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haryNovember 26, 2007Abstra
tSelf-stabilization ensures automati
 re
overy from an arbitrary state; we de�ne self-organization as a property of algorithms whi
h display lo
al attributes. More pre
isely,we say that an algorithm is self-organizing if (1) it 
onverges in sublinear time and (2)rea
ts \fast" to topology 
hanges. If s(n) is an upper bound on the 
onvergen
e timeand d(n) is an upper bound on the 
onvergen
e time following a topology 
hange, thens(n) 2 o(n) and d(n) 2 o(s(n)). The self-organization property 
an then be used forgaining, in sub-linear time, global properties and rea
tion to 
hanges. We present self-stabilizing and self-organizing algorithms for many distributed algorithms, in
ludingdistributed snapshot and leader ele
tion.We present a new randomized self-stabilizing distributed algorithm for 
luster def-inition in 
ommuni
ation graphs of bounded degree pro
essors. These graphs re
e
tsensor networks deployment. The algorithm 
onverges in O(log n) expe
ted number ofrounds, handles dynami
 
hanges lo
ally and is, therefore, self-organizing. Applyingthe 
lustering algorithm to spe
i�
 
lasses of 
ommuni
ation graphs, in O(log n) levels,using an overlay network abstra
tion, results in a self-stabilizing and self-organizingdistributed algorithm for hierar
hy de�nition.Given the obtained hierar
hy de�nition, we present an algorithm for hierar
hi
aldistributed snapshot. The algorithms are based on a new basi
 snap-stabilizing snap-shot algorithm, designed for message passing systems in whi
h a distributed spanningtree is de�ned and in whi
h pro
essors 
ommuni
ate using bounded links 
apa
ity.The algorithm is on-demand self-stabilizing when no su
h distributed spanning tree isde�ned. Namely, it stabilizes regardless of the number of snapshot invo
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hy
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Given a distributed algorithm for a spe
i�
 task, we are able to 
onvert the algorithminto a self-stabilizing algorithm for the same task with an expe
ted 
onvergen
e timeof O(log2 n) rounds.
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1 Introdu
tionThe availability and robustness, as well as the possibility for on-demand re
on�guration oflarge systems, are in many 
ases vital; be it 
lusters of servers that support 
ommer
iala
tivity, a grid of 
omputers that parti
ipate in a 
ompli
ated 
omputation or a dynami
sensor network. In parti
ular, an important aspe
t for large on-going systems is the abilityto automati
ally re
over from an in
onsistent state, namely to be self-stabilizing ([13℄) or inother words, to have a system that 
an be started in an arbitrary state.To 
apture the need of the industry in autonomi
 and self-* systems, we propose 
om-bining self-stabilization (in fa
t SuperStabilization [14℄) with self-organization. While self-stabilization is well de�ned, the self-organization property has no widely agreed upon def-inition. We propose to de�ne self-organization as satisfying two main properties: lo
alityand dynami
ity. Namely, we require that (1) the algorithm stabilizes in sublinear time withregards to the number of pro
essors and that (2) the addition and removal of pro
essorsin
uen
es a small number of other pro
essors' states. In other words, if s(n) represents thestabilization time and d(n) represents an upper bound on the stabilization time (and numberof state 
hanges) following a dynami
 topology 
hange, then: s(n) 2 o(n) and d(n) 2 o(s(n)).This de�nition 
an be naturally extended to 
apture also the e�e
t of lo
al transient faultsthat 
orrupt the states of a subset of the pro
essors rather than only topology 
hanges (thusit is in the spirit of both the superstabilizing and fault-
ontainment approa
hes [13℄).In this work, we allow algorithms to de�ne (on the 
y) and (then immediately) use hyper
ommuni
ation links, whi
h are overlay links that are 
onstru
ted of 
ommuni
ation linksalong a path. We regard the time that a message travels over su
h a link as one timeunit, assuming that (pra
ti
ally) no pro
essing is involved in forwarding messages over theselinks (e.g., [17, 33℄, mpls [7℄). This de�nition is motivated by (e.g., telephony) systems,where swit
hes along a path are 
on�gured for a session and the path is essentially a wire.We propose to use the self-stabilizing and self-organizing properties of s
hemes 
ombinedwith su
h swit
hing 
apabilities to obtain dramati
ally faster 
onvergen
e rates and globalinformation transmission with relation to traditional 
ommuni
ation networks. In traditionalsettings there are obvious lower bounds that are proportional to the number of nodes (orthe diameter of the 
ommuni
ation graph of the system) while the existen
e of overlay linksallows us to obtain logarithmi
 bounds.1.1 Main ContributionSelf-Stabilizing and Self-Organizing hierar
hy de�nition. The hierar
hy of subsys-tems is de�ned by partitioning the 
ommuni
ation graph into small 
lusters, after whi
h
lusters are merged to form bigger 
lusters and so on. The partition 
an be done a

ordingto a designer's input, using an automati
 o�-line 
lustering algorithm or even an on-line
lustering algorithm that re
e
ts the system's 
urrent behavior. In parti
ular, we suggest arandomized self-stabilizing and self-organizing partition that is based on periodi
al 
olle
tionof lo
al topology (up to a 
ertain distan
e). The 
olle
ted lo
al topology supports a ran-domized lo
al leader ele
tion, in whi
h a non leader pro
essor that does not identify a leaderwithin a 
ertain distan
e x tries to 
onvert itself to a leader. Leaders within distan
e x from3



ea
h other are eliminated, until there are no leaders that are within distan
e x or less fromea
h other. Higher level partitions, using larger distan
es and overlay network abstra
tionbetween leaders, are 
onstru
ted in a similar way.In asyn
hronous systems, our 
lustering algorithm uses (for ea
h pro
essor) a (lo
al)self-stabilizing snapshot algorithm for obtaining lo
al syn
hronization of a
tions.Self-Stabilizing snapshots. We present a snap-stabilizing (e.g., [8℄) snapshot algorithmfor distributed systems, that uses message passing with bounded link 
apa
ity, in whi
h aspanning tree is distributively de�ned. Our snapshot algorithm is designed for a messagepassing system in whi
h any initial state of link 
ontents is 
onsidered and in whi
h thepossibility of messages over
ow (due to sending a message through a full link) is in
orporatedinto the model.Our snapshot algorithm 
an also be applied to systems with a general 
ommuni
ationgraph in whi
h a rooted spanning tree is distributively de�ned by another self-stabilizingalgorithm. The spanning tree may be an output of a self-stabilizing (BFS) rooted tree
onstru
tion algorithm. In this 
ase, however, we obtain only on-demand stabilization ratherthan snap-stabilization. On-demand stabilization ensures that regardless of the number ofnew requests (for snapshots), the system rea
hes a state, su
h that eventually any newrequest results in a 
orre
t output (snapshot). In other words, stabilization does not rely onrepeated invo
ations of new (snapshot) requests. Our on-demand self-stabilizing snapshotalgorithm serves us as a basi
 building blo
k in order to obtain our hierar
hi
al snapshots
hemes.Overlay network based snapshot. We suggest an approa
h for hierar
hi
al snapshotbased on an (�fo preserving) overlay network abstra
tion. We enable ea
h subsystem toperform an independent snapshot, and further enable ea
h level of the hierar
hy to performa lo
al snapshot. We suggest the use of overlay 
ommuni
ation links whi
h \dire
tly" 
onne
tleaders of 
lusters. It is worthwhile noting that an (�fo) overlay network link may be in fa
ta path of physi
al links. It is also evident that the 
ommuni
ation over an overlay link ismu
h faster than the sum of the single hop 
ommuni
ation links that implement the overlaylink1.Leaders of subsystems are de�ned, and the 
ommuni
ation between pro
essors in di�erentsubsystems traverses the overlay 
ommuni
ation links between the leaders of the subsystems.Thus, there is no need for re
ording the messages over physi
al links between subsystemsunless they are part of an overlay 
ommuni
ation link. When a snapshot is invoked bya leader of a subsystem (possibly due to a request forwarded to the leader by anotherpro
essor), the leader uses the overlay network to notify (send snapshot markers to) theleaders of the subsystems that belong to its subsystem. These leaders, in turn, are responsiblefor performing a snapshot in their subsystem in the same manner.Dis
ussion 
on
erning overlay network ar
hite
ture. We assume the existen
e of 
om-muni
ation swit
hes that are re
on�gurable by (
ommands of) our algorithm. Our approa
his layered; the �rst layer is based on traditional point to point neighboring 
ommuni
ation,where 
ommuni
ation is between pro
essors that are dire
tly 
onne
ted by physi
al 
ommu-ni
ation mean. The output of this layer (whi
h is the lo
al topology of ea
h pro
essor) is usedto 
on�gure overlay links, using the 
apabilities of the swit
hes. An analogous pro
edure is1In some 
ases, preassigned frequen
ies or/and supporting swit
hing hardware 
an be used. e.g.,mpls{[7℄.4



implemented for higher levels in the hierar
hy de�ning new overlay links using wider topologyknowledge. We assume that the bandwidth of a physi
al 
ommuni
ation link is suÆ
ient forimplementing of all the overlay links that this link parti
ipate in implementing (this numberis typi
ally small, and is always less than the number of possible sour
e-destination for theoverlay links).One may wish to employ our algorithms to system that does not 
onsists of the aboveprogrammable swit
hes. In other words to provide an abstra
tion of overlay links in software.To ensure message delivery in su
h a 
ase, one may need lo
al bu�ers in ea
h intermediatepro
essor along the overlay path. Ea
h pro
essor may maintain a message bu�er for ea
houtgoing edge. The bu�er will hold a \bu
ket" for ea
h overlay path whi
h traverses the
orresponding link (again, this number is typi
ally small). Ea
h bu
ket holds the last messagere
eived whi
h is asso
iated with the bu
ket's path and did not yet traverse the atta
hed link.The pro
essor will send the 
ontents of the bu
kets repeatedly and fairly (say, simultaneouslyusing high bandwidth). Thus, ensuring eventual delivery (fairness) and fifo ordering.As assumed in the s
ope of overlay 
ommuni
ation networks, pro
essing (of higher levelproto
ol-sta
k are avoided and) is done only at the end-points of the 
ommuni
ation, there-fore the delay is still assumed to be one time unit. End-to-end arq stabilization 
an beanalyzed in the way suggested in [10℄, resulting in a 
onstant time as well (twi
e the numberof round trip time between the overlay endpoints).1.2 Related workSelf-organization. In re
ent years, the 
on
ept of self-organization has been widely men-tioned in the s
ope of distributed 
omputing and peer to peer networks. Many works have
laimed being self-organizing, but a mere fra
tion of these works also tries to give a spe-
i�
 de�nition of what self-organization really is. In [2℄ a framework for self-organizationis proposed, in
luding formal de�nitions of the self-organization 
on
ept and 
omplemen-tary proof te
hniques whi
h 
an be used to prove that algorithms are indeed self-organizing.Ea
h algorithm is required to have an asso
iated evaluation 
riterion, whi
h operates on theimmediate neighborhood of a pro
ess. This evaluation 
riterion does not take into a

ountthe in
uen
e of other lo
al neighbors, say those that are within a 
onstant distan
e.Fault 
ontainment. Fault 
ontainment, using persistent bits, voting on repli
ated bits(usually for non rea
tive systems) is another way of addressing lo
ality (e.g., [25, 20, 1, 5℄).The idea is to repair transient faults starting from a safe global system 
on�guration. Insu
h a 
ase, it is possible (unlike in the 
ase of topology 
hanges) to 
hange the state ofthe a�e
ted pro
essors ba
k to the state prior to the fault. In this 
ontext, our algorithmis self-stabilizing and when started in a safe 
on�guration 
an handle k transient faults aswell as topology 
hanges o

urring approximately at the same time, in expe
ted O(log k)rounds. Moreover, our s
heme is the �rst to support many 
ore distributed tasks, su
has self-stabilizing leader ele
tion algorithm and snapshots algorithms in O(log2 n) expe
tedrounds.Cluster and hierar
hy 
onstru
tion. Self-stabilizing and self-healing 
onstru
tions ofhierar
hies, in the domain of sensor networks, appear in [35℄. The authors divide the planeinto hexagonal 
ells. In ea
h 
ell a head that 
orresponds with a 
luster leader is ele
ted.5



The existen
e of a unique pro
essor, the big node, whi
h a
ts as an initiator is assumed. Thebig node determines the 
enter of the �rst hexagon, �xating the lo
ation of its own 
luster.The big node ele
ts heads in adja
ent hexagonal 
ells whi
h will subsequently ele
t headsin their adja
ent 
ells. The time 
omplexity of this algorithm is obviously proportional tothe diameter of the 
ommuni
ation graph. Our algorithm does not assume a leader and
onverges within O(logn) expe
ted number of rounds and rea
ts to dynami
 
hanges lo
ally.Our 
lustering algorithm is in fa
t a maximal independent set algorithm. A 
lassi
almaximal independent set algorithm is presented in [30℄. The algorithm is designed for asyn
hronous system and 
onverges (from a pre-de�ned initial state) within O(logn) expe
ted
onvergen
e time. Our algorithm is designed for asyn
hronous systems, is self-stabilizing andself-organizing and 
onverges within expe
ted O(logn) rounds for 
onstant degree graphs.A re
ent work by Wattenhofer and Mos
ibroda [31℄ presents an algorithm for 
omputinga maximal independent set in radio networks. The system model is fundamentally di�erentfrom the one presented here: Pro
essors 
an broad
ast their messages asyn
hronously, but no
ollusion dete
tion me
hanism is provided. The algorithm presented 
onverges in (expe
ted)polylogarithmi
 time, and pro
essors whi
h join the algorithm are promised to be 
overedin (expe
ted) polylogarithmi
 time.In [27℄, the authors present lower bounds on distributed approximation algorithms forthe minimum vertex 
over problem. Their bounds 
an also be applied to the maximumindependent set problem. We do not seek a maximum independent set, and our algorithmde�nes a maximal independent set.Other approa
hes for distributively de�ning maximal independent sets in bounded degreegraphs appear, for example, in [26℄ and in [21℄. The algorithms presented usually de�ne amaximal independent set in O(log� n) rounds. However, a syn
hronized environment isassumed and is heavily relied upon; for example, in [21℄ the authors �rst de�ne a 
oloring ofthe graph, using a bounded number of 
olors. The 
olors are then used to de�ne a maximalindependent set iteratively, by �rst 
hoosing all the pro
essors 
olored with the lowest 
olor,removing all of their neighboring pro
essors and repeating the pro
ess with the next 
olor.Unfortunately, these algorithms do not �t asyn
hronous systems, nor are designed to toleratefaults and 
hanges gra
efully.Appli
ations of hierar
hy in the self-stabilization domain are des
ribed in [19℄. Theauthors argue that the hierar
hi
al 
onstru
tion 
an be used to shorten the 
onvergen
etime of various self-stabilizing distributed algorithms. As an example, the authors present anappli
ation to spanning tree 
onstru
tion. However, the authors do not present an algorithmfor de�ning the hierar
hy but assume it is de�ned beforehand.Distributed snapshots. The �rst distributed snapshot algorithmwas introdu
ed in [6℄. Theauthors des
ribe a distributed algorithm for 
olle
ting the states of pro
essors and the statesof links su
h that a global state of the system, 
alled the system snapshot, that has spe
ialproperties is obtained. Namely, the obtained system snapshot 
an be rea
hed by an exe
utionthat starts in the system state in whi
h the snapshot algorithm was initiated. Moreover,there is an exe
ution that starts from the obtained system snapshot and rea
hes the systemstate in whi
h the snapshot algorithm terminated. Therefore, the system snapshot is a globalstate that 
an be used to dete
t stable properties. For example, if there is a deadlo
k inthe global state re
orded by the snapshot algorithm, then we may 
on
lude that there is a6



deadlo
k in the system.The snapshot algorithm is de�ned for message passing system, and is based on spe
ialmessages 
alledmarkers, whi
h are used to partially order pro
essors' a
tions. The algorithmis based on rules, whi
h state for ea
h pro
essors, p, the steps pmust take ea
h time p re
eivesa marker m on a 
ommuni
ation link l: if m is the �rst marker p re
eived, p re
ords p's lo
alstate and immediately sends markers on all of p's outgoing links. Moreover, p re
ords thestate of l as empty. If m is not the �rst marker p re
eived, p re
ords the state of l as the listof messages re
eived from l following the �rst marker p re
eived. When p re
eived a markerfrom ea
h in
oming link, p publishes its portion of the snapshot whi
h 
onsists of p's re
ordedstate and the state of all the links adja
ent to p. The 
ombined published portions of all thepro
essors form the global snapshot. The algorithm is initialized by one or more pro
essorssending markers to themselves and terminates when ea
h pro
essor re
eived markers on allof its adja
ent links. ℄℄Self-stabilizing snapshot. A self-stabilizing snapshot algorithm was �rst introdu
ed in[23℄, where repeated invo
ations of snapshots are used to ensure stabilization of a non-stabilizing algorithm. When the obtained snapshot indi
ates an in
onsistent system 
on�g-uration, a reset is invoked. The stabilization of the snapshot itself is based on its repeatedinvo
ation. We present an on-demand self-stabilizing snapshot that does not rely on re-peated invo
ations and, in fa
t, rea
hes a safe 
on�guration also in 
ases in whi
h snapshotinvo
ations 
ease as well. Following [23℄, several works have studied ways of a
hieving ef-�
ient snapshots in di�erent models e.g., message passing, bounded links message passingand shared memory [34, 1, 8℄.In [34℄, the author takes a di�erent approa
h to self-stabilizing snapshots. A 
ommon
ounter is shared among pro
essors and is used to number markers of the snapshot algorithm.Pro
essors only parti
ipate in snapshots whi
h mat
h their 
ounter value. In order to obtainself-stabilization, the 
ounter is reseted using a self-stabilizing reset algorithm. The systemsettings do 
onsider links of bounded 
apa
ity, but assume this 
apa
ity never to be rea
hed.Our algorithm handles links over
ows gra
efully.A di�erent approa
h for the snapshot task is taken by using a snap-stabilizing propagationof information with feedba
k (PIF) algorithm [8℄. In [8℄, the authors present a snap-stabilizer| a tool that 
onverts any given shared memory algorithm to a snap-stabilizing one by usinga te
hnique similar to the one in [23℄. The snapshot algorithm uses snap-stabilizing PIF.Shared 
ommuni
ation registers are used in [8℄ for 
ommuni
ation among pro
essors. We
onsider message passing systems. It is worthwhile noting that the 
onversion of a sharedmemory algorithm to message passing suggested in [15, 13℄ does not preserve the snap-stabilization property, at least when randomization is not used.Dynami
 graph algorithms. Extensive resear
h on distributed dynami
 algorithms ap-peared in the literature (e.g., [17℄ and the referen
es therein). Still, our algorithm is the �rstself-stabilizing and self-organizing distributed (graph) algorithm. Another related aspe
t ofour work is related to dynami
 (graph) data stru
tures (e.g., [22℄ and the referen
e therein).We a
hieve a 
ommitting time (logarithmi
 and polylogarithmi
) in (fault toleran
e) dis-tributed settings for an important 
lass of graphs.Our 
ontribution. We de�ne the self-organization property to 
apture lo
ality and dy-7



nami
ity. We present a 
lustering algorithm (in fa
t, a distributed maximal independent setalgorithm) whi
h is both self-stabilizing and self-organizing. To realize the 
lustering algo-rithm in an asyn
hronous system we present a s
heme of lo
al syn
hronization, a
hieved byusing a lo
al snapshot proto
ol. We employ the aforementioned 
lustering algorithm to de-�ne a graph hierar
hy whi
h 
an be used to 
onvert any distributed task to be self-stabilizingin
urring only a sublinear time overhead.Paper organization. In Se
tion 2 we present the system model and in Se
tion 3 the basi
on-demand snapshot algorithm. Hierar
hy 
onstru
tion s
hemes are des
ribed in se
tion 4.The hierar
hi
al snapshot algorithm is presented in Se
tion 5. Extensions and 
on
ludingremarks appear in Se
tion 6.2 System ModelThe system 
onsists of n pro
essors, denoted by p1; p2; : : : ; pn. The pro
essors are 
onne
tedby 
ommuni
ation links. Ea
h pro
essor is modeled by a state ma
hine that 
an send andre
eive frames (or low level messages) to/from a subset of the pro
essors. We use a uni-dire
ted 
ommuni
ation graph G = (V;E) to represent the system, where ea
h pro
essor piis represented by a vertex vi 2 V and ea
h 
ommuni
ation link used for transferring framesfrom pi to pj is represented by an edge (i; j) 2 E. We further assume that the existen
e ofthe edge (i; j) 2 E implies the existen
e of an opposite dire
ted edge (j; i) 2 E and thatthe number of edges atta
hed to a pro
essor is bounded by a 
onstant. We de�ne the distof two pro
essors p and q, dist(p; q), as the length of the shortest path between p and q inthe graph. For a pro
essor p and a 
onstant x, we denote fp(x) as the number of pro
essorq su
h that dist(p; q) � x. We further de�ne fG(x) (or just f(x) where G is 
lear from the
ontext) as the maximal fp(x) over all pro
essors p in the graph.Pro
essors may join and leave the system at any time. Similarly, links may spontaneouslyfail and re
over. We model pro
essors' join and leave as the addition or removal of all oftheir links from the system. We assume that pro
essors may dete
t su
h topologi
al 
hangesin a timely fashion (e.g., by observing voltage levels of the underlying physi
al layer). Inthe 
ontext of self-organization the pattern and the sequen
e of topology 
hanges in
uen
ethe 
onvergen
e time. We require that following a single topologi
al 
hange at most o(s(n))rounds are needed for stabilization. In 
ase k topologi
al 
hanges o

urs together or in asequen
e, su
h that any two 
onse
utive 
hanges among these k 
hanges took pla
e withino(s(n)) asyn
hronous rounds, and within o(s(n)) distan
e apart, then the stabilization timeis bounded by minfk � o(s(n)); s(n)g rounds. Note that, any (non 
onstant) number of
hanges o

urring approximately simultaneously in the graph, but in distan
ed of at leasto(s(n)) from ea
h other, will require only o(s(n)) rounds to stabilize.We assume a 
lass of graphs for whi
h a 
orrelation exists between the number of edgesalong a shortest path and the geographi
al distan
e of the path's end-points.The system is asyn
hronous, meaning that there is no 
orrelation between the non 
on-stant rate of steps taken by the pro
essors. We assume that the 
apa
ity of the 
ommuni
a-tion 
hannels (equivalently the number of items in the �fo queues that represent the links) isbounded, by the 
onstant l
. Whenever a pro
essor pi sends a frame to a neighbor pj, when8



the link (i; j) already 
ontains l
 frames, we assume that one of the frames (not ne
essarilythe new one) is lost while the �fo order of the rest of the frames is preserved. In fa
t, sin
eframes 
an always be lost, we restri
t the pattern of frame loss steps to be su
h that if framesare sent in�nitely often, frames are also re
eived in�nitely often.We further abstra
t the a
tivity of 
ommuni
ation links by assuming an underline snap-stabilizing ARQ data link algorithm that transfers frames in order to ensure that high levelmessages transfer respe
ts the following: (1) messages sent from pi to pj are re
eived bypj in a �nite (but yet unbounded) time (2) and message delivery respe
ts the exa
tly on
edelivery and �fo ordering poli
ies. We note that the ARQ algorithm performed on one linkof a pro
essor pi does not blo
k the re
eive operations (and 
orresponding steps) from thelinks atta
hed to pi. We assume that eventually when pi sends a message m to pj (and pidoes not send further messages), pi re
eives a
knowledgment for m after pj re
eived m.We use the term overlay edge to denote a path of edges that 
onne
ts two pro
essorsin the system. When the path is prede�ned and �xed, it a
ts as a virtual link in whi
h(pra
ti
ally) no pro
essing is required by intermediate pro
essors in order to forward theframe from sour
e to destination. We allow pro
essors to de�ne and use, on the 
y, overlayedges to other pro
essors, when the underlying path is known. We regard the time it takes aframe to traverse su
h an overlay link as the time for traversing a link that dire
tly 
onne
tstwo neighboring pro
essors. We assume these overlay edges preserve fifo ordering of framesbetween pro
essors and maintain the assumption that a frame whi
h is in�nitely often sentis in�nitely often re
eived.A 
on�guration 
 of the system is a tuple 
 = (S; L); S is a ve
tor of states, hs1; s2; � � � sni,where the state si is a state of pro
essor pi; L is a ve
tor of link states hl1;2; l1;3; � � �; l2;1; l2;3 � � � i.A link li;j is modeled by a �fo queue of frames that are waiting to be re
eived by pj andthe 
ontents of the queue is the state of the link. Whenever pi sends a frame f to pj, f isenqueued in li;j. Also, whenever pj re
eives a frame f from pi, f is dequeued from li;j. Apro
essor 
hanges its state a

ording to its transition fun
tion (or program). A transitionof pro
essor pi from a state sj to state sk is 
alled an atomi
 step (or simply a step) and isdenoted by a. A step a 
onsists of lo
al 
omputation and of either a single send or a singlere
eive operation.We model our system using the interleaving model. An exe
ution is a sequen
e of global
on�gurations and steps, E = f
0; a0; 
1; a1; : : :g, so that the 
on�guration 
i is rea
hed from
i�1 by a step ai of one pro
essor pj. The states 
hanged in 
i, due to ai, are the one ofpj (whi
h is 
hanged a

ording to the transition fun
tion of pj) and possibly that of a linkatta
hed to pj. The 
ontent of a link state is 
hanged when pj sends or re
eives a frameduring ai. An exe
ution E is fair if every pro
essor exe
utes a step in�nitely often in E andea
h link respe
ts the bounded 
apa
ity loss pattern. In the s
ope of self-stabilization we
onsider exe
utions that are started in an arbitrary initial 
on�guration.A task is de�ned by a set of exe
utions 
alled legal exe
utions and denoted LE. A
on�guration 
 is a safe 
on�guration for a system and a task LE if every fair exe
utionthat starts in 
 is in LE. A system is self-stabilizing for a task LE if every in�nite exe
utionrea
hes a safe 
on�guration with relation to LE. We sometimes use the term \the algorithmstabilizes" to note that the algorithm has rea
hed a safe 
on�guration with regards to thelegal exe
ution of the 
orresponding task. 9



In some 
ases we would like to de�ne pro
esses exe
uted by the pro
essors so that ea
hpro
essor exe
utes steps for several pro
esses. Consider the 
ase in whi
h ea
h pro
essor piexe
utes two pro
esses p1i and p2i . Assume further that a pro
ess p1i 
an 
ommuni
ate dire
tlywith a (neighboring) pro
ess p1j residing in a neighboring pro
essor. The transition fun
tionof p1i is de�ned by the state s1i of p1i and the messages re
eived from a neighboring pro
essesp1j . The transition fun
tion of p2i is de�ned by the state of p1i and p2i and the messages sentby neighboring pro
esses p2j . The de�nition of 
on�guration for the multi-pro
esses 
ase isde�ned by a ve
tor of state hs11; s12; � � � i for the state ve
tor of the �rst layer pro
esses anda ve
tor hl11;2; l11;3; � � � i of the link states of the �rst layer, while the later is 
omposed of thequeues asso
iated with the links, restri
ted to the messages sent by pro
esses in layer one,p1i . The layers de�nition allows us to separate the snapshot proto
ol a
tivity (in the lowestlayer) from the original system (upper layers) that is the subje
t of the snapshot.A multi-pro
ess fair exe
ution is a fair exe
ution in whi
h every pro
ess exe
utes a stepin�nitely often (in the sequel we use the term fair exe
ution for multi-pro
ess fair exe
ution).The snapshot task S for a system is de�ned by a set of exe
utions ES started in an arbitrary
on�guration, so that if a snapshot starts in an atomi
 step ar, there is a 
on�guration 
s,that follows ar, in whi
h a pro
essor re
eives a global snapshot gs. Moreover, assuming r isminimal, there exists an exe
ution of pro
esses in level one that starts immediately beforear, rea
hes gs and then 
ontinues to the 
on�guration of level one in 
s.We use the notion of asyn
hronous rounds to measure the time 
omplexity of an algo-rithm. The �rst asyn
hronous round in exe
ution E is the shortest pre�x of E in whi
h ea
hpro
essor (or pro
ess) 
ommuni
ates with all of its neighbors (either through a dire
tly 
on-ne
ting 
ommuni
ation link or through an overlay edge). The se
ond asyn
hronous round inE is the �rst asyn
hronous round of the suÆx of E that immediately follows the �rst asyn-
hronous round in E . The time 
omplexity of an algorithm is the number of asyn
hronousrounds (or simply rounds) that are required to a
hieve the task of the algorithm.3 On-Demand (Snap-)Stabilizing Message Passing(Tree-)Snapshot AlgorithmIn this se
tion we present the �rst snap-stabilizing snapshot for message passing systems.We do not require repeated invo
ations of the snapshot algorithm in order to stabilize, in
ontrast to the assumption needed in order to employ the snapshot algorithm of [23℄. Asnap-stabilizing snapshot algorithm for shared memory system is presented in [8℄. In the
ontext of self-stabilization, message passing systems introdu
e additional intri
a
y due tounknown messages in transient in the arbitrary �rst 
on�guration from whi
h the systemshould 
onverge to a legal behavior [13℄.When designing our snapshot algorithm, our starting point is the unbounded snapshotalgorithm presented in [23℄ and the snap-stabilizing algorithm presented in [8℄, whi
h wemodify to a bounded message passing snap-stabilizing algorithm. Namely, we ensure thatany new request for a snapshot will result in a 
orre
t snapshot. This requirement di�ersfrom the one presented in [23℄ where snapshots must be 
ontinuously and in�nitely ofteninvoked. In our 
ase, the algorithm is ready for future requests even when no snapshot10



requests are made.The algorithm is designed for a system in whi
h a rooted spanning tree is distributivelyde�ned. It is based on performing two 
onse
utive tree-PIFs (propagation of informationwith feedba
k using a spanning tree) and then employing the original snapshot algorithm of[6℄. Ea
h PIF uses the rooted tree in order to propagate a 
ommand (initialize and then pre-pare) and re
eive feedba
k on the 
ompletion of the propagation (of the initialize and prepare
ommands, respe
tively). A pro
essor that re
eives a 
ommand from its parent, propagatesit to its 
hildren and also \
leans" the non-tree edges atta
hed to it. On
e a pro
essor pre
eives an a
knowledgment from all its 
hildren that their subtree re
eived the 
ommandand on
e p �nishes 
leaning the atta
hed non-tree links, p sends an a
knowledgment to itsparent regarding the 
ompletion of the 
ommand propagation. Both tree-PIFs are 
ompletedwithin O(d) rounds (assuming a BFS tree is used), where d is the diameter of the network.When the �rst (initialize) tree-PIF is 
ompleted, no marker of previous in
arnations of thesnapshot algorithm is present in the system and pro
essors disregard all in
oming snapshotmarkers. After the se
ond (prepare) tree-PIF is 
ompleted, pro
essors do not ignore markersand the root may then initiate the original snapshot algorithm of [6℄.To guarantee snap-stabilization we have to ensure that when the root starts a tree-PIF and then re
eives an indi
ation from its 
hildren regarding 
ompletion, the system's
on�guration is indeed the desired one - namely, a 
on�guration in whi
h all nodes areinstru
ted by the propagated 
ommand. The te
hnique used to a
hieve the above is basedon a method of ensuring the happened before relation, using a snap-stabilizing data linkalgorithm whi
h is spe
i�
ally designed for bounded 
apa
ity links (Figure 2). When apro
essor p would like to pass a 
ommand to a neighbor q, p repeatedly sends frames witha label i until p re
eives a frame with label i from q. Then p repeatedly sends frames withlabel i+1 (mod 2 � l
+1) to q until a frame with the new label is re
eived from q and so onuntil p sends 2 � l
 + 1 distin
t labels. In ea
h frame q sends the last lo
al syn
hronization
olor q re
eived from p. Thus, when p re
eives a frame with the last label among the set ofthe distin
t 2 � l
+ 1 labels, p knows the 
urrent lo
al syn
hronization 
olor known to q andsends frames with a di�erent lo
al syn
hronization 
olor together with the global 
ommand(initialize or prepare) that p would like to pass to q. Following that, q identi�es the newlo
al syn
hronization 
olor and invokes the global 
ommand.To simplify our presentation we use a self-stabilizing version of the aforementioned frame
ommuni
ation algorithm. The self-stabilizing frame 
ommuni
ation algorithm is used tosend 
ontrol messages between neighboring pro
essors. Ea
h 
ontrol message is either piggyba
ked on messages sent by the original algorithm (the snapshot subje
t) or sent indepen-dently (as part of a frame). Ea
h pro
essor p maintains 3 arrays: next, 
urrent and last.Ea
h array has an entry for ea
h neighbor of p. next[q℄ is the entry in whi
h the next valuethat p is about to send to q is stored. p may de
ide to send a di�erent value to q beforenext[q℄ is sent. In su
h a 
ase, the value in next[q℄ is overwritten. 
urrent[q℄ holds the datathat p is 
urrently sending to q. last[q℄ 
ontains the last a
knowledged data that p sent to qalong with the a
tual a
knowledgment of q. We note, that transforming the self-stabilizingversion presented in Figure 2 into a snap-stabilizing one 
an be a
hieved by iterating thesending operation 2 � l
+1 times. Corre
tness is trivially preserved and the 
onversion addsa 
onstant amount of time to ea
h send operation whi
h 
an be 
onsidered O(1) for time11




omplexity measure.We now des
ribe the way next[q℄, 
urrent[q℄ and last[q℄ are a

essed. We use Figure 1and Figure 2 in our des
ription. For ea
h frame arriving from q, p 
he
ks whether the frame
ontains an a
knowledgment (Figure 2 line 2). The a
knowledgment should also be numberedwith the 
urrent number that p is expe
ting to re
eive from q. When an a
knowledgment withthe 
urrent number arrives, p \advan
es" the values next[q℄ to 
urrent[q℄, and 
urrent[q℄ tolast[q℄. In more details, last[q℄ is assigned by 
urrent[q℄, 
urrent[q℄ is assigned by next[q℄,and next[q℄:val is assigned by null, while next[q℄:num is assigned by the next 
ontrol number(Figure 2, line 8).If the frame arriving is not an a
knowledgment, p �rst sends an a
knowledgment to q(line 10). Afterwards, if q is the parent of p and if q sent a 
ontrol message with a di�erent
olor than p's 
olor, p 
hanges state a

ordingly (line 13). Alternatively, if p is the parentof q, and the frame 
ontains a done message, p updates the data stru
ture whi
h denoteswhi
h 
hild has �nished the 
urrent initialization phase.At the end of the frame 
ommuni
ation algorithm, p passes the en
apsulated message tothe algorithm subje
t to the snapshot. Equivalently, in line 21, ea
h message destined to qis en
apsulated in a frame, holding 
urrent[q℄. next[q℄writea
k re
eiveda
k re
eived 
urrent[q℄last[q℄Figure 1: Frame 
ommuni
ation algorithm - data 
owThe self-stabilizing snapshot initialization algorithm is responsible for 
leaning old mark-ers from the 
ommuni
ation links. Roughly speaking, there are two phases, in ea
h of whi
hthe root instru
ts ea
h 
hild, q, to 
olor itself with a 
olor that is di�erent from the 
olorthat q is 
urrently 
olored by. Ea
h pro
essor q repeats the same pro
edure with its tree
hildren and sends an a
knowledgment to its parent on
e it is done. Following the initial-ization, pro
essors do not parti
ipate in snapshots. Later on, when the root re
eives donemessages from ea
h of its 
hildren, the root starts the prepare phase. When the se
ond phaseis 
ompleted, the pro
essors may start parti
ipating in a snapshot.The 
ode of the initialization-prepare algorithm appears in Figure 3. We use a 
onventioninspired by the guarded 
ommands notation for representing the program of a pro
essor. Theprogram in Figure 3 is 
omposed of six guarded 
ommands. Ea
h guard is a predi
ate. Aguard is enabled if, and only if, the predi
ate is evaluated as true. Ea
h 
ommand is a �niteset of instru
tions that a pro
essor must take when the 
orresponding guard is enabled. Weassume that the guards of a 
ertain pro
essor are s
heduled by an internal s
heduler whi
hrepeatedly 
hooses to exe
ute the 
ommands of an enabled guard. Furthermore, we assumethat the internal s
heduler ensures that a guard that is in�nitely often enabled is exe
utedin�nitely often.In general, the initialization-prepare algorithm task uses phases identi�ed by pro
essorstates to 
oordinate the operation of the pro
essors. The algorithm has two main phases12



(initialize, prepare) ea
h of whi
h has a few states asso
iated with it. In parti
ular, theinitialization phase is 
omposed of state 
hanges a

ording to the following order: initialize,syn
 initialize, propagate initialize, 
hildren initialize, finish initialize and�nally the done state.The �rst guard of the initialization-prepare algorithm (Figure 3, line 1) des
ribes the�rst a
tions a pro
essor (p) takes when starting a new phase (either initialize or pre-pare). First, p 
leans the links 
onne
ting it to its neighbors. The 
leaning is a
hieved bysending a probe message on ea
h link. Ea
h neighbor q, when re
eiving a probe message,a
knowledges re
eiving the message and atta
hes to the a
knowledgment q's 
urrent syn-
hronization 
olor (Figure 2, line 10). After sending all probe messages, p will 
hange stateto the syn
 state, e.g., if p's state was initialize, it will 
hange state to syn
 initialize(line 8). Moreover, if p was in the initialize state, then before 
hanging state it will setthe ignore markers 
ag to true (line 7).The se
ond guard appears in line 10. If p is in the syn
 initialize (or syn
 prepare)state and re
eives a
knowledgments from all of its neighbors, line 11 ensures that p will
hange state to propagate initialize or propagate prepare respe
tively. Line 13 de-s
ribes the a
tions p must take in the propagate states. Essentially, p propagates its phasestate to its 
hildren (lines 14 to 19). We de�ne the phase state as initialize if p is inthe initialize phase, and prepare if p is in the prepare phase. For example, if q is in thepropagate initialize state, the phase state for p is initialize. Similarly, if p is in thepropagate prepare state, the phase state for p is prepare. The propagation is a
hievedby sending an appropriate 
ommand to ea
h 
hild. The 
ommand 
ontains a 
olor that isdi�erent from the last 
olor ea
h 
hild had already sent (line 19). This ensures that the
hildren identify the 
ommand as a new 
ommand and 
hange state a

ordingly. Finally, p
hanges state to 
hildren initialize (or 
hildren prepare).The third guard appears in line 23. This guard ensures that p will wait for ea
h 
hild toa
knowledge the 
ommand. After ea
h 
hild a
knowledges the 
ommand, p must wait forits 
hildren to �nish propagating the 
ommand to their subtrees. To this end, p utilizes thedone[℄ array. When a pro
essor is in the done state, it repeatedly sends done messages toits parent. To make sure that p 
onsiders only relevant done messages, p must �rst initializethe done[℄ array with false (line 25). p will then 
hange state to the finish state (with theappropriate suÆx, a

ording to p's phase state).On
e all of p's 
hildren �nish syn
hronizing their sub-trees, they will send a donemessageto p. This will 
ause the guard in line 29 to be enabled. At this point, p will have �nishedsyn
hronizing its subtree and 
an pro
eed to the done state. However, before 
hangingstate, if p is in the prepare state, it will 
hange ignore markers to false. From this pointon, p is ready to parti
ipate in a snapshot.The last guard, whi
h is in line 34, ensures that if p is in the done state, p will repeatedlysend done messages to its parent (line 35).Corre
tness proof. We will �rst show that the data link algorithm stabilizes. The proofwhi
h is already a folklore, is for a parti
ular pair of pro
essors, for example pi and pj, wherepi is the sender and pj is the re
eiver.Lemma 1. In every fair exe
ution E, assume pi assigns a new value to 
urrenti[pj℄ in a global
on�guration 
l. Then, there exists a global 
on�guration 
k, su
h that an a
knowledgment13



1 new frame(num,val,in message) arrived from q:2 if val = (a
k; 
olor) ^ num = 
urrent[q℄:num then3 
urrent[q℄:
olor  
olor4 last[q℄ 
urrent[q℄5 
urrent[q℄ next[q℄6 next[q℄ nil7 next[q℄:num 
urrent[q℄:num+8 1 (mod 2 � l
+ 1)9 else10 SendFrame(num,(a
k,
olor))11 if q = parent ^ val = (new 
olor; 
ommand)^12 new 
olor! = 
olor then13 state 
ommand14 
olor  new 
olor15 if q 2 Children ^ val =done then16 done[q℄ = true17 �18 �19 pass in message upwards in the proto
ol sta
k20 end21 SendFrame(
urrent[p℄:num; 
urrent[p℄:val;message)Figure 2: Frame 
ommuni
ation with a neighbor qfrom pj arrived at pi and k > l. Furthermore, eventually the happened before relation holdsbetween the atomi
 steps ak in whi
h the assignment of a new value x to 
urrenti[pi℄ isexe
uted, a later atomi
 step al in whi
h a frame with x is re
eived by pj and an atomi
 stepam in whi
h the a
knowledgment regarding the re
eipt of x in pj is re
eived by pi.Proof: Sin
e ea
h frame numbered with num is sent repeatedly by pi, an a
knowledgmentwith num will eventually arrive from pj. Hen
e, pi will in�nitely often 
hange the framenumber in a round robin fashion (Figure 2, line 8). Sin
e the link 
apa
ity is bounded by l
and pi in
rements the frame numbers modulo 2 � l
+1, a value y whi
h is not present in the�rst arbitrary 
on�guration in either the link (i; j) or (j; i) will be 
hosen. From this pointon, it is obvious that our 
laim holds, sin
e pi will only a

ept a
knowledgments for y.Considering the snap-stabilizing version, an analogous proof 
an be derived to show thatthe data link algorithm is indeed snap-stabilizing.Lemma 2. In every fair exe
ution E, eventually after a pro
essor pi exe
utes lines 3 to4 in Figure 3 (denoted writing) for a parti
ular neighboring pro
essor pj and assuming no
onse
utive write of pi to pj takes pla
e, an a
knowledgment will arrive to pi. Immediatelyafter the atomi
 step in whi
h the a
knowledgment arrives, a 
on�guration in whi
h lasti[pj℄is equal to a
k pendingi[pj℄ will be rea
hed.Proof: Sin
e no writes o

ur and sin
e pi repeatedly sends frames with 
urrenti[pj℄ ana
knowledgment for 
urrenti[pj℄ will eventually arrive. Sin
e we assumed no writes o

urred,14



Predi
ate answered(q) � a
k pending[q℄:num = last[q℄:num1 state 2 finitialize, prepareg :2 forea
h q 2 Neighbors do/* this is a
tually the write */3 a
k pending[q℄ next[q℄:num4 next[q℄:val probe5 done6 if state = initialize then7 ignore markers true/* 
hange state to syn
.initialize be
omes syn
 initialize */8 state syn
 state9 end10 8q 2 Neighborsj answered(q)^(state = syn
 initialize _state = syn
 prepare):/* syn
 initialize be
omes propagate initialize */11 state propagate base state12 end13 (state = propagate initialize_state =propagate prepare) :14 forea
h q 2 Children do15 a
k pending[q℄ next[q℄:num16 if state = propagate initialize then17 
hild 
ommand initialize18 else 
hild 
ommand prepare19 next[q℄:val (last[q℄:
olor; 
hild 
ommand)20 done/* propagate initialize be
omes 
hildren initialize */21 state 
hildren base state22 end23 8q 2 Childrenj answered(q) ^ (state = 
hildren initialize_state =
hildren prepare):24 forea
h q 2 Children do25 done[q℄ false26 done27 state finish base state28 end29 8q 2 Childrenj answered(q) ^ done[q℄ = true^(state = finish initialize _state =finish prepare):30 if state = finish prepare then31 ignore markers false32 state =done33 end34 state =done:35 next[parent℄:val done36 endFigure 3: Initialize-Prepare algorithm for a pro
essor p1 start a new snapshot:2 state initialize3 state = prepare done:4 the root is ready to start a new snapshot.Figure 4: Root rules for initiating a new snapshot15



pi will assign nexti[pj℄ to 
urrenti[pj℄, a

ording to Figure 2 lines 3 to 5. Using lemma 1 weknow that an a
knowledgment will eventually arrive after pj re
eives 
urrenti[pi℄. Hen
e,and again a

ording to lines 3 to 5, pi will assign 
urrenti[pj℄ to lasti[pj℄. We 
an 
on
ludethe 
orre
tness of the Lemma from the fa
t that the value that was originally present atnexti[pj℄ was 
opied to a
k pendingi[pj℄ and eventually to lasti[pj℄.For the following lemmas we assume that the data link algorithm used is the snap-stabilizingversion dis
ussed earlier. We wish to draw the readers' attention to the fa
t that the 
orre
t-ness of the on-demand version also holds if the following 
ondition is met: the self-stabilizingdata link has stabilized - a step that ensures that whenever an a
knowledgment arrives fora frame sent by pi, pj will have re
eived the message. Overall 
orre
tness is further ensuredby the fair 
omposition te
hnique ([13℄, 
hapter 2.7).Lemma 3. In every fair exe
ution, if a pro
essor pi is in state initialize at a 
on�guration
j and does not re
eive any 
ommand from its parent to 
hange its state, then there exists a
on�guration 
k, k > j, su
h that the following 
laim holds for ea
h pro
essor q in the subtreeof pi (in
luding pi): there exists a series of 
on�gurations (after 
j), in whi
h q 
hanged statefrom initialize to syn
 initialize to propagate initialize to 
hildren initializeto finish initialize and �nally to done. Furthermore, q stays in the done state in allsubsequent 
on�gurations, after (and in
luding) 
k.Proof: The proof is by indu
tion on h, the height of pro
essors in the tree. For h = 0we have a leaf pro
essor pi. Assume pi 
hanged state to initialize at 
j. A

ording to theinitialization algorithm (Figure 3), the only guard enabled is the guard in line 1. Sin
e thisguard is the only one enabled, it will eventually get exe
uted. pi then writes a probemessageto ea
h of its neighbors and 
hanges state to syn
 initialize (lines 1 to 9). Sin
e we assumethat pi re
eives no 
ommand from it's parent to 
hange state, no guard is enabled by default.A

ording to lemma 2, the guard in line 10 is the only guard whi
h will eventually be enabled.pi then 
hanges state to propagate initialize. The next enabled guard is only the guardin line 13. Sin
e pi is a leaf, pi will immediately 
hange state to 
hildren initialize andthen to finish initialize. The only guard enabled now is the guard in line 29, sin
e pidoes not need to wait for an answer from any 
hild. Hen
e, pi will 
hange state to done.Marking the last 
on�guration as 
k 
on
ludes the proof for the base 
ase.Now, let pi be a pro
essor of height greater than 0. Assume pi 
hanged state to initializeat 
j and no further 
ommands arrive from pi's parent. The only enabled guard in 
j appearsin line 1 and will eventually be exe
uted. pi will then send a probe message to ea
h ofits neighbors and 
hange state to syn
 initialize. No guard will be enabled until ea
hneighbor replies. However, Lemma 2 ensures that a reply will eventually arrive. Hen
e,the guard in line 10 will eventually be enabled and exe
uted. pi will then 
hange stateto propagate initialize. The guard in line 13 will now be enabled, and exe
uted. piwill send an initialize 
ommand to ea
h of it's tree 
hildren, and 
hange state to the
hildren initialize state. Again, from Lemmas 1 and 2, eventually the guard in line 23will be enabled and pi will reinitialize the done array for ea
h 
hild to hold false. Sin
eLemmas 1 and 2 ensure that pi gets a reply for the probe message from ea
h 
hild that issent after ea
h 
hild re
eives the aforementioned probe message, pi will send ea
h 
hild a16




olor di�erent than the one this 
hild 
urrently holds. Consequently,, ea
h 
hild will enterthe initialize state. As a result, it is ensured that no old done messages exist on either
hannel dire
ted at pi, sin
e ea
h 
hild has 
hanged state to initialize before sending thea
knowledgment regarding the initialize 
ommand to pi.Using the indu
tion assumption and sin
e pi does not send any more messages to its
hildren (no guard is enabled), we 
an 
on
lude that the lemma holds for ea
h 
hild of pi.Moreover, the guard in line 29 will eventually be enabled, sin
e ea
h 
hild is in the donestate and the only a
tion taken in this state is sending done messages to the parent. Hen
e,pi will re
eive done messages from ea
h of its 
hildren and the guard in line 29 is �nallyenabled. Now, pi will enter the done state. Based on the indu
tion assumption, ea
h 
hildful�lls the requirements of Lemma 3 and from the proof we get the series of 
on�gurationsfor pi as required by Lemma 3. Furthermore, pi does not 
hange its state after rea
hing thedone state, unless pi re
eives a new 
ommand from its parent.Following the proof of Lemma 3 we 
an dedu
e a similar argument for the preparestate. Using these lemmas, we dedu
e that on
e the root 
hanges state to initialize, thewhole tree will 
hange state to initialize and will stop re
eiving markers (Figure 3 line 7).It also follows that eventually the root will re
eive a done message from all of its 
hildren,ensuring all pro
essors in the tree are in the done state. When in this state, we 
an dedu
ethat no markers exist in any of the 
hannels. Assume the 
ontrary, that between pi andpj there exists a marker sent by pi. pi wouldn't have been able to send the marker afterre
eiving the initialize 
ommand sin
e after 
hanging state to the initialize state, piignores all markers and snapshots (Figure 3 line 7). The only option left for pi is to havesent the marker before re
eiving the initialize 
ommand. Sin
e 
hannels are �fo orderedand pi sent a probe message to ea
h neighbor before �nishing the initialization algorithm,we 
on
lude that no su
h marker 
an exist.After �nishing the initialization phase, the root will start the prepare phase. After�nishing the prepare phase, ea
h pro
essor will start to re
eive markers again (Figure 3line 31). On
e the root has entered the done state, it is ensured that all pro
essors areready to start a new snapshot and that no old markers exist in the system.Time Complexity:Lemma 4. In every fair exe
ution on
e a pro
essor p assigns initialize to its state, thereis an atomi
 step in the following 5 � height(p) rounds in whi
h p assigns done to its state(where height(p) is the height of p in the tree).Proof: By indu
tion, over the height of a pro
essor in the tree. Let us assume p is apro
essor of height 1 in the tree (a leaf). Then, a

ording to the snapshot algorithm (Figure3), the steps p follows are: sending a probe to all neighbors (time 
omplexity: 1 round (line1)), waiting for an answer to the probe (time 
omplexity: 1 round (line 10)), propagatingthe initialize 
ommand to ea
h 
hild (line 13) and �nally waiting for a done message fromea
h 
hild (line 29). The last two steps are internal event, sin
e p has no tree 
hildren andno 
ommuni
ation is needed. As a result, an atomi
 step in whi
h p assigns done to itsstate is exe
uted after 3 rounds. 17



Let us assume Lemma 4 is 
orre
t for all pro
essors of height at most k, for some k. Let pbe a pro
essor of height k+1 and assume p assigns initialize to its state. A

ording to thesnapshot algorithm, p must make take the following a
tions: send a probe to all neighbors(time 
omplexity: 1 round (line 1)), wait for an answer to the probe (time 
omplexity:1 round (line 10)), propagate the initialize 
ommand to ea
h 
hild (line 13) and �nallywait for a done message from ea
h 
hild (line 29). The propagation of the initialize
ommand takes 1 round. Now, sin
e all tree 
hildren of p operate in parallel and are ofheight k � 1, in 5 � (k � 1) rounds ea
h 
hild will assign done to its state (a

ording to theindu
tion assumption) and after another round, the 
ommand will be propagated to p. Inthe following round, p will also set its state to done. To 
on
lude, the atomi
 a
tion inwhi
h p assigns done to its state is exe
uted in 3 + 5 � (k � 1) + 2 = 5 � k rounds.The time 
omplexity of the algorithm, as 
learly follows from Lemma 4, is O(d). Theroot must �rst assign initialize to its state and after 5 � height(root) rounds the root willre
eive a done message from all of its 
hildren. The root will then assign prepare to itsstate, and a similar argument 
an show that after another 5 � height(root) rounds the rootwill re
eive a done message from all of its 
hildren. Overall, the tree will be ready for anew snapshot after at most 10 � height(root) = O(d) rounds. The snapshot itself requiresadditional O(d) rounds, thus the total number of rounds required for performing a snapshotis O(d).4 Hierar
hi
al Constru
tion S
hemesA hierar
hi
al system is represented by a 
ommuni
ation graph, G = (V;E) and a hierar
hytree HT = (Vh; Eh). Ea
h node in HT , li, represents a set of nodes in V , 
alled a subsystem,so that if li and lj are at the same level of HT , then li \ lj = ;. Furthermore, if K is aset of nodes at level i of HT , then [j2Klj = V . The nodes of the graph are pro
essors andthe edges are their 
ommuni
ation 
hannels. We require that ea
h subsystem is a 
onne
ted
omponent of G.Next we present a self-stabilizing and self-organizing algorithm for 
onstru
ting 
lus-ters. In general, the 
lustering algorithm builds 
lusters of diameter smaller than a �xedparameter. Furthermore, ea
h 
luster is de�ned by a \native" leader.4.1 Syn
hronous Cluster Constru
tionThe 
lustering algorithm is based on a self-stabilizing, randomized, syn
hronous, lo
al leaderele
tion algorithm. We assume the existen
e of a global shared 
lo
k. If no su
h 
lo
k exists,a self-stabilizing digital 
lo
k syn
hronization algorithm (e.g., [13℄) 
an be used. However,in su
h a 
ase the resulting algorithm is not self-organizing. Assume 
lusters of diameter atmost 2�x are desired. All pro
essors will parti
ipate in a self-stabilizing update algorithm, upto distan
e x. At prede�ned intervals of x 
lo
k ti
ks (whi
h we 
all a phase), all pro
essorswill exe
ute the algorithm presented in Figure 5.The update algorithm is designed for an asyn
hronous system. Ea
h pro
essor p holds atable of tuples, ea
h of the form hidq; distq; parentqi. Ea
h tuple represents a pro
essor q in18



the 
ommuni
ation graph. idq is the unique identi�
ation of q, distq is the minimal distan
ebetween p and q and parentq is the id of a neighboring pro
essor of p, whi
h is the �rst ona shortest path from p to q. Repeatedly, p 
ombines all the tables of its neighbors and forea
h of the 
on
i
ting tuples (in whi
h the id is the same), p 
hooses the tuple with theminimal dist (further ties are broken using the parent value). Next, p 
hooses only entrieswith dist = k, su
h that there exist entries with dist = j for all j < k. All other entries aredeleted. Afterwards, p adds 1 to the distan
e �eld of every tuple and �nally adds the tuplehidp; 0; nili to form the new table.We adapt the aforementioned update algorithm to our system in several manners. First,ea
h tuple will hold two extra values, leaderp; rtpp. Next, ea
h pro
essor p 
ontinuouslysends its table to all neighboring pro
essors. In addition, p maintains an internal array whi
h
onsists of the most re
ent topology tables p re
eived from ea
h neighboring pro
essor. The
omputation of p's topology table is done on the basis of this array. Furthermore, in thevalidation phase we also delete entries with dist > x. Consequently, p's table will re
e
t itsneighborhood up to distan
e x from p. The 
orre
tness of the revised update algorithm istrivially preserved, and the 
onvergen
e time is O(x) rounds.Continuing the des
ription of our algorithm, ea
h pro
essor p with leaderp = true �rst
hooses a random temporal identi�er rtp for the 
urrent phase and uses the tuple hrtp; idias its identi�er for the phase. This random 
hoi
e of an rtp value is used to break symmetrybetween pro
essors (for further motivation, see the asyn
hronous version of the algorithm).The variable leaderp is used to indi
ate whether p regards itself as a leader or not. The self-stabilizing update algorithm 
olle
ts the new identi�ers and leader variables value within thex 
lo
k ti
ks of the phase. Thus, at the end of the phase, a pro
essor p with leaderp = true
he
ks whether p is the only leader in the area de�ned by radius x from itself. If there doesnot exist a pro
essor q with leaderq = true with distan
e less than x from p, then p is astable leader and does not 
hange state. Otherwise, if leaderp = false and there is no otherpro
essor q with leaderq = true within distan
e x from p, then p assigns leaderp  true.Lastly, 
onsider the 
ase in whi
h leaderp = true and there exists another pro
essor q withleaderq = true that is within distan
e x from p. If p's hrtp; idi is larger than q's hrtp; idi (�rst
omparing the rtp and breaking symmetry by the use of id) then p assigns leaderp  false.The leaders de�ne the 
luster stru
ture and sin
e ea
h pro
essor p has at least one leaderin its neighborhood, p may 
hoose to join the 
luster formed by one of the 
losest leaders.To prove that the algorithm stabilizes, we �rst assume that the update algorithm hasstabilized. Hen
e, at the start of ea
h new phase, ea
h pro
essor holds a 
onsistent table,denoting the pro
essor's neighbors of distan
e not larger than x. For the proof, we will usea potential fun
tion. For ea
h 
, a 
on�guration of the system at the end of a phase, de�neSL(
) to be the number of stable leaders at 
.In the following Lemmas we use the term syn
hronous exe
ution to denote an exe
utionof a syn
hronous algorithm. For further details see [13℄.Lemma 5. In every syn
hronous exe
ution, if p is a stable leader in 
on�guration 
i, p willstay a stable leader in every 
on�guration 
j, su
h that j > i.Proof: p is a stable leader if, at the end of a phase i, p is the only lo
al leader within aradius of x. Assume, by 
ontradi
tion, that at the end of phase j, su
h that i < j, p has19



Predi
ates:
lose leader(p; q) :=leaderq ^ dist(p; q) � x1 !leaderp ^ 9q(
lose leader(p; q)):/* do nothing (stable). */2 !leaderp^!9q(
lose leader(p; q)):/* p de
lares itself a lo
al leader. */3 leaderp  true4 rtpp  random()5 we denote p to be at a 
andidate state.6 leaderp^!9q(
lose leader(p; q)):/* de
lare itself a lo
al leader. */7 leaderp  true8 rtpp  random()9 we denote p to be at a stable state.10 leaderp ^ 9q(
lose leader(p; q)):11 if hrtpp; idpi > hrtpq ; idqi then/* p rede
lares itself a 
andidate lo
al leader. */12 leaderp  true13 rtpp  random()14 else/* p relinquish lo
al leadership */15 leaderp  falseFigure 5: Leader Ele
tion Algorithm for Pro
essor p
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stopped being a stable leader. If p be
ame a 
andidate leader, it follows that there exists apro
essor q, su
h that dist(p; q) < x and q is also a (either stable or 
andidate) lo
al leader.Hen
e, there exists a phase k, su
h that i < k < j and q has be
ome a leader at the endof phase k. However, this 
ontradi
ts the fa
t that p was a leader at the same phase. These
ond option is for p to assign leaderp by false at the end of phase j. This 
an only be a
onsequen
e of p loosing (line 14) to another pro
essor q, whi
h was also a leader at phasej, but hrtpp; idpi < hrtpq; idqi. A similar argument as in the previous 
ase holds and 
an beused to show that q 
annot exist.>From Lemma 5 it follows that SL is a monotoni
ally in
reasing fun
tion. The nextlemmas will show that if SL 
annot be in
reased anymore, the system has stabilized:Lemma 6. In every syn
hronous exe
ution, if no new stable leader 
an be added at 
on�g-uration 
i, either by turning a 
andidate leader or a regular pro
essor into a stable leader,then ea
h pro
essor p has at least one leader within a distan
e x in every 
on�guration 
jsu
h that j � i..Proof: The proof is by 
ontradi
tion. Assume there exists a pro
essor p whi
h has nostable lo
al leader within distan
e x in 
on�guration 
i and that no stable leader 
an beadded. A

ording to the algorithm, this pro
essor 
an be
ome a 
andidate leader and atsubsequent phases a stable leader. This 
ontradi
ts our assumption that no stable leader
an be added.Lemma 7. In every syn
hronous exe
ution, at the end of ea
h phase i if no new stableleaders were added if and SL 
an be in
reased, then there is a positive probability that at theend of phase j, su
h that i < j, there is at least one more stable leader than in phase i.Proof: Let us examine the set CL, of all 
andidate leaders. If CL = ;, then in the followingphase, at least one pro
essor p will de
lare itself a lo
al leader (sin
e SL 
an be in
reased).If p is a stable leader, then the proof is 
omplete. Otherwise, assume CL 6= ;. Let us denotep as the pro
essor with the highest hrtpp; idpi tuple in CL. During the transition from phasei to phase i + 1, leaderp will be propagated up to distan
e x from p. For ea
h q, su
h thatq =2 CL and dist(p; q) � x, q will be aware that leaderp is true and will not 
hange state.Furthermore, ea
h q, su
h that q 2 CL and dist(p; q) � x, will enter line 14 in the algorithm(sin
e hrtpp; idpi > hrtpq; idqi) and set leaderq  false. Thus p will be
ome a stable leader.>From Lemma 7 it follows that as long as stable leaders 
an be added, stable leaders willbe added. Lemma 6 ensures us that SL is a monotoni
ally in
reasing fun
tion. It is easy tonoti
e that SL is also bounded. Therefore, starting from any initial 
on�guration, SL willrea
h a value from whi
h no new stable leaders 
an be added. From Lemma 5, it followsthat the system has stabilizedLemma 8. In any syn
hronous exe
ution, starting with an arbitrary global 
on�guration,the algorithm 
onverges to a stable state within O(logn) expe
ted number of rounds, wherea stable state denotes a 
on�guration in whi
h all pro
essors are stable.21



Proof: De�ne the neighborhood of a pro
essor p as the set of all pro
essors q, su
h thatdist(p; q) � x. Further de�ne fp(x) = jneighborhoodpj and f(x) = maxp(fp(x)). Note thatsin
e the maximal degree of a pro
essor is 
onstant and sin
e x is a 
onstant, f(x) is also a
onstant. We say that a pro
essor is stable if it is either a stable leader or has a stable leaderin its neighborhood.We now bound the probability for a pro
essor p to be
ome a stable leader in O(x) rounds(assuming p has no leader). A

ording to the algorithm, p will set itself a leader and 
hoosea random rtp. We would now like to 
al
ulate the probability that p 
hooses a unique rtpvalue, whi
h is bigger than any rtp value whi
h may be 
hosen in p's neighborhood. Call thisprobability Psu

ess. Assume ea
h pro
essor 
hooses rtp values uniformly in the range [1; m℄.Obviously, Psu

ess is larger than the probability of the events in whi
h no other pro
essorin p's neighborhood 
hose the same value as p and p is maximal in p's neighborhood. Theprobability that p has the highest rtp value, given that no other pro
essor has the same rtpvalue as p, is 1fp(x) . This is due to symmetry 
onsiderations. We now 
al
ulate a lower boundfor Psu

ess: Psu

ess > 1fp(x) � (m� 1m )fp(x) > 1f(x) � (m� 1m )f(x)If we assume that m = 
 � f(x) for some 
 � 1, then we get:Psu

ess > 1f(x) � (
 � f(x)� 1
 � f(x) )f(x) � 1e 1
 � f(x)The probability of any pro
essor to be
ome stable is 
learly larger than Psu

ess. Fromnow on, we examine a set of Bernoulli trials, where one 
ondu
ts several trials parallelly. Thesu

ess probability in our 
ase is the probability a pro
essor has to be
ome stable and the
onvergen
e time is the expe
ted length of the longest trial. Sin
e the probability of su

essis larger than Psu

ess, the expe
ted time for 
onvergen
e is smaller than the expe
ted lengthof the longest Bernoulli trial. As presented in [24℄, the expe
ted value of the longest trial isO(log 1(1�Psu

ess) n), where n is the number of 
on
urrent trials held.A note is in order regarding the dependability of pro
essors. Sin
e for every two pro
essorswithin the same neighborhood the probabilities of su

ess are dependent, using a redu
tionto Bernoulli trials only gives a 
orre
t upper bound sin
e if one pro
essor has su

eeded, theprobability of of a neighbor to su

eed is in
reased.To 
on
lude, we 
an see that if f(x) is 
onstant, the expe
ted 
onvergen
e time of thesyn
hronous algorithm is O(logn) phases. Sin
e ea
h phase is exa
tly x rounds, we get thatthe 
onvergen
e time in terms of syn
hronous rounds is also O(logn).4.2 Asyn
hronous Cluster Constru
tionWe now present an asyn
hronous version of the previous hierar
hy 
onstru
tion algorithm.Ea
h pro
essor p uses several key variables: leaderp; 
andidatep; idp and rtpp. leaderp denoteswhether p is 
urrently a leader. 
andidatep is set to true if p is trying to be
ome a leader.idp is the identi�er ea
h pro
essor has, and rtpp is a random temporary identi�er used tobreak the symmetry between pro
essors. 22



One may try using the pro
essors' identi�ers in order to break symmetry. However,o

asionally an unfortunate order of id's may lead to a 
onvergen
e time whi
h is proportionalto the diameter of the graph. We use randomness to break ties in order to over
ome su
h as
enario. Predi
ates:leader(Cp) :=9q 2 Cpjq 6= p ^ leader(q)1 (leaderp � leader(Cp)) = true:/* do nothing (stable). */2 leaderp = false ^ leader(Cp) = false:3 rtpp  random()4 
andidatep  true5 C 0p  new snapshot6 if leader(C 0p) = true then7 
andidatep  false8 leaderp  false9 else if 8q 2 C 0p 
andidateq = true!10 (hrtpq ; idqi < hrtpp; idpi) then11 leaderp  true12 else13 
andidatep  false14 leaderp  false15 end16 (leaderp = true ^ leader(Cp) = true):17 
andidatep  false18 leaderp  false
Figure 6: Asyn
hronous Leader Ele
tion Algorithm for Pro
essor pThe 
onstru
tion algorithm is 
omposed of several parts. All pro
essors parti
ipate inan (asyn
hronous) update algorithm up to distan
e x. Based on the update tables, ea
hpro
essor p 
onstru
ts a tree rooted at p and of depth not ex
eeding x. Using the tree, ea
hpro
essor invokes the snapshot algorithm to 
olle
t the state of its neighborhood. We use thesnapshot algorithm to perform a PIF algorithm, and by adding information to the markersused in the snapshot pro
ess we a
hieve the desired PIF e�e
t. The number of trees andsnapshot proto
ols ea
h pro
essor must parti
ipate in 
an be 
al
ulated from the topology
olle
ted earlier.Constantly (this is to say that the time frame is not important), ea
h pro
essor p willtake a snapshot of the surrounding neighborhood (up to distan
e x). After the snapshot is
olle
ted, the algorithm in Figure 6 is invoked. Sin
e the snapshot algorithm is guaranteed tobe �nished in ea
h invo
ation (although the result might be in
orre
t, sin
e the rooted treehas not stabilized yet), we are guaranteed that future invo
ations of the snapshot algorithm23



will take pla
e. For a snapshot obtained at p, Cp, we denote leader(Cp) = true if there existsa pro
essor q 6= p in Cp, su
h that leaderq = true.Let us assume that a 
omplete snapshot Cp is obtained at p. The four 
ombinations ofleaderp and leader(Cp) determine the 
ourse of a
tions p must follow. First, 
onsider themost simple 
ases where leaderp=false^ leader(Cp)= true or leaderp= true^ leader(Cp)=false. In these 
ases, p should avoid taking any a
tion, sin
e, as far as p 
an tell, thesituation is 
orre
t. The 
omplex 
ases are when there are no leaders in p's vi
inity and pis not a leader itself or when p is a leader and 
an see another leader within a distan
e of xfrom itself. In 
ase leaderp=false^ leader(Cp)=false, p will �rst 
hoose a random number(from a predetermined range) and store it in rtpp. Then, p will assign true to 
andidatep(Figure 6 lines 3-4). The next operation is propagating the information that p wishes tobe
ome the leader of its neighborhood. This is a
hieved through the use of the snapshotproto
ol whi
h results in a new snapshot at p, C 0p (line 5). Now, if C 0p does not 
ontaininformation about a leader or another 
andidate, p 
an safely pla
e itself as a leader andset leaderp = true. However, if leader(C 0p) = true holds, p should set 
andidatep to false,sin
e there is now a leader in p's neighborhood. Last, if there are other 
andidates in C 0p, pwill be
ome a leader if (and only if) the tuple hrtpp; idpi is larger than all other 
andidate'stuples in C 0p (line 10).The last 
ase is when leaderp= true^ leader(Cp)= true (line 16). Upon dete
ting su
h a
ondition, p will immediately assign leaderp and 
andidatep with false and will start a new
y
le of the algorithm.To prove that the asyn
hronous hierar
hi
al 
onstru
tion algorithm works, we will takean approa
h similar to the proof of the syn
hronous algorithm. We will denote a pro
essorp as stable in two 
ases. The �rst 
ase is a stable leader, when leaderp = true, 8q 2neighborhoodp(leaderq = false). Furthermore, all topology tables for ea
h pro
essor withinp's neighborhood are up to date and re
e
t p's leadership and no other message exists inthe system denoting another pro
essor as leader or 
andidate. The se
ond 
ase is of a stablenode, when p is not a leader, but there is a stable leader in p's neighborhood.Our �rst 
laim is that on
e a pro
essor is stable, it will remain stable. Next, we show thata pro
essor has a positive probability of be
oming stable. We then use the s
heduler-lu
kgame to show that the algorithm stabilizes ([13℄, 
hapter 2:9)Lemma 9. Let E = (
0; a0; 
1; a1; : : :) be a fair exe
ution. If at a global 
on�guration 
i, apro
essor p has be
ome stable, then p will remain stable for all 
on�gurations 
j 2 E, su
hthat j > i.Proof: First, let us 
onsider the 
ase in whi
h p is a stable leader in 
i. From the de�nitionof a stable leader, for ea
h q 2 neighborhoodp, leaderq = false and q denotes p as a leaderin q's update tables. Now, sin
e the topology tables do not 
hange, p 
an lose the stabilityproperty only if another pro
essor within p's neighborhood be
omes a leader too. Assumethat su
h a pro
essor q be
omes a leader in 
j, j > i. Based on the leader ele
tion algorithm,this is possible in two 
ases. Either q was not a leader and did not see a leader in itsneighborhood, or q was a leader and saw another leader. The �rst option is not feasible,sin
e q is aware of p being a leader (from the de�nition of stable). The se
ond option is not24



possible either, sin
e q will not set itself a leader as long as p is. Hen
e, a stable leader willremain stable.Now, we will pro
eed to dis
ussing a stable node p (not a leader). From the de�nition ofa stable pro
essor we dedu
e that there is a stable leader q in the neighborhood of p. Sin
eq is a stable leader and will remain su
h, p will remain stable too.Lemma 10. Let E = (
i; ai; 
i+1; ai+1; : : :) be a fair exe
ution, su
h that the update algo-rithm and the snapshot algorithm have stabilized. Starting from any 
on�guration in E , ea
hpro
essor p has a positive probability to be
ome stable within O(x) rounds.Proof: The stabilization time for the topology update algorithm and the snapshot algo-rithm is O(x). Consider now a pro
essor p whi
h is not stable in 
0. Let 
i be the �rst
on�guration in whi
h p has obtained a 
orre
t snapshot of its neighborhood, Cp (obviously,
i is rea
hed within O(x) rounds). If p is stable in 
i, then the pro
ess has been 
ompleted.Otherwise, we will show that p has a positive probability of be
oming stable within O(x)rounds.We will now show that within 3 � x rounds at most, either p be
omes stable or thereexists a pro
essor in p's neighborhood whi
h 
hooses a new rtp value and has a positiveprobability of be
oming a stable leader. Assume, towards 
ontradi
tion, that no pro
essorin p's neighborhood 
hooses a new rtp value within 3 �x rounds and p does not be
ome stableduring this time. If there were no leaders in p's neighborhood, p would have 
hosen a new rtpvalue within x rounds (the number of rounds whi
h would take p to �nish a new snapshot).Hen
e, there exists a pro
essor q 2 neighborhoodp su
h that leaderq = true (it is possiblethat q = p). Sin
e p is not stable, we 
an dedu
e that q is also not a stable leader. Suppose,that after x rounds, q has not set leaderq to false and q is still not stable. This impliesthat a di�erent pro
essor whi
h is also a leader exists in q's neighborhood. After x roundsat most, q will dete
t this fa
t by way of a new snapshot and will set leaderq to false. In asimilar manner, we 
an show that ea
h leader in p's neighborhood eventually either be
omesstable within 2 � x rounds or relinquishes leadership. If one leader be
omes stable, the proofis now 
ompleted. Otherwise, a pro
essor in p's neighborhood (possibly p) will noti
e thefa
t that there are no leaders and will 
hoose a new rtp value within x rounds. Overall, weget that after O(x) rounds at least one new rtp value is 
hosen.Denote pr as the pro
essor whi
h �rst 
hooses a new rtp value in p's neighborhood. Thisassignment is a result of pr �nishing a snapshot Cr (whi
h takes O(x) rounds to 
omplete)and of noti
ing that no leaders exist in this snapshot. Our next 
laim is that between thestart of the snapshot that resulted in Cr and the end of the next snapshot that pr will take(line 5) and whi
h is denoted C 0r, ea
h pro
essor in pr's neighborhood 
annot assign morethan one new value to its rtp if the right 
onditions hold. Denote 
start as the 
on�gurationin whi
h the snapshot Cr started and 
end as the 
on�guration in whi
h C 0r ended. Assumethat ea
h pro
essor q, whi
h 
hooses a new rtp value between 
start and 
end 
hooses a valuesmaller than that of pr. On
e the PIF snapshots initiated by pr rea
h q, q loses to pr, andwill not enter line 2. Thus, q will not 
hoose a new random rtp value more than on
e between
start and 
end. The probability that pr will 
hoose an rtp value in su
h a way is larger thanPsu

ess. As a result, pr will assign leaderpr by true (line 10) and within x rounds will be
omea stable leader. This way, p will also be
ome stable within 4 � x rounds from 
0.25



Thus, we 
an make the following 
orollary:Corollary 1. In every fair exe
ution, ea
h pro
essor has a positive probability of be
omingstable in every O(x) rounds and it holds by [24℄ that within O(logn) expe
ted number ofrounds the algorithm 
onverges to a stable state.4.3 Hierar
hy Constru
tionConstru
ting the hierar
hy is a
hieved by a repeated appli
ation of the 
lustering algorithm.We suggest using the 
lustering algorithm on the original graph G, 
onstru
ting 
lusterswith x > 1 (in essen
e, a minimal x-dominating set). We then propose to dynami
allyde�ne an overlay network between the leaders of ea
h 
luster and apply the same s
heme tothe resulting graph. The pro
ess is 
ompleted after a single 
luster, 
omposed of the entiregraph G, is �nally de�ned. The resulting hierar
hy is of O(logn) levels, and in ea
h level i(level 0 is the original graph, G) there exist at most n2i pro
essors. This bound arises fromthe fa
t that ea
h leader p has at least one pro
essor dire
tly 
onne
ted to p, whi
h is notdire
tly 
onne
ted to any other leader. Sin
e there exist O(logn) levels in the hierar
hy andsin
e 
ommuni
ation on overlay edges is 
onsidered non expensive, the hierar
hy 
onstru
tionalgorithm stabilizes within O(log2 n) expe
ted rounds (O(logn) for ea
h level, times O(logn)levels), assuming the degree of ea
h of the hierar
hy levels is bounded.Next, we des
ribe the 
onstru
tion of the overlay network and present a graph 
lass inwhi
h the degree of ea
h hierar
hy level is bounded.4.3.1 Overlay Network Constru
tionLet G = G0 = (V0; E0) be the original graph, to whi
h we apply our 
lustering algorithm. Wede�ne Gi = (Vi; Ei) so that Vi = fp 2 V0j p is a leader in Vi�1g and (p; q) 2 Ei i� the lengthof the shortest path between p and q in G0 is at most 2 � xi+ xi�1 (where x is the parameterof the 
lustering algorithm). This 
onstru
tion 
an be easily a
hieved by ea
h leader p byextending the update algorithm to in
lude pro
essors up to distan
e x+1 (instead of x) andadding the list of leaders at distan
e x to ea
h pro
essor p to p's tuple. We then apply the
lustering algorithm on Gi, so that leaders will dominate pro
essors up to distan
e xi+1 inG0. Note that the 
riteria for distan
e among leaders is expressed in terms of G0 and theoriginal x, namely; xi+1 for level i of the hierar
hy.Lemma 11. Ea
h resulting graph Gi is a 
onne
ted graph.Proof: By indu
tion: G0 is a 
onne
ted graph, by de�nition. Assume Gi�1 is also a
onne
ted graph, and Gi is the result of the 
lustering algorithm. Let p0 and pk be pro
essorsin Vi su
h that p0; p1; : : : ; pk is a path between p0 and pk in Gi�1 (su
h a path exists, sin
eGi�1 is a 
onne
ted graph). Let qj be the 
hosen leader of pj (1 � j � k � 1) in Gi�1.A

ording to the overlay 
onstru
tion, (p0; q1) 2 Ei ^ (qk�1; pk) 2 Ei. Furthermore, 82 �j � k� 1 (qj�1; qj) 2 Ei, sin
e the distan
e in G0 between pj�1 and pj is at most 2 �x2+xi�1(or pj�1 = pj). Hen
e, p0; q1; q2; : : : ; qk�1; pk is a path between p0 and pk in Gi.26



To obtain higher levels of the hierar
hy, we 
ontinue with the same 
onstru
tion re
ur-sively. Suppose we have de�ned the levels of the hierar
hy up to (and in
luding) level i. Thepro
essors of Gi will parti
ipate in the 
lustering algorithm up to distan
e xi+1. Gi+1 will be
omposed of the resulting leaders of Gi, su
h that two pro
essor are neighbors i� the lengthof the shortest path between them in G0 is at most 2 � xi+1 + xi. Ea
h Gi is, in turn, also
onne
ted, a

ording to Lemma 11. To realize this 
onstru
tion, we suggest ea
h leader pwill add to its update table of Gi all the topology p has 
olle
ted in ea
h Gj up to now.Next, we des
ribe the geographi
ally aÆned 
lass of graphs su
h that the 
lustering algo-rithm and the overlay 
onstru
tion, applied on these graphs, produ
es an overlay graph ofbounded degree. This 
lass is implied by a typi
al deployment of sensor networks.4.3.2 Geographi
ally AÆned GraphsIn this 
lass of graphs we wish to explore the relation between the Eu
lidean distan
e betweenpro
essors and the length of the shortest path between them. This de�nition is similar tothe embedding s
hemes presented in [29℄. We �rst de�ne the geographi
ally aÆned 
lass ofgraphs.De�nition 4.1. Let G = (V;E) be a graph embedded in the Eu
lidean plane. For p; q 2 V ,de�ne k(p; q)k2 as the Eu
lidean distan
e between p and q, and dist(p; q) as the number ofhops in a shortest path from p to q in G. G is Geographi
ally aÆned i� there exist a 
onstant
 � 1 su
h that 8p; q 2 V : 
 � dist(p; q) � k(p; q)k2 � dist(p; q).We will next show that ea
h geographi
ally aÆned graph has a bounded degree. Fur-thermore, we also show that the hierar
hy 
onstru
tion algorithm presented above produ
esa bounded degree graph in ea
h level of the hierar
hy.Lemma 12. Given a 
ir
le C of radius r and a set S of points in C, where the minimaldistan
e between any two points is y, then jSj � 16�r2y2 .Proof: Consider Figure 7. C is 
ontained in a square sq1 whose edges are of length 2 � r.In ea
h square sq2 whose edges are of length y2 , there 
an be at most one point from S. jSjis obviously smaller than the number of sq2 squares whi
h 
an be �tted into sq1. Hen
e,jSj � 4�r2y2=4 = 16�r2y2 .Lemma 13. Let G0 = (V0; E0) be an Eu
lidean graph, su
h that G0 is geographi
ally aÆned.Ea
h graph in the series fGiglog ni=0 , resulting from the 
onse
utive appli
ation of the 
lusteringalgorithm with parameter xi+1, has a degree at most 16
2 � (2 � x+ 1)2.Proof: Let p be a pro
essor in Gi, and Np the set of p's neighbors in Gi. The shortest path(in G0) between p and a neighbor q is at least xi (sin
e in Gi�1 p and q are leaders) and atmost 2 � xi+1 + xi (p and q are neighbors in Gi i� their distan
e in Gi�1 is at most 2 � x + 1hops, whi
h is at most 2 � xi+1 + xi hops in G0). In a similar fashion, the shortest path (inG0) between any q; r 2 Np is at least xi (if they are neighbors in Gi). Sin
e the graph isgeographi
ally aÆned, we get the following equations:
 � xi � k(p; q)k2 � 2 � xi+1 + xi27
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Figure 7: Maximal Number of Leaders
 � xi � k(q; r)k2Hen
e, ea
h q 2 Np must reside inside a 
ir
le C, 
entered at p and of radius 2 � xi+1 + xi.A

ording to Lemma 12, jNpj is bounded by 16 � (2�xi+1+xi)2(
�xi)2 = 16
2 � (2 � x+ 1)24.4 Self-Organization PropertiesNext, we prove that our algorithms are self-organizing. Firstly, for the 
lustering algorithm,it is worthwhile noting that lo
ality holds sin
e the algorithm stabilizes within expe
tedO(logn) rounds. Thus, we fo
us our dis
ussion on dynami
 
hanges of the 
ommuni
ationgraph | namely, on addition and removal of 
ommuni
ation links. We wish to draw thereaders' attention to the fa
t that addition (or removal) of pro
essors 
an be modeled bythe addition (or removal) of their 
ommuni
ation links (whi
h is a bounded number ofoperations). When we dis
uss addition of pro
essors, we 
onsider addition of pro
essors ina prede�ned state or in an arbitrary state. We only 
onsider topology 
hanges after thealgorithm has stabilized (otherwise, the global stabilization time applies).Lemma 14. Starting in a safe 
on�guration of the 
lustering algorithm, if the update tableof pro
essor p has 
hanged due to a 
hannel (respe
tively, pro
essor) addition or removal in
on�guration 
i and the 
hannel (respe
tively, pro
essor) is atta
hed (a neighbor) to p, thenwithin expe
ted O(x+log f(x)) = O(1) rounds, a safe 
on�guration is rea
hed. Furthermore,for ea
h pro
essor q, su
h that dist(p; q) > 2 � x, q will remain stable.Proof: Let us assume that p is a pro
essor as des
ribed in the Lemma. Sin
e the updatetables of ea
h pro
essor are restri
ted to pro
essors of distan
e x, no pro
essor q, su
h thatdist(p; q) > 2 � x, will 
hange its own table. Furthermore, after O(x) rounds, ea
h pro
essorwill have 
orre
t tables. The 
lustering algorithm now has to stabilize only in the smallneighborhood of p, whi
h takes O(log f(x)) expe
ted number of rounds.28



Next, let us assume that q was a stable leader in 
i and dist(p; q) > 2 �x. First, we arguethat ea
h pro
essor r in q's neighborhood, maintains a 
orre
t tuple of the update algorithmdenoting q. This is obvious, sin
e no topology 
hanges were made in q's neighborhood. Asa result, q will 
orre
tly parti
ipate in ea
h spanning tree 
onstru
ted by su
h a pro
essorr. Consequently, ea
h time r takes a snapshot of its neighborhood, r will see that leaderq =true. Hen
e, r will not assign true to leaderr and q will remain a stable leader. Thus, allpro
essor within q's neighborhood will remain stable.We now 
onsider the e�e
ts that 
hannel additions have on the 
lustering algorithm. Letus assume that a new (bi-dire
tional) 
hannel, (p; q), is added between pro
essors p andq. We argue that any stable pro
essor distan
ed more than 2 � x from either p or q willremain stable. Furthermore, within an expe
ted 
onstant number of rounds, the algorithmwill stabilize. This 
learly follows from Lemma 14. Let us now assume that a 
hannel (p; q)is removed. Let nl be the set of all pro
essors, so that the removal of (p; q) leaves themleaderless or unstable. We argue that the 
onstant number of pro
essor in nl are at mostat distan
e x from either p or q and that stable pro
essors whi
h are distan
ed farther thanx will remain stable. Pro
essor removal is easily redu
ed to the removal of all 
hannelsatta
hed to this pro
essor from the 
ommuni
ation graph.We also dis
uss additions and removals of pro
essors. We argue that stable pro
essorswhi
h are farther than 2 � x from the removed/added pro
essor will remain stable. This also
learly follows from Lemma 14.Thus, our 
lustering algorithm is self-organizing, sin
e the expe
ted 
onvergen
e time isO(logn) 2 o(n) and the number of pro
essors whi
h 
hange state due to a dynami
 topology
hange is 
onstant. In fa
t, when k 
hanges o

ur approximately at the same time, theexpe
ted 
onvergen
e time is O(log k) following the last 
hange o

urren
e.Appli
ation to hierar
hy; Let us examine a dynami
 
hange at G0. There are two pro
es-sors, p and q, whi
h are involved in the 
hange ((p; q) was either added or removed). We �rst
on
entrate on p. From Lemma 14 we infer that only pro
essors within a distan
e of 2 �x+1hops from p 
an be a�e
ted in G0. The dynami
 
hange 
an in
uen
e the state of leaderswithin this range, whi
h 
an be regarded as a new dynami
 
hange in G1. The radius of the
orresponding in
uen
ed region from p in G1 is therefore (2�x2+2�x+1)+(2�x+1) around pinG0. In a similar way, the radius of the in
uen
ed region from p inGi is 2�xi+2�xi�1+xi�2+(the radius of in
uen
e in Gi�1). Overall, the area of e�e
t around p in G0 is less than 4�xi+2.Sin
e G0 is geographi
ally aÆned, the Eu
lidean radius of su
h a 
ir
le is smaller than 4�xi+2.The minimal distan
e in G0 between pro
essor in Gi is at least xi (when 
ounting real edges,not virtual ones), sin
e they are leaders in Gi�1. Again, sin
e G0 is geographi
ally aÆned,the Eu
lidean distan
e between leaders is at least 
 � xi. Using Lemma 12 (whi
h appears inthe Appendix), it is evident that the number of pro
essors a�e
ted at Gi be
ause of p is atmost 16�(4�xi+2)2(xi)2 = 256 � x4 = O(1). Sin
e we have to 
onsider q as well, we double the totalnumber of 
hanges to have a total of O(1) 
hanges in ea
h level.To 
on
lude, the hierar
hy 
onstru
tion algorithm is self-organizing, sin
e the expe
tedstabilization time is O(log2 n) 2 o(n) and dynami
 topology 
hanges a�e
t only O(logn) 2o(log2 n) pro
essors. Similarly, when k 
hanges o

ur approximately at the same time, theexpe
ted 
onvergen
e time is O(log2 k) rounds following the last o

urring 
hange.29



5 Overlay Based Hierar
hi
al Snapshot AlgorithmWe now present a self-stabilizing and self-organizing snapshot s
heme (whi
h also enablessubsystems to take snapshots independently). Due to the use of overlay links, the resultingsnapshot is sublinear.Let p be a node in HT , so that p is a parent of leaves in HT . Let p1; p2; : : : ; pk be the
hildren of p in HT . Note that p and p1; p2; : : : ; pk reside in the same subsystem, subsi,whi
h is a 
onne
ted 
omponent of G. A spanning tree of subsi rooted at p is 
onstru
tedand p is responsible for invoking snapshots in subsi.Let q be a node in HT , so that at least one 
hild of q in HT is a subsystem, 
onsistingof more than a single pro
essor. Let us assume that q represents (is the leader of) thesubsystem subs. Let subs1; subs2; : : : ; subsj be the subsystems represented by the 
hildrenof q in HT . Note that the union of subs1; subs2; : : : ; subsj is identi
al to subs, the subsystemrepresented by q. Let q1; q2; : : : ; ql be the pro
essors that are leaders of subs1; subs2; : : : ; subsl,respe
tively. It is important to note that it is possible that the pro
essor q, that is the leaderof subs, may also serve as a leader qi of (at most) one of the above subsi. Using the
ommuni
ation links in subs, we de�ne an overlay network 
onne
ting q, q1; q2; : : : ; ql. Aspanning tree, rooted at q, of the obtained overlay network is 
onstru
ted. q is responsiblefor invoking snapshots in subs using the spanning tree of the overlay network of subs. Whena snapshot is requested at q, it will initiate a snapshot in subs.The snapshot initiated at subs 
an serve two purposes. On the one hand, the snapshotalgorithm of subs 
an be used to obtain a 
onsistent snapshot only of q1; q2; : : : ; ql and q.On the other hand, when q sends a marker, it 
an add another indi
ator bit, whi
h a
tsas a snapshot request for q1; q2; : : : ; ql in subs1; subs2; : : : ; subsl. The result is a re
ursiveinvo
ation of the snapshot algorithm, resulting in a 
onsistent snapshot of all pro
essors insubs.The overlay network inside subsystem subs is needed to ensure �fo delivery of messagesbetween leaders. We also need to restri
t 
ross subsystem 
ommuni
ations (of the distributedalgorithm) to travel only through the subsystem leaders using the overlay network. This isdone in order to ensure that messages will not be able to bypass markers or to 
orruptsnapshots.The addition of the overlay network requires several adjustments of the snapshot algo-rithm. The overlay network adds virtual links to the 
ommuni
ation graph whi
h should bealso re
orded. In order to implement virtual links, routing information su
h as the one usedin the sour
e routing s
heme, must be added to messages. Consequently, ea
h pro
essor,upon re
eiving a message through a physi
al link, 
an de
ide whi
h virtual link this messagebelongs to. Furthermore, the state of the pro
essor is not a�e
ted by the arrival of thismessage, sin
e it is only forwarded to its destination. Hen
e, the pro
essor 
an ignore thismessage with regards to the snapshot algorithm without re
ording it on the physi
al link.Su
h messages need to be re
orded only at their destination, on the virtual link they traverseon.
30



6 Extensions and Con
luding RemarksSelf-Organization. We have given a simple and intuitive de�nition of self-organization.Furthermore, we have displayed the relevan
e of self-stabilization with regards to self-organization.Our self-stabilizing and self-organizing snapshot algorithm implies sublinear time algorithmsin the overlay network model for many 
ore distributed tasks.Self-stabilizing and self-organizing leader ele
tion. The hierar
hy 
onstru
tion algo-rithm whi
h is, by itself, a self-stabilizing and self-organizing algorithm, naturally de�nes aleader for ea
h subsystem. Thus, the topmost subsystem (whi
h 
ontains the entire system)also has a leader, whi
h we de�ne to be the output of the leader ele
tion algorithm. Hen
e,the output of the hierar
hy 
onstru
tion algorithm 
an be used to de�ne a self-stabilizingleader ele
tion algorithm whi
h 
onverges in O(log2 n) expe
ted number of rounds and han-dles topology 
hanges gra
efully in O(logn) rounds.Our de�nition of self-organization 
an easily 
apture the e�e
t of transient faults on thesystem. It 
an be shown that a single transient fault in the system 
an e�e
t only the lo
alupdates of a 
onstant number of pro
essors and therefore in
uen
e O(1) states. Moreover,the number of state 
hanges following (approximately) simultaneous faults that o

ur inneighboring pro
essors is proportional to the group's diameter in the graph. In the worst
ase, when the faults are approximately x apart (say, all leaders 
hange state to non-leaders)the number of faults is O(n) allowing a 
omplete stabilization phase.Self-stabilizing and self-organizing snapshots. Building on top of the hierar
hy 
on-stru
tion algorithm, we have presented a self-stabilizing snapshot s
heme, where a globalsnapshot 
an be 
olle
ted in O(log2 n) rounds (in fa
t, if the hierar
hy was previously de-�ned, only O(logn) rounds are ne
essary).Self-stabilizing 
onverter. Our self-stabilizing and self-organizing snapshot algorithmimplies a new eÆ
ient tool for 
onverting distributed (rea
tive, or �xed output) algorithmsto self-stabilizing algorithms in sublinear time; the leader of the system 
an take repeatedsnapshots and verify ea
h snapshot for 
orre
tness. When a snapshot indi
ates an illegalstate, a global reset pro
edure may be initiated, using the infrastru
ture 
reated by thehierar
hy de�nition algorithm, to rea
h a prede�ned (and safe) state.A
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