no actions are enabled and the trajectories of the components are followed for

an infinite amount of time, broken into 1-unit steps. This break happens since the TimedChannel

process follows its trajectory every b/2 units when its queue is empty.

% specifications and schedules of PeriodicSend , TimedChannel and Timeout

% ...

automaton Composition

components
P: PeriodicSend2 (5: Real);

C: TimedChannel (2: Real);

T: Timeout (8: Real);
Automaton initialized

1: trajectory P.traj, T.traj, C.traj for 1.0 unit

2: trajectory P.traj, T.traj, C.traj for 1.0 unit

3: trajectory P.traj, T.traj, C.traj for 1.0 unit

4: trajectory P.traj, T.traj, C.traj for 1.0 unit

5: trajectory P.traj, T.traj, C.traj for 1.0 unit

6: output transit ion P.send(m1), connected to:
input transit ion C.send(m1)

7: trajectory P.traj, T.traj, C.traj for 1.0 unit

8: trajectory P.traj, T.traj, C.traj for 1.0 unit

9: output transit ion C.receive(m1), connected to:
input transit ion T.receive(m1)

10: trajectory P.traj, T.traj, C.traj for 1.0 unit

11: trajectory P.traj, T.traj, C.traj for 1.0 unit

12: trajectory P.traj, T.traj, C.traj for 1.0 unit

13: output transit ion P.send(m1), connected to:
input transit ion C.send(m1)

14: input transit ion P.fail

15: trajectory P.traj, T.traj, C.traj for 1.0 unit

16: trajectory P.traj, T.traj, C.traj for 1.0 unit

17: output transit ion C.receive(m1), connected to:
input transit ion T.receive(m1)

18: trajectory P.traj, T.traj, C.traj for 1.0 unit

19: trajectory P.traj, T.traj, C.traj for 1.0 unit

20: trajectory P.traj, T.traj, C.traj for 1.0 unit

21: trajectory P.traj, T.traj, C.traj for 1.0 unit

22: trajectory P.traj, T.traj, C.traj for 1.0 unit

23: trajectory P.traj, T.traj, C.traj for 1.0 unit

24: trajectory P.traj, T.traj, C.traj for 1.0 unit

25: trajectory P.traj, T.traj, C.traj for 1.0 unit

26: output transit ion T.timeout

27: trajectory P.traj, T.traj, C.traj for 1.0 unit

...

Figure 1.6: Failure Detection System

10

1.2.2 Schedule in the Composition

An alternative to providing shedules in the individual components is to write a schedule for the com-

posite automaton itself. We discuss the same examples (NoFailure and FailureDetection) scheduled

in this way.

No Failure The Composition automaton of Figure 1.2.2 is identical to that of Figure 1.2.1, but

includes an NDR schedule. The file also includes the specifications of PeriodicSend, TimedChannel and

Timeout, but without their schedule blocks.

The schedule we provide enters an infinite loop in which every u1 units P sends a message that

is delivered b units later, as the trace verifies.

Failure Detection The system of Figure 1.2.2 composes PeriodicSend2 with the channel and

timeout proccesses, and includes an NDR schedule in the composition. The file must also includes

the specifications (without the schedule blocks) of PeriodicSend2, TimedChannel and Timeout.

The schedule we provide specifies that P sends n = 2 messages before failing. After its failure

and the delivery of its last message, it is detected and a timeout action occurs. The trace verifies

this behaviour.

11

% specifications (without schedules) of PeriodicSend , TimedChannel and Timeout

% ...

automaton Composition

components
P: PeriodicSend (5: Real);

C: TimedChannel (2: Real);

T: Timeout (8: Real);

schedule
states

u1: Real := 5,

u2: Real := 8,

b: Real := 2

do
follow P.traj, C.traj, T.traj duration u1;

while (true) do
f i r e output P.send(m1);

follow P.traj, C.traj, T.traj duration b;

f i r e output C.receive(m1);

follow P.traj, C.traj, T.traj duration (u1-b);

od
od

Automaton initialized

1: trajectory P.traj, C.traj, T.traj for 5.0 units

2: output transit ion P.send(m1), connected to:
input transit ion C.send(m1)

3: trajectory P.traj, C.traj, T.traj for 2.0 units

4: output transit ion C.receive(m1), connected to:
input transit ion T.receive(m1)

5: trajectory P.traj, C.traj, T.traj for 3.0 units

6: output transit ion P.send(m1), connected to:
input transit ion C.send(m1)

7: trajectory P.traj, C.traj, T.traj for 2.0 units

8: output transit ion C.receive(m1), connected to:
input transit ion T.receive(m1)

...

Figure 1.7: No Failure System with schedule in the composition

12

% specifications (without schedules) of PeriodicSend2 , TimedChannel and Timeout

% ...

automaton Composition

components
P: PeriodicSend2 (5: Real);

C: TimedChannel (2: Real);

T: Timeout (8: Real);

schedule
states

u1: Real := 5,

u2: Real := 8,

b: Real := 2,

count : Nat := 0,

n: Nat :=2

do
follow P.traj, C.traj,

T.traj duration u1;

% Send n messages before failing

while (count < n) do
f i r e output P.send(m1);

follow P.traj, C.traj, T.traj duration b;

f i r e output C.receive(m1);

follow P.traj, C.traj, T.traj duration (u1-b);

count := count + 1

od;
% failure

f i r e input P.fail;

follow P.traj, C.traj, T.traj duration u2 - (u1-b);

% detection

f i r e output T.timeout;

follow P.traj, C.traj, T.traj duration \ infty;

od
Automaton initialized

1: trajectory P.traj, C.traj, T.traj for 5.0 units

2: output transit ion P.send(m1), connected to:
input transit ion C.send(m1)

3: trajectory P.traj, C.traj, T.traj for 2.0 units

4: output transit ion C.receive(m1), connected to:
input transit ion T.receive(m1)

5: trajectory P.traj, C.traj, T.traj for 3.0 units

6: output transit ion P.send(m1), connected to:
input transit ion C.send(m1)

7: trajectory P.traj, C.traj, T.traj for 2.0 units

8: output transit ion C.receive(m1), connected to:
input transit ion T.receive(m1)

9: trajectory P.traj, C.traj, T.traj for 3.0 units

10: input transit ion P.fail

11: trajectory P.traj, C.traj, T.traj for 5.0 units

12: output transit ion T.timeout

13: trajectory P.traj, C.traj, T.traj for Infinity units

No more steps

No errors

Figure 1.8: Failure Detection System with schedule in the composition

13

1.3 Paired Simulation

Paired Simulations enable testing of simulations relation which indicate the relationship between

the states of an implementation and a specification. If a simulation relation is proved, the imple-

mentation system is then shown to satisfy the specifications and its properties. Proving a simulation

relation usually requires showing for each step of the implementation starting from an implemen-

tation state that is related to a specification state, which sequence of steps should be taken by the

spec. system to result in a new state that is also related to the implementations’s new state.

Both the simulation relation and its proof steps are not always easy to come up with, and

are certainly very hard for a program to discover them automatically. They must therefore be

provided to the Paired Simulator. In the following subsections we show an example of a system’s

specification, implementation and simulation relation. The system is the Failure Detection system

which has already been implemented and simulated in the previous sections.

1.3.1 Failure Detection Specification

In Figure 1.3.1 we provide an abstract specification of the failure detection system. The system is

specified as a single process that might fail and timeout. It keeps track of two flags, suspected and

failed that carry the same meaning as in the implementation system. The timeout_deadline variable

indicates the latest time a timeout transaction should occur, and now grows at the same rate as real

time. When a failure occurs, we set fail to true and timeout_deadline to now + u2 + b and when a

timeout occurs we set timeout_deadline to Infinity and suspected to true. The trajectory must stop

if a failure has occurred, a timeout has not occurred and now has reached the timeout_deadline.

TODO: describe invariant

1.3.2 Failure Detection Implementation

Figure 1.3.2 provides the implementation of the Failure Detection system, in an “expanded” com-

position form. This means that we have transformed our composition automation into a primitive

one by: (a) encapsulating the state of each component in the state of the composition (b) merging

transitions by conjunctions of the preconditions and composition of the effect programs and by (c)

merging the trajectory definitions by disjunctions of the stopping conditions and compositions of

the evolve classes. This step was necessary because the current version of the TIOA simulator does

14

automaton FDSpec

signature
internal fail

output timeout

states
u1: Real := 5,

u2: Real := 8,

b: Real := 2,

last_timeout:

AugmentedReal := \ infty,

now : AugmentedReal := 0,

suspected : Bool := false,

failed : Bool := false

transit ions
internal fail

pre ¬failed
e f f failed := true;

last_timeout :=
now + u2 + b

output timeout

pre failed ∧ ¬suspected
e f f suspected := true;

last_timeout := \infty

tra jector ies
trajdef traj

stop when
failed ∧
¬suspected ∧
now = last_timeout

evolve
d(now) = 1

invariant S of FDSpec:

now ≥ 0;

suspected ⇒ failed;

failed ∧ ¬suspected ⇔
\infty 6= last_timeout;

now ≥ 0 ⇒ now ≤ last_timeout;

(now + u2 + b) ≥ 0 ∧
\infty 6= last_timeout ⇒

last_timeout ≤ (now + u2 + b)

Figure 1.9: Failure Detection System Specification

not support paired simulations among composite automata.

The implementation system is also accompanied by a schedule that will drive the execution of

both systems during the paired simulation. This is identical to the schedule in ?. The invariant of

the specific implementation is also provided.

1.3.3 Forward Simulation

The relation among the states and the step correspondence can now be specified and tested. The

relation itself is a set of predicates relating the states of the implementation and the specification.

The step correspondence is provided in a proof block (the name implies the fact that an actual

proof would specify these step correspondences as well). Providing the implementation automation

and schedule, specification automation and forward simulation with the step correspondence as

those of Figure 1.3.3 in a file allows us to perform a paired simulation. A trace from the paired

simulation is shown in Fig 1.3.3.

15

vocabulary Composition

types M enumeration[nil, m1]

TimedM tuple [message : M, timestamp : AugmentedReal]

PeriodicSend2 tuple [failed : Bool, clock: AugmentedReal]

TimedChannel tuple [queue: Seq[TimedM], now: AugmentedReal]

Timeout tuple [suspected : Bool, clock : AugmentedReal]

automaton FDImpl

imports Composition

signature
internal fail

internal send(m: M)

internal receive(m: M)

output timeout

states
u1: Real := 5,

u2: Real := 8,

b: Real := 2,

P: PeriodicSend2 := [false , 0],

C: TimedChannel := [{}, 0],

T: Timeout := [false , 0]

transit ions
internal send(m)

pre ¬P.failed ∧ P.clock = u1

e f f P.clock := 0;

C.queue :=
C.queue ` [m, C.now + b]

internal fail

e f f P.failed:= true

internal receive(m)

pre head(C.queue). message = m

e f f C.queue := tail(C.queue);

T.clock:=0;

T.suspected:= false

output timeout

pre ¬T.suspected ∧
T.clock = u2

e f f T.suspected := true

tra jector ies
trajdef traj

stop when
(C.queue 6= {} ∧
head(C.queue). timestamp =

C.now) ∨
(¬T.suspected ∧

T.clock = u2) ∨
(¬P.failed ∧ P.clock = u1)

evolve
d(P.clock) = 1;

d(C.now) = 1;

d(T.clock) = 1

schedule
states

count : Nat := 0,

n: Nat :=2

do
follow traj duration u1;

% Send n rounds of messages

while (count < n) do
f i r e internal send(m1);

follow traj duration b;

f i r e internal receive(m1);

follow traj duration (u1-b);

count := count + 1

od;
% failure

f i r e internal fail;

follow traj duration u2 - (u1-b);

% detection

f i r e output timeout;

follow traj duration \ infty

od

invariant I of FDImpl:

C.now ≥ 0;

C.now ≥ 0 ∧ C.queue 6= {} ⇒
C.now ≤

(head(C.queue)). timestamp;

(C.now + u2) ≥ 0 ∧ ¬T.suspected ⇒
T.clock 6= \infty ∧ T.clock ≤ u2;

(C.now + u1) ≥ 0 ∧ ¬P.failed ⇒
P.clock 6= \infty ∧ P.clock ≤ u1;

∀ n: Nat (n < len(C.queue) ⇒
C.queue[n]. timestamp ≤

(C.now + b));

b ≥ 0 ∧ ¬ P.failed ⇒
(i f C.queue 6= {}

then (head(C.queue)). timestamp <
(T.clock + (C.now + u2))

else (P.clock + b) <
(T.clock + (C.now + u2)));

T.suspected ⇒ P.failed

Figure 1.10: Failure Detection System Implementation

16

forward simulation from FDImpl to FDSpec:

% Simulation Relation

FDImpl.P.failed = FDSpec.failed;

FDImpl.T.suspected = FDSpec.suspected;

FDImpl.C.now = FDSpec.now;

(¬FDSpec.failed ⇒ FDSpec.last_timeout = \ infty);

((FDSpec.failed ∧ FDImpl.C.queue 6= {}) ⇒
∀ k: Nat (k < len(FDImpl.C.queue) ⇒

FDSpec.last_timeout ≥ FDImpl.C.queue[k]. timestamp));

((FDSpec.failed ∧ FDImpl.C.queue = {}) ⇒
FDSpec.last_timeout ≥ FDImpl.T.clock)

% Step Correspondence

proof
for internal send(m: M) ignore
for internal receive(m: M) ignore
for internal fail do f i r e internal fail od
for output timeout do f i r e output timeout od
for trajectory traj duration x do follow traj duration x od

Automaton initialized

1: trajectory FDImpl.traj for 5.0 units

trajectory FDSpec.traj for 5.0 units

2: internal transit ion FDImpl.send(m1)

3: trajectory FDImpl.traj for 2.0 units

trajectory FDSpec.traj for 2.0 units

4: internal transit ion FDImpl.receive(m1)

5: trajectory FDImpl.traj for 3.0 units

trajectory FDSpec.traj for 3.0 units

6: internal transit ion FDImpl.send(m1)

7: trajectory FDImpl.traj for 2.0 units

trajectory FDSpec.traj for 2.0 units

8: internal transit ion FDImpl.receive(m1)

9: trajectory FDImpl.traj for 3.0 units

trajectory FDSpec.traj for 3.0 units

10: internal transit ion FDImpl.fail

internal transit ion FDSpec.fail

11: trajectory FDImpl.traj for 5.0 units

trajectory FDSpec.traj for 5.0 units

12: output transit ion FDImpl.timeout

output transit ion FDSpec.timeout

13: trajectory FDImpl.traj for Infinity units

trajectory FDSpec.traj for Infinity units

No more steps

No errors

Figure 1.11: Failure Detection System Forward Simulation

17

Bibliography

[1] Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The theory of timed I/O

automata. To appear in Synthesis Lectures on Computer Science, Morgan Claypool Publishers,

2005.

18

