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Dynamic communication in a 
single-hop radio network 



Single-hop radio network 
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 Single-hop radio network consists of n stations 
 Each station has unique id from {0,…,n-1} 
 Stations transmit packets in discrete rounds (slots) 

 Transmission reaches all the station in the same round 

Channel 

n-1 2 . . .   1 0 



Single-hop radio network 
communication 
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 Transmission is successfully received by all the stations in 
the system if and only if one station transmits in a round 

Successful Transmission 

n-1 0 1 2 . . .   



Single-hop radio network 
communication 
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 If there are at least two stations transmitting in the same round 
then collision occurs and no packet is successfully received 

 If channel provides collision detection capability then stations 
are able to distinguish between silence and collision; 
otherwise collision is heard as a silence 

Collision 

n-1 0 1 2 . . .   



Dynamic broadcast problem 
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 Packets are injected dynamically into stations 
 Injection pattern in modeled by the worst case adversary 
 Stations store injected packets in their private queues 

 Each station runs its instance of a protocol, which decides 
about packet’s transmissions 

 Goal: design a protocol that minimizes queue size and 
packet latency 



Leaky Bucket Adversary (LBA) 
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 Leaky bucket adversary is defined by two parameters: 
 injection rate ρ   
 burstiness b 

 In each interval of t rounds adversary can inject at most  

packets 

  Adversary decides which stations get injected packets 

€ 

tρ + b



Dynamic protocol 
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 Input parameters for a protocol contains only: 
 station id 
 n - total number of stations in the system 

 Protocol is an automaton. State transition is determined by 
the following round’s events: 
 Feedback from channel:  
•  Successful transmission 

Additionally packet may carry extra bits used by a protocol 
•  Silence 
•  Collision, for the channel with collision detection 

 Number of packets injected into the station 



Quality of protocol 
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  Packet latency – max time after which a packet is transmitted  

  We say that protocol is (strongly) fair if packet latency is bounded 

  Queue size – max number of pending packets in the system 

  We say that protocols is stable if queue size is bounded 



Classes of deterministic protocols 
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 Full sensing protocol:  
 stations are synchronized by global round number; protocol 
can transmit only packets (without additional bits) 

 Adaptive protocol:  
 extension of full-sensing protocol in which control bits can 
be piggybacked on packets e.g., station can indicate that it has 
transmitted the last packet from its queue  



Randomized protocols  
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 Backoff protocols: 
after ith failure to transmit a packet, wait r rounds to 
retransmit, where r is chosen uniformly at random from 

 Binary Exponential Backoff uses F(i) = 2i ; 
this protocol is used in 802.11 standard for wireless network 

 Polynomial Backoff uses F(i) = ic , where c > 1  
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1,…,F(i){ }



Related work: 
stochastic approach 
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 Packets are injected into stations with some stochastic 
distribution e.g., Poisson, Bernoulli: 

 Analysis of backoff protocols for multiple access channels 
[Hastad, Leighton, Rogoff SICOMP 1996] 

 A bound on the capacity of backoff and acknowledgement-
based protocols 
[Goldberg, Jerrum, Kannan, Paterson SICOMP 2004] 

 Contention resolution with constant expected delay 
[Goldberg, MacKenzie, Paterson, Srinivasan JACM 2000] 



Related work: 
deterministic settings 
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 Static k -conflict resolution problem: 
given k packets injected into k out of  n stations, the goal 
is to design protocol which transmits all k packets in the 
shortest possible time 

 Upper bound:  

[Komlos, Greenberg  IEEE T. Inf. Theory 1985] 

 Lower bound:  

[Greenberg, Winograd JACM 1985] 
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Related work: 
adversarial queuing  
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 Adversarial queuing was introduces in the context of store and forward 
networks to study stability of routing protocols: 

 Universal-stability results and performance bounds for greedy contention-
resolution protocols 
[Andrews, Awerbuch, Fernandez, Leighton, Liu, Kleinberg JACM 2001] 

 Adversarial queuing theory 
[Borodin, Kleinberg, Raghavan, Sudan, Williamson JACM 2001] 

 Adversarial contention resolution for simple channels, queue-free model, 
randomized algorithms 
[Bender, Farach-Colton, He, Kuszmaul, Leiserson SPAA 2005] 



Injection rate ρ=1  
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Main results 
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n = 1
 n ≥ 2


full-sensing
 Stable and Fair
 No Stable


adaptive
 Stable and Fair
 No “Stable and Fair”

Stable


[Chlebus, Kowalski, Rokicki, DC 2009] 



Impossibility result 
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 No protocol is fair and stable against leaky bucket 
adversary with ρ = 1 and b = 1 in the system of two 
stations 

 Idea of the proof: 
1. Assume that stable and fair protocol exists 
2. Enforce a silent round while maintaining injection rate 1 
3. Repeatedly enforce a silent round while maintaining 

injection rate 1 

A B 
… 



Impossibility result - proof 
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Execution 1: 
1. Round  t0 – adversary starts injecting one packet per round 

into station A; we assume that adversary can use its burstiness 
b = 1 

2. Round  t1 – station B becomes empty; 
such round exists since the protocol is fair and the adversary 
injects packets only into station A 

3. Round t1 + 1 – adversary uses its burstiness b = 1 to inject 
one packet into station B 

4. Round t2 – station A pauses its transmission and station B 
transmits its packet; such round exists due to fairness 



Impossibility result - cont. 
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Execution 2: 
1. Round  t0 – adversary starts injecting one packet per round 

into station A; we assume that the adversary can use its 
burstiness b = 1 

2. Round  t1 – station B becomes empty; 
such round exists since protocol is fair and the adversary 
injects packets only into station A 

3. Round t1 + 1 – adversary does not inject into station B 

4. Round t2 – silent round; station A pauses its transmission and station 
B does not transmit 



Introduction to stable protocol 
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 We say that station is big if it queues at least n packets 
 Order of station’s transmission is determined by the cycled 

list with the list beginning pointer (initially set to station 0) 

 Each station maintains a copy of the list;              
initially the list is ordered according to stations ids 

 Each station maintains a pointer to the active station; only 
one station is active in a round;                

 initially station 0 is active 



Description of MBTF 
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 Protocol Move Big To Front (MBTF): 
 Repeat: 
 active station transmits provided it has a packet 
 if the active station is big then it is moved to the front of the list 

and it keeps transmitting until its queue contains n – 1 packets  
 the next station on the list becomes active 



Complexity of MBTF 
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 Protocol Move Big to Front (MBTF) is stable but not fair 
against LB(ρ= 1, b ≥ 1) 

 MBTF stores  at most O(n2 + b) packets in the system  
 Each protocol stable against LB(ρ= 1, b ≥ 1) has to store at 

least Ω(n2 + b) packets                 



Injection rate ρ<1 
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Protocols RRW and OFRRW 
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 Round Robin Withholding (RRW): 
Stations unload their queues in round-robin manner;     
More precisely: let assume that station i  is the current 
station unloading its queue; after the first silent round the 
next station i + 1 modulo n takes over to unload its queue  

 Phase of the protocol is one run over all the stations from 
station 0 to station n – 1 

 Packet is old if it was injected in the previous phase 

 Old-First Round Robin Withholding (OFRRW): 
In the current phase only old packets can be transmitted 



Protocols SRR and OFSRR 
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In case collision detection is available: 
 Search Round Robin (SRR): 

Similar to RRW, the only difference is that a new station 
to transmit is found using a binary search on the (cycled) 
list of subsequent stations; binary search uses collision 
detection 

 Phase of the protocol is one run over all the stations 
from station 0 to station n – 1 

 Packet is old if it was injected in the previous phase 
 Old-First Search Round Robin (OFSRR): 

In the current phase only old packets can be transmitted 



Parameters and methodology of 
simulations 
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Basic parameters: 
 Injection rate 
 Burstiness 
 Number of stations 
 Number of rounds 
Additional parameters: 
 Activity rate (packets injected only to active stations) 
 Probability of changing activity status 
 Fixed Poisson distribution of the number of injected 

packets 



Adversarial injection pattern  
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Low activity – deterministic 
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Low activity – deterministic cont. 
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Medium activity – deterministic 
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High activity – deterministic 
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High activity – deterministic cont. 
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High activity – randomized 
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Lower bound on queue sizes 

48 

 For each protocol P there exists an execution in which there are  
at least   

pending packets in the system 
 For each protocol P and LBA(ρ,b), where                 ,  

there exists an execution in which there are at least  

pending packets in the system 
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Lower bound on packet latency 

49 

 Lower bound on queue size imply that latency is at least  

 Each protocol P stable against LB(ρ≥ ½,b ≥1) delays some 
packet by at least  
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Protocol queue sizes: summary 
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    0  <ρ≤ 1/n       1/n<ρ< 1 

OFRRW 

MBTF 
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Packet latency: summary 
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0  <ρ≤ 1/n 1/n <ρ≤ 1/(2 log n) 1/(2 log n) <ρ< 1 

OFSSR min{ n + b , b log n} min{ n + b , b log n} 

SSR b log n b log n 

OFRRW n + b 

RRW n + b 

MBTF 
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Future work 
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  Close the gaps between upper and lower bounds on packet 
latency and queue size 

  Improve heuristics for packet injection 

  Analyze backoff protocols in adversarial settings 
  More practical setting (network, injection patterns, etc.) 
  Different classes of protocols e.g. acknowledgement-based 
  Individual injection rates 


