
Empire of ColoniesSelf-Stabilizing and Self-Organizing DistributedAlgorithmShlomi Dolev� Nir Tza
haryNovember 26, 2007Abstra
tSelf-stabilization ensures automati
 re
overy from an arbitrary state; we de�ne self-organization as a property of algorithms whi
h display lo
al attributes. More pre
isely,we say that an algorithm is self-organizing if (1) it
onverges in sublinear time and (2)rea
ts \fast" to topology
hanges. If s(n) is an upper bound on the
onvergen
e timeand d(n) is an upper bound on the
onvergen
e time following a topology
hange, thens(n) 2 o(n) and d(n) 2 o(s(n)). The self-organization property
an then be used forgaining, in sub-linear time, global properties and rea
tion to
hanges. We present self-stabilizing and self-organizing algorithms for many distributed algorithms, in
ludingdistributed snapshot and leader ele
tion.We present a new randomized self-stabilizing distributed algorithm for
luster def-inition in
ommuni
ation graphs of bounded degree pro
essors. These graphs re
e
tsensor networks deployment. The algorithm
onverges in O(log n) expe
ted number ofrounds, handles dynami

hanges lo
ally and is, therefore, self-organizing. Applyingthe
lustering algorithm to spe
i�

lasses of
ommuni
ation graphs, in O(log n) levels,using an overlay network abstra
tion, results in a self-stabilizing and self-organizingdistributed algorithm for hierar
hy de�nition.Given the obtained hierar
hy de�nition, we present an algorithm for hierar
hi
aldistributed snapshot. The algorithms are based on a new basi
 snap-stabilizing snap-shot algorithm, designed for message passing systems in whi
h a distributed spanningtree is de�ned and in whi
h pro
essors
ommuni
ate using bounded links
apa
ity.The algorithm is on-demand self-stabilizing when no su
h distributed spanning tree isde�ned. Namely, it stabilizes regardless of the number of snapshot invo
ations.The
ombination of the self-stabilizing and self-organizing distributed hierar
hy
onstru
tion and the snapshot algorithm form an eÆ
ient self-stabilizer transformer.�Department of Computer S
ien
e, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel,dolev�
s.bgu.a
.il. Partially supported by IBM, Israeli ministry of s
ien
e, Deuts
he Telekom, RitaAltura Trust Chair in Computer S
ien
es.yDepartment of Computer S
ien
e, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel,tza
har�
s.bgu.a
.il. Partially supported by Deuts
he Telekom, Israeli Grid Consortium and the Lynnand William Frankel Center for Computer S
ien
es. 1

Given a distributed algorithm for a spe
i�
 task, we are able to
onvert the algorithminto a self-stabilizing algorithm for the same task with an expe
ted
onvergen
e timeof O(log2 n) rounds.

2

1 Introdu
tionThe availability and robustness, as well as the possibility for on-demand re
on�guration oflarge systems, are in many
ases vital; be it
lusters of servers that support
ommer
iala
tivity, a grid of
omputers that parti
ipate in a
ompli
ated
omputation or a dynami
sensor network. In parti
ular, an important aspe
t for large on-going systems is the abilityto automati
ally re
over from an in
onsistent state, namely to be self-stabilizing ([13℄) or inother words, to have a system that
an be started in an arbitrary state.To
apture the need of the industry in autonomi
 and self-* systems, we propose
om-bining self-stabilization (in fa
t SuperStabilization [14℄) with self-organization. While self-stabilization is well de�ned, the self-organization property has no widely agreed upon def-inition. We propose to de�ne self-organization as satisfying two main properties: lo
alityand dynami
ity. Namely, we require that (1) the algorithm stabilizes in sublinear time withregards to the number of pro
essors and that (2) the addition and removal of pro
essorsin
uen
es a small number of other pro
essors' states. In other words, if s(n) represents thestabilization time and d(n) represents an upper bound on the stabilization time (and numberof state
hanges) following a dynami
 topology
hange, then: s(n) 2 o(n) and d(n) 2 o(s(n)).This de�nition
an be naturally extended to
apture also the e�e
t of lo
al transient faultsthat
orrupt the states of a subset of the pro
essors rather than only topology
hanges (thusit is in the spirit of both the superstabilizing and fault-
ontainment approa
hes [13℄).In this work, we allow algorithms to de�ne (on the
y) and (then immediately) use hyper
ommuni
ation links, whi
h are overlay links that are
onstru
ted of
ommuni
ation linksalong a path. We regard the time that a message travels over su
h a link as one timeunit, assuming that (pra
ti
ally) no pro
essing is involved in forwarding messages over theselinks (e.g., [17, 33℄, mpls [7℄). This de�nition is motivated by (e.g., telephony) systems,where swit
hes along a path are
on�gured for a session and the path is essentially a wire.We propose to use the self-stabilizing and self-organizing properties of s
hemes
ombinedwith su
h swit
hing
apabilities to obtain dramati
ally faster
onvergen
e rates and globalinformation transmission with relation to traditional
ommuni
ation networks. In traditionalsettings there are obvious lower bounds that are proportional to the number of nodes (orthe diameter of the
ommuni
ation graph of the system) while the existen
e of overlay linksallows us to obtain logarithmi
 bounds.1.1 Main ContributionSelf-Stabilizing and Self-Organizing hierar
hy de�nition. The hierar
hy of subsys-tems is de�ned by partitioning the
ommuni
ation graph into small
lusters, after whi
h
lusters are merged to form bigger
lusters and so on. The partition
an be done a

ordingto a designer's input, using an automati
 o�-line
lustering algorithm or even an on-line
lustering algorithm that re
e
ts the system's
urrent behavior. In parti
ular, we suggest arandomized self-stabilizing and self-organizing partition that is based on periodi
al
olle
tionof lo
al topology (up to a
ertain distan
e). The
olle
ted lo
al topology supports a ran-domized lo
al leader ele
tion, in whi
h a non leader pro
essor that does not identify a leaderwithin a
ertain distan
e x tries to
onvert itself to a leader. Leaders within distan
e x from3

ea
h other are eliminated, until there are no leaders that are within distan
e x or less fromea
h other. Higher level partitions, using larger distan
es and overlay network abstra
tionbetween leaders, are
onstru
ted in a similar way.In asyn
hronous systems, our
lustering algorithm uses (for ea
h pro
essor) a (lo
al)self-stabilizing snapshot algorithm for obtaining lo
al syn
hronization of a
tions.Self-Stabilizing snapshots. We present a snap-stabilizing (e.g., [8℄) snapshot algorithmfor distributed systems, that uses message passing with bounded link
apa
ity, in whi
h aspanning tree is distributively de�ned. Our snapshot algorithm is designed for a messagepassing system in whi
h any initial state of link
ontents is
onsidered and in whi
h thepossibility of messages over
ow (due to sending a message through a full link) is in
orporatedinto the model.Our snapshot algorithm
an also be applied to systems with a general
ommuni
ationgraph in whi
h a rooted spanning tree is distributively de�ned by another self-stabilizingalgorithm. The spanning tree may be an output of a self-stabilizing (BFS) rooted tree
onstru
tion algorithm. In this
ase, however, we obtain only on-demand stabilization ratherthan snap-stabilization. On-demand stabilization ensures that regardless of the number ofnew requests (for snapshots), the system rea
hes a state, su
h that eventually any newrequest results in a
orre
t output (snapshot). In other words, stabilization does not rely onrepeated invo
ations of new (snapshot) requests. Our on-demand self-stabilizing snapshotalgorithm serves us as a basi
 building blo
k in order to obtain our hierar
hi
al snapshots
hemes.Overlay network based snapshot. We suggest an approa
h for hierar
hi
al snapshotbased on an (�fo preserving) overlay network abstra
tion. We enable ea
h subsystem toperform an independent snapshot, and further enable ea
h level of the hierar
hy to performa lo
al snapshot. We suggest the use of overlay
ommuni
ation links whi
h \dire
tly"
onne
tleaders of
lusters. It is worthwhile noting that an (�fo) overlay network link may be in fa
ta path of physi
al links. It is also evident that the
ommuni
ation over an overlay link ismu
h faster than the sum of the single hop
ommuni
ation links that implement the overlaylink1.Leaders of subsystems are de�ned, and the
ommuni
ation between pro
essors in di�erentsubsystems traverses the overlay
ommuni
ation links between the leaders of the subsystems.Thus, there is no need for re
ording the messages over physi
al links between subsystemsunless they are part of an overlay
ommuni
ation link. When a snapshot is invoked bya leader of a subsystem (possibly due to a request forwarded to the leader by anotherpro
essor), the leader uses the overlay network to notify (send snapshot markers to) theleaders of the subsystems that belong to its subsystem. These leaders, in turn, are responsiblefor performing a snapshot in their subsystem in the same manner.Dis
ussion
on
erning overlay network ar
hite
ture. We assume the existen
e of
om-muni
ation swit
hes that are re
on�gurable by (
ommands of) our algorithm. Our approa
his layered; the �rst layer is based on traditional point to point neighboring
ommuni
ation,where
ommuni
ation is between pro
essors that are dire
tly
onne
ted by physi
al
ommu-ni
ation mean. The output of this layer (whi
h is the lo
al topology of ea
h pro
essor) is usedto
on�gure overlay links, using the
apabilities of the swit
hes. An analogous pro
edure is1In some
ases, preassigned frequen
ies or/and supporting swit
hing hardware
an be used. e.g.,mpls{[7℄.4

implemented for higher levels in the hierar
hy de�ning new overlay links using wider topologyknowledge. We assume that the bandwidth of a physi
al
ommuni
ation link is suÆ
ient forimplementing of all the overlay links that this link parti
ipate in implementing (this numberis typi
ally small, and is always less than the number of possible sour
e-destination for theoverlay links).One may wish to employ our algorithms to system that does not
onsists of the aboveprogrammable swit
hes. In other words to provide an abstra
tion of overlay links in software.To ensure message delivery in su
h a
ase, one may need lo
al bu�ers in ea
h intermediatepro
essor along the overlay path. Ea
h pro
essor may maintain a message bu�er for ea
houtgoing edge. The bu�er will hold a \bu
ket" for ea
h overlay path whi
h traverses the
orresponding link (again, this number is typi
ally small). Ea
h bu
ket holds the last messagere
eived whi
h is asso
iated with the bu
ket's path and did not yet traverse the atta
hed link.The pro
essor will send the
ontents of the bu
kets repeatedly and fairly (say, simultaneouslyusing high bandwidth). Thus, ensuring eventual delivery (fairness) and fifo ordering.As assumed in the s
ope of overlay
ommuni
ation networks, pro
essing (of higher levelproto
ol-sta
k are avoided and) is done only at the end-points of the
ommuni
ation, there-fore the delay is still assumed to be one time unit. End-to-end arq stabilization
an beanalyzed in the way suggested in [10℄, resulting in a
onstant time as well (twi
e the numberof round trip time between the overlay endpoints).1.2 Related workSelf-organization. In re
ent years, the
on
ept of self-organization has been widely men-tioned in the s
ope of distributed
omputing and peer to peer networks. Many works have
laimed being self-organizing, but a mere fra
tion of these works also tries to give a spe-
i�
 de�nition of what self-organization really is. In [2℄ a framework for self-organizationis proposed, in
luding formal de�nitions of the self-organization
on
ept and
omplemen-tary proof te
hniques whi
h
an be used to prove that algorithms are indeed self-organizing.Ea
h algorithm is required to have an asso
iated evaluation
riterion, whi
h operates on theimmediate neighborhood of a pro
ess. This evaluation
riterion does not take into a

ountthe in
uen
e of other lo
al neighbors, say those that are within a
onstant distan
e.Fault
ontainment. Fault
ontainment, using persistent bits, voting on repli
ated bits(usually for non rea
tive systems) is another way of addressing lo
ality (e.g., [25, 20, 1, 5℄).The idea is to repair transient faults starting from a safe global system
on�guration. Insu
h a
ase, it is possible (unlike in the
ase of topology
hanges) to
hange the state ofthe a�e
ted pro
essors ba
k to the state prior to the fault. In this
ontext, our algorithmis self-stabilizing and when started in a safe
on�guration
an handle k transient faults aswell as topology
hanges o

urring approximately at the same time, in expe
ted O(log k)rounds. Moreover, our s
heme is the �rst to support many
ore distributed tasks, su
has self-stabilizing leader ele
tion algorithm and snapshots algorithms in O(log2 n) expe
tedrounds.Cluster and hierar
hy
onstru
tion. Self-stabilizing and self-healing
onstru
tions ofhierar
hies, in the domain of sensor networks, appear in [35℄. The authors divide the planeinto hexagonal
ells. In ea
h
ell a head that
orresponds with a
luster leader is ele
ted.5

The existen
e of a unique pro
essor, the big node, whi
h a
ts as an initiator is assumed. Thebig node determines the
enter of the �rst hexagon, �xating the lo
ation of its own
luster.The big node ele
ts heads in adja
ent hexagonal
ells whi
h will subsequently ele
t headsin their adja
ent
ells. The time
omplexity of this algorithm is obviously proportional tothe diameter of the
ommuni
ation graph. Our algorithm does not assume a leader and
onverges within O(logn) expe
ted number of rounds and rea
ts to dynami

hanges lo
ally.Our
lustering algorithm is in fa
t a maximal independent set algorithm. A
lassi
almaximal independent set algorithm is presented in [30℄. The algorithm is designed for asyn
hronous system and
onverges (from a pre-de�ned initial state) within O(logn) expe
ted
onvergen
e time. Our algorithm is designed for asyn
hronous systems, is self-stabilizing andself-organizing and
onverges within expe
ted O(logn) rounds for
onstant degree graphs.A re
ent work by Wattenhofer and Mos
ibroda [31℄ presents an algorithm for
omputinga maximal independent set in radio networks. The system model is fundamentally di�erentfrom the one presented here: Pro
essors
an broad
ast their messages asyn
hronously, but no
ollusion dete
tion me
hanism is provided. The algorithm presented
onverges in (expe
ted)polylogarithmi
 time, and pro
essors whi
h join the algorithm are promised to be
overedin (expe
ted) polylogarithmi
 time.In [27℄, the authors present lower bounds on distributed approximation algorithms forthe minimum vertex
over problem. Their bounds
an also be applied to the maximumindependent set problem. We do not seek a maximum independent set, and our algorithmde�nes a maximal independent set.Other approa
hes for distributively de�ning maximal independent sets in bounded degreegraphs appear, for example, in [26℄ and in [21℄. The algorithms presented usually de�ne amaximal independent set in O(log� n) rounds. However, a syn
hronized environment isassumed and is heavily relied upon; for example, in [21℄ the authors �rst de�ne a
oloring ofthe graph, using a bounded number of
olors. The
olors are then used to de�ne a maximalindependent set iteratively, by �rst
hoosing all the pro
essors
olored with the lowest
olor,removing all of their neighboring pro
essors and repeating the pro
ess with the next
olor.Unfortunately, these algorithms do not �t asyn
hronous systems, nor are designed to toleratefaults and
hanges gra
efully.Appli
ations of hierar
hy in the self-stabilization domain are des
ribed in [19℄. Theauthors argue that the hierar
hi
al
onstru
tion
an be used to shorten the
onvergen
etime of various self-stabilizing distributed algorithms. As an example, the authors present anappli
ation to spanning tree
onstru
tion. However, the authors do not present an algorithmfor de�ning the hierar
hy but assume it is de�ned beforehand.Distributed snapshots. The �rst distributed snapshot algorithmwas introdu
ed in [6℄. Theauthors des
ribe a distributed algorithm for
olle
ting the states of pro
essors and the statesof links su
h that a global state of the system,
alled the system snapshot, that has spe
ialproperties is obtained. Namely, the obtained system snapshot
an be rea
hed by an exe
utionthat starts in the system state in whi
h the snapshot algorithm was initiated. Moreover,there is an exe
ution that starts from the obtained system snapshot and rea
hes the systemstate in whi
h the snapshot algorithm terminated. Therefore, the system snapshot is a globalstate that
an be used to dete
t stable properties. For example, if there is a deadlo
k inthe global state re
orded by the snapshot algorithm, then we may
on
lude that there is a6

deadlo
k in the system.The snapshot algorithm is de�ned for message passing system, and is based on spe
ialmessages
alledmarkers, whi
h are used to partially order pro
essors' a
tions. The algorithmis based on rules, whi
h state for ea
h pro
essors, p, the steps pmust take ea
h time p re
eivesa marker m on a
ommuni
ation link l: if m is the �rst marker p re
eived, p re
ords p's lo
alstate and immediately sends markers on all of p's outgoing links. Moreover, p re
ords thestate of l as empty. If m is not the �rst marker p re
eived, p re
ords the state of l as the listof messages re
eived from l following the �rst marker p re
eived. When p re
eived a markerfrom ea
h in
oming link, p publishes its portion of the snapshot whi
h
onsists of p's re
ordedstate and the state of all the links adja
ent to p. The
ombined published portions of all thepro
essors form the global snapshot. The algorithm is initialized by one or more pro
essorssending markers to themselves and terminates when ea
h pro
essor re
eived markers on allof its adja
ent links. ℄℄Self-stabilizing snapshot. A self-stabilizing snapshot algorithm was �rst introdu
ed in[23℄, where repeated invo
ations of snapshots are used to ensure stabilization of a non-stabilizing algorithm. When the obtained snapshot indi
ates an in
onsistent system
on�g-uration, a reset is invoked. The stabilization of the snapshot itself is based on its repeatedinvo
ation. We present an on-demand self-stabilizing snapshot that does not rely on re-peated invo
ations and, in fa
t, rea
hes a safe
on�guration also in
ases in whi
h snapshotinvo
ations
ease as well. Following [23℄, several works have studied ways of a
hieving ef-�
ient snapshots in di�erent models e.g., message passing, bounded links message passingand shared memory [34, 1, 8℄.In [34℄, the author takes a di�erent approa
h to self-stabilizing snapshots. A
ommon
ounter is shared among pro
essors and is used to number markers of the snapshot algorithm.Pro
essors only parti
ipate in snapshots whi
h mat
h their
ounter value. In order to obtainself-stabilization, the
ounter is reseted using a self-stabilizing reset algorithm. The systemsettings do
onsider links of bounded
apa
ity, but assume this
apa
ity never to be rea
hed.Our algorithm handles links over
ows gra
efully.A di�erent approa
h for the snapshot task is taken by using a snap-stabilizing propagationof information with feedba
k (PIF) algorithm [8℄. In [8℄, the authors present a snap-stabilizer| a tool that
onverts any given shared memory algorithm to a snap-stabilizing one by usinga te
hnique similar to the one in [23℄. The snapshot algorithm uses snap-stabilizing PIF.Shared
ommuni
ation registers are used in [8℄ for
ommuni
ation among pro
essors. We
onsider message passing systems. It is worthwhile noting that the
onversion of a sharedmemory algorithm to message passing suggested in [15, 13℄ does not preserve the snap-stabilization property, at least when randomization is not used.Dynami
 graph algorithms. Extensive resear
h on distributed dynami
 algorithms ap-peared in the literature (e.g., [17℄ and the referen
es therein). Still, our algorithm is the �rstself-stabilizing and self-organizing distributed (graph) algorithm. Another related aspe
t ofour work is related to dynami
 (graph) data stru
tures (e.g., [22℄ and the referen
e therein).We a
hieve a
ommitting time (logarithmi
 and polylogarithmi
) in (fault toleran
e) dis-tributed settings for an important
lass of graphs.Our
ontribution. We de�ne the self-organization property to
apture lo
ality and dy-7

nami
ity. We present a
lustering algorithm (in fa
t, a distributed maximal independent setalgorithm) whi
h is both self-stabilizing and self-organizing. To realize the
lustering algo-rithm in an asyn
hronous system we present a s
heme of lo
al syn
hronization, a
hieved byusing a lo
al snapshot proto
ol. We employ the aforementioned
lustering algorithm to de-�ne a graph hierar
hy whi
h
an be used to
onvert any distributed task to be self-stabilizingin
urring only a sublinear time overhead.Paper organization. In Se
tion 2 we present the system model and in Se
tion 3 the basi
on-demand snapshot algorithm. Hierar
hy
onstru
tion s
hemes are des
ribed in se
tion 4.The hierar
hi
al snapshot algorithm is presented in Se
tion 5. Extensions and
on
ludingremarks appear in Se
tion 6.2 System ModelThe system
onsists of n pro
essors, denoted by p1; p2; : : : ; pn. The pro
essors are
onne
tedby
ommuni
ation links. Ea
h pro
essor is modeled by a state ma
hine that
an send andre
eive frames (or low level messages) to/from a subset of the pro
essors. We use a uni-dire
ted
ommuni
ation graph G = (V;E) to represent the system, where ea
h pro
essor piis represented by a vertex vi 2 V and ea
h
ommuni
ation link used for transferring framesfrom pi to pj is represented by an edge (i; j) 2 E. We further assume that the existen
e ofthe edge (i; j) 2 E implies the existen
e of an opposite dire
ted edge (j; i) 2 E and thatthe number of edges atta
hed to a pro
essor is bounded by a
onstant. We de�ne the distof two pro
essors p and q, dist(p; q), as the length of the shortest path between p and q inthe graph. For a pro
essor p and a
onstant x, we denote fp(x) as the number of pro
essorq su
h that dist(p; q) � x. We further de�ne fG(x) (or just f(x) where G is
lear from the
ontext) as the maximal fp(x) over all pro
essors p in the graph.Pro
essors may join and leave the system at any time. Similarly, links may spontaneouslyfail and re
over. We model pro
essors' join and leave as the addition or removal of all oftheir links from the system. We assume that pro
essors may dete
t su
h topologi
al
hangesin a timely fashion (e.g., by observing voltage levels of the underlying physi
al layer). Inthe
ontext of self-organization the pattern and the sequen
e of topology
hanges in
uen
ethe
onvergen
e time. We require that following a single topologi
al
hange at most o(s(n))rounds are needed for stabilization. In
ase k topologi
al
hanges o

urs together or in asequen
e, su
h that any two
onse
utive
hanges among these k
hanges took pla
e withino(s(n)) asyn
hronous rounds, and within o(s(n)) distan
e apart, then the stabilization timeis bounded by minfk � o(s(n)); s(n)g rounds. Note that, any (non
onstant) number of
hanges o

urring approximately simultaneously in the graph, but in distan
ed of at leasto(s(n)) from ea
h other, will require only o(s(n)) rounds to stabilize.We assume a
lass of graphs for whi
h a
orrelation exists between the number of edgesalong a shortest path and the geographi
al distan
e of the path's end-points.The system is asyn
hronous, meaning that there is no
orrelation between the non
on-stant rate of steps taken by the pro
essors. We assume that the
apa
ity of the
ommuni
a-tion
hannels (equivalently the number of items in the �fo queues that represent the links) isbounded, by the
onstant l
. Whenever a pro
essor pi sends a frame to a neighbor pj, when8

the link (i; j) already
ontains l
 frames, we assume that one of the frames (not ne
essarilythe new one) is lost while the �fo order of the rest of the frames is preserved. In fa
t, sin
eframes
an always be lost, we restri
t the pattern of frame loss steps to be su
h that if framesare sent in�nitely often, frames are also re
eived in�nitely often.We further abstra
t the a
tivity of
ommuni
ation links by assuming an underline snap-stabilizing ARQ data link algorithm that transfers frames in order to ensure that high levelmessages transfer respe
ts the following: (1) messages sent from pi to pj are re
eived bypj in a �nite (but yet unbounded) time (2) and message delivery respe
ts the exa
tly on
edelivery and �fo ordering poli
ies. We note that the ARQ algorithm performed on one linkof a pro
essor pi does not blo
k the re
eive operations (and
orresponding steps) from thelinks atta
hed to pi. We assume that eventually when pi sends a message m to pj (and pidoes not send further messages), pi re
eives a
knowledgment for m after pj re
eived m.We use the term overlay edge to denote a path of edges that
onne
ts two pro
essorsin the system. When the path is prede�ned and �xed, it a
ts as a virtual link in whi
h(pra
ti
ally) no pro
essing is required by intermediate pro
essors in order to forward theframe from sour
e to destination. We allow pro
essors to de�ne and use, on the
y, overlayedges to other pro
essors, when the underlying path is known. We regard the time it takes aframe to traverse su
h an overlay link as the time for traversing a link that dire
tly
onne
tstwo neighboring pro
essors. We assume these overlay edges preserve fifo ordering of framesbetween pro
essors and maintain the assumption that a frame whi
h is in�nitely often sentis in�nitely often re
eived.A
on�guration
 of the system is a tuple
 = (S; L); S is a ve
tor of states, hs1; s2; � � � sni,where the state si is a state of pro
essor pi; L is a ve
tor of link states hl1;2; l1;3; � � �; l2;1; l2;3 � � � i.A link li;j is modeled by a �fo queue of frames that are waiting to be re
eived by pj andthe
ontents of the queue is the state of the link. Whenever pi sends a frame f to pj, f isenqueued in li;j. Also, whenever pj re
eives a frame f from pi, f is dequeued from li;j. Apro
essor
hanges its state a

ording to its transition fun
tion (or program). A transitionof pro
essor pi from a state sj to state sk is
alled an atomi
 step (or simply a step) and isdenoted by a. A step a
onsists of lo
al
omputation and of either a single send or a singlere
eive operation.We model our system using the interleaving model. An exe
ution is a sequen
e of global
on�gurations and steps, E = f
0; a0;
1; a1; : : :g, so that the
on�guration
i is rea
hed from
i�1 by a step ai of one pro
essor pj. The states
hanged in
i, due to ai, are the one ofpj (whi
h is
hanged a

ording to the transition fun
tion of pj) and possibly that of a linkatta
hed to pj. The
ontent of a link state is
hanged when pj sends or re
eives a frameduring ai. An exe
ution E is fair if every pro
essor exe
utes a step in�nitely often in E andea
h link respe
ts the bounded
apa
ity loss pattern. In the s
ope of self-stabilization we
onsider exe
utions that are started in an arbitrary initial
on�guration.A task is de�ned by a set of exe
utions
alled legal exe
utions and denoted LE. A
on�guration
 is a safe
on�guration for a system and a task LE if every fair exe
utionthat starts in
 is in LE. A system is self-stabilizing for a task LE if every in�nite exe
utionrea
hes a safe
on�guration with relation to LE. We sometimes use the term \the algorithmstabilizes" to note that the algorithm has rea
hed a safe
on�guration with regards to thelegal exe
ution of the
orresponding task. 9

In some
ases we would like to de�ne pro
esses exe
uted by the pro
essors so that ea
hpro
essor exe
utes steps for several pro
esses. Consider the
ase in whi
h ea
h pro
essor piexe
utes two pro
esses p1i and p2i . Assume further that a pro
ess p1i
an
ommuni
ate dire
tlywith a (neighboring) pro
ess p1j residing in a neighboring pro
essor. The transition fun
tionof p1i is de�ned by the state s1i of p1i and the messages re
eived from a neighboring pro
essesp1j . The transition fun
tion of p2i is de�ned by the state of p1i and p2i and the messages sentby neighboring pro
esses p2j . The de�nition of
on�guration for the multi-pro
esses
ase isde�ned by a ve
tor of state hs11; s12; � � � i for the state ve
tor of the �rst layer pro
esses anda ve
tor hl11;2; l11;3; � � � i of the link states of the �rst layer, while the later is
omposed of thequeues asso
iated with the links, restri
ted to the messages sent by pro
esses in layer one,p1i . The layers de�nition allows us to separate the snapshot proto
ol a
tivity (in the lowestlayer) from the original system (upper layers) that is the subje
t of the snapshot.A multi-pro
ess fair exe
ution is a fair exe
ution in whi
h every pro
ess exe
utes a stepin�nitely often (in the sequel we use the term fair exe
ution for multi-pro
ess fair exe
ution).The snapshot task S for a system is de�ned by a set of exe
utions ES started in an arbitrary
on�guration, so that if a snapshot starts in an atomi
 step ar, there is a
on�guration
s,that follows ar, in whi
h a pro
essor re
eives a global snapshot gs. Moreover, assuming r isminimal, there exists an exe
ution of pro
esses in level one that starts immediately beforear, rea
hes gs and then
ontinues to the
on�guration of level one in
s.We use the notion of asyn
hronous rounds to measure the time
omplexity of an algo-rithm. The �rst asyn
hronous round in exe
ution E is the shortest pre�x of E in whi
h ea
hpro
essor (or pro
ess)
ommuni
ates with all of its neighbors (either through a dire
tly
on-ne
ting
ommuni
ation link or through an overlay edge). The se
ond asyn
hronous round inE is the �rst asyn
hronous round of the suÆx of E that immediately follows the �rst asyn-
hronous round in E . The time
omplexity of an algorithm is the number of asyn
hronousrounds (or simply rounds) that are required to a
hieve the task of the algorithm.3 On-Demand (Snap-)Stabilizing Message Passing(Tree-)Snapshot AlgorithmIn this se
tion we present the �rst snap-stabilizing snapshot for message passing systems.We do not require repeated invo
ations of the snapshot algorithm in order to stabilize, in
ontrast to the assumption needed in order to employ the snapshot algorithm of [23℄. Asnap-stabilizing snapshot algorithm for shared memory system is presented in [8℄. In the
ontext of self-stabilization, message passing systems introdu
e additional intri
a
y due tounknown messages in transient in the arbitrary �rst
on�guration from whi
h the systemshould
onverge to a legal behavior [13℄.When designing our snapshot algorithm, our starting point is the unbounded snapshotalgorithm presented in [23℄ and the snap-stabilizing algorithm presented in [8℄, whi
h wemodify to a bounded message passing snap-stabilizing algorithm. Namely, we ensure thatany new request for a snapshot will result in a
orre
t snapshot. This requirement di�ersfrom the one presented in [23℄ where snapshots must be
ontinuously and in�nitely ofteninvoked. In our
ase, the algorithm is ready for future requests even when no snapshot10

requests are made.The algorithm is designed for a system in whi
h a rooted spanning tree is distributivelyde�ned. It is based on performing two
onse
utive tree-PIFs (propagation of informationwith feedba
k using a spanning tree) and then employing the original snapshot algorithm of[6℄. Ea
h PIF uses the rooted tree in order to propagate a
ommand (initialize and then pre-pare) and re
eive feedba
k on the
ompletion of the propagation (of the initialize and prepare
ommands, respe
tively). A pro
essor that re
eives a
ommand from its parent, propagatesit to its
hildren and also \
leans" the non-tree edges atta
hed to it. On
e a pro
essor pre
eives an a
knowledgment from all its
hildren that their subtree re
eived the
ommandand on
e p �nishes
leaning the atta
hed non-tree links, p sends an a
knowledgment to itsparent regarding the
ompletion of the
ommand propagation. Both tree-PIFs are
ompletedwithin O(d) rounds (assuming a BFS tree is used), where d is the diameter of the network.When the �rst (initialize) tree-PIF is
ompleted, no marker of previous in
arnations of thesnapshot algorithm is present in the system and pro
essors disregard all in
oming snapshotmarkers. After the se
ond (prepare) tree-PIF is
ompleted, pro
essors do not ignore markersand the root may then initiate the original snapshot algorithm of [6℄.To guarantee snap-stabilization we have to ensure that when the root starts a tree-PIF and then re
eives an indi
ation from its
hildren regarding
ompletion, the system's
on�guration is indeed the desired one - namely, a
on�guration in whi
h all nodes areinstru
ted by the propagated
ommand. The te
hnique used to a
hieve the above is basedon a method of ensuring the happened before relation, using a snap-stabilizing data linkalgorithm whi
h is spe
i�
ally designed for bounded
apa
ity links (Figure 2). When apro
essor p would like to pass a
ommand to a neighbor q, p repeatedly sends frames witha label i until p re
eives a frame with label i from q. Then p repeatedly sends frames withlabel i+1 (mod 2 � l
+1) to q until a frame with the new label is re
eived from q and so onuntil p sends 2 � l
 + 1 distin
t labels. In ea
h frame q sends the last lo
al syn
hronization
olor q re
eived from p. Thus, when p re
eives a frame with the last label among the set ofthe distin
t 2 � l
+ 1 labels, p knows the
urrent lo
al syn
hronization
olor known to q andsends frames with a di�erent lo
al syn
hronization
olor together with the global
ommand(initialize or prepare) that p would like to pass to q. Following that, q identi�es the newlo
al syn
hronization
olor and invokes the global
ommand.To simplify our presentation we use a self-stabilizing version of the aforementioned frame
ommuni
ation algorithm. The self-stabilizing frame
ommuni
ation algorithm is used tosend
ontrol messages between neighboring pro
essors. Ea
h
ontrol message is either piggyba
ked on messages sent by the original algorithm (the snapshot subje
t) or sent indepen-dently (as part of a frame). Ea
h pro
essor p maintains 3 arrays: next,
urrent and last.Ea
h array has an entry for ea
h neighbor of p. next[q℄ is the entry in whi
h the next valuethat p is about to send to q is stored. p may de
ide to send a di�erent value to q beforenext[q℄ is sent. In su
h a
ase, the value in next[q℄ is overwritten.
urrent[q℄ holds the datathat p is
urrently sending to q. last[q℄
ontains the last a
knowledged data that p sent to qalong with the a
tual a
knowledgment of q. We note, that transforming the self-stabilizingversion presented in Figure 2 into a snap-stabilizing one
an be a
hieved by iterating thesending operation 2 � l
+1 times. Corre
tness is trivially preserved and the
onversion addsa
onstant amount of time to ea
h send operation whi
h
an be
onsidered O(1) for time11

omplexity measure.We now des
ribe the way next[q℄,
urrent[q℄ and last[q℄ are a

essed. We use Figure 1and Figure 2 in our des
ription. For ea
h frame arriving from q, p
he
ks whether the frame
ontains an a
knowledgment (Figure 2 line 2). The a
knowledgment should also be numberedwith the
urrent number that p is expe
ting to re
eive from q. When an a
knowledgment withthe
urrent number arrives, p \advan
es" the values next[q℄ to
urrent[q℄, and
urrent[q℄ tolast[q℄. In more details, last[q℄ is assigned by
urrent[q℄,
urrent[q℄ is assigned by next[q℄,and next[q℄:val is assigned by null, while next[q℄:num is assigned by the next
ontrol number(Figure 2, line 8).If the frame arriving is not an a
knowledgment, p �rst sends an a
knowledgment to q(line 10). Afterwards, if q is the parent of p and if q sent a
ontrol message with a di�erent
olor than p's
olor, p
hanges state a

ordingly (line 13). Alternatively, if p is the parentof q, and the frame
ontains a done message, p updates the data stru
ture whi
h denoteswhi
h
hild has �nished the
urrent initialization phase.At the end of the frame
ommuni
ation algorithm, p passes the en
apsulated message tothe algorithm subje
t to the snapshot. Equivalently, in line 21, ea
h message destined to qis en
apsulated in a frame, holding
urrent[q℄. next[q℄writea
k re
eiveda
k re
eived
urrent[q℄last[q℄Figure 1: Frame
ommuni
ation algorithm - data
owThe self-stabilizing snapshot initialization algorithm is responsible for
leaning old mark-ers from the
ommuni
ation links. Roughly speaking, there are two phases, in ea
h of whi
hthe root instru
ts ea
h
hild, q, to
olor itself with a
olor that is di�erent from the
olorthat q is
urrently
olored by. Ea
h pro
essor q repeats the same pro
edure with its tree
hildren and sends an a
knowledgment to its parent on
e it is done. Following the initial-ization, pro
essors do not parti
ipate in snapshots. Later on, when the root re
eives donemessages from ea
h of its
hildren, the root starts the prepare phase. When the se
ond phaseis
ompleted, the pro
essors may start parti
ipating in a snapshot.The
ode of the initialization-prepare algorithm appears in Figure 3. We use a
onventioninspired by the guarded
ommands notation for representing the program of a pro
essor. Theprogram in Figure 3 is
omposed of six guarded
ommands. Ea
h guard is a predi
ate. Aguard is enabled if, and only if, the predi
ate is evaluated as true. Ea
h
ommand is a �niteset of instru
tions that a pro
essor must take when the
orresponding guard is enabled. Weassume that the guards of a
ertain pro
essor are s
heduled by an internal s
heduler whi
hrepeatedly
hooses to exe
ute the
ommands of an enabled guard. Furthermore, we assumethat the internal s
heduler ensures that a guard that is in�nitely often enabled is exe
utedin�nitely often.In general, the initialization-prepare algorithm task uses phases identi�ed by pro
essorstates to
oordinate the operation of the pro
essors. The algorithm has two main phases12

(initialize, prepare) ea
h of whi
h has a few states asso
iated with it. In parti
ular, theinitialization phase is
omposed of state
hanges a

ording to the following order: initialize,syn
 initialize, propagate initialize,
hildren initialize, finish initialize and�nally the done state.The �rst guard of the initialization-prepare algorithm (Figure 3, line 1) des
ribes the�rst a
tions a pro
essor (p) takes when starting a new phase (either initialize or pre-pare). First, p
leans the links
onne
ting it to its neighbors. The
leaning is a
hieved bysending a probe message on ea
h link. Ea
h neighbor q, when re
eiving a probe message,a
knowledges re
eiving the message and atta
hes to the a
knowledgment q's
urrent syn-
hronization
olor (Figure 2, line 10). After sending all probe messages, p will
hange stateto the syn
 state, e.g., if p's state was initialize, it will
hange state to syn
 initialize(line 8). Moreover, if p was in the initialize state, then before
hanging state it will setthe ignore markers
ag to true (line 7).The se
ond guard appears in line 10. If p is in the syn
 initialize (or syn
 prepare)state and re
eives a
knowledgments from all of its neighbors, line 11 ensures that p will
hange state to propagate initialize or propagate prepare respe
tively. Line 13 de-s
ribes the a
tions p must take in the propagate states. Essentially, p propagates its phasestate to its
hildren (lines 14 to 19). We de�ne the phase state as initialize if p is inthe initialize phase, and prepare if p is in the prepare phase. For example, if q is in thepropagate initialize state, the phase state for p is initialize. Similarly, if p is in thepropagate prepare state, the phase state for p is prepare. The propagation is a
hievedby sending an appropriate
ommand to ea
h
hild. The
ommand
ontains a
olor that isdi�erent from the last
olor ea
h
hild had already sent (line 19). This ensures that the
hildren identify the
ommand as a new
ommand and
hange state a

ordingly. Finally, p
hanges state to
hildren initialize (or
hildren prepare).The third guard appears in line 23. This guard ensures that p will wait for ea
h
hild toa
knowledge the
ommand. After ea
h
hild a
knowledges the
ommand, p must wait forits
hildren to �nish propagating the
ommand to their subtrees. To this end, p utilizes thedone[℄ array. When a pro
essor is in the done state, it repeatedly sends done messages toits parent. To make sure that p
onsiders only relevant done messages, p must �rst initializethe done[℄ array with false (line 25). p will then
hange state to the finish state (with theappropriate suÆx, a

ording to p's phase state).On
e all of p's
hildren �nish syn
hronizing their sub-trees, they will send a donemessageto p. This will
ause the guard in line 29 to be enabled. At this point, p will have �nishedsyn
hronizing its subtree and
an pro
eed to the done state. However, before
hangingstate, if p is in the prepare state, it will
hange ignore markers to false. From this pointon, p is ready to parti
ipate in a snapshot.The last guard, whi
h is in line 34, ensures that if p is in the done state, p will repeatedlysend done messages to its parent (line 35).Corre
tness proof. We will �rst show that the data link algorithm stabilizes. The proofwhi
h is already a folklore, is for a parti
ular pair of pro
essors, for example pi and pj, wherepi is the sender and pj is the re
eiver.Lemma 1. In every fair exe
ution E, assume pi assigns a new value to
urrenti[pj℄ in a global
on�guration
l. Then, there exists a global
on�guration
k, su
h that an a
knowledgment13

1 new frame(num,val,in message) arrived from q:2 if val = (a
k;
olor) ^ num =
urrent[q℄:num then3
urrent[q℄:
olor
olor4 last[q℄
urrent[q℄5
urrent[q℄ next[q℄6 next[q℄ nil7 next[q℄:num
urrent[q℄:num+8 1 (mod 2 � l
+ 1)9 else10 SendFrame(num,(a
k,
olor))11 if q = parent ^ val = (new
olor;
ommand)^12 new
olor! =
olor then13 state
ommand14
olor new
olor15 if q 2 Children ^ val =done then16 done[q℄ = true17 �18 �19 pass in message upwards in the proto
ol sta
k20 end21 SendFrame(
urrent[p℄:num;
urrent[p℄:val;message)Figure 2: Frame
ommuni
ation with a neighbor qfrom pj arrived at pi and k > l. Furthermore, eventually the happened before relation holdsbetween the atomi
 steps ak in whi
h the assignment of a new value x to
urrenti[pi℄ isexe
uted, a later atomi
 step al in whi
h a frame with x is re
eived by pj and an atomi
 stepam in whi
h the a
knowledgment regarding the re
eipt of x in pj is re
eived by pi.Proof: Sin
e ea
h frame numbered with num is sent repeatedly by pi, an a
knowledgmentwith num will eventually arrive from pj. Hen
e, pi will in�nitely often
hange the framenumber in a round robin fashion (Figure 2, line 8). Sin
e the link
apa
ity is bounded by l
and pi in
rements the frame numbers modulo 2 � l
+1, a value y whi
h is not present in the�rst arbitrary
on�guration in either the link (i; j) or (j; i) will be
hosen. From this pointon, it is obvious that our
laim holds, sin
e pi will only a

ept a
knowledgments for y.Considering the snap-stabilizing version, an analogous proof
an be derived to show thatthe data link algorithm is indeed snap-stabilizing.Lemma 2. In every fair exe
ution E, eventually after a pro
essor pi exe
utes lines 3 to4 in Figure 3 (denoted writing) for a parti
ular neighboring pro
essor pj and assuming no
onse
utive write of pi to pj takes pla
e, an a
knowledgment will arrive to pi. Immediatelyafter the atomi
 step in whi
h the a
knowledgment arrives, a
on�guration in whi
h lasti[pj℄is equal to a
k pendingi[pj℄ will be rea
hed.Proof: Sin
e no writes o

ur and sin
e pi repeatedly sends frames with
urrenti[pj℄ ana
knowledgment for
urrenti[pj℄ will eventually arrive. Sin
e we assumed no writes o

urred,14

Predi
ate answered(q) � a
k pending[q℄:num = last[q℄:num1 state 2 finitialize, prepareg :2 forea
h q 2 Neighbors do/* this is a
tually the write */3 a
k pending[q℄ next[q℄:num4 next[q℄:val probe5 done6 if state = initialize then7 ignore markers true/*
hange state to syn
.initialize be
omes syn
 initialize */8 state syn
 state9 end10 8q 2 Neighborsj answered(q)^(state = syn
 initialize _state = syn
 prepare):/* syn
 initialize be
omes propagate initialize */11 state propagate base state12 end13 (state = propagate initialize_state =propagate prepare) :14 forea
h q 2 Children do15 a
k pending[q℄ next[q℄:num16 if state = propagate initialize then17
hild
ommand initialize18 else
hild
ommand prepare19 next[q℄:val (last[q℄:
olor;
hild
ommand)20 done/* propagate initialize be
omes
hildren initialize */21 state
hildren base state22 end23 8q 2 Childrenj answered(q) ^ (state =
hildren initialize_state =
hildren prepare):24 forea
h q 2 Children do25 done[q℄ false26 done27 state finish base state28 end29 8q 2 Childrenj answered(q) ^ done[q℄ = true^(state = finish initialize _state =finish prepare):30 if state = finish prepare then31 ignore markers false32 state =done33 end34 state =done:35 next[parent℄:val done36 endFigure 3: Initialize-Prepare algorithm for a pro
essor p1 start a new snapshot:2 state initialize3 state = prepare done:4 the root is ready to start a new snapshot.Figure 4: Root rules for initiating a new snapshot15

pi will assign nexti[pj℄ to
urrenti[pj℄, a

ording to Figure 2 lines 3 to 5. Using lemma 1 weknow that an a
knowledgment will eventually arrive after pj re
eives
urrenti[pi℄. Hen
e,and again a

ording to lines 3 to 5, pi will assign
urrenti[pj℄ to lasti[pj℄. We
an
on
ludethe
orre
tness of the Lemma from the fa
t that the value that was originally present atnexti[pj℄ was
opied to a
k pendingi[pj℄ and eventually to lasti[pj℄.For the following lemmas we assume that the data link algorithm used is the snap-stabilizingversion dis
ussed earlier. We wish to draw the readers' attention to the fa
t that the
orre
t-ness of the on-demand version also holds if the following
ondition is met: the self-stabilizingdata link has stabilized - a step that ensures that whenever an a
knowledgment arrives fora frame sent by pi, pj will have re
eived the message. Overall
orre
tness is further ensuredby the fair
omposition te
hnique ([13℄,
hapter 2.7).Lemma 3. In every fair exe
ution, if a pro
essor pi is in state initialize at a
on�guration
j and does not re
eive any
ommand from its parent to
hange its state, then there exists a
on�guration
k, k > j, su
h that the following
laim holds for ea
h pro
essor q in the subtreeof pi (in
luding pi): there exists a series of
on�gurations (after
j), in whi
h q
hanged statefrom initialize to syn
 initialize to propagate initialize to
hildren initializeto finish initialize and �nally to done. Furthermore, q stays in the done state in allsubsequent
on�gurations, after (and in
luding)
k.Proof: The proof is by indu
tion on h, the height of pro
essors in the tree. For h = 0we have a leaf pro
essor pi. Assume pi
hanged state to initialize at
j. A

ording to theinitialization algorithm (Figure 3), the only guard enabled is the guard in line 1. Sin
e thisguard is the only one enabled, it will eventually get exe
uted. pi then writes a probemessageto ea
h of its neighbors and
hanges state to syn
 initialize (lines 1 to 9). Sin
e we assumethat pi re
eives no
ommand from it's parent to
hange state, no guard is enabled by default.A

ording to lemma 2, the guard in line 10 is the only guard whi
h will eventually be enabled.pi then
hanges state to propagate initialize. The next enabled guard is only the guardin line 13. Sin
e pi is a leaf, pi will immediately
hange state to
hildren initialize andthen to finish initialize. The only guard enabled now is the guard in line 29, sin
e pidoes not need to wait for an answer from any
hild. Hen
e, pi will
hange state to done.Marking the last
on�guration as
k
on
ludes the proof for the base
ase.Now, let pi be a pro
essor of height greater than 0. Assume pi
hanged state to initializeat
j and no further
ommands arrive from pi's parent. The only enabled guard in
j appearsin line 1 and will eventually be exe
uted. pi will then send a probe message to ea
h ofits neighbors and
hange state to syn
 initialize. No guard will be enabled until ea
hneighbor replies. However, Lemma 2 ensures that a reply will eventually arrive. Hen
e,the guard in line 10 will eventually be enabled and exe
uted. pi will then
hange stateto propagate initialize. The guard in line 13 will now be enabled, and exe
uted. piwill send an initialize
ommand to ea
h of it's tree
hildren, and
hange state to the
hildren initialize state. Again, from Lemmas 1 and 2, eventually the guard in line 23will be enabled and pi will reinitialize the done array for ea
h
hild to hold false. Sin
eLemmas 1 and 2 ensure that pi gets a reply for the probe message from ea
h
hild that issent after ea
h
hild re
eives the aforementioned probe message, pi will send ea
h
hild a16

olor di�erent than the one this
hild
urrently holds. Consequently,, ea
h
hild will enterthe initialize state. As a result, it is ensured that no old done messages exist on either
hannel dire
ted at pi, sin
e ea
h
hild has
hanged state to initialize before sending thea
knowledgment regarding the initialize
ommand to pi.Using the indu
tion assumption and sin
e pi does not send any more messages to its
hildren (no guard is enabled), we
an
on
lude that the lemma holds for ea
h
hild of pi.Moreover, the guard in line 29 will eventually be enabled, sin
e ea
h
hild is in the donestate and the only a
tion taken in this state is sending done messages to the parent. Hen
e,pi will re
eive done messages from ea
h of its
hildren and the guard in line 29 is �nallyenabled. Now, pi will enter the done state. Based on the indu
tion assumption, ea
h
hildful�lls the requirements of Lemma 3 and from the proof we get the series of
on�gurationsfor pi as required by Lemma 3. Furthermore, pi does not
hange its state after rea
hing thedone state, unless pi re
eives a new
ommand from its parent.Following the proof of Lemma 3 we
an dedu
e a similar argument for the preparestate. Using these lemmas, we dedu
e that on
e the root
hanges state to initialize, thewhole tree will
hange state to initialize and will stop re
eiving markers (Figure 3 line 7).It also follows that eventually the root will re
eive a done message from all of its
hildren,ensuring all pro
essors in the tree are in the done state. When in this state, we
an dedu
ethat no markers exist in any of the
hannels. Assume the
ontrary, that between pi andpj there exists a marker sent by pi. pi wouldn't have been able to send the marker afterre
eiving the initialize
ommand sin
e after
hanging state to the initialize state, piignores all markers and snapshots (Figure 3 line 7). The only option left for pi is to havesent the marker before re
eiving the initialize
ommand. Sin
e
hannels are �fo orderedand pi sent a probe message to ea
h neighbor before �nishing the initialization algorithm,we
on
lude that no su
h marker
an exist.After �nishing the initialization phase, the root will start the prepare phase. After�nishing the prepare phase, ea
h pro
essor will start to re
eive markers again (Figure 3line 31). On
e the root has entered the done state, it is ensured that all pro
essors areready to start a new snapshot and that no old markers exist in the system.Time Complexity:Lemma 4. In every fair exe
ution on
e a pro
essor p assigns initialize to its state, thereis an atomi
 step in the following 5 � height(p) rounds in whi
h p assigns done to its state(where height(p) is the height of p in the tree).Proof: By indu
tion, over the height of a pro
essor in the tree. Let us assume p is apro
essor of height 1 in the tree (a leaf). Then, a

ording to the snapshot algorithm (Figure3), the steps p follows are: sending a probe to all neighbors (time
omplexity: 1 round (line1)), waiting for an answer to the probe (time
omplexity: 1 round (line 10)), propagatingthe initialize
ommand to ea
h
hild (line 13) and �nally waiting for a done message fromea
h
hild (line 29). The last two steps are internal event, sin
e p has no tree
hildren andno
ommuni
ation is needed. As a result, an atomi
 step in whi
h p assigns done to itsstate is exe
uted after 3 rounds. 17

Let us assume Lemma 4 is
orre
t for all pro
essors of height at most k, for some k. Let pbe a pro
essor of height k+1 and assume p assigns initialize to its state. A

ording to thesnapshot algorithm, p must make take the following a
tions: send a probe to all neighbors(time
omplexity: 1 round (line 1)), wait for an answer to the probe (time
omplexity:1 round (line 10)), propagate the initialize
ommand to ea
h
hild (line 13) and �nallywait for a done message from ea
h
hild (line 29). The propagation of the initialize
ommand takes 1 round. Now, sin
e all tree
hildren of p operate in parallel and are ofheight k � 1, in 5 � (k � 1) rounds ea
h
hild will assign done to its state (a

ording to theindu
tion assumption) and after another round, the
ommand will be propagated to p. Inthe following round, p will also set its state to done. To
on
lude, the atomi
 a
tion inwhi
h p assigns done to its state is exe
uted in 3 + 5 � (k � 1) + 2 = 5 � k rounds.The time
omplexity of the algorithm, as
learly follows from Lemma 4, is O(d). Theroot must �rst assign initialize to its state and after 5 � height(root) rounds the root willre
eive a done message from all of its
hildren. The root will then assign prepare to itsstate, and a similar argument
an show that after another 5 � height(root) rounds the rootwill re
eive a done message from all of its
hildren. Overall, the tree will be ready for anew snapshot after at most 10 � height(root) = O(d) rounds. The snapshot itself requiresadditional O(d) rounds, thus the total number of rounds required for performing a snapshotis O(d).4 Hierar
hi
al Constru
tion S
hemesA hierar
hi
al system is represented by a
ommuni
ation graph, G = (V;E) and a hierar
hytree HT = (Vh; Eh). Ea
h node in HT , li, represents a set of nodes in V ,
alled a subsystem,so that if li and lj are at the same level of HT , then li \ lj = ;. Furthermore, if K is aset of nodes at level i of HT , then [j2Klj = V . The nodes of the graph are pro
essors andthe edges are their
ommuni
ation
hannels. We require that ea
h subsystem is a
onne
ted
omponent of G.Next we present a self-stabilizing and self-organizing algorithm for
onstru
ting
lus-ters. In general, the
lustering algorithm builds
lusters of diameter smaller than a �xedparameter. Furthermore, ea
h
luster is de�ned by a \native" leader.4.1 Syn
hronous Cluster Constru
tionThe
lustering algorithm is based on a self-stabilizing, randomized, syn
hronous, lo
al leaderele
tion algorithm. We assume the existen
e of a global shared
lo
k. If no su
h
lo
k exists,a self-stabilizing digital
lo
k syn
hronization algorithm (e.g., [13℄)
an be used. However,in su
h a
ase the resulting algorithm is not self-organizing. Assume
lusters of diameter atmost 2�x are desired. All pro
essors will parti
ipate in a self-stabilizing update algorithm, upto distan
e x. At prede�ned intervals of x
lo
k ti
ks (whi
h we
all a phase), all pro
essorswill exe
ute the algorithm presented in Figure 5.The update algorithm is designed for an asyn
hronous system. Ea
h pro
essor p holds atable of tuples, ea
h of the form hidq; distq; parentqi. Ea
h tuple represents a pro
essor q in18

the
ommuni
ation graph. idq is the unique identi�
ation of q, distq is the minimal distan
ebetween p and q and parentq is the id of a neighboring pro
essor of p, whi
h is the �rst ona shortest path from p to q. Repeatedly, p
ombines all the tables of its neighbors and forea
h of the
on
i
ting tuples (in whi
h the id is the same), p
hooses the tuple with theminimal dist (further ties are broken using the parent value). Next, p
hooses only entrieswith dist = k, su
h that there exist entries with dist = j for all j < k. All other entries aredeleted. Afterwards, p adds 1 to the distan
e �eld of every tuple and �nally adds the tuplehidp; 0; nili to form the new table.We adapt the aforementioned update algorithm to our system in several manners. First,ea
h tuple will hold two extra values, leaderp; rtpp. Next, ea
h pro
essor p
ontinuouslysends its table to all neighboring pro
essors. In addition, p maintains an internal array whi
h
onsists of the most re
ent topology tables p re
eived from ea
h neighboring pro
essor. The
omputation of p's topology table is done on the basis of this array. Furthermore, in thevalidation phase we also delete entries with dist > x. Consequently, p's table will re
e
t itsneighborhood up to distan
e x from p. The
orre
tness of the revised update algorithm istrivially preserved, and the
onvergen
e time is O(x) rounds.Continuing the des
ription of our algorithm, ea
h pro
essor p with leaderp = true �rst
hooses a random temporal identi�er rtp for the
urrent phase and uses the tuple hrtp; idias its identi�er for the phase. This random
hoi
e of an rtp value is used to break symmetrybetween pro
essors (for further motivation, see the asyn
hronous version of the algorithm).The variable leaderp is used to indi
ate whether p regards itself as a leader or not. The self-stabilizing update algorithm
olle
ts the new identi�ers and leader variables value within thex
lo
k ti
ks of the phase. Thus, at the end of the phase, a pro
essor p with leaderp = true
he
ks whether p is the only leader in the area de�ned by radius x from itself. If there doesnot exist a pro
essor q with leaderq = true with distan
e less than x from p, then p is astable leader and does not
hange state. Otherwise, if leaderp = false and there is no otherpro
essor q with leaderq = true within distan
e x from p, then p assigns leaderp true.Lastly,
onsider the
ase in whi
h leaderp = true and there exists another pro
essor q withleaderq = true that is within distan
e x from p. If p's hrtp; idi is larger than q's hrtp; idi (�rst
omparing the rtp and breaking symmetry by the use of id) then p assigns leaderp false.The leaders de�ne the
luster stru
ture and sin
e ea
h pro
essor p has at least one leaderin its neighborhood, p may
hoose to join the
luster formed by one of the
losest leaders.To prove that the algorithm stabilizes, we �rst assume that the update algorithm hasstabilized. Hen
e, at the start of ea
h new phase, ea
h pro
essor holds a
onsistent table,denoting the pro
essor's neighbors of distan
e not larger than x. For the proof, we will usea potential fun
tion. For ea
h
, a
on�guration of the system at the end of a phase, de�neSL(
) to be the number of stable leaders at
.In the following Lemmas we use the term syn
hronous exe
ution to denote an exe
utionof a syn
hronous algorithm. For further details see [13℄.Lemma 5. In every syn
hronous exe
ution, if p is a stable leader in
on�guration
i, p willstay a stable leader in every
on�guration
j, su
h that j > i.Proof: p is a stable leader if, at the end of a phase i, p is the only lo
al leader within aradius of x. Assume, by
ontradi
tion, that at the end of phase j, su
h that i < j, p has19

Predi
ates:
lose leader(p; q) :=leaderq ^ dist(p; q) � x1 !leaderp ^ 9q(
lose leader(p; q)):/* do nothing (stable). */2 !leaderp^!9q(
lose leader(p; q)):/* p de
lares itself a lo
al leader. */3 leaderp true4 rtpp random()5 we denote p to be at a
andidate state.6 leaderp^!9q(
lose leader(p; q)):/* de
lare itself a lo
al leader. */7 leaderp true8 rtpp random()9 we denote p to be at a stable state.10 leaderp ^ 9q(
lose leader(p; q)):11 if hrtpp; idpi > hrtpq ; idqi then/* p rede
lares itself a
andidate lo
al leader. */12 leaderp true13 rtpp random()14 else/* p relinquish lo
al leadership */15 leaderp falseFigure 5: Leader Ele
tion Algorithm for Pro
essor p

20

stopped being a stable leader. If p be
ame a
andidate leader, it follows that there exists apro
essor q, su
h that dist(p; q) < x and q is also a (either stable or
andidate) lo
al leader.Hen
e, there exists a phase k, su
h that i < k < j and q has be
ome a leader at the endof phase k. However, this
ontradi
ts the fa
t that p was a leader at the same phase. These
ond option is for p to assign leaderp by false at the end of phase j. This
an only be a
onsequen
e of p loosing (line 14) to another pro
essor q, whi
h was also a leader at phasej, but hrtpp; idpi < hrtpq; idqi. A similar argument as in the previous
ase holds and
an beused to show that q
annot exist.>From Lemma 5 it follows that SL is a monotoni
ally in
reasing fun
tion. The nextlemmas will show that if SL
annot be in
reased anymore, the system has stabilized:Lemma 6. In every syn
hronous exe
ution, if no new stable leader
an be added at
on�g-uration
i, either by turning a
andidate leader or a regular pro
essor into a stable leader,then ea
h pro
essor p has at least one leader within a distan
e x in every
on�guration
jsu
h that j � i..Proof: The proof is by
ontradi
tion. Assume there exists a pro
essor p whi
h has nostable lo
al leader within distan
e x in
on�guration
i and that no stable leader
an beadded. A

ording to the algorithm, this pro
essor
an be
ome a
andidate leader and atsubsequent phases a stable leader. This
ontradi
ts our assumption that no stable leader
an be added.Lemma 7. In every syn
hronous exe
ution, at the end of ea
h phase i if no new stableleaders were added if and SL
an be in
reased, then there is a positive probability that at theend of phase j, su
h that i < j, there is at least one more stable leader than in phase i.Proof: Let us examine the set CL, of all
andidate leaders. If CL = ;, then in the followingphase, at least one pro
essor p will de
lare itself a lo
al leader (sin
e SL
an be in
reased).If p is a stable leader, then the proof is
omplete. Otherwise, assume CL 6= ;. Let us denotep as the pro
essor with the highest hrtpp; idpi tuple in CL. During the transition from phasei to phase i + 1, leaderp will be propagated up to distan
e x from p. For ea
h q, su
h thatq =2 CL and dist(p; q) � x, q will be aware that leaderp is true and will not
hange state.Furthermore, ea
h q, su
h that q 2 CL and dist(p; q) � x, will enter line 14 in the algorithm(sin
e hrtpp; idpi > hrtpq; idqi) and set leaderq false. Thus p will be
ome a stable leader.>From Lemma 7 it follows that as long as stable leaders
an be added, stable leaders willbe added. Lemma 6 ensures us that SL is a monotoni
ally in
reasing fun
tion. It is easy tonoti
e that SL is also bounded. Therefore, starting from any initial
on�guration, SL willrea
h a value from whi
h no new stable leaders
an be added. From Lemma 5, it followsthat the system has stabilizedLemma 8. In any syn
hronous exe
ution, starting with an arbitrary global
on�guration,the algorithm
onverges to a stable state within O(logn) expe
ted number of rounds, wherea stable state denotes a
on�guration in whi
h all pro
essors are stable.21

Proof: De�ne the neighborhood of a pro
essor p as the set of all pro
essors q, su
h thatdist(p; q) � x. Further de�ne fp(x) = jneighborhoodpj and f(x) = maxp(fp(x)). Note thatsin
e the maximal degree of a pro
essor is
onstant and sin
e x is a
onstant, f(x) is also a
onstant. We say that a pro
essor is stable if it is either a stable leader or has a stable leaderin its neighborhood.We now bound the probability for a pro
essor p to be
ome a stable leader in O(x) rounds(assuming p has no leader). A

ording to the algorithm, p will set itself a leader and
hoosea random rtp. We would now like to
al
ulate the probability that p
hooses a unique rtpvalue, whi
h is bigger than any rtp value whi
h may be
hosen in p's neighborhood. Call thisprobability Psu

ess. Assume ea
h pro
essor
hooses rtp values uniformly in the range [1; m℄.Obviously, Psu

ess is larger than the probability of the events in whi
h no other pro
essorin p's neighborhood
hose the same value as p and p is maximal in p's neighborhood. Theprobability that p has the highest rtp value, given that no other pro
essor has the same rtpvalue as p, is 1fp(x) . This is due to symmetry
onsiderations. We now
al
ulate a lower boundfor Psu

ess: Psu

ess > 1fp(x) � (m� 1m)fp(x) > 1f(x) � (m� 1m)f(x)If we assume that m =
 � f(x) for some
 � 1, then we get:Psu

ess > 1f(x) � (
 � f(x)� 1
 � f(x))f(x) � 1e 1
 � f(x)The probability of any pro
essor to be
ome stable is
learly larger than Psu

ess. Fromnow on, we examine a set of Bernoulli trials, where one
ondu
ts several trials parallelly. Thesu

ess probability in our
ase is the probability a pro
essor has to be
ome stable and the
onvergen
e time is the expe
ted length of the longest trial. Sin
e the probability of su

essis larger than Psu

ess, the expe
ted time for
onvergen
e is smaller than the expe
ted lengthof the longest Bernoulli trial. As presented in [24℄, the expe
ted value of the longest trial isO(log 1(1�Psu

ess) n), where n is the number of
on
urrent trials held.A note is in order regarding the dependability of pro
essors. Sin
e for every two pro
essorswithin the same neighborhood the probabilities of su

ess are dependent, using a redu
tionto Bernoulli trials only gives a
orre
t upper bound sin
e if one pro
essor has su

eeded, theprobability of of a neighbor to su

eed is in
reased.To
on
lude, we
an see that if f(x) is
onstant, the expe
ted
onvergen
e time of thesyn
hronous algorithm is O(logn) phases. Sin
e ea
h phase is exa
tly x rounds, we get thatthe
onvergen
e time in terms of syn
hronous rounds is also O(logn).4.2 Asyn
hronous Cluster Constru
tionWe now present an asyn
hronous version of the previous hierar
hy
onstru
tion algorithm.Ea
h pro
essor p uses several key variables: leaderp;
andidatep; idp and rtpp. leaderp denoteswhether p is
urrently a leader.
andidatep is set to true if p is trying to be
ome a leader.idp is the identi�er ea
h pro
essor has, and rtpp is a random temporary identi�er used tobreak the symmetry between pro
essors. 22

One may try using the pro
essors' identi�ers in order to break symmetry. However,o

asionally an unfortunate order of id's may lead to a
onvergen
e time whi
h is proportionalto the diameter of the graph. We use randomness to break ties in order to over
ome su
h as
enario. Predi
ates:leader(Cp) :=9q 2 Cpjq 6= p ^ leader(q)1 (leaderp � leader(Cp)) = true:/* do nothing (stable). */2 leaderp = false ^ leader(Cp) = false:3 rtpp random()4
andidatep true5 C 0p new snapshot6 if leader(C 0p) = true then7
andidatep false8 leaderp false9 else if 8q 2 C 0p
andidateq = true!10 (hrtpq ; idqi < hrtpp; idpi) then11 leaderp true12 else13
andidatep false14 leaderp false15 end16 (leaderp = true ^ leader(Cp) = true):17
andidatep false18 leaderp false
Figure 6: Asyn
hronous Leader Ele
tion Algorithm for Pro
essor pThe
onstru
tion algorithm is
omposed of several parts. All pro
essors parti
ipate inan (asyn
hronous) update algorithm up to distan
e x. Based on the update tables, ea
hpro
essor p
onstru
ts a tree rooted at p and of depth not ex
eeding x. Using the tree, ea
hpro
essor invokes the snapshot algorithm to
olle
t the state of its neighborhood. We use thesnapshot algorithm to perform a PIF algorithm, and by adding information to the markersused in the snapshot pro
ess we a
hieve the desired PIF e�e
t. The number of trees andsnapshot proto
ols ea
h pro
essor must parti
ipate in
an be
al
ulated from the topology
olle
ted earlier.Constantly (this is to say that the time frame is not important), ea
h pro
essor p willtake a snapshot of the surrounding neighborhood (up to distan
e x). After the snapshot is
olle
ted, the algorithm in Figure 6 is invoked. Sin
e the snapshot algorithm is guaranteed tobe �nished in ea
h invo
ation (although the result might be in
orre
t, sin
e the rooted treehas not stabilized yet), we are guaranteed that future invo
ations of the snapshot algorithm23

will take pla
e. For a snapshot obtained at p, Cp, we denote leader(Cp) = true if there existsa pro
essor q 6= p in Cp, su
h that leaderq = true.Let us assume that a
omplete snapshot Cp is obtained at p. The four
ombinations ofleaderp and leader(Cp) determine the
ourse of a
tions p must follow. First,
onsider themost simple
ases where leaderp=false^ leader(Cp)= true or leaderp= true^ leader(Cp)=false. In these
ases, p should avoid taking any a
tion, sin
e, as far as p
an tell, thesituation is
orre
t. The
omplex
ases are when there are no leaders in p's vi
inity and pis not a leader itself or when p is a leader and
an see another leader within a distan
e of xfrom itself. In
ase leaderp=false^ leader(Cp)=false, p will �rst
hoose a random number(from a predetermined range) and store it in rtpp. Then, p will assign true to
andidatep(Figure 6 lines 3-4). The next operation is propagating the information that p wishes tobe
ome the leader of its neighborhood. This is a
hieved through the use of the snapshotproto
ol whi
h results in a new snapshot at p, C 0p (line 5). Now, if C 0p does not
ontaininformation about a leader or another
andidate, p
an safely pla
e itself as a leader andset leaderp = true. However, if leader(C 0p) = true holds, p should set
andidatep to false,sin
e there is now a leader in p's neighborhood. Last, if there are other
andidates in C 0p, pwill be
ome a leader if (and only if) the tuple hrtpp; idpi is larger than all other
andidate'stuples in C 0p (line 10).The last
ase is when leaderp= true^ leader(Cp)= true (line 16). Upon dete
ting su
h a
ondition, p will immediately assign leaderp and
andidatep with false and will start a new
y
le of the algorithm.To prove that the asyn
hronous hierar
hi
al
onstru
tion algorithm works, we will takean approa
h similar to the proof of the syn
hronous algorithm. We will denote a pro
essorp as stable in two
ases. The �rst
ase is a stable leader, when leaderp = true, 8q 2neighborhoodp(leaderq = false). Furthermore, all topology tables for ea
h pro
essor withinp's neighborhood are up to date and re
e
t p's leadership and no other message exists inthe system denoting another pro
essor as leader or
andidate. The se
ond
ase is of a stablenode, when p is not a leader, but there is a stable leader in p's neighborhood.Our �rst
laim is that on
e a pro
essor is stable, it will remain stable. Next, we show thata pro
essor has a positive probability of be
oming stable. We then use the s
heduler-lu
kgame to show that the algorithm stabilizes ([13℄,
hapter 2:9)Lemma 9. Let E = (
0; a0;
1; a1; : : :) be a fair exe
ution. If at a global
on�guration
i, apro
essor p has be
ome stable, then p will remain stable for all
on�gurations
j 2 E, su
hthat j > i.Proof: First, let us
onsider the
ase in whi
h p is a stable leader in
i. From the de�nitionof a stable leader, for ea
h q 2 neighborhoodp, leaderq = false and q denotes p as a leaderin q's update tables. Now, sin
e the topology tables do not
hange, p
an lose the stabilityproperty only if another pro
essor within p's neighborhood be
omes a leader too. Assumethat su
h a pro
essor q be
omes a leader in
j, j > i. Based on the leader ele
tion algorithm,this is possible in two
ases. Either q was not a leader and did not see a leader in itsneighborhood, or q was a leader and saw another leader. The �rst option is not feasible,sin
e q is aware of p being a leader (from the de�nition of stable). The se
ond option is not24

possible either, sin
e q will not set itself a leader as long as p is. Hen
e, a stable leader willremain stable.Now, we will pro
eed to dis
ussing a stable node p (not a leader). From the de�nition ofa stable pro
essor we dedu
e that there is a stable leader q in the neighborhood of p. Sin
eq is a stable leader and will remain su
h, p will remain stable too.Lemma 10. Let E = (
i; ai;
i+1; ai+1; : : :) be a fair exe
ution, su
h that the update algo-rithm and the snapshot algorithm have stabilized. Starting from any
on�guration in E , ea
hpro
essor p has a positive probability to be
ome stable within O(x) rounds.Proof: The stabilization time for the topology update algorithm and the snapshot algo-rithm is O(x). Consider now a pro
essor p whi
h is not stable in
0. Let
i be the �rst
on�guration in whi
h p has obtained a
orre
t snapshot of its neighborhood, Cp (obviously,
i is rea
hed within O(x) rounds). If p is stable in
i, then the pro
ess has been
ompleted.Otherwise, we will show that p has a positive probability of be
oming stable within O(x)rounds.We will now show that within 3 � x rounds at most, either p be
omes stable or thereexists a pro
essor in p's neighborhood whi
h
hooses a new rtp value and has a positiveprobability of be
oming a stable leader. Assume, towards
ontradi
tion, that no pro
essorin p's neighborhood
hooses a new rtp value within 3 �x rounds and p does not be
ome stableduring this time. If there were no leaders in p's neighborhood, p would have
hosen a new rtpvalue within x rounds (the number of rounds whi
h would take p to �nish a new snapshot).Hen
e, there exists a pro
essor q 2 neighborhoodp su
h that leaderq = true (it is possiblethat q = p). Sin
e p is not stable, we
an dedu
e that q is also not a stable leader. Suppose,that after x rounds, q has not set leaderq to false and q is still not stable. This impliesthat a di�erent pro
essor whi
h is also a leader exists in q's neighborhood. After x roundsat most, q will dete
t this fa
t by way of a new snapshot and will set leaderq to false. In asimilar manner, we
an show that ea
h leader in p's neighborhood eventually either be
omesstable within 2 � x rounds or relinquishes leadership. If one leader be
omes stable, the proofis now
ompleted. Otherwise, a pro
essor in p's neighborhood (possibly p) will noti
e thefa
t that there are no leaders and will
hoose a new rtp value within x rounds. Overall, weget that after O(x) rounds at least one new rtp value is
hosen.Denote pr as the pro
essor whi
h �rst
hooses a new rtp value in p's neighborhood. Thisassignment is a result of pr �nishing a snapshot Cr (whi
h takes O(x) rounds to
omplete)and of noti
ing that no leaders exist in this snapshot. Our next
laim is that between thestart of the snapshot that resulted in Cr and the end of the next snapshot that pr will take(line 5) and whi
h is denoted C 0r, ea
h pro
essor in pr's neighborhood
annot assign morethan one new value to its rtp if the right
onditions hold. Denote
start as the
on�gurationin whi
h the snapshot Cr started and
end as the
on�guration in whi
h C 0r ended. Assumethat ea
h pro
essor q, whi
h
hooses a new rtp value between
start and
end
hooses a valuesmaller than that of pr. On
e the PIF snapshots initiated by pr rea
h q, q loses to pr, andwill not enter line 2. Thus, q will not
hoose a new random rtp value more than on
e between
start and
end. The probability that pr will
hoose an rtp value in su
h a way is larger thanPsu

ess. As a result, pr will assign leaderpr by true (line 10) and within x rounds will be
omea stable leader. This way, p will also be
ome stable within 4 � x rounds from
0.25

Thus, we
an make the following
orollary:Corollary 1. In every fair exe
ution, ea
h pro
essor has a positive probability of be
omingstable in every O(x) rounds and it holds by [24℄ that within O(logn) expe
ted number ofrounds the algorithm
onverges to a stable state.4.3 Hierar
hy Constru
tionConstru
ting the hierar
hy is a
hieved by a repeated appli
ation of the
lustering algorithm.We suggest using the
lustering algorithm on the original graph G,
onstru
ting
lusterswith x > 1 (in essen
e, a minimal x-dominating set). We then propose to dynami
allyde�ne an overlay network between the leaders of ea
h
luster and apply the same s
heme tothe resulting graph. The pro
ess is
ompleted after a single
luster,
omposed of the entiregraph G, is �nally de�ned. The resulting hierar
hy is of O(logn) levels, and in ea
h level i(level 0 is the original graph, G) there exist at most n2i pro
essors. This bound arises fromthe fa
t that ea
h leader p has at least one pro
essor dire
tly
onne
ted to p, whi
h is notdire
tly
onne
ted to any other leader. Sin
e there exist O(logn) levels in the hierar
hy andsin
e
ommuni
ation on overlay edges is
onsidered non expensive, the hierar
hy
onstru
tionalgorithm stabilizes within O(log2 n) expe
ted rounds (O(logn) for ea
h level, times O(logn)levels), assuming the degree of ea
h of the hierar
hy levels is bounded.Next, we des
ribe the
onstru
tion of the overlay network and present a graph
lass inwhi
h the degree of ea
h hierar
hy level is bounded.4.3.1 Overlay Network Constru
tionLet G = G0 = (V0; E0) be the original graph, to whi
h we apply our
lustering algorithm. Wede�ne Gi = (Vi; Ei) so that Vi = fp 2 V0j p is a leader in Vi�1g and (p; q) 2 Ei i� the lengthof the shortest path between p and q in G0 is at most 2 � xi+ xi�1 (where x is the parameterof the
lustering algorithm). This
onstru
tion
an be easily a
hieved by ea
h leader p byextending the update algorithm to in
lude pro
essors up to distan
e x+1 (instead of x) andadding the list of leaders at distan
e x to ea
h pro
essor p to p's tuple. We then apply the
lustering algorithm on Gi, so that leaders will dominate pro
essors up to distan
e xi+1 inG0. Note that the
riteria for distan
e among leaders is expressed in terms of G0 and theoriginal x, namely; xi+1 for level i of the hierar
hy.Lemma 11. Ea
h resulting graph Gi is a
onne
ted graph.Proof: By indu
tion: G0 is a
onne
ted graph, by de�nition. Assume Gi�1 is also a
onne
ted graph, and Gi is the result of the
lustering algorithm. Let p0 and pk be pro
essorsin Vi su
h that p0; p1; : : : ; pk is a path between p0 and pk in Gi�1 (su
h a path exists, sin
eGi�1 is a
onne
ted graph). Let qj be the
hosen leader of pj (1 � j � k � 1) in Gi�1.A

ording to the overlay
onstru
tion, (p0; q1) 2 Ei ^ (qk�1; pk) 2 Ei. Furthermore, 82 �j � k� 1 (qj�1; qj) 2 Ei, sin
e the distan
e in G0 between pj�1 and pj is at most 2 �x2+xi�1(or pj�1 = pj). Hen
e, p0; q1; q2; : : : ; qk�1; pk is a path between p0 and pk in Gi.26

To obtain higher levels of the hierar
hy, we
ontinue with the same
onstru
tion re
ur-sively. Suppose we have de�ned the levels of the hierar
hy up to (and in
luding) level i. Thepro
essors of Gi will parti
ipate in the
lustering algorithm up to distan
e xi+1. Gi+1 will be
omposed of the resulting leaders of Gi, su
h that two pro
essor are neighbors i� the lengthof the shortest path between them in G0 is at most 2 � xi+1 + xi. Ea
h Gi is, in turn, also
onne
ted, a

ording to Lemma 11. To realize this
onstru
tion, we suggest ea
h leader pwill add to its update table of Gi all the topology p has
olle
ted in ea
h Gj up to now.Next, we des
ribe the geographi
ally aÆned
lass of graphs su
h that the
lustering algo-rithm and the overlay
onstru
tion, applied on these graphs, produ
es an overlay graph ofbounded degree. This
lass is implied by a typi
al deployment of sensor networks.4.3.2 Geographi
ally AÆned GraphsIn this
lass of graphs we wish to explore the relation between the Eu
lidean distan
e betweenpro
essors and the length of the shortest path between them. This de�nition is similar tothe embedding s
hemes presented in [29℄. We �rst de�ne the geographi
ally aÆned
lass ofgraphs.De�nition 4.1. Let G = (V;E) be a graph embedded in the Eu
lidean plane. For p; q 2 V ,de�ne k(p; q)k2 as the Eu
lidean distan
e between p and q, and dist(p; q) as the number ofhops in a shortest path from p to q in G. G is Geographi
ally aÆned i� there exist a
onstant
 � 1 su
h that 8p; q 2 V :
 � dist(p; q) � k(p; q)k2 � dist(p; q).We will next show that ea
h geographi
ally aÆned graph has a bounded degree. Fur-thermore, we also show that the hierar
hy
onstru
tion algorithm presented above produ
esa bounded degree graph in ea
h level of the hierar
hy.Lemma 12. Given a
ir
le C of radius r and a set S of points in C, where the minimaldistan
e between any two points is y, then jSj � 16�r2y2 .Proof: Consider Figure 7. C is
ontained in a square sq1 whose edges are of length 2 � r.In ea
h square sq2 whose edges are of length y2 , there
an be at most one point from S. jSjis obviously smaller than the number of sq2 squares whi
h
an be �tted into sq1. Hen
e,jSj � 4�r2y2=4 = 16�r2y2 .Lemma 13. Let G0 = (V0; E0) be an Eu
lidean graph, su
h that G0 is geographi
ally aÆned.Ea
h graph in the series fGiglog ni=0 , resulting from the
onse
utive appli
ation of the
lusteringalgorithm with parameter xi+1, has a degree at most 16
2 � (2 � x+ 1)2.Proof: Let p be a pro
essor in Gi, and Np the set of p's neighbors in Gi. The shortest path(in G0) between p and a neighbor q is at least xi (sin
e in Gi�1 p and q are leaders) and atmost 2 � xi+1 + xi (p and q are neighbors in Gi i� their distan
e in Gi�1 is at most 2 � x + 1hops, whi
h is at most 2 � xi+1 + xi hops in G0). In a similar fashion, the shortest path (inG0) between any q; r 2 Np is at least xi (if they are neighbors in Gi). Sin
e the graph isgeographi
ally aÆned, we get the following equations:
 � xi � k(p; q)k2 � 2 � xi+1 + xi27

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

����

���
���
���
���

r

y

sq

y/2

2 r

sq

1

2

Figure 7: Maximal Number of Leaders
 � xi � k(q; r)k2Hen
e, ea
h q 2 Np must reside inside a
ir
le C,
entered at p and of radius 2 � xi+1 + xi.A

ording to Lemma 12, jNpj is bounded by 16 � (2�xi+1+xi)2(
�xi)2 = 16
2 � (2 � x+ 1)24.4 Self-Organization PropertiesNext, we prove that our algorithms are self-organizing. Firstly, for the
lustering algorithm,it is worthwhile noting that lo
ality holds sin
e the algorithm stabilizes within expe
tedO(logn) rounds. Thus, we fo
us our dis
ussion on dynami

hanges of the
ommuni
ationgraph | namely, on addition and removal of
ommuni
ation links. We wish to draw thereaders' attention to the fa
t that addition (or removal) of pro
essors
an be modeled bythe addition (or removal) of their
ommuni
ation links (whi
h is a bounded number ofoperations). When we dis
uss addition of pro
essors, we
onsider addition of pro
essors ina prede�ned state or in an arbitrary state. We only
onsider topology
hanges after thealgorithm has stabilized (otherwise, the global stabilization time applies).Lemma 14. Starting in a safe
on�guration of the
lustering algorithm, if the update tableof pro
essor p has
hanged due to a
hannel (respe
tively, pro
essor) addition or removal in
on�guration
i and the
hannel (respe
tively, pro
essor) is atta
hed (a neighbor) to p, thenwithin expe
ted O(x+log f(x)) = O(1) rounds, a safe
on�guration is rea
hed. Furthermore,for ea
h pro
essor q, su
h that dist(p; q) > 2 � x, q will remain stable.Proof: Let us assume that p is a pro
essor as des
ribed in the Lemma. Sin
e the updatetables of ea
h pro
essor are restri
ted to pro
essors of distan
e x, no pro
essor q, su
h thatdist(p; q) > 2 � x, will
hange its own table. Furthermore, after O(x) rounds, ea
h pro
essorwill have
orre
t tables. The
lustering algorithm now has to stabilize only in the smallneighborhood of p, whi
h takes O(log f(x)) expe
ted number of rounds.28

Next, let us assume that q was a stable leader in
i and dist(p; q) > 2 �x. First, we arguethat ea
h pro
essor r in q's neighborhood, maintains a
orre
t tuple of the update algorithmdenoting q. This is obvious, sin
e no topology
hanges were made in q's neighborhood. Asa result, q will
orre
tly parti
ipate in ea
h spanning tree
onstru
ted by su
h a pro
essorr. Consequently, ea
h time r takes a snapshot of its neighborhood, r will see that leaderq =true. Hen
e, r will not assign true to leaderr and q will remain a stable leader. Thus, allpro
essor within q's neighborhood will remain stable.We now
onsider the e�e
ts that
hannel additions have on the
lustering algorithm. Letus assume that a new (bi-dire
tional)
hannel, (p; q), is added between pro
essors p andq. We argue that any stable pro
essor distan
ed more than 2 � x from either p or q willremain stable. Furthermore, within an expe
ted
onstant number of rounds, the algorithmwill stabilize. This
learly follows from Lemma 14. Let us now assume that a
hannel (p; q)is removed. Let nl be the set of all pro
essors, so that the removal of (p; q) leaves themleaderless or unstable. We argue that the
onstant number of pro
essor in nl are at mostat distan
e x from either p or q and that stable pro
essors whi
h are distan
ed farther thanx will remain stable. Pro
essor removal is easily redu
ed to the removal of all
hannelsatta
hed to this pro
essor from the
ommuni
ation graph.We also dis
uss additions and removals of pro
essors. We argue that stable pro
essorswhi
h are farther than 2 � x from the removed/added pro
essor will remain stable. This also
learly follows from Lemma 14.Thus, our
lustering algorithm is self-organizing, sin
e the expe
ted
onvergen
e time isO(logn) 2 o(n) and the number of pro
essors whi
h
hange state due to a dynami
 topology
hange is
onstant. In fa
t, when k
hanges o

ur approximately at the same time, theexpe
ted
onvergen
e time is O(log k) following the last
hange o

urren
e.Appli
ation to hierar
hy; Let us examine a dynami

hange at G0. There are two pro
es-sors, p and q, whi
h are involved in the
hange ((p; q) was either added or removed). We �rst
on
entrate on p. From Lemma 14 we infer that only pro
essors within a distan
e of 2 �x+1hops from p
an be a�e
ted in G0. The dynami

hange
an in
uen
e the state of leaderswithin this range, whi
h
an be regarded as a new dynami

hange in G1. The radius of the
orresponding in
uen
ed region from p in G1 is therefore (2�x2+2�x+1)+(2�x+1) around pinG0. In a similar way, the radius of the in
uen
ed region from p inGi is 2�xi+2�xi�1+xi�2+(the radius of in
uen
e in Gi�1). Overall, the area of e�e
t around p in G0 is less than 4�xi+2.Sin
e G0 is geographi
ally aÆned, the Eu
lidean radius of su
h a
ir
le is smaller than 4�xi+2.The minimal distan
e in G0 between pro
essor in Gi is at least xi (when
ounting real edges,not virtual ones), sin
e they are leaders in Gi�1. Again, sin
e G0 is geographi
ally aÆned,the Eu
lidean distan
e between leaders is at least
 � xi. Using Lemma 12 (whi
h appears inthe Appendix), it is evident that the number of pro
essors a�e
ted at Gi be
ause of p is atmost 16�(4�xi+2)2(xi)2 = 256 � x4 = O(1). Sin
e we have to
onsider q as well, we double the totalnumber of
hanges to have a total of O(1)
hanges in ea
h level.To
on
lude, the hierar
hy
onstru
tion algorithm is self-organizing, sin
e the expe
tedstabilization time is O(log2 n) 2 o(n) and dynami
 topology
hanges a�e
t only O(logn) 2o(log2 n) pro
essors. Similarly, when k
hanges o

ur approximately at the same time, theexpe
ted
onvergen
e time is O(log2 k) rounds following the last o

urring
hange.29

5 Overlay Based Hierar
hi
al Snapshot AlgorithmWe now present a self-stabilizing and self-organizing snapshot s
heme (whi
h also enablessubsystems to take snapshots independently). Due to the use of overlay links, the resultingsnapshot is sublinear.Let p be a node in HT , so that p is a parent of leaves in HT . Let p1; p2; : : : ; pk be the
hildren of p in HT . Note that p and p1; p2; : : : ; pk reside in the same subsystem, subsi,whi
h is a
onne
ted
omponent of G. A spanning tree of subsi rooted at p is
onstru
tedand p is responsible for invoking snapshots in subsi.Let q be a node in HT , so that at least one
hild of q in HT is a subsystem,
onsistingof more than a single pro
essor. Let us assume that q represents (is the leader of) thesubsystem subs. Let subs1; subs2; : : : ; subsj be the subsystems represented by the
hildrenof q in HT . Note that the union of subs1; subs2; : : : ; subsj is identi
al to subs, the subsystemrepresented by q. Let q1; q2; : : : ; ql be the pro
essors that are leaders of subs1; subs2; : : : ; subsl,respe
tively. It is important to note that it is possible that the pro
essor q, that is the leaderof subs, may also serve as a leader qi of (at most) one of the above subsi. Using the
ommuni
ation links in subs, we de�ne an overlay network
onne
ting q, q1; q2; : : : ; ql. Aspanning tree, rooted at q, of the obtained overlay network is
onstru
ted. q is responsiblefor invoking snapshots in subs using the spanning tree of the overlay network of subs. Whena snapshot is requested at q, it will initiate a snapshot in subs.The snapshot initiated at subs
an serve two purposes. On the one hand, the snapshotalgorithm of subs
an be used to obtain a
onsistent snapshot only of q1; q2; : : : ; ql and q.On the other hand, when q sends a marker, it
an add another indi
ator bit, whi
h a
tsas a snapshot request for q1; q2; : : : ; ql in subs1; subs2; : : : ; subsl. The result is a re
ursiveinvo
ation of the snapshot algorithm, resulting in a
onsistent snapshot of all pro
essors insubs.The overlay network inside subsystem subs is needed to ensure �fo delivery of messagesbetween leaders. We also need to restri
t
ross subsystem
ommuni
ations (of the distributedalgorithm) to travel only through the subsystem leaders using the overlay network. This isdone in order to ensure that messages will not be able to bypass markers or to
orruptsnapshots.The addition of the overlay network requires several adjustments of the snapshot algo-rithm. The overlay network adds virtual links to the
ommuni
ation graph whi
h should bealso re
orded. In order to implement virtual links, routing information su
h as the one usedin the sour
e routing s
heme, must be added to messages. Consequently, ea
h pro
essor,upon re
eiving a message through a physi
al link,
an de
ide whi
h virtual link this messagebelongs to. Furthermore, the state of the pro
essor is not a�e
ted by the arrival of thismessage, sin
e it is only forwarded to its destination. Hen
e, the pro
essor
an ignore thismessage with regards to the snapshot algorithm without re
ording it on the physi
al link.Su
h messages need to be re
orded only at their destination, on the virtual link they traverseon.
30

6 Extensions and Con
luding RemarksSelf-Organization. We have given a simple and intuitive de�nition of self-organization.Furthermore, we have displayed the relevan
e of self-stabilization with regards to self-organization.Our self-stabilizing and self-organizing snapshot algorithm implies sublinear time algorithmsin the overlay network model for many
ore distributed tasks.Self-stabilizing and self-organizing leader ele
tion. The hierar
hy
onstru
tion algo-rithm whi
h is, by itself, a self-stabilizing and self-organizing algorithm, naturally de�nes aleader for ea
h subsystem. Thus, the topmost subsystem (whi
h
ontains the entire system)also has a leader, whi
h we de�ne to be the output of the leader ele
tion algorithm. Hen
e,the output of the hierar
hy
onstru
tion algorithm
an be used to de�ne a self-stabilizingleader ele
tion algorithm whi
h
onverges in O(log2 n) expe
ted number of rounds and han-dles topology
hanges gra
efully in O(logn) rounds.Our de�nition of self-organization
an easily
apture the e�e
t of transient faults on thesystem. It
an be shown that a single transient fault in the system
an e�e
t only the lo
alupdates of a
onstant number of pro
essors and therefore in
uen
e O(1) states. Moreover,the number of state
hanges following (approximately) simultaneous faults that o

ur inneighboring pro
essors is proportional to the group's diameter in the graph. In the worst
ase, when the faults are approximately x apart (say, all leaders
hange state to non-leaders)the number of faults is O(n) allowing a
omplete stabilization phase.Self-stabilizing and self-organizing snapshots. Building on top of the hierar
hy
on-stru
tion algorithm, we have presented a self-stabilizing snapshot s
heme, where a globalsnapshot
an be
olle
ted in O(log2 n) rounds (in fa
t, if the hierar
hy was previously de-�ned, only O(logn) rounds are ne
essary).Self-stabilizing
onverter. Our self-stabilizing and self-organizing snapshot algorithmimplies a new eÆ
ient tool for
onverting distributed (rea
tive, or �xed output) algorithmsto self-stabilizing algorithms in sublinear time; the leader of the system
an take repeatedsnapshots and verify ea
h snapshot for
orre
tness. When a snapshot indi
ates an illegalstate, a global reset pro
edure may be initiated, using the infrastru
ture
reated by thehierar
hy de�nition algorithm, to rea
h a prede�ned (and safe) state.A
knowledgments: Many thanks to Noga Alon for helpful dis
ussions.Referen
es[1℄ Afek, Y., and Dolev, S., \Lo
al Stabilizer," Journal of Parallel and Distributed Com-puting, spe
ial issue on self-stabilizing distributed systems, Vol. 62, No. 5, pp. 745-765(May 2002). Also in Pro
. of the 5th Israeli Symposium on Theory of Computing andSystems, (ISTCS 1997), pp. 74-84, 1997.[2℄ An
eaume, E., Defago, X., Gradinariu, M., and Roy, M., \Towards a theory ofself-organization" 9th International Conferen
e on Prin
ipels of Distributed Systems,OPODIS, pp. 146-156, 2005.[3℄ Awerbu
h, B., \Complexity of network syn
hronization," J. ACM, 32(4):804-823, 1985.31

[4℄ Brukman, O., Dolev, S. and Kolodner, H., \Self-Stabilizing Autonomi
 Re
overer forEventual Byzantine Software," IEEE International Conferen
e on Software-S
ien
e,Te
hnology & Engineering, (SwSTE03), pp. 20-29, Herzelia, 2003. Also in the Workshopon Adaptive Distributed Systems (WADiS03), Sorrento, Italy, 2003.[5℄ Burman, J., Kutten, S., Herman, T., Patt-Shamir, B. \Asyn
hronous and FullySelf-Stabilizing Time-Adaptive Majority Consensus" 9th International Conferen
e onPrin
ipels of Distributed Systems, OPODIS, 2005.[6℄ Chandy, M., and Lamport, L., \Distributed snapshots: determining global states ofdistributed systems," ACM Transa
tions on Computing Systems, 3(1):63-75, 1985.[7℄ Tanenbaum, A., \ Computer Networking, 4th edition", Prenti
e Hall, 2002.[8℄ Cournier, A., Datta, A., Petit, F., and Villain, V,. \Enabling snap-stabilization," Pro
.of the 23rd International Conferen
e on Distributed Computing Systems, pages 12-19,2003.[9℄ Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., Introdu
tion to Algorithms,2nd edition, MIT Press and M
Graw-Hill, 2001.[10℄ Costello, A., Varghese, G., \Self-stabilization by window washing", Pro
. of the 15thAnnual ACM Symposium on Prin
iples of Distributed Computing, pages 35-44, 1996.[11℄ Dijkstra, E., W., \Self-stabilizing systems in spite of distributed
ontrol," Communi
a-tions of the ACM, 17(11):643-644, 1974.[12℄ Dolev, S., \Optimal Time Self-Stabilization in Uniform Dynami
 Systems," ParallelPro
essing Letters, Vol. 8 No. 1, pp. 7-18, 1998.[13℄ Dolev, S., Self-stabilization, MIT Press, 2000.[14℄ Dolev, S., and Herman, T., \SuperStabilizing Proto
ols for Dynami
 Distributed Sys-tems\. Pro
. of the 2nd Workshop on Self-Stabilizing Systems May 1995. Chi
ago Jour-nal of Theoreti
al Computer S
ien
e, 3(4) spe
ial issue on self-stabilization, 1997.[15℄ Dolev, S., Israeli, A., and Moran, S., \Resour
e bounds for self-stabilizing messagedriven proto
ols," Symposium on Prin
iples of Distributed Computing, pages 281-293,1991.[16℄ Dolev, S., Israeli, A., and Moran, S., \Uniform Dynami
 Self-Stabilizing Leader Ele
-tion," IEEE Transa
tions on Parallel and Distributed Systems, volume 8, number 4,1997, pages 424-440, IEEE Press.[17℄ Dolev, S., Kranakis, E., Krizan
, D., and Peleg, D., \Bubbles: Adaptive Routing S
hemefor High-Speed Dynami
 Networks," SIAM Journal on Computing, Vol. 29 No. 3, pages.804-833, 1999. Also in Pro
. of the 27th ACM Symposium on Theory of Computing,(STOC 1995) pages. 528-537, 1995. 32

[18℄ Dolev S., Tza
har N., \Colonies: Self-Stabilizing and Self-Organizing Distributed Algo-rithms", Te
hni
al report #06{01, Ben Gurion University of the Negev, O
tober 2005.[19℄ Felix C. G�artner, Henning Pagnia, \Time-EÆ
ient Self-Stabilizing Algorithms throughHierar
hi
al Stru
tures\, in Pro
. to the Sixth Symposium on Self-Stabilizing SystemsPages. 154-168, 2003[20℄ Ghosh, S., Gupta, A., Herman, T., and Pemmaraju, S. \Fault-Containing Self-Stabilizing Algorithms" PODC 1996, pages 45{54.[21℄ Goldberg, A., Plotkin, S., and Shannon, G. \Parallel symmetry- breaking in sparsegraphs". Pro
eedings of the Nineteenth Annual ACM Conferen
e on theory of Computing(STOC), 1987, pages 315{324.[22℄ Henzinger, M., King, V., \Randomized Fully Dynami
 Graph Algorithms with Poly-logrithmi
 Time per Operation", Journal of the ACM, Vol. 46, No. 4, pp. 502-516, July1999.[23℄ Katz, S., and Perry, K., \Self-stabilizing extensions for message-passing systems" Pro-
eedings of the ninth annual ACM symposium on Prin
iples of distributed
omputing,pages 91-101, 1990.[24℄ Kirs
henhofer P., Prodinger H., \A Result in Order Statisti
s Related to Probabilisti
Counting", Computing, vol. 46 pages 15-27.[25℄ Kutten, S., Peleg, D., \Tight Fault Lo
ality", Annual Symposium on Foundations ofComputer S
ien
e (FOCS) 1995.[26℄ Kuhn, F., Mos
ibroda, T., Nieberg, T. and Wattenhofer, R., \Fast Deterministi
 Dis-tributed Maximal Independent Set Computation on Growth-Bounded Graphs", Dis-tributed Computing: 19th International Conferen
e, DISC 2005, pages 273{283.[27℄ Kuhn, F., Mos
ibroda, T., Wattenhofer, R., \What
annot be
omputed lo
ally!", Pro-
eedings of the 23rd ACM Symposium on Prin
iples of Distributed Computing (PODC),2004, pages 300{309.[28℄ Lamport, L., \Time,
lo
ks, and the ordering of events in a distributed system", Com-muni
ations of the ACM, 12(7):558-565, 1978.[29℄ Linial N., London E., and Rabinovi
h Y. \The Geometry of Graphs and Some of itsAlgorithmi
 Appli
ations". In Pro
eedings of the 35th Annual IEEE Symposium onFoundations of Computer S
ien
e, pages 577{591, O
tober 1994.[30℄ Luby M.,\a Simple Parallel Algorithm for the Maximal Independent Set Proble", SIAMjournal of Computing vol 15(4), 1986, pages. 1036{1053[31℄ Mos
ibroda, T., Wattenhofer, R., \EÆ
ient Computation of Maximal Independent Setsin Unstru
tured Multi-Hop Radio Networks", The 1st IEEE International Conferen
eon Mobile Ad-ho
 and Sensor Systems, Fort Lauderdale, Florida, 2004.33

[32℄ Patterson, D., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., Enriquez,P., Fox, A., Ki
iman, E., Merzba
her, M., Oppenheimer, M., Sastry, N., Tetzla�, W.,Traupman, J., and Treuhaft, N., \Re
overy Oriented Computing(ROC): Motivation,De�nition, Te
hniques and Case Studies". UC Berkeley Computer S
ien
e Te
hni
alReport UCB/CSD-02-1175, Berkeley, CA, Mar
h 2002.[33℄ Plaxton, C. G., Rajaraman, R., and Ri
ha, A. W. \A

essing nearby
opies of repli-
ated obje
ts in a distributed environment\. In Pro
eedings of the Ninth Annual ACMSymposium on Parallel Algorithms and Ar
hite
tures 1997. ACM Press, New York, NY,pages. 311-320.[34℄ Varghese, G., \Self-stabilization by
ounter
ushing," SIAM Journal on Computing,30(2):486-510, 2000, also in, Symposium on Prin
iples of Distributed Computing, pages244-253, 1994.[35℄ Zhang, H., Arora, A., \GS3: S
alable Self-
on�guration and Self-healing in WirelessNetworks", Symposium on Prin
iples of Distributed Computing, pages 58-67, 2002.

34

