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Given a distributed algorithm for a spei� task, we are able to onvert the algorithminto a self-stabilizing algorithm for the same task with an expeted onvergene timeof O(log2 n) rounds.
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1 IntrodutionThe availability and robustness, as well as the possibility for on-demand reon�guration oflarge systems, are in many ases vital; be it lusters of servers that support ommerialativity, a grid of omputers that partiipate in a ompliated omputation or a dynamisensor network. In partiular, an important aspet for large on-going systems is the abilityto automatially reover from an inonsistent state, namely to be self-stabilizing ([13℄) or inother words, to have a system that an be started in an arbitrary state.To apture the need of the industry in autonomi and self-* systems, we propose om-bining self-stabilization (in fat SuperStabilization [14℄) with self-organization. While self-stabilization is well de�ned, the self-organization property has no widely agreed upon def-inition. We propose to de�ne self-organization as satisfying two main properties: loalityand dynamiity. Namely, we require that (1) the algorithm stabilizes in sublinear time withregards to the number of proessors and that (2) the addition and removal of proessorsinuenes a small number of other proessors' states. In other words, if s(n) represents thestabilization time and d(n) represents an upper bound on the stabilization time (and numberof state hanges) following a dynami topology hange, then: s(n) 2 o(n) and d(n) 2 o(s(n)).This de�nition an be naturally extended to apture also the e�et of loal transient faultsthat orrupt the states of a subset of the proessors rather than only topology hanges (thusit is in the spirit of both the superstabilizing and fault-ontainment approahes [13℄).In this work, we allow algorithms to de�ne (on the y) and (then immediately) use hyperommuniation links, whih are overlay links that are onstruted of ommuniation linksalong a path. We regard the time that a message travels over suh a link as one timeunit, assuming that (pratially) no proessing is involved in forwarding messages over theselinks (e.g., [17, 33℄, mpls [7℄). This de�nition is motivated by (e.g., telephony) systems,where swithes along a path are on�gured for a session and the path is essentially a wire.We propose to use the self-stabilizing and self-organizing properties of shemes ombinedwith suh swithing apabilities to obtain dramatially faster onvergene rates and globalinformation transmission with relation to traditional ommuniation networks. In traditionalsettings there are obvious lower bounds that are proportional to the number of nodes (orthe diameter of the ommuniation graph of the system) while the existene of overlay linksallows us to obtain logarithmi bounds.1.1 Main ContributionSelf-Stabilizing and Self-Organizing hierarhy de�nition. The hierarhy of subsys-tems is de�ned by partitioning the ommuniation graph into small lusters, after whihlusters are merged to form bigger lusters and so on. The partition an be done aordingto a designer's input, using an automati o�-line lustering algorithm or even an on-linelustering algorithm that reets the system's urrent behavior. In partiular, we suggest arandomized self-stabilizing and self-organizing partition that is based on periodial olletionof loal topology (up to a ertain distane). The olleted loal topology supports a ran-domized loal leader eletion, in whih a non leader proessor that does not identify a leaderwithin a ertain distane x tries to onvert itself to a leader. Leaders within distane x from3



eah other are eliminated, until there are no leaders that are within distane x or less fromeah other. Higher level partitions, using larger distanes and overlay network abstrationbetween leaders, are onstruted in a similar way.In asynhronous systems, our lustering algorithm uses (for eah proessor) a (loal)self-stabilizing snapshot algorithm for obtaining loal synhronization of ations.Self-Stabilizing snapshots. We present a snap-stabilizing (e.g., [8℄) snapshot algorithmfor distributed systems, that uses message passing with bounded link apaity, in whih aspanning tree is distributively de�ned. Our snapshot algorithm is designed for a messagepassing system in whih any initial state of link ontents is onsidered and in whih thepossibility of messages overow (due to sending a message through a full link) is inorporatedinto the model.Our snapshot algorithm an also be applied to systems with a general ommuniationgraph in whih a rooted spanning tree is distributively de�ned by another self-stabilizingalgorithm. The spanning tree may be an output of a self-stabilizing (BFS) rooted treeonstrution algorithm. In this ase, however, we obtain only on-demand stabilization ratherthan snap-stabilization. On-demand stabilization ensures that regardless of the number ofnew requests (for snapshots), the system reahes a state, suh that eventually any newrequest results in a orret output (snapshot). In other words, stabilization does not rely onrepeated invoations of new (snapshot) requests. Our on-demand self-stabilizing snapshotalgorithm serves us as a basi building blok in order to obtain our hierarhial snapshotshemes.Overlay network based snapshot. We suggest an approah for hierarhial snapshotbased on an (�fo preserving) overlay network abstration. We enable eah subsystem toperform an independent snapshot, and further enable eah level of the hierarhy to performa loal snapshot. We suggest the use of overlay ommuniation links whih \diretly" onnetleaders of lusters. It is worthwhile noting that an (�fo) overlay network link may be in fata path of physial links. It is also evident that the ommuniation over an overlay link ismuh faster than the sum of the single hop ommuniation links that implement the overlaylink1.Leaders of subsystems are de�ned, and the ommuniation between proessors in di�erentsubsystems traverses the overlay ommuniation links between the leaders of the subsystems.Thus, there is no need for reording the messages over physial links between subsystemsunless they are part of an overlay ommuniation link. When a snapshot is invoked bya leader of a subsystem (possibly due to a request forwarded to the leader by anotherproessor), the leader uses the overlay network to notify (send snapshot markers to) theleaders of the subsystems that belong to its subsystem. These leaders, in turn, are responsiblefor performing a snapshot in their subsystem in the same manner.Disussion onerning overlay network arhiteture. We assume the existene of om-muniation swithes that are reon�gurable by (ommands of) our algorithm. Our approahis layered; the �rst layer is based on traditional point to point neighboring ommuniation,where ommuniation is between proessors that are diretly onneted by physial ommu-niation mean. The output of this layer (whih is the loal topology of eah proessor) is usedto on�gure overlay links, using the apabilities of the swithes. An analogous proedure is1In some ases, preassigned frequenies or/and supporting swithing hardware an be used. e.g.,mpls{[7℄.4



implemented for higher levels in the hierarhy de�ning new overlay links using wider topologyknowledge. We assume that the bandwidth of a physial ommuniation link is suÆient forimplementing of all the overlay links that this link partiipate in implementing (this numberis typially small, and is always less than the number of possible soure-destination for theoverlay links).One may wish to employ our algorithms to system that does not onsists of the aboveprogrammable swithes. In other words to provide an abstration of overlay links in software.To ensure message delivery in suh a ase, one may need loal bu�ers in eah intermediateproessor along the overlay path. Eah proessor may maintain a message bu�er for eahoutgoing edge. The bu�er will hold a \buket" for eah overlay path whih traverses theorresponding link (again, this number is typially small). Eah buket holds the last messagereeived whih is assoiated with the buket's path and did not yet traverse the attahed link.The proessor will send the ontents of the bukets repeatedly and fairly (say, simultaneouslyusing high bandwidth). Thus, ensuring eventual delivery (fairness) and fifo ordering.As assumed in the sope of overlay ommuniation networks, proessing (of higher levelprotool-stak are avoided and) is done only at the end-points of the ommuniation, there-fore the delay is still assumed to be one time unit. End-to-end arq stabilization an beanalyzed in the way suggested in [10℄, resulting in a onstant time as well (twie the numberof round trip time between the overlay endpoints).1.2 Related workSelf-organization. In reent years, the onept of self-organization has been widely men-tioned in the sope of distributed omputing and peer to peer networks. Many works havelaimed being self-organizing, but a mere fration of these works also tries to give a spe-i� de�nition of what self-organization really is. In [2℄ a framework for self-organizationis proposed, inluding formal de�nitions of the self-organization onept and omplemen-tary proof tehniques whih an be used to prove that algorithms are indeed self-organizing.Eah algorithm is required to have an assoiated evaluation riterion, whih operates on theimmediate neighborhood of a proess. This evaluation riterion does not take into aountthe inuene of other loal neighbors, say those that are within a onstant distane.Fault ontainment. Fault ontainment, using persistent bits, voting on repliated bits(usually for non reative systems) is another way of addressing loality (e.g., [25, 20, 1, 5℄).The idea is to repair transient faults starting from a safe global system on�guration. Insuh a ase, it is possible (unlike in the ase of topology hanges) to hange the state ofthe a�eted proessors bak to the state prior to the fault. In this ontext, our algorithmis self-stabilizing and when started in a safe on�guration an handle k transient faults aswell as topology hanges ourring approximately at the same time, in expeted O(log k)rounds. Moreover, our sheme is the �rst to support many ore distributed tasks, suhas self-stabilizing leader eletion algorithm and snapshots algorithms in O(log2 n) expetedrounds.Cluster and hierarhy onstrution. Self-stabilizing and self-healing onstrutions ofhierarhies, in the domain of sensor networks, appear in [35℄. The authors divide the planeinto hexagonal ells. In eah ell a head that orresponds with a luster leader is eleted.5



The existene of a unique proessor, the big node, whih ats as an initiator is assumed. Thebig node determines the enter of the �rst hexagon, �xating the loation of its own luster.The big node elets heads in adjaent hexagonal ells whih will subsequently elet headsin their adjaent ells. The time omplexity of this algorithm is obviously proportional tothe diameter of the ommuniation graph. Our algorithm does not assume a leader andonverges within O(logn) expeted number of rounds and reats to dynami hanges loally.Our lustering algorithm is in fat a maximal independent set algorithm. A lassialmaximal independent set algorithm is presented in [30℄. The algorithm is designed for asynhronous system and onverges (from a pre-de�ned initial state) within O(logn) expetedonvergene time. Our algorithm is designed for asynhronous systems, is self-stabilizing andself-organizing and onverges within expeted O(logn) rounds for onstant degree graphs.A reent work by Wattenhofer and Mosibroda [31℄ presents an algorithm for omputinga maximal independent set in radio networks. The system model is fundamentally di�erentfrom the one presented here: Proessors an broadast their messages asynhronously, but noollusion detetion mehanism is provided. The algorithm presented onverges in (expeted)polylogarithmi time, and proessors whih join the algorithm are promised to be overedin (expeted) polylogarithmi time.In [27℄, the authors present lower bounds on distributed approximation algorithms forthe minimum vertex over problem. Their bounds an also be applied to the maximumindependent set problem. We do not seek a maximum independent set, and our algorithmde�nes a maximal independent set.Other approahes for distributively de�ning maximal independent sets in bounded degreegraphs appear, for example, in [26℄ and in [21℄. The algorithms presented usually de�ne amaximal independent set in O(log� n) rounds. However, a synhronized environment isassumed and is heavily relied upon; for example, in [21℄ the authors �rst de�ne a oloring ofthe graph, using a bounded number of olors. The olors are then used to de�ne a maximalindependent set iteratively, by �rst hoosing all the proessors olored with the lowest olor,removing all of their neighboring proessors and repeating the proess with the next olor.Unfortunately, these algorithms do not �t asynhronous systems, nor are designed to toleratefaults and hanges graefully.Appliations of hierarhy in the self-stabilization domain are desribed in [19℄. Theauthors argue that the hierarhial onstrution an be used to shorten the onvergenetime of various self-stabilizing distributed algorithms. As an example, the authors present anappliation to spanning tree onstrution. However, the authors do not present an algorithmfor de�ning the hierarhy but assume it is de�ned beforehand.Distributed snapshots. The �rst distributed snapshot algorithmwas introdued in [6℄. Theauthors desribe a distributed algorithm for olleting the states of proessors and the statesof links suh that a global state of the system, alled the system snapshot, that has speialproperties is obtained. Namely, the obtained system snapshot an be reahed by an exeutionthat starts in the system state in whih the snapshot algorithm was initiated. Moreover,there is an exeution that starts from the obtained system snapshot and reahes the systemstate in whih the snapshot algorithm terminated. Therefore, the system snapshot is a globalstate that an be used to detet stable properties. For example, if there is a deadlok inthe global state reorded by the snapshot algorithm, then we may onlude that there is a6



deadlok in the system.The snapshot algorithm is de�ned for message passing system, and is based on speialmessages alledmarkers, whih are used to partially order proessors' ations. The algorithmis based on rules, whih state for eah proessors, p, the steps pmust take eah time p reeivesa marker m on a ommuniation link l: if m is the �rst marker p reeived, p reords p's loalstate and immediately sends markers on all of p's outgoing links. Moreover, p reords thestate of l as empty. If m is not the �rst marker p reeived, p reords the state of l as the listof messages reeived from l following the �rst marker p reeived. When p reeived a markerfrom eah inoming link, p publishes its portion of the snapshot whih onsists of p's reordedstate and the state of all the links adjaent to p. The ombined published portions of all theproessors form the global snapshot. The algorithm is initialized by one or more proessorssending markers to themselves and terminates when eah proessor reeived markers on allof its adjaent links. ℄℄Self-stabilizing snapshot. A self-stabilizing snapshot algorithm was �rst introdued in[23℄, where repeated invoations of snapshots are used to ensure stabilization of a non-stabilizing algorithm. When the obtained snapshot indiates an inonsistent system on�g-uration, a reset is invoked. The stabilization of the snapshot itself is based on its repeatedinvoation. We present an on-demand self-stabilizing snapshot that does not rely on re-peated invoations and, in fat, reahes a safe on�guration also in ases in whih snapshotinvoations ease as well. Following [23℄, several works have studied ways of ahieving ef-�ient snapshots in di�erent models e.g., message passing, bounded links message passingand shared memory [34, 1, 8℄.In [34℄, the author takes a di�erent approah to self-stabilizing snapshots. A ommonounter is shared among proessors and is used to number markers of the snapshot algorithm.Proessors only partiipate in snapshots whih math their ounter value. In order to obtainself-stabilization, the ounter is reseted using a self-stabilizing reset algorithm. The systemsettings do onsider links of bounded apaity, but assume this apaity never to be reahed.Our algorithm handles links overows graefully.A di�erent approah for the snapshot task is taken by using a snap-stabilizing propagationof information with feedbak (PIF) algorithm [8℄. In [8℄, the authors present a snap-stabilizer| a tool that onverts any given shared memory algorithm to a snap-stabilizing one by usinga tehnique similar to the one in [23℄. The snapshot algorithm uses snap-stabilizing PIF.Shared ommuniation registers are used in [8℄ for ommuniation among proessors. Weonsider message passing systems. It is worthwhile noting that the onversion of a sharedmemory algorithm to message passing suggested in [15, 13℄ does not preserve the snap-stabilization property, at least when randomization is not used.Dynami graph algorithms. Extensive researh on distributed dynami algorithms ap-peared in the literature (e.g., [17℄ and the referenes therein). Still, our algorithm is the �rstself-stabilizing and self-organizing distributed (graph) algorithm. Another related aspet ofour work is related to dynami (graph) data strutures (e.g., [22℄ and the referene therein).We ahieve a ommitting time (logarithmi and polylogarithmi) in (fault tolerane) dis-tributed settings for an important lass of graphs.Our ontribution. We de�ne the self-organization property to apture loality and dy-7



namiity. We present a lustering algorithm (in fat, a distributed maximal independent setalgorithm) whih is both self-stabilizing and self-organizing. To realize the lustering algo-rithm in an asynhronous system we present a sheme of loal synhronization, ahieved byusing a loal snapshot protool. We employ the aforementioned lustering algorithm to de-�ne a graph hierarhy whih an be used to onvert any distributed task to be self-stabilizinginurring only a sublinear time overhead.Paper organization. In Setion 2 we present the system model and in Setion 3 the basion-demand snapshot algorithm. Hierarhy onstrution shemes are desribed in setion 4.The hierarhial snapshot algorithm is presented in Setion 5. Extensions and onludingremarks appear in Setion 6.2 System ModelThe system onsists of n proessors, denoted by p1; p2; : : : ; pn. The proessors are onnetedby ommuniation links. Eah proessor is modeled by a state mahine that an send andreeive frames (or low level messages) to/from a subset of the proessors. We use a uni-direted ommuniation graph G = (V;E) to represent the system, where eah proessor piis represented by a vertex vi 2 V and eah ommuniation link used for transferring framesfrom pi to pj is represented by an edge (i; j) 2 E. We further assume that the existene ofthe edge (i; j) 2 E implies the existene of an opposite direted edge (j; i) 2 E and thatthe number of edges attahed to a proessor is bounded by a onstant. We de�ne the distof two proessors p and q, dist(p; q), as the length of the shortest path between p and q inthe graph. For a proessor p and a onstant x, we denote fp(x) as the number of proessorq suh that dist(p; q) � x. We further de�ne fG(x) (or just f(x) where G is lear from theontext) as the maximal fp(x) over all proessors p in the graph.Proessors may join and leave the system at any time. Similarly, links may spontaneouslyfail and reover. We model proessors' join and leave as the addition or removal of all oftheir links from the system. We assume that proessors may detet suh topologial hangesin a timely fashion (e.g., by observing voltage levels of the underlying physial layer). Inthe ontext of self-organization the pattern and the sequene of topology hanges inuenethe onvergene time. We require that following a single topologial hange at most o(s(n))rounds are needed for stabilization. In ase k topologial hanges ours together or in asequene, suh that any two onseutive hanges among these k hanges took plae withino(s(n)) asynhronous rounds, and within o(s(n)) distane apart, then the stabilization timeis bounded by minfk � o(s(n)); s(n)g rounds. Note that, any (non onstant) number ofhanges ourring approximately simultaneously in the graph, but in distaned of at leasto(s(n)) from eah other, will require only o(s(n)) rounds to stabilize.We assume a lass of graphs for whih a orrelation exists between the number of edgesalong a shortest path and the geographial distane of the path's end-points.The system is asynhronous, meaning that there is no orrelation between the non on-stant rate of steps taken by the proessors. We assume that the apaity of the ommunia-tion hannels (equivalently the number of items in the �fo queues that represent the links) isbounded, by the onstant l. Whenever a proessor pi sends a frame to a neighbor pj, when8



the link (i; j) already ontains l frames, we assume that one of the frames (not neessarilythe new one) is lost while the �fo order of the rest of the frames is preserved. In fat, sineframes an always be lost, we restrit the pattern of frame loss steps to be suh that if framesare sent in�nitely often, frames are also reeived in�nitely often.We further abstrat the ativity of ommuniation links by assuming an underline snap-stabilizing ARQ data link algorithm that transfers frames in order to ensure that high levelmessages transfer respets the following: (1) messages sent from pi to pj are reeived bypj in a �nite (but yet unbounded) time (2) and message delivery respets the exatly onedelivery and �fo ordering poliies. We note that the ARQ algorithm performed on one linkof a proessor pi does not blok the reeive operations (and orresponding steps) from thelinks attahed to pi. We assume that eventually when pi sends a message m to pj (and pidoes not send further messages), pi reeives aknowledgment for m after pj reeived m.We use the term overlay edge to denote a path of edges that onnets two proessorsin the system. When the path is prede�ned and �xed, it ats as a virtual link in whih(pratially) no proessing is required by intermediate proessors in order to forward theframe from soure to destination. We allow proessors to de�ne and use, on the y, overlayedges to other proessors, when the underlying path is known. We regard the time it takes aframe to traverse suh an overlay link as the time for traversing a link that diretly onnetstwo neighboring proessors. We assume these overlay edges preserve fifo ordering of framesbetween proessors and maintain the assumption that a frame whih is in�nitely often sentis in�nitely often reeived.A on�guration  of the system is a tuple  = (S; L); S is a vetor of states, hs1; s2; � � � sni,where the state si is a state of proessor pi; L is a vetor of link states hl1;2; l1;3; � � �; l2;1; l2;3 � � � i.A link li;j is modeled by a �fo queue of frames that are waiting to be reeived by pj andthe ontents of the queue is the state of the link. Whenever pi sends a frame f to pj, f isenqueued in li;j. Also, whenever pj reeives a frame f from pi, f is dequeued from li;j. Aproessor hanges its state aording to its transition funtion (or program). A transitionof proessor pi from a state sj to state sk is alled an atomi step (or simply a step) and isdenoted by a. A step a onsists of loal omputation and of either a single send or a singlereeive operation.We model our system using the interleaving model. An exeution is a sequene of globalon�gurations and steps, E = f0; a0; 1; a1; : : :g, so that the on�guration i is reahed fromi�1 by a step ai of one proessor pj. The states hanged in i, due to ai, are the one ofpj (whih is hanged aording to the transition funtion of pj) and possibly that of a linkattahed to pj. The ontent of a link state is hanged when pj sends or reeives a frameduring ai. An exeution E is fair if every proessor exeutes a step in�nitely often in E andeah link respets the bounded apaity loss pattern. In the sope of self-stabilization weonsider exeutions that are started in an arbitrary initial on�guration.A task is de�ned by a set of exeutions alled legal exeutions and denoted LE. Aon�guration  is a safe on�guration for a system and a task LE if every fair exeutionthat starts in  is in LE. A system is self-stabilizing for a task LE if every in�nite exeutionreahes a safe on�guration with relation to LE. We sometimes use the term \the algorithmstabilizes" to note that the algorithm has reahed a safe on�guration with regards to thelegal exeution of the orresponding task. 9



In some ases we would like to de�ne proesses exeuted by the proessors so that eahproessor exeutes steps for several proesses. Consider the ase in whih eah proessor piexeutes two proesses p1i and p2i . Assume further that a proess p1i an ommuniate diretlywith a (neighboring) proess p1j residing in a neighboring proessor. The transition funtionof p1i is de�ned by the state s1i of p1i and the messages reeived from a neighboring proessesp1j . The transition funtion of p2i is de�ned by the state of p1i and p2i and the messages sentby neighboring proesses p2j . The de�nition of on�guration for the multi-proesses ase isde�ned by a vetor of state hs11; s12; � � � i for the state vetor of the �rst layer proesses anda vetor hl11;2; l11;3; � � � i of the link states of the �rst layer, while the later is omposed of thequeues assoiated with the links, restrited to the messages sent by proesses in layer one,p1i . The layers de�nition allows us to separate the snapshot protool ativity (in the lowestlayer) from the original system (upper layers) that is the subjet of the snapshot.A multi-proess fair exeution is a fair exeution in whih every proess exeutes a stepin�nitely often (in the sequel we use the term fair exeution for multi-proess fair exeution).The snapshot task S for a system is de�ned by a set of exeutions ES started in an arbitraryon�guration, so that if a snapshot starts in an atomi step ar, there is a on�guration s,that follows ar, in whih a proessor reeives a global snapshot gs. Moreover, assuming r isminimal, there exists an exeution of proesses in level one that starts immediately beforear, reahes gs and then ontinues to the on�guration of level one in s.We use the notion of asynhronous rounds to measure the time omplexity of an algo-rithm. The �rst asynhronous round in exeution E is the shortest pre�x of E in whih eahproessor (or proess) ommuniates with all of its neighbors (either through a diretly on-neting ommuniation link or through an overlay edge). The seond asynhronous round inE is the �rst asynhronous round of the suÆx of E that immediately follows the �rst asyn-hronous round in E . The time omplexity of an algorithm is the number of asynhronousrounds (or simply rounds) that are required to ahieve the task of the algorithm.3 On-Demand (Snap-)Stabilizing Message Passing(Tree-)Snapshot AlgorithmIn this setion we present the �rst snap-stabilizing snapshot for message passing systems.We do not require repeated invoations of the snapshot algorithm in order to stabilize, inontrast to the assumption needed in order to employ the snapshot algorithm of [23℄. Asnap-stabilizing snapshot algorithm for shared memory system is presented in [8℄. In theontext of self-stabilization, message passing systems introdue additional intriay due tounknown messages in transient in the arbitrary �rst on�guration from whih the systemshould onverge to a legal behavior [13℄.When designing our snapshot algorithm, our starting point is the unbounded snapshotalgorithm presented in [23℄ and the snap-stabilizing algorithm presented in [8℄, whih wemodify to a bounded message passing snap-stabilizing algorithm. Namely, we ensure thatany new request for a snapshot will result in a orret snapshot. This requirement di�ersfrom the one presented in [23℄ where snapshots must be ontinuously and in�nitely ofteninvoked. In our ase, the algorithm is ready for future requests even when no snapshot10



requests are made.The algorithm is designed for a system in whih a rooted spanning tree is distributivelyde�ned. It is based on performing two onseutive tree-PIFs (propagation of informationwith feedbak using a spanning tree) and then employing the original snapshot algorithm of[6℄. Eah PIF uses the rooted tree in order to propagate a ommand (initialize and then pre-pare) and reeive feedbak on the ompletion of the propagation (of the initialize and prepareommands, respetively). A proessor that reeives a ommand from its parent, propagatesit to its hildren and also \leans" the non-tree edges attahed to it. One a proessor preeives an aknowledgment from all its hildren that their subtree reeived the ommandand one p �nishes leaning the attahed non-tree links, p sends an aknowledgment to itsparent regarding the ompletion of the ommand propagation. Both tree-PIFs are ompletedwithin O(d) rounds (assuming a BFS tree is used), where d is the diameter of the network.When the �rst (initialize) tree-PIF is ompleted, no marker of previous inarnations of thesnapshot algorithm is present in the system and proessors disregard all inoming snapshotmarkers. After the seond (prepare) tree-PIF is ompleted, proessors do not ignore markersand the root may then initiate the original snapshot algorithm of [6℄.To guarantee snap-stabilization we have to ensure that when the root starts a tree-PIF and then reeives an indiation from its hildren regarding ompletion, the system'son�guration is indeed the desired one - namely, a on�guration in whih all nodes areinstruted by the propagated ommand. The tehnique used to ahieve the above is basedon a method of ensuring the happened before relation, using a snap-stabilizing data linkalgorithm whih is spei�ally designed for bounded apaity links (Figure 2). When aproessor p would like to pass a ommand to a neighbor q, p repeatedly sends frames witha label i until p reeives a frame with label i from q. Then p repeatedly sends frames withlabel i+1 (mod 2 � l+1) to q until a frame with the new label is reeived from q and so onuntil p sends 2 � l + 1 distint labels. In eah frame q sends the last loal synhronizationolor q reeived from p. Thus, when p reeives a frame with the last label among the set ofthe distint 2 � l+ 1 labels, p knows the urrent loal synhronization olor known to q andsends frames with a di�erent loal synhronization olor together with the global ommand(initialize or prepare) that p would like to pass to q. Following that, q identi�es the newloal synhronization olor and invokes the global ommand.To simplify our presentation we use a self-stabilizing version of the aforementioned frameommuniation algorithm. The self-stabilizing frame ommuniation algorithm is used tosend ontrol messages between neighboring proessors. Eah ontrol message is either piggybaked on messages sent by the original algorithm (the snapshot subjet) or sent indepen-dently (as part of a frame). Eah proessor p maintains 3 arrays: next, urrent and last.Eah array has an entry for eah neighbor of p. next[q℄ is the entry in whih the next valuethat p is about to send to q is stored. p may deide to send a di�erent value to q beforenext[q℄ is sent. In suh a ase, the value in next[q℄ is overwritten. urrent[q℄ holds the datathat p is urrently sending to q. last[q℄ ontains the last aknowledged data that p sent to qalong with the atual aknowledgment of q. We note, that transforming the self-stabilizingversion presented in Figure 2 into a snap-stabilizing one an be ahieved by iterating thesending operation 2 � l+1 times. Corretness is trivially preserved and the onversion addsa onstant amount of time to eah send operation whih an be onsidered O(1) for time11



omplexity measure.We now desribe the way next[q℄, urrent[q℄ and last[q℄ are aessed. We use Figure 1and Figure 2 in our desription. For eah frame arriving from q, p heks whether the frameontains an aknowledgment (Figure 2 line 2). The aknowledgment should also be numberedwith the urrent number that p is expeting to reeive from q. When an aknowledgment withthe urrent number arrives, p \advanes" the values next[q℄ to urrent[q℄, and urrent[q℄ tolast[q℄. In more details, last[q℄ is assigned by urrent[q℄, urrent[q℄ is assigned by next[q℄,and next[q℄:val is assigned by null, while next[q℄:num is assigned by the next ontrol number(Figure 2, line 8).If the frame arriving is not an aknowledgment, p �rst sends an aknowledgment to q(line 10). Afterwards, if q is the parent of p and if q sent a ontrol message with a di�erentolor than p's olor, p hanges state aordingly (line 13). Alternatively, if p is the parentof q, and the frame ontains a done message, p updates the data struture whih denoteswhih hild has �nished the urrent initialization phase.At the end of the frame ommuniation algorithm, p passes the enapsulated message tothe algorithm subjet to the snapshot. Equivalently, in line 21, eah message destined to qis enapsulated in a frame, holding urrent[q℄. next[q℄writeak reeivedak reeived urrent[q℄last[q℄Figure 1: Frame ommuniation algorithm - data owThe self-stabilizing snapshot initialization algorithm is responsible for leaning old mark-ers from the ommuniation links. Roughly speaking, there are two phases, in eah of whihthe root instruts eah hild, q, to olor itself with a olor that is di�erent from the olorthat q is urrently olored by. Eah proessor q repeats the same proedure with its treehildren and sends an aknowledgment to its parent one it is done. Following the initial-ization, proessors do not partiipate in snapshots. Later on, when the root reeives donemessages from eah of its hildren, the root starts the prepare phase. When the seond phaseis ompleted, the proessors may start partiipating in a snapshot.The ode of the initialization-prepare algorithm appears in Figure 3. We use a onventioninspired by the guarded ommands notation for representing the program of a proessor. Theprogram in Figure 3 is omposed of six guarded ommands. Eah guard is a prediate. Aguard is enabled if, and only if, the prediate is evaluated as true. Eah ommand is a �niteset of instrutions that a proessor must take when the orresponding guard is enabled. Weassume that the guards of a ertain proessor are sheduled by an internal sheduler whihrepeatedly hooses to exeute the ommands of an enabled guard. Furthermore, we assumethat the internal sheduler ensures that a guard that is in�nitely often enabled is exeutedin�nitely often.In general, the initialization-prepare algorithm task uses phases identi�ed by proessorstates to oordinate the operation of the proessors. The algorithm has two main phases12



(initialize, prepare) eah of whih has a few states assoiated with it. In partiular, theinitialization phase is omposed of state hanges aording to the following order: initialize,syn initialize, propagate initialize, hildren initialize, finish initialize and�nally the done state.The �rst guard of the initialization-prepare algorithm (Figure 3, line 1) desribes the�rst ations a proessor (p) takes when starting a new phase (either initialize or pre-pare). First, p leans the links onneting it to its neighbors. The leaning is ahieved bysending a probe message on eah link. Eah neighbor q, when reeiving a probe message,aknowledges reeiving the message and attahes to the aknowledgment q's urrent syn-hronization olor (Figure 2, line 10). After sending all probe messages, p will hange stateto the syn state, e.g., if p's state was initialize, it will hange state to syn initialize(line 8). Moreover, if p was in the initialize state, then before hanging state it will setthe ignore markers ag to true (line 7).The seond guard appears in line 10. If p is in the syn initialize (or syn prepare)state and reeives aknowledgments from all of its neighbors, line 11 ensures that p willhange state to propagate initialize or propagate prepare respetively. Line 13 de-sribes the ations p must take in the propagate states. Essentially, p propagates its phasestate to its hildren (lines 14 to 19). We de�ne the phase state as initialize if p is inthe initialize phase, and prepare if p is in the prepare phase. For example, if q is in thepropagate initialize state, the phase state for p is initialize. Similarly, if p is in thepropagate prepare state, the phase state for p is prepare. The propagation is ahievedby sending an appropriate ommand to eah hild. The ommand ontains a olor that isdi�erent from the last olor eah hild had already sent (line 19). This ensures that thehildren identify the ommand as a new ommand and hange state aordingly. Finally, phanges state to hildren initialize (or hildren prepare).The third guard appears in line 23. This guard ensures that p will wait for eah hild toaknowledge the ommand. After eah hild aknowledges the ommand, p must wait forits hildren to �nish propagating the ommand to their subtrees. To this end, p utilizes thedone[℄ array. When a proessor is in the done state, it repeatedly sends done messages toits parent. To make sure that p onsiders only relevant done messages, p must �rst initializethe done[℄ array with false (line 25). p will then hange state to the finish state (with theappropriate suÆx, aording to p's phase state).One all of p's hildren �nish synhronizing their sub-trees, they will send a donemessageto p. This will ause the guard in line 29 to be enabled. At this point, p will have �nishedsynhronizing its subtree and an proeed to the done state. However, before hangingstate, if p is in the prepare state, it will hange ignore markers to false. From this pointon, p is ready to partiipate in a snapshot.The last guard, whih is in line 34, ensures that if p is in the done state, p will repeatedlysend done messages to its parent (line 35).Corretness proof. We will �rst show that the data link algorithm stabilizes. The proofwhih is already a folklore, is for a partiular pair of proessors, for example pi and pj, wherepi is the sender and pj is the reeiver.Lemma 1. In every fair exeution E, assume pi assigns a new value to urrenti[pj℄ in a globalon�guration l. Then, there exists a global on�guration k, suh that an aknowledgment13



1 new frame(num,val,in message) arrived from q:2 if val = (ak; olor) ^ num = urrent[q℄:num then3 urrent[q℄:olor  olor4 last[q℄ urrent[q℄5 urrent[q℄ next[q℄6 next[q℄ nil7 next[q℄:num urrent[q℄:num+8 1 (mod 2 � l+ 1)9 else10 SendFrame(num,(ak,olor))11 if q = parent ^ val = (new olor; ommand)^12 new olor! = olor then13 state ommand14 olor  new olor15 if q 2 Children ^ val =done then16 done[q℄ = true17 �18 �19 pass in message upwards in the protool stak20 end21 SendFrame(urrent[p℄:num; urrent[p℄:val;message)Figure 2: Frame ommuniation with a neighbor qfrom pj arrived at pi and k > l. Furthermore, eventually the happened before relation holdsbetween the atomi steps ak in whih the assignment of a new value x to urrenti[pi℄ isexeuted, a later atomi step al in whih a frame with x is reeived by pj and an atomi stepam in whih the aknowledgment regarding the reeipt of x in pj is reeived by pi.Proof: Sine eah frame numbered with num is sent repeatedly by pi, an aknowledgmentwith num will eventually arrive from pj. Hene, pi will in�nitely often hange the framenumber in a round robin fashion (Figure 2, line 8). Sine the link apaity is bounded by land pi inrements the frame numbers modulo 2 � l+1, a value y whih is not present in the�rst arbitrary on�guration in either the link (i; j) or (j; i) will be hosen. From this pointon, it is obvious that our laim holds, sine pi will only aept aknowledgments for y.Considering the snap-stabilizing version, an analogous proof an be derived to show thatthe data link algorithm is indeed snap-stabilizing.Lemma 2. In every fair exeution E, eventually after a proessor pi exeutes lines 3 to4 in Figure 3 (denoted writing) for a partiular neighboring proessor pj and assuming noonseutive write of pi to pj takes plae, an aknowledgment will arrive to pi. Immediatelyafter the atomi step in whih the aknowledgment arrives, a on�guration in whih lasti[pj℄is equal to ak pendingi[pj℄ will be reahed.Proof: Sine no writes our and sine pi repeatedly sends frames with urrenti[pj℄ anaknowledgment for urrenti[pj℄ will eventually arrive. Sine we assumed no writes ourred,14



Prediate answered(q) � ak pending[q℄:num = last[q℄:num1 state 2 finitialize, prepareg :2 foreah q 2 Neighbors do/* this is atually the write */3 ak pending[q℄ next[q℄:num4 next[q℄:val probe5 done6 if state = initialize then7 ignore markers true/* hange state to syn.initialize beomes syn initialize */8 state syn state9 end10 8q 2 Neighborsj answered(q)^(state = syn initialize _state = syn prepare):/* syn initialize beomes propagate initialize */11 state propagate base state12 end13 (state = propagate initialize_state =propagate prepare) :14 foreah q 2 Children do15 ak pending[q℄ next[q℄:num16 if state = propagate initialize then17 hild ommand initialize18 else hild ommand prepare19 next[q℄:val (last[q℄:olor; hild ommand)20 done/* propagate initialize beomes hildren initialize */21 state hildren base state22 end23 8q 2 Childrenj answered(q) ^ (state = hildren initialize_state =hildren prepare):24 foreah q 2 Children do25 done[q℄ false26 done27 state finish base state28 end29 8q 2 Childrenj answered(q) ^ done[q℄ = true^(state = finish initialize _state =finish prepare):30 if state = finish prepare then31 ignore markers false32 state =done33 end34 state =done:35 next[parent℄:val done36 endFigure 3: Initialize-Prepare algorithm for a proessor p1 start a new snapshot:2 state initialize3 state = prepare done:4 the root is ready to start a new snapshot.Figure 4: Root rules for initiating a new snapshot15



pi will assign nexti[pj℄ to urrenti[pj℄, aording to Figure 2 lines 3 to 5. Using lemma 1 weknow that an aknowledgment will eventually arrive after pj reeives urrenti[pi℄. Hene,and again aording to lines 3 to 5, pi will assign urrenti[pj℄ to lasti[pj℄. We an onludethe orretness of the Lemma from the fat that the value that was originally present atnexti[pj℄ was opied to ak pendingi[pj℄ and eventually to lasti[pj℄.For the following lemmas we assume that the data link algorithm used is the snap-stabilizingversion disussed earlier. We wish to draw the readers' attention to the fat that the orret-ness of the on-demand version also holds if the following ondition is met: the self-stabilizingdata link has stabilized - a step that ensures that whenever an aknowledgment arrives fora frame sent by pi, pj will have reeived the message. Overall orretness is further ensuredby the fair omposition tehnique ([13℄, hapter 2.7).Lemma 3. In every fair exeution, if a proessor pi is in state initialize at a on�gurationj and does not reeive any ommand from its parent to hange its state, then there exists aon�guration k, k > j, suh that the following laim holds for eah proessor q in the subtreeof pi (inluding pi): there exists a series of on�gurations (after j), in whih q hanged statefrom initialize to syn initialize to propagate initialize to hildren initializeto finish initialize and �nally to done. Furthermore, q stays in the done state in allsubsequent on�gurations, after (and inluding) k.Proof: The proof is by indution on h, the height of proessors in the tree. For h = 0we have a leaf proessor pi. Assume pi hanged state to initialize at j. Aording to theinitialization algorithm (Figure 3), the only guard enabled is the guard in line 1. Sine thisguard is the only one enabled, it will eventually get exeuted. pi then writes a probemessageto eah of its neighbors and hanges state to syn initialize (lines 1 to 9). Sine we assumethat pi reeives no ommand from it's parent to hange state, no guard is enabled by default.Aording to lemma 2, the guard in line 10 is the only guard whih will eventually be enabled.pi then hanges state to propagate initialize. The next enabled guard is only the guardin line 13. Sine pi is a leaf, pi will immediately hange state to hildren initialize andthen to finish initialize. The only guard enabled now is the guard in line 29, sine pidoes not need to wait for an answer from any hild. Hene, pi will hange state to done.Marking the last on�guration as k onludes the proof for the base ase.Now, let pi be a proessor of height greater than 0. Assume pi hanged state to initializeat j and no further ommands arrive from pi's parent. The only enabled guard in j appearsin line 1 and will eventually be exeuted. pi will then send a probe message to eah ofits neighbors and hange state to syn initialize. No guard will be enabled until eahneighbor replies. However, Lemma 2 ensures that a reply will eventually arrive. Hene,the guard in line 10 will eventually be enabled and exeuted. pi will then hange stateto propagate initialize. The guard in line 13 will now be enabled, and exeuted. piwill send an initialize ommand to eah of it's tree hildren, and hange state to thehildren initialize state. Again, from Lemmas 1 and 2, eventually the guard in line 23will be enabled and pi will reinitialize the done array for eah hild to hold false. SineLemmas 1 and 2 ensure that pi gets a reply for the probe message from eah hild that issent after eah hild reeives the aforementioned probe message, pi will send eah hild a16



olor di�erent than the one this hild urrently holds. Consequently,, eah hild will enterthe initialize state. As a result, it is ensured that no old done messages exist on eitherhannel direted at pi, sine eah hild has hanged state to initialize before sending theaknowledgment regarding the initialize ommand to pi.Using the indution assumption and sine pi does not send any more messages to itshildren (no guard is enabled), we an onlude that the lemma holds for eah hild of pi.Moreover, the guard in line 29 will eventually be enabled, sine eah hild is in the donestate and the only ation taken in this state is sending done messages to the parent. Hene,pi will reeive done messages from eah of its hildren and the guard in line 29 is �nallyenabled. Now, pi will enter the done state. Based on the indution assumption, eah hildful�lls the requirements of Lemma 3 and from the proof we get the series of on�gurationsfor pi as required by Lemma 3. Furthermore, pi does not hange its state after reahing thedone state, unless pi reeives a new ommand from its parent.Following the proof of Lemma 3 we an dedue a similar argument for the preparestate. Using these lemmas, we dedue that one the root hanges state to initialize, thewhole tree will hange state to initialize and will stop reeiving markers (Figure 3 line 7).It also follows that eventually the root will reeive a done message from all of its hildren,ensuring all proessors in the tree are in the done state. When in this state, we an deduethat no markers exist in any of the hannels. Assume the ontrary, that between pi andpj there exists a marker sent by pi. pi wouldn't have been able to send the marker afterreeiving the initialize ommand sine after hanging state to the initialize state, piignores all markers and snapshots (Figure 3 line 7). The only option left for pi is to havesent the marker before reeiving the initialize ommand. Sine hannels are �fo orderedand pi sent a probe message to eah neighbor before �nishing the initialization algorithm,we onlude that no suh marker an exist.After �nishing the initialization phase, the root will start the prepare phase. After�nishing the prepare phase, eah proessor will start to reeive markers again (Figure 3line 31). One the root has entered the done state, it is ensured that all proessors areready to start a new snapshot and that no old markers exist in the system.Time Complexity:Lemma 4. In every fair exeution one a proessor p assigns initialize to its state, thereis an atomi step in the following 5 � height(p) rounds in whih p assigns done to its state(where height(p) is the height of p in the tree).Proof: By indution, over the height of a proessor in the tree. Let us assume p is aproessor of height 1 in the tree (a leaf). Then, aording to the snapshot algorithm (Figure3), the steps p follows are: sending a probe to all neighbors (time omplexity: 1 round (line1)), waiting for an answer to the probe (time omplexity: 1 round (line 10)), propagatingthe initialize ommand to eah hild (line 13) and �nally waiting for a done message fromeah hild (line 29). The last two steps are internal event, sine p has no tree hildren andno ommuniation is needed. As a result, an atomi step in whih p assigns done to itsstate is exeuted after 3 rounds. 17



Let us assume Lemma 4 is orret for all proessors of height at most k, for some k. Let pbe a proessor of height k+1 and assume p assigns initialize to its state. Aording to thesnapshot algorithm, p must make take the following ations: send a probe to all neighbors(time omplexity: 1 round (line 1)), wait for an answer to the probe (time omplexity:1 round (line 10)), propagate the initialize ommand to eah hild (line 13) and �nallywait for a done message from eah hild (line 29). The propagation of the initializeommand takes 1 round. Now, sine all tree hildren of p operate in parallel and are ofheight k � 1, in 5 � (k � 1) rounds eah hild will assign done to its state (aording to theindution assumption) and after another round, the ommand will be propagated to p. Inthe following round, p will also set its state to done. To onlude, the atomi ation inwhih p assigns done to its state is exeuted in 3 + 5 � (k � 1) + 2 = 5 � k rounds.The time omplexity of the algorithm, as learly follows from Lemma 4, is O(d). Theroot must �rst assign initialize to its state and after 5 � height(root) rounds the root willreeive a done message from all of its hildren. The root will then assign prepare to itsstate, and a similar argument an show that after another 5 � height(root) rounds the rootwill reeive a done message from all of its hildren. Overall, the tree will be ready for anew snapshot after at most 10 � height(root) = O(d) rounds. The snapshot itself requiresadditional O(d) rounds, thus the total number of rounds required for performing a snapshotis O(d).4 Hierarhial Constrution ShemesA hierarhial system is represented by a ommuniation graph, G = (V;E) and a hierarhytree HT = (Vh; Eh). Eah node in HT , li, represents a set of nodes in V , alled a subsystem,so that if li and lj are at the same level of HT , then li \ lj = ;. Furthermore, if K is aset of nodes at level i of HT , then [j2Klj = V . The nodes of the graph are proessors andthe edges are their ommuniation hannels. We require that eah subsystem is a onnetedomponent of G.Next we present a self-stabilizing and self-organizing algorithm for onstruting lus-ters. In general, the lustering algorithm builds lusters of diameter smaller than a �xedparameter. Furthermore, eah luster is de�ned by a \native" leader.4.1 Synhronous Cluster ConstrutionThe lustering algorithm is based on a self-stabilizing, randomized, synhronous, loal leadereletion algorithm. We assume the existene of a global shared lok. If no suh lok exists,a self-stabilizing digital lok synhronization algorithm (e.g., [13℄) an be used. However,in suh a ase the resulting algorithm is not self-organizing. Assume lusters of diameter atmost 2�x are desired. All proessors will partiipate in a self-stabilizing update algorithm, upto distane x. At prede�ned intervals of x lok tiks (whih we all a phase), all proessorswill exeute the algorithm presented in Figure 5.The update algorithm is designed for an asynhronous system. Eah proessor p holds atable of tuples, eah of the form hidq; distq; parentqi. Eah tuple represents a proessor q in18



the ommuniation graph. idq is the unique identi�ation of q, distq is the minimal distanebetween p and q and parentq is the id of a neighboring proessor of p, whih is the �rst ona shortest path from p to q. Repeatedly, p ombines all the tables of its neighbors and foreah of the oniting tuples (in whih the id is the same), p hooses the tuple with theminimal dist (further ties are broken using the parent value). Next, p hooses only entrieswith dist = k, suh that there exist entries with dist = j for all j < k. All other entries aredeleted. Afterwards, p adds 1 to the distane �eld of every tuple and �nally adds the tuplehidp; 0; nili to form the new table.We adapt the aforementioned update algorithm to our system in several manners. First,eah tuple will hold two extra values, leaderp; rtpp. Next, eah proessor p ontinuouslysends its table to all neighboring proessors. In addition, p maintains an internal array whihonsists of the most reent topology tables p reeived from eah neighboring proessor. Theomputation of p's topology table is done on the basis of this array. Furthermore, in thevalidation phase we also delete entries with dist > x. Consequently, p's table will reet itsneighborhood up to distane x from p. The orretness of the revised update algorithm istrivially preserved, and the onvergene time is O(x) rounds.Continuing the desription of our algorithm, eah proessor p with leaderp = true �rsthooses a random temporal identi�er rtp for the urrent phase and uses the tuple hrtp; idias its identi�er for the phase. This random hoie of an rtp value is used to break symmetrybetween proessors (for further motivation, see the asynhronous version of the algorithm).The variable leaderp is used to indiate whether p regards itself as a leader or not. The self-stabilizing update algorithm ollets the new identi�ers and leader variables value within thex lok tiks of the phase. Thus, at the end of the phase, a proessor p with leaderp = trueheks whether p is the only leader in the area de�ned by radius x from itself. If there doesnot exist a proessor q with leaderq = true with distane less than x from p, then p is astable leader and does not hange state. Otherwise, if leaderp = false and there is no otherproessor q with leaderq = true within distane x from p, then p assigns leaderp  true.Lastly, onsider the ase in whih leaderp = true and there exists another proessor q withleaderq = true that is within distane x from p. If p's hrtp; idi is larger than q's hrtp; idi (�rstomparing the rtp and breaking symmetry by the use of id) then p assigns leaderp  false.The leaders de�ne the luster struture and sine eah proessor p has at least one leaderin its neighborhood, p may hoose to join the luster formed by one of the losest leaders.To prove that the algorithm stabilizes, we �rst assume that the update algorithm hasstabilized. Hene, at the start of eah new phase, eah proessor holds a onsistent table,denoting the proessor's neighbors of distane not larger than x. For the proof, we will usea potential funtion. For eah , a on�guration of the system at the end of a phase, de�neSL() to be the number of stable leaders at .In the following Lemmas we use the term synhronous exeution to denote an exeutionof a synhronous algorithm. For further details see [13℄.Lemma 5. In every synhronous exeution, if p is a stable leader in on�guration i, p willstay a stable leader in every on�guration j, suh that j > i.Proof: p is a stable leader if, at the end of a phase i, p is the only loal leader within aradius of x. Assume, by ontradition, that at the end of phase j, suh that i < j, p has19



Prediates:lose leader(p; q) :=leaderq ^ dist(p; q) � x1 !leaderp ^ 9q(lose leader(p; q)):/* do nothing (stable). */2 !leaderp^!9q(lose leader(p; q)):/* p delares itself a loal leader. */3 leaderp  true4 rtpp  random()5 we denote p to be at a andidate state.6 leaderp^!9q(lose leader(p; q)):/* delare itself a loal leader. */7 leaderp  true8 rtpp  random()9 we denote p to be at a stable state.10 leaderp ^ 9q(lose leader(p; q)):11 if hrtpp; idpi > hrtpq ; idqi then/* p redelares itself a andidate loal leader. */12 leaderp  true13 rtpp  random()14 else/* p relinquish loal leadership */15 leaderp  falseFigure 5: Leader Eletion Algorithm for Proessor p
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stopped being a stable leader. If p beame a andidate leader, it follows that there exists aproessor q, suh that dist(p; q) < x and q is also a (either stable or andidate) loal leader.Hene, there exists a phase k, suh that i < k < j and q has beome a leader at the endof phase k. However, this ontradits the fat that p was a leader at the same phase. Theseond option is for p to assign leaderp by false at the end of phase j. This an only be aonsequene of p loosing (line 14) to another proessor q, whih was also a leader at phasej, but hrtpp; idpi < hrtpq; idqi. A similar argument as in the previous ase holds and an beused to show that q annot exist.>From Lemma 5 it follows that SL is a monotonially inreasing funtion. The nextlemmas will show that if SL annot be inreased anymore, the system has stabilized:Lemma 6. In every synhronous exeution, if no new stable leader an be added at on�g-uration i, either by turning a andidate leader or a regular proessor into a stable leader,then eah proessor p has at least one leader within a distane x in every on�guration jsuh that j � i..Proof: The proof is by ontradition. Assume there exists a proessor p whih has nostable loal leader within distane x in on�guration i and that no stable leader an beadded. Aording to the algorithm, this proessor an beome a andidate leader and atsubsequent phases a stable leader. This ontradits our assumption that no stable leaderan be added.Lemma 7. In every synhronous exeution, at the end of eah phase i if no new stableleaders were added if and SL an be inreased, then there is a positive probability that at theend of phase j, suh that i < j, there is at least one more stable leader than in phase i.Proof: Let us examine the set CL, of all andidate leaders. If CL = ;, then in the followingphase, at least one proessor p will delare itself a loal leader (sine SL an be inreased).If p is a stable leader, then the proof is omplete. Otherwise, assume CL 6= ;. Let us denotep as the proessor with the highest hrtpp; idpi tuple in CL. During the transition from phasei to phase i + 1, leaderp will be propagated up to distane x from p. For eah q, suh thatq =2 CL and dist(p; q) � x, q will be aware that leaderp is true and will not hange state.Furthermore, eah q, suh that q 2 CL and dist(p; q) � x, will enter line 14 in the algorithm(sine hrtpp; idpi > hrtpq; idqi) and set leaderq  false. Thus p will beome a stable leader.>From Lemma 7 it follows that as long as stable leaders an be added, stable leaders willbe added. Lemma 6 ensures us that SL is a monotonially inreasing funtion. It is easy tonotie that SL is also bounded. Therefore, starting from any initial on�guration, SL willreah a value from whih no new stable leaders an be added. From Lemma 5, it followsthat the system has stabilizedLemma 8. In any synhronous exeution, starting with an arbitrary global on�guration,the algorithm onverges to a stable state within O(logn) expeted number of rounds, wherea stable state denotes a on�guration in whih all proessors are stable.21



Proof: De�ne the neighborhood of a proessor p as the set of all proessors q, suh thatdist(p; q) � x. Further de�ne fp(x) = jneighborhoodpj and f(x) = maxp(fp(x)). Note thatsine the maximal degree of a proessor is onstant and sine x is a onstant, f(x) is also aonstant. We say that a proessor is stable if it is either a stable leader or has a stable leaderin its neighborhood.We now bound the probability for a proessor p to beome a stable leader in O(x) rounds(assuming p has no leader). Aording to the algorithm, p will set itself a leader and hoosea random rtp. We would now like to alulate the probability that p hooses a unique rtpvalue, whih is bigger than any rtp value whih may be hosen in p's neighborhood. Call thisprobability Psuess. Assume eah proessor hooses rtp values uniformly in the range [1; m℄.Obviously, Psuess is larger than the probability of the events in whih no other proessorin p's neighborhood hose the same value as p and p is maximal in p's neighborhood. Theprobability that p has the highest rtp value, given that no other proessor has the same rtpvalue as p, is 1fp(x) . This is due to symmetry onsiderations. We now alulate a lower boundfor Psuess: Psuess > 1fp(x) � (m� 1m )fp(x) > 1f(x) � (m� 1m )f(x)If we assume that m =  � f(x) for some  � 1, then we get:Psuess > 1f(x) � ( � f(x)� 1 � f(x) )f(x) � 1e 1 � f(x)The probability of any proessor to beome stable is learly larger than Psuess. Fromnow on, we examine a set of Bernoulli trials, where one onduts several trials parallelly. Thesuess probability in our ase is the probability a proessor has to beome stable and theonvergene time is the expeted length of the longest trial. Sine the probability of suessis larger than Psuess, the expeted time for onvergene is smaller than the expeted lengthof the longest Bernoulli trial. As presented in [24℄, the expeted value of the longest trial isO(log 1(1�Psuess) n), where n is the number of onurrent trials held.A note is in order regarding the dependability of proessors. Sine for every two proessorswithin the same neighborhood the probabilities of suess are dependent, using a redutionto Bernoulli trials only gives a orret upper bound sine if one proessor has sueeded, theprobability of of a neighbor to sueed is inreased.To onlude, we an see that if f(x) is onstant, the expeted onvergene time of thesynhronous algorithm is O(logn) phases. Sine eah phase is exatly x rounds, we get thatthe onvergene time in terms of synhronous rounds is also O(logn).4.2 Asynhronous Cluster ConstrutionWe now present an asynhronous version of the previous hierarhy onstrution algorithm.Eah proessor p uses several key variables: leaderp; andidatep; idp and rtpp. leaderp denoteswhether p is urrently a leader. andidatep is set to true if p is trying to beome a leader.idp is the identi�er eah proessor has, and rtpp is a random temporary identi�er used tobreak the symmetry between proessors. 22



One may try using the proessors' identi�ers in order to break symmetry. However,oasionally an unfortunate order of id's may lead to a onvergene time whih is proportionalto the diameter of the graph. We use randomness to break ties in order to overome suh asenario. Prediates:leader(Cp) :=9q 2 Cpjq 6= p ^ leader(q)1 (leaderp � leader(Cp)) = true:/* do nothing (stable). */2 leaderp = false ^ leader(Cp) = false:3 rtpp  random()4 andidatep  true5 C 0p  new snapshot6 if leader(C 0p) = true then7 andidatep  false8 leaderp  false9 else if 8q 2 C 0p andidateq = true!10 (hrtpq ; idqi < hrtpp; idpi) then11 leaderp  true12 else13 andidatep  false14 leaderp  false15 end16 (leaderp = true ^ leader(Cp) = true):17 andidatep  false18 leaderp  false
Figure 6: Asynhronous Leader Eletion Algorithm for Proessor pThe onstrution algorithm is omposed of several parts. All proessors partiipate inan (asynhronous) update algorithm up to distane x. Based on the update tables, eahproessor p onstruts a tree rooted at p and of depth not exeeding x. Using the tree, eahproessor invokes the snapshot algorithm to ollet the state of its neighborhood. We use thesnapshot algorithm to perform a PIF algorithm, and by adding information to the markersused in the snapshot proess we ahieve the desired PIF e�et. The number of trees andsnapshot protools eah proessor must partiipate in an be alulated from the topologyolleted earlier.Constantly (this is to say that the time frame is not important), eah proessor p willtake a snapshot of the surrounding neighborhood (up to distane x). After the snapshot isolleted, the algorithm in Figure 6 is invoked. Sine the snapshot algorithm is guaranteed tobe �nished in eah invoation (although the result might be inorret, sine the rooted treehas not stabilized yet), we are guaranteed that future invoations of the snapshot algorithm23



will take plae. For a snapshot obtained at p, Cp, we denote leader(Cp) = true if there existsa proessor q 6= p in Cp, suh that leaderq = true.Let us assume that a omplete snapshot Cp is obtained at p. The four ombinations ofleaderp and leader(Cp) determine the ourse of ations p must follow. First, onsider themost simple ases where leaderp=false^ leader(Cp)= true or leaderp= true^ leader(Cp)=false. In these ases, p should avoid taking any ation, sine, as far as p an tell, thesituation is orret. The omplex ases are when there are no leaders in p's viinity and pis not a leader itself or when p is a leader and an see another leader within a distane of xfrom itself. In ase leaderp=false^ leader(Cp)=false, p will �rst hoose a random number(from a predetermined range) and store it in rtpp. Then, p will assign true to andidatep(Figure 6 lines 3-4). The next operation is propagating the information that p wishes tobeome the leader of its neighborhood. This is ahieved through the use of the snapshotprotool whih results in a new snapshot at p, C 0p (line 5). Now, if C 0p does not ontaininformation about a leader or another andidate, p an safely plae itself as a leader andset leaderp = true. However, if leader(C 0p) = true holds, p should set andidatep to false,sine there is now a leader in p's neighborhood. Last, if there are other andidates in C 0p, pwill beome a leader if (and only if) the tuple hrtpp; idpi is larger than all other andidate'stuples in C 0p (line 10).The last ase is when leaderp= true^ leader(Cp)= true (line 16). Upon deteting suh aondition, p will immediately assign leaderp and andidatep with false and will start a newyle of the algorithm.To prove that the asynhronous hierarhial onstrution algorithm works, we will takean approah similar to the proof of the synhronous algorithm. We will denote a proessorp as stable in two ases. The �rst ase is a stable leader, when leaderp = true, 8q 2neighborhoodp(leaderq = false). Furthermore, all topology tables for eah proessor withinp's neighborhood are up to date and reet p's leadership and no other message exists inthe system denoting another proessor as leader or andidate. The seond ase is of a stablenode, when p is not a leader, but there is a stable leader in p's neighborhood.Our �rst laim is that one a proessor is stable, it will remain stable. Next, we show thata proessor has a positive probability of beoming stable. We then use the sheduler-lukgame to show that the algorithm stabilizes ([13℄, hapter 2:9)Lemma 9. Let E = (0; a0; 1; a1; : : :) be a fair exeution. If at a global on�guration i, aproessor p has beome stable, then p will remain stable for all on�gurations j 2 E, suhthat j > i.Proof: First, let us onsider the ase in whih p is a stable leader in i. From the de�nitionof a stable leader, for eah q 2 neighborhoodp, leaderq = false and q denotes p as a leaderin q's update tables. Now, sine the topology tables do not hange, p an lose the stabilityproperty only if another proessor within p's neighborhood beomes a leader too. Assumethat suh a proessor q beomes a leader in j, j > i. Based on the leader eletion algorithm,this is possible in two ases. Either q was not a leader and did not see a leader in itsneighborhood, or q was a leader and saw another leader. The �rst option is not feasible,sine q is aware of p being a leader (from the de�nition of stable). The seond option is not24



possible either, sine q will not set itself a leader as long as p is. Hene, a stable leader willremain stable.Now, we will proeed to disussing a stable node p (not a leader). From the de�nition ofa stable proessor we dedue that there is a stable leader q in the neighborhood of p. Sineq is a stable leader and will remain suh, p will remain stable too.Lemma 10. Let E = (i; ai; i+1; ai+1; : : :) be a fair exeution, suh that the update algo-rithm and the snapshot algorithm have stabilized. Starting from any on�guration in E , eahproessor p has a positive probability to beome stable within O(x) rounds.Proof: The stabilization time for the topology update algorithm and the snapshot algo-rithm is O(x). Consider now a proessor p whih is not stable in 0. Let i be the �rston�guration in whih p has obtained a orret snapshot of its neighborhood, Cp (obviously,i is reahed within O(x) rounds). If p is stable in i, then the proess has been ompleted.Otherwise, we will show that p has a positive probability of beoming stable within O(x)rounds.We will now show that within 3 � x rounds at most, either p beomes stable or thereexists a proessor in p's neighborhood whih hooses a new rtp value and has a positiveprobability of beoming a stable leader. Assume, towards ontradition, that no proessorin p's neighborhood hooses a new rtp value within 3 �x rounds and p does not beome stableduring this time. If there were no leaders in p's neighborhood, p would have hosen a new rtpvalue within x rounds (the number of rounds whih would take p to �nish a new snapshot).Hene, there exists a proessor q 2 neighborhoodp suh that leaderq = true (it is possiblethat q = p). Sine p is not stable, we an dedue that q is also not a stable leader. Suppose,that after x rounds, q has not set leaderq to false and q is still not stable. This impliesthat a di�erent proessor whih is also a leader exists in q's neighborhood. After x roundsat most, q will detet this fat by way of a new snapshot and will set leaderq to false. In asimilar manner, we an show that eah leader in p's neighborhood eventually either beomesstable within 2 � x rounds or relinquishes leadership. If one leader beomes stable, the proofis now ompleted. Otherwise, a proessor in p's neighborhood (possibly p) will notie thefat that there are no leaders and will hoose a new rtp value within x rounds. Overall, weget that after O(x) rounds at least one new rtp value is hosen.Denote pr as the proessor whih �rst hooses a new rtp value in p's neighborhood. Thisassignment is a result of pr �nishing a snapshot Cr (whih takes O(x) rounds to omplete)and of notiing that no leaders exist in this snapshot. Our next laim is that between thestart of the snapshot that resulted in Cr and the end of the next snapshot that pr will take(line 5) and whih is denoted C 0r, eah proessor in pr's neighborhood annot assign morethan one new value to its rtp if the right onditions hold. Denote start as the on�gurationin whih the snapshot Cr started and end as the on�guration in whih C 0r ended. Assumethat eah proessor q, whih hooses a new rtp value between start and end hooses a valuesmaller than that of pr. One the PIF snapshots initiated by pr reah q, q loses to pr, andwill not enter line 2. Thus, q will not hoose a new random rtp value more than one betweenstart and end. The probability that pr will hoose an rtp value in suh a way is larger thanPsuess. As a result, pr will assign leaderpr by true (line 10) and within x rounds will beomea stable leader. This way, p will also beome stable within 4 � x rounds from 0.25



Thus, we an make the following orollary:Corollary 1. In every fair exeution, eah proessor has a positive probability of beomingstable in every O(x) rounds and it holds by [24℄ that within O(logn) expeted number ofrounds the algorithm onverges to a stable state.4.3 Hierarhy ConstrutionConstruting the hierarhy is ahieved by a repeated appliation of the lustering algorithm.We suggest using the lustering algorithm on the original graph G, onstruting lusterswith x > 1 (in essene, a minimal x-dominating set). We then propose to dynamiallyde�ne an overlay network between the leaders of eah luster and apply the same sheme tothe resulting graph. The proess is ompleted after a single luster, omposed of the entiregraph G, is �nally de�ned. The resulting hierarhy is of O(logn) levels, and in eah level i(level 0 is the original graph, G) there exist at most n2i proessors. This bound arises fromthe fat that eah leader p has at least one proessor diretly onneted to p, whih is notdiretly onneted to any other leader. Sine there exist O(logn) levels in the hierarhy andsine ommuniation on overlay edges is onsidered non expensive, the hierarhy onstrutionalgorithm stabilizes within O(log2 n) expeted rounds (O(logn) for eah level, times O(logn)levels), assuming the degree of eah of the hierarhy levels is bounded.Next, we desribe the onstrution of the overlay network and present a graph lass inwhih the degree of eah hierarhy level is bounded.4.3.1 Overlay Network ConstrutionLet G = G0 = (V0; E0) be the original graph, to whih we apply our lustering algorithm. Wede�ne Gi = (Vi; Ei) so that Vi = fp 2 V0j p is a leader in Vi�1g and (p; q) 2 Ei i� the lengthof the shortest path between p and q in G0 is at most 2 � xi+ xi�1 (where x is the parameterof the lustering algorithm). This onstrution an be easily ahieved by eah leader p byextending the update algorithm to inlude proessors up to distane x+1 (instead of x) andadding the list of leaders at distane x to eah proessor p to p's tuple. We then apply thelustering algorithm on Gi, so that leaders will dominate proessors up to distane xi+1 inG0. Note that the riteria for distane among leaders is expressed in terms of G0 and theoriginal x, namely; xi+1 for level i of the hierarhy.Lemma 11. Eah resulting graph Gi is a onneted graph.Proof: By indution: G0 is a onneted graph, by de�nition. Assume Gi�1 is also aonneted graph, and Gi is the result of the lustering algorithm. Let p0 and pk be proessorsin Vi suh that p0; p1; : : : ; pk is a path between p0 and pk in Gi�1 (suh a path exists, sineGi�1 is a onneted graph). Let qj be the hosen leader of pj (1 � j � k � 1) in Gi�1.Aording to the overlay onstrution, (p0; q1) 2 Ei ^ (qk�1; pk) 2 Ei. Furthermore, 82 �j � k� 1 (qj�1; qj) 2 Ei, sine the distane in G0 between pj�1 and pj is at most 2 �x2+xi�1(or pj�1 = pj). Hene, p0; q1; q2; : : : ; qk�1; pk is a path between p0 and pk in Gi.26



To obtain higher levels of the hierarhy, we ontinue with the same onstrution reur-sively. Suppose we have de�ned the levels of the hierarhy up to (and inluding) level i. Theproessors of Gi will partiipate in the lustering algorithm up to distane xi+1. Gi+1 will beomposed of the resulting leaders of Gi, suh that two proessor are neighbors i� the lengthof the shortest path between them in G0 is at most 2 � xi+1 + xi. Eah Gi is, in turn, alsoonneted, aording to Lemma 11. To realize this onstrution, we suggest eah leader pwill add to its update table of Gi all the topology p has olleted in eah Gj up to now.Next, we desribe the geographially aÆned lass of graphs suh that the lustering algo-rithm and the overlay onstrution, applied on these graphs, produes an overlay graph ofbounded degree. This lass is implied by a typial deployment of sensor networks.4.3.2 Geographially AÆned GraphsIn this lass of graphs we wish to explore the relation between the Eulidean distane betweenproessors and the length of the shortest path between them. This de�nition is similar tothe embedding shemes presented in [29℄. We �rst de�ne the geographially aÆned lass ofgraphs.De�nition 4.1. Let G = (V;E) be a graph embedded in the Eulidean plane. For p; q 2 V ,de�ne k(p; q)k2 as the Eulidean distane between p and q, and dist(p; q) as the number ofhops in a shortest path from p to q in G. G is Geographially aÆned i� there exist a onstant � 1 suh that 8p; q 2 V :  � dist(p; q) � k(p; q)k2 � dist(p; q).We will next show that eah geographially aÆned graph has a bounded degree. Fur-thermore, we also show that the hierarhy onstrution algorithm presented above produesa bounded degree graph in eah level of the hierarhy.Lemma 12. Given a irle C of radius r and a set S of points in C, where the minimaldistane between any two points is y, then jSj � 16�r2y2 .Proof: Consider Figure 7. C is ontained in a square sq1 whose edges are of length 2 � r.In eah square sq2 whose edges are of length y2 , there an be at most one point from S. jSjis obviously smaller than the number of sq2 squares whih an be �tted into sq1. Hene,jSj � 4�r2y2=4 = 16�r2y2 .Lemma 13. Let G0 = (V0; E0) be an Eulidean graph, suh that G0 is geographially aÆned.Eah graph in the series fGiglog ni=0 , resulting from the onseutive appliation of the lusteringalgorithm with parameter xi+1, has a degree at most 162 � (2 � x+ 1)2.Proof: Let p be a proessor in Gi, and Np the set of p's neighbors in Gi. The shortest path(in G0) between p and a neighbor q is at least xi (sine in Gi�1 p and q are leaders) and atmost 2 � xi+1 + xi (p and q are neighbors in Gi i� their distane in Gi�1 is at most 2 � x + 1hops, whih is at most 2 � xi+1 + xi hops in G0). In a similar fashion, the shortest path (inG0) between any q; r 2 Np is at least xi (if they are neighbors in Gi). Sine the graph isgeographially aÆned, we get the following equations: � xi � k(p; q)k2 � 2 � xi+1 + xi27
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Figure 7: Maximal Number of Leaders � xi � k(q; r)k2Hene, eah q 2 Np must reside inside a irle C, entered at p and of radius 2 � xi+1 + xi.Aording to Lemma 12, jNpj is bounded by 16 � (2�xi+1+xi)2(�xi)2 = 162 � (2 � x+ 1)24.4 Self-Organization PropertiesNext, we prove that our algorithms are self-organizing. Firstly, for the lustering algorithm,it is worthwhile noting that loality holds sine the algorithm stabilizes within expetedO(logn) rounds. Thus, we fous our disussion on dynami hanges of the ommuniationgraph | namely, on addition and removal of ommuniation links. We wish to draw thereaders' attention to the fat that addition (or removal) of proessors an be modeled bythe addition (or removal) of their ommuniation links (whih is a bounded number ofoperations). When we disuss addition of proessors, we onsider addition of proessors ina prede�ned state or in an arbitrary state. We only onsider topology hanges after thealgorithm has stabilized (otherwise, the global stabilization time applies).Lemma 14. Starting in a safe on�guration of the lustering algorithm, if the update tableof proessor p has hanged due to a hannel (respetively, proessor) addition or removal inon�guration i and the hannel (respetively, proessor) is attahed (a neighbor) to p, thenwithin expeted O(x+log f(x)) = O(1) rounds, a safe on�guration is reahed. Furthermore,for eah proessor q, suh that dist(p; q) > 2 � x, q will remain stable.Proof: Let us assume that p is a proessor as desribed in the Lemma. Sine the updatetables of eah proessor are restrited to proessors of distane x, no proessor q, suh thatdist(p; q) > 2 � x, will hange its own table. Furthermore, after O(x) rounds, eah proessorwill have orret tables. The lustering algorithm now has to stabilize only in the smallneighborhood of p, whih takes O(log f(x)) expeted number of rounds.28



Next, let us assume that q was a stable leader in i and dist(p; q) > 2 �x. First, we arguethat eah proessor r in q's neighborhood, maintains a orret tuple of the update algorithmdenoting q. This is obvious, sine no topology hanges were made in q's neighborhood. Asa result, q will orretly partiipate in eah spanning tree onstruted by suh a proessorr. Consequently, eah time r takes a snapshot of its neighborhood, r will see that leaderq =true. Hene, r will not assign true to leaderr and q will remain a stable leader. Thus, allproessor within q's neighborhood will remain stable.We now onsider the e�ets that hannel additions have on the lustering algorithm. Letus assume that a new (bi-diretional) hannel, (p; q), is added between proessors p andq. We argue that any stable proessor distaned more than 2 � x from either p or q willremain stable. Furthermore, within an expeted onstant number of rounds, the algorithmwill stabilize. This learly follows from Lemma 14. Let us now assume that a hannel (p; q)is removed. Let nl be the set of all proessors, so that the removal of (p; q) leaves themleaderless or unstable. We argue that the onstant number of proessor in nl are at mostat distane x from either p or q and that stable proessors whih are distaned farther thanx will remain stable. Proessor removal is easily redued to the removal of all hannelsattahed to this proessor from the ommuniation graph.We also disuss additions and removals of proessors. We argue that stable proessorswhih are farther than 2 � x from the removed/added proessor will remain stable. This alsolearly follows from Lemma 14.Thus, our lustering algorithm is self-organizing, sine the expeted onvergene time isO(logn) 2 o(n) and the number of proessors whih hange state due to a dynami topologyhange is onstant. In fat, when k hanges our approximately at the same time, theexpeted onvergene time is O(log k) following the last hange ourrene.Appliation to hierarhy; Let us examine a dynami hange at G0. There are two proes-sors, p and q, whih are involved in the hange ((p; q) was either added or removed). We �rstonentrate on p. From Lemma 14 we infer that only proessors within a distane of 2 �x+1hops from p an be a�eted in G0. The dynami hange an inuene the state of leaderswithin this range, whih an be regarded as a new dynami hange in G1. The radius of theorresponding inuened region from p in G1 is therefore (2�x2+2�x+1)+(2�x+1) around pinG0. In a similar way, the radius of the inuened region from p inGi is 2�xi+2�xi�1+xi�2+(the radius of inuene in Gi�1). Overall, the area of e�et around p in G0 is less than 4�xi+2.Sine G0 is geographially aÆned, the Eulidean radius of suh a irle is smaller than 4�xi+2.The minimal distane in G0 between proessor in Gi is at least xi (when ounting real edges,not virtual ones), sine they are leaders in Gi�1. Again, sine G0 is geographially aÆned,the Eulidean distane between leaders is at least  � xi. Using Lemma 12 (whih appears inthe Appendix), it is evident that the number of proessors a�eted at Gi beause of p is atmost 16�(4�xi+2)2(xi)2 = 256 � x4 = O(1). Sine we have to onsider q as well, we double the totalnumber of hanges to have a total of O(1) hanges in eah level.To onlude, the hierarhy onstrution algorithm is self-organizing, sine the expetedstabilization time is O(log2 n) 2 o(n) and dynami topology hanges a�et only O(logn) 2o(log2 n) proessors. Similarly, when k hanges our approximately at the same time, theexpeted onvergene time is O(log2 k) rounds following the last ourring hange.29



5 Overlay Based Hierarhial Snapshot AlgorithmWe now present a self-stabilizing and self-organizing snapshot sheme (whih also enablessubsystems to take snapshots independently). Due to the use of overlay links, the resultingsnapshot is sublinear.Let p be a node in HT , so that p is a parent of leaves in HT . Let p1; p2; : : : ; pk be thehildren of p in HT . Note that p and p1; p2; : : : ; pk reside in the same subsystem, subsi,whih is a onneted omponent of G. A spanning tree of subsi rooted at p is onstrutedand p is responsible for invoking snapshots in subsi.Let q be a node in HT , so that at least one hild of q in HT is a subsystem, onsistingof more than a single proessor. Let us assume that q represents (is the leader of) thesubsystem subs. Let subs1; subs2; : : : ; subsj be the subsystems represented by the hildrenof q in HT . Note that the union of subs1; subs2; : : : ; subsj is idential to subs, the subsystemrepresented by q. Let q1; q2; : : : ; ql be the proessors that are leaders of subs1; subs2; : : : ; subsl,respetively. It is important to note that it is possible that the proessor q, that is the leaderof subs, may also serve as a leader qi of (at most) one of the above subsi. Using theommuniation links in subs, we de�ne an overlay network onneting q, q1; q2; : : : ; ql. Aspanning tree, rooted at q, of the obtained overlay network is onstruted. q is responsiblefor invoking snapshots in subs using the spanning tree of the overlay network of subs. Whena snapshot is requested at q, it will initiate a snapshot in subs.The snapshot initiated at subs an serve two purposes. On the one hand, the snapshotalgorithm of subs an be used to obtain a onsistent snapshot only of q1; q2; : : : ; ql and q.On the other hand, when q sends a marker, it an add another indiator bit, whih atsas a snapshot request for q1; q2; : : : ; ql in subs1; subs2; : : : ; subsl. The result is a reursiveinvoation of the snapshot algorithm, resulting in a onsistent snapshot of all proessors insubs.The overlay network inside subsystem subs is needed to ensure �fo delivery of messagesbetween leaders. We also need to restrit ross subsystem ommuniations (of the distributedalgorithm) to travel only through the subsystem leaders using the overlay network. This isdone in order to ensure that messages will not be able to bypass markers or to orruptsnapshots.The addition of the overlay network requires several adjustments of the snapshot algo-rithm. The overlay network adds virtual links to the ommuniation graph whih should bealso reorded. In order to implement virtual links, routing information suh as the one usedin the soure routing sheme, must be added to messages. Consequently, eah proessor,upon reeiving a message through a physial link, an deide whih virtual link this messagebelongs to. Furthermore, the state of the proessor is not a�eted by the arrival of thismessage, sine it is only forwarded to its destination. Hene, the proessor an ignore thismessage with regards to the snapshot algorithm without reording it on the physial link.Suh messages need to be reorded only at their destination, on the virtual link they traverseon.
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6 Extensions and Conluding RemarksSelf-Organization. We have given a simple and intuitive de�nition of self-organization.Furthermore, we have displayed the relevane of self-stabilization with regards to self-organization.Our self-stabilizing and self-organizing snapshot algorithm implies sublinear time algorithmsin the overlay network model for many ore distributed tasks.Self-stabilizing and self-organizing leader eletion. The hierarhy onstrution algo-rithm whih is, by itself, a self-stabilizing and self-organizing algorithm, naturally de�nes aleader for eah subsystem. Thus, the topmost subsystem (whih ontains the entire system)also has a leader, whih we de�ne to be the output of the leader eletion algorithm. Hene,the output of the hierarhy onstrution algorithm an be used to de�ne a self-stabilizingleader eletion algorithm whih onverges in O(log2 n) expeted number of rounds and han-dles topology hanges graefully in O(logn) rounds.Our de�nition of self-organization an easily apture the e�et of transient faults on thesystem. It an be shown that a single transient fault in the system an e�et only the loalupdates of a onstant number of proessors and therefore inuene O(1) states. Moreover,the number of state hanges following (approximately) simultaneous faults that our inneighboring proessors is proportional to the group's diameter in the graph. In the worstase, when the faults are approximately x apart (say, all leaders hange state to non-leaders)the number of faults is O(n) allowing a omplete stabilization phase.Self-stabilizing and self-organizing snapshots. Building on top of the hierarhy on-strution algorithm, we have presented a self-stabilizing snapshot sheme, where a globalsnapshot an be olleted in O(log2 n) rounds (in fat, if the hierarhy was previously de-�ned, only O(logn) rounds are neessary).Self-stabilizing onverter. Our self-stabilizing and self-organizing snapshot algorithmimplies a new eÆient tool for onverting distributed (reative, or �xed output) algorithmsto self-stabilizing algorithms in sublinear time; the leader of the system an take repeatedsnapshots and verify eah snapshot for orretness. When a snapshot indiates an illegalstate, a global reset proedure may be initiated, using the infrastruture reated by thehierarhy de�nition algorithm, to reah a prede�ned (and safe) state.Aknowledgments: Many thanks to Noga Alon for helpful disussions.Referenes[1℄ Afek, Y., and Dolev, S., \Loal Stabilizer," Journal of Parallel and Distributed Com-puting, speial issue on self-stabilizing distributed systems, Vol. 62, No. 5, pp. 745-765(May 2002). Also in Pro. of the 5th Israeli Symposium on Theory of Computing andSystems, (ISTCS 1997), pp. 74-84, 1997.[2℄ Aneaume, E., Defago, X., Gradinariu, M., and Roy, M., \Towards a theory ofself-organization" 9th International Conferene on Prinipels of Distributed Systems,OPODIS, pp. 146-156, 2005.[3℄ Awerbuh, B., \Complexity of network synhronization," J. ACM, 32(4):804-823, 1985.31
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