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Abstract

Self-stabilization ensures automatic recovery from an arbitrary state; we define self-
organization as a property of algorithms which display local attributes. More precisely,
we say that an algorithm is self-organizing if (1) it converges in sublinear time and (2)
reacts “fast” to topology changes. If s(n) is an upper bound on the convergence time
and d(n) is an upper bound on the convergence time following a topology change, then
s(n) € o(n) and d(n) € o(s(n)). The self-organization property can then be used for
gaining, in sub-linear time, global properties and reaction to changes. We present self-
stabilizing and self-organizing algorithms for many distributed algorithms, including
distributed snapshot and leader election.

We present a new randomized self-stabilizing distributed algorithm for cluster def-
inition in communication graphs of bounded degree processors. These graphs reflect
sensor networks deployment. The algorithm converges in O(logn) expected number of
rounds, handles dynamic changes locally and is, therefore, self-organizing. Applying
the clustering algorithm to specific classes of communication graphs, in O(logn) levels,
using an overlay network abstraction, results in a self-stabilizing and self-organizing
distributed algorithm for hierarchy definition.

Given the obtained hierarchy definition, we present an algorithm for hierarchical
distributed snapshot. The algorithms are based on a new basic snap-stabilizing snap-
shot algorithm, designed for message passing systems in which a distributed spanning
tree is defined and in which processors communicate using bounded links capacity.
The algorithm is on-demand self-stabilizing when no such distributed spanning tree is
defined. Namely, it stabilizes regardless of the number of snapshot invocations.

The combination of the self-stabilizing and self-organizing distributed hierarchy
construction and the snapshot algorithm form an efficient self-stabilizer transformer.
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Given a distributed algorithm for a specific task, we are able to convert the algorithm
into a self-stabilizing algorithm for the same task with an expected convergence time
of O(log? n) rounds.



1 Introduction

The availability and robustness, as well as the possibility for on-demand reconfiguration of
large systems, are in many cases vital; be it clusters of servers that support commercial
activity, a grid of computers that participate in a complicated computation or a dynamic
sensor network. In particular, an important aspect for large on-going systems is the ability
to automatically recover from an inconsistent state, namely to be self-stabilizing ([13]) or in
other words, to have a system that can be started in an arbitrary state.

To capture the need of the industry in autonomic and self-* systems, we propose com-
bining self-stabilization (in fact SuperStabilization [14]) with self-organization. While self-
stabilization is well defined, the self-organization property has no widely agreed upon def-
inition. We propose to define self-organization as satisfying two main properties: locality
and dynamicity. Namely, we require that (1) the algorithm stabilizes in sublinear time with
regards to the number of processors and that (2) the addition and removal of processors
influences a small number of other processors’ states. In other words, if s(n) represents the
stabilization time and d(n) represents an upper bound on the stabilization time (and number
of state changes) following a dynamic topology change, then: s(n) € o(n) and d(n) € o(s(n)).
This definition can be naturally extended to capture also the effect of local transient faults
that corrupt the states of a subset of the processors rather than only topology changes (thus
it is in the spirit of both the superstabilizing and fault-containment approaches [13]).

In this work, we allow algorithms to define (on the fly) and (then immediately) use hyper
commumnication links, which are overlay links that are constructed of communication links
along a path. We regard the time that a message travels over such a link as one time
unit, assuming that (practically) no processing is involved in forwarding messages over these
links (e.g., [17, 33], MPLs [7]). This definition is motivated by (e.g., telephony) systems,
where switches along a path are configured for a session and the path is essentially a wire.
We propose to use the self-stabilizing and self-organizing properties of schemes combined
with such switching capabilities to obtain dramatically faster convergence rates and global
information transmission with relation to traditional communication networks. In traditional
settings there are obvious lower bounds that are proportional to the number of nodes (or
the diameter of the communication graph of the system) while the existence of overlay links
allows us to obtain logarithmic bounds.

1.1 Main Contribution

Self-Stabilizing and Self-Organizing hierarchy definition. The hierarchy of subsys-
tems is defined by partitioning the communication graph into small clusters, after which
clusters are merged to form bigger clusters and so on. The partition can be done according
to a designer’s input, using an automatic off-line clustering algorithm or even an on-line
clustering algorithm that reflects the system’s current behavior. In particular, we suggest a
randomized self-stabilizing and self-organizing partition that is based on periodical collection
of local topology (up to a certain distance). The collected local topology supports a ran-
domized local leader election, in which a non leader processor that does not identify a leader
within a certain distance x tries to convert itself to a leader. Leaders within distance x from



each other are eliminated, until there are no leaders that are within distance x or less from
each other. Higher level partitions, using larger distances and overlay network abstraction
between leaders, are constructed in a similar way.

In asynchronous systems, our clustering algorithm uses (for each processor) a (local)
self-stabilizing snapshot algorithm for obtaining local synchronization of actions.
Self-Stabilizing snapshots. We present a snap-stabilizing (e.g., [8]) snapshot algorithm
for distributed systems, that uses message passing with bounded link capacity, in which a
spanning tree is distributively defined. Our snapshot algorithm is designed for a message
passing system in which any initial state of link contents is considered and in which the
possibility of messages overflow (due to sending a message through a full link) is incorporated
into the model.

Our snapshot algorithm can also be applied to systems with a general communication

graph in which a rooted spanning tree is distributively defined by another self-stabilizing
algorithm. The spanning tree may be an output of a self-stabilizing (BFS) rooted tree
construction algorithm. In this case, however, we obtain only on-demand stabilization rather
than snap-stabilization. On-demand stabilization ensures that regardless of the number of
new requests (for snapshots), the system reaches a state, such that eventually any new
request results in a correct output (snapshot). In other words, stabilization does not rely on
repeated invocations of new (snapshot) requests. Our on-demand self-stabilizing snapshot
algorithm serves us as a basic building block in order to obtain our hierarchical snapshot
schemes.
Overlay network based snapshot. We suggest an approach for hierarchical snapshot
based on an (fifo preserving) overlay network abstraction. We enable each subsystem to
perform an independent snapshot, and further enable each level of the hierarchy to perform
a local snapshot. We suggest the use of overlay communication links which “directly” connect
leaders of clusters. It is worthwhile noting that an (fifo) overlay network link may be in fact
a path of physical links. It is also evident that the communication over an overlay link is
much faster than the sum of the single hop communication links that implement the overlay
link!.

Leaders of subsystems are defined, and the communication between processors in different
subsystems traverses the overlay communication links between the leaders of the subsystems.
Thus, there is no need for recording the messages over physical links between subsystems
unless they are part of an overlay communication link. When a snapshot is invoked by
a leader of a subsystem (possibly due to a request forwarded to the leader by another
processor), the leader uses the overlay network to notify (send snapshot markers to) the
leaders of the subsystems that belong to its subsystem. These leaders, in turn, are responsible
for performing a snapshot in their subsystem in the same manner.

Discussion concerning overlay network architecture. We assume the existence of com-
munication switches that are reconfigurable by (commands of) our algorithm. Our approach
is layered; the first layer is based on traditional point to point neighboring communication,
where communication is between processors that are directly connected by physical commu-
nication mean. The output of this layer (which is the local topology of each processor) is used
to configure overlay links, using the capabilities of the switches. An analogous procedure is

'In some cases, preassigned frequencies or/and supporting switching hardware can be used. e.g.,MPLS—[7].



implemented for higher levels in the hierarchy defining new overlay links using wider topology
knowledge. We assume that the bandwidth of a physical communication link is sufficient for
implementing of all the overlay links that this link participate in implementing (this number
is typically small, and is always less than the number of possible source-destination for the
overlay links).

One may wish to employ our algorithms to system that does not consists of the above
programmable switches. In other words to provide an abstraction of overlay links in software.
To ensure message delivery in such a case, one may need local buffers in each intermediate
processor along the overlay path. Each processor may maintain a message buffer for each
outgoing edge. The buffer will hold a “bucket” for each overlay path which traverses the
corresponding link (again, this number is typically small). Each bucket holds the last message
received which is associated with the bucket’s path and did not yet traverse the attached link.
The processor will send the contents of the buckets repeatedly and fairly (say, simultaneously
using high bandwidth). Thus, ensuring eventual delivery (fairness) and FIFO ordering,.

As assumed in the scope of overlay communication networks, processing (of higher level
protocol-stack are avoided and) is done only at the end-points of the communication, there-
fore the delay is still assumed to be one time unit. End-to-end ARQ stabilization can be
analyzed in the way suggested in [10], resulting in a constant time as well (twice the number
of round trip time between the overlay endpoints).

1.2 Related work

Self-organization. In recent years, the concept of self-organization has been widely men-
tioned in the scope of distributed computing and peer to peer networks. Many works have
claimed being self-organizing, but a mere fraction of these works also tries to give a spe-
cific definition of what self-organization really is. In [2] a framework for self-organization
is proposed, including formal definitions of the self-organization concept and complemen-
tary proof techniques which can be used to prove that algorithms are indeed self-organizing.
Each algorithm is required to have an associated evaluation criterion, which operates on the
immediate neighborhood of a process. This evaluation criterion does not take into account
the influence of other local neighbors, say those that are within a constant distance.

Fault containment. Fault containment, using persistent bits, voting on replicated bits
(usually for non reactive systems) is another way of addressing locality (e.g., [25, 20, 1, 5]).
The idea is to repair transient faults starting from a safe global system configuration. In
such a case, it is possible (unlike in the case of topology changes) to change the state of
the affected processors back to the state prior to the fault. In this context, our algorithm
is self-stabilizing and when started in a safe configuration can handle £ transient faults as
well as topology changes occurring approximately at the same time, in expected O(logk)
rounds. Moreover, our scheme is the first to support many core distributed tasks, such
as self-stabilizing leader election algorithm and snapshots algorithms in O(log®n) expected
rounds.

Cluster and hierarchy construction. Self-stabilizing and self-healing constructions of
hierarchies, in the domain of sensor networks, appear in [35]. The authors divide the plane
into hexagonal cells. In each cell a head that corresponds with a cluster leader is elected.



The existence of a unique processor, the big node, which acts as an initiator is assumed. The
big node determines the center of the first hexagon, fixating the location of its own cluster.
The big node elects heads in adjacent hexagonal cells which will subsequently elect heads
in their adjacent cells. The time complexity of this algorithm is obviously proportional to
the diameter of the communication graph. Our algorithm does not assume a leader and
converges within O(logn) expected number of rounds and reacts to dynamic changes locally.

Our clustering algorithm is in fact a maximal independent set algorithm. A classical
maximal independent set algorithm is presented in [30]. The algorithm is designed for a
synchronous system and converges (from a pre-defined initial state) within O(logn) expected
convergence time. Our algorithm is designed for asynchronous systems, is self-stabilizing and
self-organizing and converges within expected O(logn) rounds for constant degree graphs.

A recent work by Wattenhofer and Moscibroda [31] presents an algorithm for computing
a maximal independent set in radio networks. The system model is fundamentally different
from the one presented here: Processors can broadcast their messages asynchronously, but no
collusion detection mechanism is provided. The algorithm presented converges in (expected)
polylogarithmic time, and processors which join the algorithm are promised to be covered
in (expected) polylogarithmic time.

In [27], the authors present lower bounds on distributed approximation algorithms for
the minimum vertex cover problem. Their bounds can also be applied to the maximum
independent set problem. We do not seek a maximum independent set, and our algorithm
defines a maximal independent set.

Other approaches for distributively defining maximal independent sets in bounded degree
graphs appear, for example, in [26] and in [21]. The algorithms presented usually define a
maximal independent set in O(log"n) rounds. However, a synchronized environment is
assumed and is heavily relied upon; for example, in [21] the authors first define a coloring of
the graph, using a bounded number of colors. The colors are then used to define a maximal
independent set iteratively, by first choosing all the processors colored with the lowest color,
removing all of their neighboring processors and repeating the process with the next color.
Unfortunately, these algorithms do not fit asynchronous systems, nor are designed to tolerate
faults and changes gracefully.

Applications of hierarchy in the self-stabilization domain are described in [19]. The
authors argue that the hierarchical construction can be used to shorten the convergence
time of various self-stabilizing distributed algorithms. As an example, the authors present an
application to spanning tree construction. However, the authors do not present an algorithm
for defining the hierarchy but assume it is defined beforehand.

Distributed snapshots. The first distributed snapshot algorithm was introduced in [6]. The
authors describe a distributed algorithm for collecting the states of processors and the states
of links such that a global state of the system, called the system snapshot, that has special
properties is obtained. Namely, the obtained system snapshot can be reached by an execution
that starts in the system state in which the snapshot algorithm was initiated. Moreover,
there is an execution that starts from the obtained system snapshot and reaches the system
state in which the snapshot algorithm terminated. Therefore, the system snapshot is a global
state that can be used to detect stable properties. For example, if there is a deadlock in
the global state recorded by the snapshot algorithm, then we may conclude that there is a



deadlock in the system.

The snapshot algorithm is defined for message passing system, and is based on special
messages called markers, which are used to partially order processors’ actions. The algorithm
is based on rules, which state for each processors, p, the steps p must take each time p receives
a marker m on a communication link [: if m is the first marker p received, p records p’s local
state and immediately sends markers on all of p’s outgoing links. Moreover, p records the
state of [ as empty. If m is not the first marker p received, p records the state of [ as the list
of messages received from [ following the first marker p received. When p received a marker
from each incoming link, p publishes its portion of the snapshot which consists of p’s recorded
state and the state of all the links adjacent to p. The combined published portions of all the
processors form the global snapshot. The algorithm is initialized by one or more processors
sending markers to themselves and terminates when each processor received markers on all
of its adjacent links. ||
Self-stabilizing snapshot. A self-stabilizing snapshot algorithm was first introduced in
[23], where repeated invocations of snapshots are used to ensure stabilization of a non-
stabilizing algorithm. When the obtained snapshot indicates an inconsistent system config-
uration, a reset is invoked. The stabilization of the snapshot itself is based on its repeated
invocation. We present an on-demand self-stabilizing snapshot that does not rely on re-
peated invocations and, in fact, reaches a safe configuration also in cases in which snapshot
invocations cease as well. Following [23], several works have studied ways of achieving ef-
ficient snapshots in different models e.g., message passing, bounded links message passing
and shared memory [34, 1, 8.

In [34], the author takes a different approach to self-stabilizing snapshots. A common
counter is shared among processors and is used to number markers of the snapshot algorithm.
Processors only participate in snapshots which match their counter value. In order to obtain
self-stabilization, the counter is reseted using a self-stabilizing reset algorithm. The system
settings do consider links of bounded capacity, but assume this capacity never to be reached.
Our algorithm handles links overflows gracefully.

A different approach for the snapshot task is taken by using a snap-stabilizing propagation

of information with feedback (PIF) algorithm [8]. In [8], the authors present a snap-stabilizer
— a tool that converts any given shared memory algorithm to a snap-stabilizing one by using
a technique similar to the one in [23]. The snapshot algorithm uses snap-stabilizing PIF.
Shared communication registers are used in [8] for communication among processors. We
consider message passing systems. It is worthwhile noting that the conversion of a shared
memory algorithm to message passing suggested in [15, 13| does not preserve the snap-
stabilization property, at least when randomization is not used.
Dynamic graph algorithms. Extensive research on distributed dynamic algorithms ap-
peared in the literature (e.g., [17] and the references therein). Still, our algorithm is the first
self-stabilizing and self-organizing distributed (graph) algorithm. Another related aspect of
our work is related to dynamic (graph) data structures (e.g., [22] and the reference therein).
We achieve a committing time (logarithmic and polylogarithmic) in (fault tolerance) dis-
tributed settings for an important class of graphs.

Our contribution. We define the self-organization property to capture locality and dy-



namicity. We present a clustering algorithm (in fact, a distributed maximal independent set
algorithm) which is both self-stabilizing and self-organizing. To realize the clustering algo-
rithm in an asynchronous system we present a scheme of local synchronization, achieved by
using a local snapshot protocol. We employ the aforementioned clustering algorithm to de-
fine a graph hierarchy which can be used to convert any distributed task to be self-stabilizing
incurring only a sublinear time overhead.

Paper organization. In Section 2 we present the system model and in Section 3 the basic
on-demand snapshot algorithm. Hierarchy construction schemes are described in section 4.
The hierarchical snapshot algorithm is presented in Section 5. FExtensions and concluding
remarks appear in Section 6.

2 System Model

The system consists of n processors, denoted by py, pa, ..., pn. The processors are connected
by communication links. Each processor is modeled by a state machine that can send and
receive frames (or low level messages) to/from a subset of the processors. We use a uni-
directed communication graph G = (V, E) to represent the system, where each processor p;
is represented by a vertex v; € V and each communication link used for transferring frames
from p; to p; is represented by an edge (i,j) € E. We further assume that the existence of
the edge (i,7) € E implies the existence of an opposite directed edge (j,i) € E and that
the number of edges attached to a processor is bounded by a constant. We define the dist
of two processors p and ¢, dist(p,q), as the length of the shortest path between p and ¢ in
the graph. For a processor p and a constant x, we denote f,(z) as the number of processor
q such that dist(p,q) < x. We further define fg(z) (or just f(z) where G is clear from the
context) as the maximal f,(z) over all processors p in the graph.

Processors may join and leave the system at any time. Similarly, links may spontaneously
fail and recover. We model processors’ join and leave as the addition or removal of all of
their links from the system. We assume that processors may detect such topological changes
in a timely fashion (e.g., by observing voltage levels of the underlying physical layer). In
the context of self-organization the pattern and the sequence of topology changes influence
the convergence time. We require that following a single topological change at most o(s(n))
rounds are needed for stabilization. In case k£ topological changes occurs together or in a
sequence, such that any two consecutive changes among these k£ changes took place within
o(s(n)) asynchronous rounds, and within o(s(n)) distance apart, then the stabilization time
is bounded by min{k - o(s(n)),s(n)} rounds. Note that, any (non constant) number of
changes occurring approximately simultaneously in the graph, but in distanced of at least
o(s(n)) from each other, will require only o(s(n)) rounds to stabilize.

We assume a class of graphs for which a correlation exists between the number of edges
along a shortest path and the geographical distance of the path’s end-points.

The system is asynchronous, meaning that there is no correlation between the non con-
stant rate of steps taken by the processors. We assume that the capacity of the communica-
tion channels (equivalently the number of items in the fifo queues that represent the links) is
bounded, by the constant l[c. Whenever a processor p; sends a frame to a neighbor p;, when



the link (7, j) already contains lc frames, we assume that one of the frames (not necessarily
the new one) is lost while the fifo order of the rest of the frames is preserved. In fact, since
frames can always be lost, we restrict the pattern of frame loss steps to be such that if frames
are sent infinitely often, frames are also received infinitely often.

We further abstract the activity of communication links by assuming an underline snap-
stabilizing ARQ data link algorithm that transfers frames in order to ensure that high level
messages transfer respects the following: (1) messages sent from p; to p; are received by
p; in a finite (but yet unbounded) time (2) and message delivery respects the exactly once
delivery and fifo ordering policies. We note that the AR(Q algorithm performed on one link
of a processor p; does not block the receive operations (and corresponding steps) from the
links attached to p;. We assume that eventually when p; sends a message m to p; (and p;
does not send further messages), p; receives acknowledgment for m after p; received m.

We use the term overlay edge to denote a path of edges that connects two processors
in the system. When the path is predefined and fixed, it acts as a virtual link in which
(practically) no processing is required by intermediate processors in order to forward the
frame from source to destination. We allow processors to define and use, on the fly, overlay
edges to other processors, when the underlying path is known. We regard the time it takes a
frame to traverse such an overlay link as the time for traversing a link that directly connects
two neighboring processors. We assume these overlay edges preserve FIFO ordering of frames
between processors and maintain the assumption that a frame which is infinitely often sent
is infinitely often received.

A configuration c of the system is a tuple ¢ = (S, L); S is a vector of states, (s1, Sa, - - - $p),
where the state s; is a state of processor p;; L is a vector of link states (I 2,113, -, lo1,log- ).
A link l; ; is modeled by a fifo queue of frames that are waiting to be received by p; and
the contents of the queue is the state of the link. Whenever p; sends a frame f to p;, f is
enqueued in /; ;. Also, whenever p; receives a frame f from p;, f is dequeued from /; ;. A
processor changes its state according to its transition function (or program). A transition
of processor p; from a state s; to state s is called an atomic step (or simply a step) and is
denoted by a. A step a consists of local computation and of either a single send or a single
receive operation.

We model our system using the interleaving model. An ezecution is a sequence of global
configurations and steps, & = {co, ag, ¢1, ay, ...}, so that the configuration ¢; is reached from
ci—1 by a step a; of one processor p;. The states changed in ¢;, due to a;, are the one of
p; (which is changed according to the transition function of p;) and possibly that of a link
attached to p;. The content of a link state is changed when p; sends or receives a frame
during a;. An execution &£ is fair if every processor executes a step infinitely often in £ and
each link respects the bounded capacity loss pattern. In the scope of self-stabilization we
consider executions that are started in an arbitrary initial configuration.

A task is defined by a set of executions called legal executions and denoted LE. A
configuration ¢ is a safe configuration for a system and a task LFE if every fair execution
that starts in c is in LE. A system is self-stabilizing for a task LFE if every infinite execution
reaches a safe configuration with relation to LE. We sometimes use the term “the algorithm
stabilizes” to note that the algorithm has reached a safe configuration with regards to the
legal execution of the corresponding task.



In some cases we would like to define processes executed by the processors so that each
processor executes steps for several processes. Consider the case in which each processor p;
executes two processes p; and p?. Assume further that a process p} can communicate directly
with a (neighboring) process p; residing in a neighboring processor. The transition function
of p} is defined by the state s} of p} and the messages received from a neighboring processes
pj- The transition function of py is defined by the state of p; and pj and the messages sent
by neighboring processes p?. The definition of configuration for the multi-processes case is
defined by a vector of state (si, s}, --) for the state vector of the first layer processes and
a vector (I} ,,1] 5, -+ ) of the link states of the first layer, while the later is composed of the
queues associated with the links, restricted to the messages sent by processes in layer one,
pi. The layers definition allows us to separate the snapshot protocol activity (in the lowest
layer) from the original system (upper layers) that is the subject of the snapshot.

A multi-process fair execution is a fair execution in which every process executes a step
infinitely often (in the sequel we use the term fair execution for multi-process fair execution).

The snapshot task S for a system is defined by a set of executions g started in an arbitrary
configuration, so that if a snapshot starts in an atomic step a,, there is a configuration c,,
that follows a,, in which a processor receives a global snapshot gs. Moreover, assuming r is
minimal, there exists an execution of processes in level one that starts immediately before
a,, reaches gs and then continues to the configuration of level one in c;.

We use the notion of asynchronous rounds to measure the time complexity of an algo-
rithm. The first asynchronous round in execution £ is the shortest prefix of £ in which each
processor (or process) communicates with all of its neighbors (either through a directly con-
necting communication link or through an overlay edge). The second asynchronous round in
£ is the first asynchronous round of the suffix of £ that immediately follows the first asyn-
chronous round in €. The time complexity of an algorithm is the number of asynchronous
rounds (or simply rounds) that are required to achieve the task of the algorithm.

3 On-Demand (Snap-)Stabilizing Message Passing
(Tree-)Snapshot Algorithm

In this section we present the first snap-stabilizing snapshot for message passing systems.
We do not require repeated invocations of the snapshot algorithm in order to stabilize, in
contrast to the assumption needed in order to employ the snapshot algorithm of [23]. A
snap-stabilizing snapshot algorithm for shared memory system is presented in [8]. In the
context of self-stabilization, message passing systems introduce additional intricacy due to
unknown messages in transient in the arbitrary first configuration from which the system
should converge to a legal behavior [13].

When designing our snapshot algorithm, our starting point is the unbounded snapshot
algorithm presented in [23] and the snap-stabilizing algorithm presented in [8], which we
modify to a bounded message passing snap-stabilizing algorithm. Namely, we ensure that
any new request for a snapshot will result in a correct snapshot. This requirement differs
from the one presented in [23] where snapshots must be continuously and infinitely often
invoked. In our case, the algorithm is ready for future requests even when no snapshot
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requests are made.

The algorithm is designed for a system in which a rooted spanning tree is distributively
defined. It is based on performing two consecutive tree-PIFs (propagation of information
with feedback using a spanning tree) and then employing the original snapshot algorithm of
[6]. Each PIF uses the rooted tree in order to propagate a command (initialize and then pre-
pare) and receive feedback on the completion of the propagation (of the initialize and prepare
commands, respectively). A processor that receives a command from its parent, propagates
it to its children and also “cleans” the non-tree edges attached to it. Once a processor p
receives an acknowledgment from all its children that their subtree received the command
and once p finishes cleaning the attached non-tree links, p sends an acknowledgment to its
parent regarding the completion of the command propagation. Both tree-PIFs are completed
within O(d) rounds (assuming a BFS tree is used), where d is the diameter of the network.
When the first (initialize) tree-PIF is completed, no marker of previous incarnations of the
snapshot algorithm is present in the system and processors disregard all incoming snapshot
markers. After the second (prepare) tree-PIF is completed, processors do not ignore markers
and the root may then initiate the original snapshot algorithm of [6].

To guarantee snap-stabilization we have to ensure that when the root starts a tree-
PIF and then receives an indication from its children regarding completion, the system’s
configuration is indeed the desired one - namely, a configuration in which all nodes are
instructed by the propagated command. The technique used to achieve the above is based
on a method of ensuring the happened before relation, using a snap-stabilizing data link
algorithm which is specifically designed for bounded capacity links (Figure 2). When a
processor p would like to pass a command to a neighbor ¢, p repeatedly sends frames with
a label ¢ until p receives a frame with label ¢ from ¢q. Then p repeatedly sends frames with
label i+ 1 (mod 2-lc+1) to g until a frame with the new label is received from ¢ and so on
until p sends 2 - lc + 1 distinct labels. In each frame ¢ sends the last local synchronization
color q received from p. Thus, when p receives a frame with the last label among the set of
the distinct 2 - [c+ 1 labels, p knows the current local synchronization color known to ¢ and
sends frames with a different local synchronization color together with the global command
(initialize or prepare) that p would like to pass to ¢. Following that, ¢ identifies the new
local synchronization color and invokes the global command.

To simplify our presentation we use a self-stabilizing version of the aforementioned frame
communication algorithm. The self-stabilizing frame communication algorithm is used to
send control messages between neighboring processors. Each control message is either piggy
backed on messages sent by the original algorithm (the snapshot subject) or sent indepen-
dently (as part of a frame). Each processor p maintains 3 arrays: next, current and last.
Each array has an entry for each neighbor of p. next[q| is the entry in which the next value
that p is about to send to ¢ is stored. p may decide to send a different value to ¢ before
next[q] is sent. In such a case, the value in nezt[q] is overwritten. current|q] holds the data
that p is currently sending to ¢. last[q] contains the last acknowledged data that p sent to ¢
along with the actual acknowledgment of q. We note, that transforming the self-stabilizing
version presented in Figure 2 into a snap-stabilizing one can be achieved by iterating the
sending operation 2 - [c + 1 times. Correctness is trivially preserved and the conversion adds
a constant amount of time to each send operation which can be considered O(1) for time
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complexity measure.

We now describe the way next[q], current|q] and last[q] are accessed. We use Figure 1
and Figure 2 in our description. For each frame arriving from ¢, p checks whether the frame
contains an acknowledgment (Figure 2 line 2). The acknowledgment should also be numbered
with the current number that p is expecting to receive from q. When an acknowledgment with
the current number arrives, p “advances” the values next[q] to current[q], and current[q] to
last]q]. In more details, last[q] is assigned by current|q|, current|q| is assigned by nezt[q],
and nezxt[q|.val is assigned by null, while nezt[q].num is assigned by the next control number
(Figure 2, line 8).

If the frame arriving is not an acknowledgment, p first sends an acknowledgment to ¢
(line 10). Afterwards, if ¢ is the parent of p and if ¢ sent a control message with a different
color than p’s color, p changes state accordingly (line 13). Alternatively, if p is the parent
of ¢, and the frame contains a DONE message, p updates the data structure which denotes
which child has finished the current initialization phase.

At the end of the frame communication algorithm, p passes the encapsulated message to
the algorithm subject to the snapshot. Equivalently, in line 21, each message destined to ¢
is encapsulated in a frame, holding current|q|.

nezt[q]

ack received
@ last[q]

Figure 1: Frame communication algorithm - data flow

The self-stabilizing snapshot initialization algorithm is responsible for cleaning old mark-
ers from the communication links. Roughly speaking, there are two phases, in each of which
the root instructs each child, ¢, to color itself with a color that is different from the color
that ¢ is currently colored by. Each processor ¢ repeats the same procedure with its tree
children and sends an acknowledgment to its parent once it is done. Following the initial-
ization, processors do not participate in snapshots. Later on, when the root receives DONE
messages from each of its children, the root starts the prepare phase. When the second phase
is completed, the processors may start participating in a snapshot.

The code of the initialization-prepare algorithm appears in Figure 3. We use a convention
inspired by the guarded commands notation for representing the program of a processor. The
program in Figure 3 is composed of six guarded commands. Each guard is a predicate. A
guard is enabled if, and only if, the predicate is evaluated as true. Each command is a finite
set of instructions that a processor must take when the corresponding guard is enabled. We
assume that the guards of a certain processor are scheduled by an internal scheduler which
repeatedly chooses to execute the commands of an enabled guard. Furthermore, we assume
that the internal scheduler ensures that a guard that is infinitely often enabled is executed
infinitely often.

In general, the initialization-prepare algorithm task uses phases identified by processor
states to coordinate the operation of the processors. The algorithm has two main phases
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(INITIALIZE, PREPARE) each of which has a few states associated with it. In particular, the
initialization phase is composed of state changes according to the following order: INITIALIZE,
SYNC_INITIALIZE, PROPAGATE_INITIALIZE, CHILDREN_INITIALIZE, FINISH_INITIALIZE and
finally the DONE state.

The first guard of the initialization-prepare algorithm (Figure 3, line 1) describes the
first actions a processor (p) takes when starting a new phase (either INITIALIZE or PRE-
PARE). First, p cleans the links connecting it to its neighbors. The cleaning is achieved by
sending a PROBE message on each link. Each neighbor ¢, when receiving a PROBE message,
acknowledges receiving the message and attaches to the acknowledgment ¢’s current syn-
chronization color (Figure 2, line 10). After sending all PROBE messages, p will change state
to the SYNC state, e.g., if p’s state was INITIALIZE, it will change state to SYNC_INITIALIZE
(line 8). Moreover, if p was in the INITIALIZE state, then before changing state it will set
the ignore_markers flag to true (line 7).

The second guard appears in line 10. If p is in the SYNC_INITIALIZE (or SYNC_PREPARE)
state and receives acknowledgments from all of its neighbors, line 11 ensures that p will
change state to PROPAGATE_INITIALIZE or PROPAGATE_PREPARE respectively. Line 13 de-
scribes the actions p must take in the PROPAGATE states. Essentially, p propagates its phase
state to its children (lines 14 to 19). We define the phase state as INITIALIZE if p is in
the initialize phase, and PREPARE if p is in the prepare phase. For example, if ¢ is in the
PROPAGATE_INITIALIZE state, the phase state for p is INITIALIZE. Similarly, if p is in the
PROPAGATE_PREPARE state, the phase state for p is PREPARE. The propagation is achieved
by sending an appropriate command to each child. The command contains a color that is
different from the last color each child had already sent (line 19). This ensures that the
children identify the command as a new command and change state accordingly. Finally, p
changes state to CHILDREN_INITIALIZE (or CHILDREN_PREPARE).

The third guard appears in line 23. This guard ensures that p will wait for each child to
acknowledge the command. After each child acknowledges the command, p must wait for
its children to finish propagating the command to their subtrees. To this end, p utilizes the
donel] array. When a processor is in the DONE state, it repeatedly sends DONE messages to
its parent. To make sure that p considers only relevant DONE messages, p must first initialize
the done|] array with false (line 25). p will then change state to the FINISH state (with the
appropriate suffix, according to p’s phase state).

Once all of p’s children finish synchronizing their sub-trees, they will send a DONE message
to p. This will cause the guard in line 29 to be enabled. At this point, p will have finished
synchronizing its subtree and can proceed to the DONE state. However, before changing
state, if p is in the PREPARE state, it will change ignore_markers to false. From this point
on, p is ready to participate in a snapshot.

The last guard, which is in line 34, ensures that if p is in the DONE state, p will repeatedly
send DONE messages to its parent (line 35).

Correctness proof. We will first show that the data link algorithm stabilizes. The proof
which is already a folklore, is for a particular pair of processors, for example p; and p;, where
pi is the sender and p; is the receiver.

Lemma 1. In every fair execution £, assume p; assigns a new value to current;[p;] in a global
configuration c¢;. Then, there exists a global configuration cy, such that an acknowledgment

13



1 new frame(num,val,inmessage) arrived from q:
2 ifwal = (ack, color) A num = current[q].num then
3 current|g].color < color

4 last]q] + current|q]

5 current[q] + next[q)

6 next|q] <+ nil

7 next[q].num <+ current[q].num+

8 1 (mod 2-lc+1)

9 else

10 SendFrame (num, (ack,color))

11 if ¢ = parent A val = (new_color, command)
12 new_color! = color then

13 state < command

14 color < new _color

15 if ¢ € Children A val = DONE then

16 donelq] = true

17 fi

18 fi

19 pass in_message upwards in the protocol stack
20 end

21 SendFrame(current[p].num, current|[p].val, message)

Figure 2: Frame communication with a neighbor ¢

from p; arrived at p; and k > . Furthermore, eventually the happened before relation holds
between the atomic steps ay in which the assignment of a new value x to current;[p;] is
executed, a later atomic step a; in which a frame with x is received by p; and an atomic step
ap, 1 which the acknowledgment regarding the receipt of x in p; is received by p;.

Proof: Since each frame numbered with num is sent repeatedly by p;, an acknowledgment
with num will eventually arrive from p;. Hence, p; will infinitely often change the frame
number in a round robin fashion (Figure 2, line 8). Since the link capacity is bounded by lc
and p; increments the frame numbers modulo 2 - lc + 1, a value y which is not present in the
first arbitrary configuration in either the link (i, j) or (j,7) will be chosen. From this point
on, it is obvious that our claim holds, since p; will only accept acknowledgments for .
Considering the snap-stabilizing version, an analogous proof can be derived to show that
the data link algorithm is indeed snap-stabilizing. ]

Lemma 2. In every fair execution £, eventually after a processor p; executes lines 3 to
4 in Figure 3 (denoted writing) for a particular neighboring processor p; and assuming no
consecutive write of p; to p; takes place, an acknowledgment will arrive to p;. Immediately
after the atomic step in which the acknowledgment arrives, a configuration in which last;[p;]
is equal to ack_pending;[p;] will be reached.

Proof: Since no writes occur and since p; repeatedly sends frames with current;|p;] an
acknowledgment for current;[p;| will eventually arrive. Since we assumed no writes occurred,
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Predicate answered(q) = ack_pending[q].num = last[q].num

1 state € {INITIALIZE, PREPARE} :
2 foreach g € Neighbors do
/* this is actually the write */

3 ack_pending|q] + next[q].num
4 next[q].val < PROBE

5 done

6 if state =INITIALIZE then

7 ignore-markers < true

/* change state to SYNC.INITIALIZE becomes SYNC_INITIALIZE */
8  state < SYNC_state
9 end

10 Vg € Neighbors| answered(q)A

(state = SYNC_INITIALIZE Vstate = SYNC_PREPARE):
/* SYNC_INITIALIZE becomes PROPAGATE_INITIALIZE */
11 state <—PROPAGATE_base_state
12 end

13 (state = PROPAGATE.INITIALIZEV state =PROPAGATE_PREPARE) :
14 foreach q € Children do

15 ack_pending|q] + next[q].num

16 if state = PROPAGATE_INITIALIZE then

17 child_command < INITIALIZE

18 else child_command < PREPARE

19 next[q].val « (last[g].color, child_command)
20 done

/* PROPAGATE_INITIALIZE becomes CHILDREN_INITIALIZE */
21 state <—CHILDREN_base_state
22 end

23 Vq € Children| answered(q) A (state = CHILDREN_INITIALIZEV
state =CHILDREN_PREPARE):

24 foreach g € Children do

25 donelq] + false

26 done

27 state < FINISH_base_state

28 end

29 VYq € Children| answered(q) A done[q] = trueA
(state = FINISH_INITIALIZE Vstate =FINISH_PREPARE):
30 if stale =FINISH_PREPARE then

31 ignore_markers < false
32 state =DONE
33 end

34 state =DONE:
35 next[parent].val < DONE
36 end

Figure 3: Initialize-Prepare algorithm for a processor p

1 start a new snapshot:
2 state < INITIALIZE

3 state = PREPARE_DONE:
4  the root is ready to start a new snapshot.

Figure 4: Root rules for initiating a new snapshot

15



p; will assign next;[p;] to current;[p;], according to Figure 2 lines 3 to 5. Using lemma 1 we
know that an acknowledgment will eventually arrive after p; receives current;[p;]. Hence,
and again according to lines 3 to 5, p; will assign current;[p;] to last;[p;]. We can conclude
the correctness of the Lemma from the fact that the value that was originally present at
next;[p;] was copied to ack_pending;|p;] and eventually to last;[p;]. u

For the following lemmas we assume that the data link algorithm used is the snap-stabilizing
version discussed earlier. We wish to draw the readers’ attention to the fact that the correct-
ness of the on-demand version also holds if the following condition is met: the self-stabilizing
data link has stabilized - a step that ensures that whenever an acknowledgment arrives for
a frame sent by p;, p; will have received the message. Overall correctness is further ensured
by the fair composition technique ([13], chapter 2.7).

Lemma 3. In every fair execution, if a processor p; is in state INITIALIZE at a configuration
¢; and does not receive any command from its parent to change its state, then there exists a
configuration cg, k > 7, such that the following claim holds for each processor q in the subtree
of pi (including p;): there exists a series of configurations (after c;), in which q changed state
from INITIALIZE to SYNC_INITIALIZE {0 PROPAGATE_INITIALIZE fto0 CHILDREN_INITIALIZE
to FINISH_INITIALIZE and finally to DONE. Furthermore, q stays in the DONE state in all
subsequent configurations, after (and including) cy.

Proof: The proof is by induction on h, the height of processors in the tree. For h = 0
we have a leaf processor p;. Assume p; changed state to INITIALIZE at ¢;. According to the
initialization algorithm (Figure 3), the only guard enabled is the guard in line 1. Since this
guard is the only one enabled, it will eventually get executed. p; then writes a PROBE message
to each of its neighbors and changes state to SYNC_INITIALIZE (lines 1 to 9). Since we assume
that p; receives no command from it’s parent to change state, no guard is enabled by default.
According to lemma 2, the guard in line 10 is the only guard which will eventually be enabled.
p; then changes state to PROPAGATE_INITIALIZE. The next enabled guard is only the guard
in line 13. Since p; is a leaf, p; will immediately change state to CHILDREN_INITIALIZE and
then to FINISH_INITIALIZE. The only guard enabled now is the guard in line 29, since p;
does not need to wait for an answer from any child. Hence, p; will change state to DONE.
Marking the last configuration as ¢, concludes the proof for the base case.

Now, let p; be a processor of height greater than 0. Assume p; changed state to INITIALIZE
at ¢; and no further commands arrive from p;’s parent. The only enabled guard in ¢; appears
in line 1 and will eventually be executed. p; will then send a PROBE message to each of
its neighbors and change state to SYNC_INITIALIZE. No guard will be enabled until each
neighbor replies. However, Lemma 2 ensures that a reply will eventually arrive. Hence,
the guard in line 10 will eventually be enabled and executed. p; will then change state
to PROPAGATE_INITIALIZE. The guard in line 13 will now be enabled, and executed. p;
will send an INITIALIZE command to each of it’s tree children, and change state to the
CHILDREN_INITIALIZE state. Again, from Lemmas 1 and 2, eventually the guard in line 23
will be enabled and p; will reinitialize the done array for each child to hold false. Since
Lemmas 1 and 2 ensure that p; gets a reply for the PROBE message from each child that is
sent after each child receives the aforementioned PROBE message, p; will send each child a
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color different than the one this child currently holds. Consequently,, each child will enter
the INITIALIZE state. As a result, it is ensured that no old DONE messages exist on either
channel directed at p;, since each child has changed state to INITIALIZE before sending the
acknowledgment regarding the INITIALIZE command to p;.

Using the induction assumption and since p; does not send any more messages to its
children (no guard is enabled), we can conclude that the lemma holds for each child of p;.
Moreover, the guard in line 29 will eventually be enabled, since each child is in the DONE
state and the only action taken in this state is sending DONE messages to the parent. Hence,
p; will receive DONE messages from each of its children and the guard in line 29 is finally
enabled. Now, p; will enter the DONE state. Based on the induction assumption, each child
fulfills the requirements of Lemma 3 and from the proof we get the series of configurations
for p; as required by Lemma 3. Furthermore, p; does not change its state after reaching the
DONE state, unless p; receives a new command from its parent. [ |

Following the proof of Lemma 3 we can deduce a similar argument for the PREPARE
state. Using these lemmas, we deduce that once the root changes state to initialize, the
whole tree will change state to INITIALIZE and will stop receiving markers (Figure 3 line 7).
It also follows that eventually the root will receive a DONE message from all of its children,
ensuring all processors in the tree are in the DONE state. When in this state, we can deduce
that no markers exist in any of the channels. Assume the contrary, that between p; and
p; there exists a marker sent by p;. p; wouldn’t have been able to send the marker after
receiving the INITIALIZE command since after changing state to the INITIALIZE state, p;
ignores all markers and snapshots (Figure 3 line 7). The only option left for p; is to have
sent the marker before receiving the INITIALIZE command. Since channels are fifo ordered
and p; sent a PROBE message to each neighbor before finishing the initialization algorithm,
we conclude that no such marker can exist.

After finishing the initialization phase, the root will start the PREPARE phase. After
finishing the PREPARE phase, each processor will start to receive markers again (Figure 3
line 31). Once the root has entered the DONE state, it is ensured that all processors are
ready to start a new snapshot and that no old markers exist in the system.

Time Complexity:

Lemma 4. In every fair execution once a processor p assigns INITIALIZE to its state, there
is an atomic step in the following 5 - height(p) rounds in which p assigns DONE to its state
(where height(p) is the height of p in the tree).

Proof: By induction, over the height of a processor in the tree. Let us assume p is a
processor of height 1 in the tree (a leaf). Then, according to the snapshot algorithm (Figure
3), the steps p follows are: sending a probe to all neighbors (time complexity: 1 round (line
1)), waiting for an answer to the probe (time complexity: 1 round (line 10)), propagating
the INITIALIZE command to each child (line 13) and finally waiting for a DONE message from
each child (line 29). The last two steps are internal event, since p has no tree children and
no communication is needed. As a result, an atomic step in which p assigns DONE to its
state is executed after 3 rounds.

17



Let us assume Lemma 4 is correct for all processors of height at most k, for some k. Let p
be a processor of height £+ 1 and assume p assigns INITIALIZE to its state. According to the
snapshot algorithm, p must make take the following actions: send a probe to all neighbors
(time complexity: 1 round (line 1)), wait for an answer to the probe (time complexity:
1 round (line 10)), propagate the INITIALIZE command to each child (line 13) and finally
wait for a DONE message from each child (line 29). The propagation of the INITIALIZE
command takes 1 round. Now, since all tree children of p operate in parallel and are of
height £ — 1, in 5 - (k — 1) rounds each child will assign DONE to its state (according to the
induction assumption) and after another round, the command will be propagated to p. In
the following round, p will also set its state to DONE. To conclude, the atomic action in
which p assigns DONE to its state is executed in 3+ 5+ (k — 1) +2 =5 k rounds. n

The time complexity of the algorithm, as clearly follows from Lemma 4, is O(d). The
root must first assign INITIALIZE to its state and after 5 - height(root) rounds the root will
receive a DONE message from all of its children. The root will then assign PREPARE to its
state, and a similar argument can show that after another 5 - height(root) rounds the root
will receive a DONE message from all of its children. Overall, the tree will be ready for a
new snapshot after at most 10 - height(root) = O(d) rounds. The snapshot itself requires
additional O(d) rounds, thus the total number of rounds required for performing a snapshot
is O(d).

4 Hierarchical Construction Schemes

A hierarchical system is represented by a communication graph, G = (V, E') and a hierarchy
tree HT = (V}, E),). Each node in HT, [;, represents a set of nodes in V', called a subsystem,
so that if /; and [; are at the same level of HT, then [; Nl; = (). Furthermore, if K is a
set of nodes at level 7 of HT, then Ujckl; = V. The nodes of the graph are processors and
the edges are their communication channels. We require that each subsystem is a connected
component of G.

Next we present a self-stabilizing and self-organizing algorithm for constructing clus-
ters. In general, the clustering algorithm builds clusters of diameter smaller than a fixed
parameter. Furthermore, each cluster is defined by a “native” leader.

4.1 Synchronous Cluster Construction

The clustering algorithm is based on a self-stabilizing, randomized, synchronous, local leader
election algorithm. We assume the existence of a global shared clock. If no such clock exists,
a self-stabilizing digital clock synchronization algorithm (e.g., [13]) can be used. However,
in such a case the resulting algorithm is not self-organizing. Assume clusters of diameter at
most 2-x are desired. All processors will participate in a self-stabilizing update algorithm, up
to distance x. At predefined intervals of x clock ticks (which we call a phase), all processors
will execute the algorithm presented in Figure 5.

The update algorithm is designed for an asynchronous system. Each processor p holds a
table of tuples, each of the form (id,, dist,, parent,). Each tuple represents a processor ¢ in
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the communication graph. id, is the unique identification of ¢, dist, is the minimal distance
between p and ¢ and parent, is the id of a neighboring processor of p, which is the first on
a shortest path from p to q. Repeatedly, p combines all the tables of its neighbors and for
each of the conflicting tuples (in which the id is the same), p chooses the tuple with the
minimal dist (further ties are broken using the parent value). Next, p chooses only entries
with dist = k, such that there exist entries with dist = j for all j < k. All other entries are
deleted. Afterwards, p adds 1 to the distance field of every tuple and finally adds the tuple
(idy, 0,nil) to form the new table.

We adapt the aforementioned update algorithm to our system in several manners. First,
each tuple will hold two extra values, leader,,rtp,. Next, each processor p continuously
sends its table to all neighboring processors. In addition, p maintains an internal array which
consists of the most recent topology tables p received from each neighboring processor. The
computation of p’s topology table is done on the basis of this array. Furthermore, in the
validation phase we also delete entries with dist > x. Consequently, p’s table will reflect its
neighborhood up to distance x from p. The correctness of the revised update algorithm is
trivially preserved, and the convergence time is O(z) rounds.

Continuing the description of our algorithm, each processor p with leader, = true first
chooses a random temporal identifier rip for the current phase and uses the tuple (rtp,id)
as its identifier for the phase. This random choice of an rtp value is used to break symmetry
between processors (for further motivation, see the asynchronous version of the algorithm).
The variable leader, is used to indicate whether p regards itself as a leader or not. The self-
stabilizing update algorithm collects the new identifiers and leader variables value within the
x clock ticks of the phase. Thus, at the end of the phase, a processor p with leader, = true
checks whether p is the only leader in the area defined by radius x from itself. If there does
not exist a processor ¢ with leader, = true with distance less than z from p, then p is a
stable leader and does not change state. Otherwise, if leader, = false and there is no other
processor ¢ with leader, = true within distance = from p, then p assigns leader, < true.
Lastly, consider the case in which leader, = true and there exists another processor ¢ with
leader, = true that is within distance x from p. If p’s (rtp, id) is larger than ¢’s (rtp, id) (first
comparing the rtp and breaking symmetry by the use of id) then p assigns leader, < false.

The leaders define the cluster structure and since each processor p has at least one leader
in its neighborhood, p may choose to join the cluster formed by one of the closest leaders.

To prove that the algorithm stabilizes, we first assume that the update algorithm has
stabilized. Hence, at the start of each new phase, each processor holds a consistent table,
denoting the processor’s neighbors of distance not larger than x. For the proof, we will use
a potential function. For each ¢, a configuration of the system at the end of a phase, define
SL(c) to be the number of stable leaders at c.

In the following Lemmas we use the term synchronous execution to denote an execution
of a synchronous algorithm. For further details see [13].

Lemma 5. In every synchronous execution, if p is a stable leader in configuration c;, p will
stay a stable leader in every configuration c;, such that j > 1.

Proof: p is a stable leader if, at the end of a phase i, p is the only local leader within a
radius of x. Assume, by contradiction, that at the end of phase j, such that ¢ < 7, p has
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Predicates:
close_leader(p,q) :=
leaderq A dist(p,q) < x

1 leader, A Jq(close_leader(p, q)):
/* do nothing (stable). */

2 lleader,A!3q(close_leader(p, q)):
/* p declares itself a local leader. */
3 leader) + true
4 rip, < random()
5 we denote p to be at a candidate state.

6 leader,A!3q(close leader(p, q)):
/* declare itself a local leader. */
7 leader), + true
8 rtppy + random()
9 we denote p to be at a stable state.

10 leadery, A 3g(close_leader(p, q)):
11 if (rtpp,idy) > (rtpy,id,) then

/* p redeclares itself a candidate local leader. */
12 leader, < true

13 rtpp < random/()
14 else

/* p relinquish local leadership */
15 leader, < false

Figure 5: Leader Election Algorithm for Processor p
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stopped being a stable leader. If p became a candidate leader, it follows that there exists a
processor ¢, such that dist(p,q) < x and ¢ is also a (either stable or candidate) local leader.
Hence, there exists a phase k, such that ¢ < k£ < j and ¢ has become a leader at the end
of phase k. However, this contradicts the fact that p was a leader at the same phase. The
second option is for p to assign leader, by false at the end of phase j. This can only be a
consequence of p loosing (line 14) to another processor ¢, which was also a leader at phase
j, but (rtp,,id,) < (rtp,,id,). A similar argument as in the previous case holds and can be
used to show that ¢ cannot exist. [ ]

JFrom Lemma 5 it follows that SL is a monotonically increasing function. The next
lemmas will show that if SL cannot be increased anymore, the system has stabilized:

Lemma 6. In every synchronous execution, if no new stable leader can be added at config-
uration c;, either by turning a candidate leader or a reqular processor into a stable leader,
then each processor p has at least one leader within a distance x in every configuration c;
such that j > i..

Proof: The proof is by contradiction. Assume there exists a processor p which has no
stable local leader within distance x in configuration ¢; and that no stable leader can be
added. According to the algorithm, this processor can become a candidate leader and at
subsequent phases a stable leader. This contradicts our assumption that no stable leader
can be added. [ ]

Lemma 7. In every synchronous execution, at the end of each phase i if no new stable
leaders were added if and SL can be increased, then there is a positive probability that at the
end of phase j, such that i < j, there is at least one more stable leader than in phase i.

Proof: Let us examine the set C'L, of all candidate leaders. If CL = (), then in the following
phase, at least one processor p will declare itself a local leader (since SL can be increased).
If p is a stable leader, then the proof is complete. Otherwise, assume C'L # (). Let us denote
p as the processor with the highest (rtp,,id,) tuple in C L. During the transition from phase
i to phase i + 1, leader, will be propagated up to distance x from p. For each ¢, such that
q ¢ CL and dist(p,q) < z, ¢ will be aware that [eader, is true and will not change state.
Furthermore, each ¢, such that ¢ € C'L and dist(p, q) < x, will enter line 14 in the algorithm
(since (rtp,,id,) > (rtp,,id,)) and set leader, <— false. Thus p will become a stable leader.
|

. From Lemma 7 it follows that as long as stable leaders can be added, stable leaders will
be added. Lemma 6 ensures us that SL is a monotonically increasing function. It is easy to
notice that SL is also bounded. Therefore, starting from any initial configuration, SL will
reach a value from which no new stable leaders can be added. From Lemma 5, it follows
that the system has stabilized [ ]

Lemma 8. In any synchronous execution, starting with an arbitrary global configuration,
the algorithm converges to a stable state within O(logn) expected number of rounds, where
a stable state denotes a configuration in which all processors are stable.
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Proof: Define the neighborhood of a processor p as the set of all processors ¢, such that
dist(p,q) < x. Further define f,(x) = |neighborhood,| and f(x) = maz,(f,(x)). Note that
since the maximal degree of a processor is constant and since z is a constant, f(z) is also a
constant. We say that a processor is stable if it is either a stable leader or has a stable leader
in its neighborhood.

We now bound the probability for a processor p to become a stable leader in O(x) rounds
(assuming p has no leader). According to the algorithm, p will set itself a leader and choose
a random rtp. We would now like to calculate the probability that p chooses a unique rtp
value, which is bigger than any rtp value which may be chosen in p’s neighborhood. Call this
probability Psyecess- Assume each processor chooses rtp values uniformly in the range [1,m].
Obviously, Psyccess i larger than the probability of the events in which no other processor
in p’s neighborhood chose the same value as p and p is maximal in p’s neighborhood. The
probability that p has the highest r¢p value, given that no other processor has the same rip
value as p, is ﬁ This is due to symmetry considerations. We now calculate a lower bound

for PSUCCCSS:

1
Psuccess >
fp(x)

(Mol L
( p- ) >f(x) ( p-

If we assume that m = ¢ - f(z) for some ¢ > 1, then we get:

1 .(c-f(:z:)—l)f(x)% 1 1
flx) e f(x) e - f(x)

The probability of any processor to become stable is clearly larger than Ps,ccess. From
now on, we examine a set of Bernoulli trials, where one conducts several trials parallelly. The
success probability in our case is the probability a processor has to become stable and the
convergence time is the expected length of the longest trial. Since the probability of success
is larger than Pj,...ss, the expected time for convergence is smaller than the expected length
of the longest Bernoulli trial. As presented in [24], the expected value of the longest trial is
O(log___ n), where n is the number of concurrent trials held.

(1—Psuccess)

A note is in order regarding the dependability of processors. Since for every two processors
within the same neighborhood the probabilities of success are dependent, using a reduction
to Bernoulli trials only gives a correct upper bound since if one processor has succeeded, the
probability of of a neighbor to succeed is increased.

To conclude, we can see that if f(z) is constant, the expected convergence time of the
synchronous algorithm is O(logn) phases. Since each phase is exactly x rounds, we get that
the convergence time in terms of synchronous rounds is also O(logn). |

PSUCCBSS >

4.2 Asynchronous Cluster Construction

We now present an asynchronous version of the previous hierarchy construction algorithm.
Each processor p uses several key variables: leader,, candidate,, id, and rtp,. leader, denotes
whether p is currently a leader. candidate, is set to true if p is trying to become a leader.
idy is the identifier each processor has, and rtp, is a random temporary identifier used to
break the symmetry between processors.
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One may try using the processors’ identifiers in order to break symmetry. However,
occasionally an unfortunate order of id’s may lead to a convergence time which is proportional
to the diameter of the graph. We use randomness to break ties in order to overcome such a
scenario.

Predicates:
leader(Cp) :=
dg € Cplq # p Aleader(q)

1 (leader, @ leader(C)p)) = true:
/* do nothing (stable). */

2 leader, = false A leader(C,) = false:
rtpp < random/()

candidate, < true

C,, + new snapshot

if leader(C)) = true then
candidate, <+ false

leader, < false

9 else if Vq € C, candidate, = true —
10 ((rtpq,idg) < (rtpy,idp)) then
11 leader), < true

12 else

13 candidate, < false

14 leader, < false

15 end

0 ~N O O W

16 (leader, = true A leader(C}) = true):
17 candidate, < false
18 leader, < false

Figure 6: Asynchronous Leader Election Algorithm for Processor p

The construction algorithm is composed of several parts. All processors participate in
an (asynchronous) update algorithm up to distance z. Based on the update tables, each
processor p constructs a tree rooted at p and of depth not exceeding x. Using the tree, each
processor invokes the snapshot algorithm to collect the state of its neighborhood. We use the
snapshot algorithm to perform a PIF algorithm, and by adding information to the markers
used in the snapshot process we achieve the desired PIF effect. The number of trees and
snapshot protocols each processor must participate in can be calculated from the topology
collected earlier.

Constantly (this is to say that the time frame is not important), each processor p will
take a snapshot of the surrounding neighborhood (up to distance ). After the snapshot is
collected, the algorithm in Figure 6 is invoked. Since the snapshot algorithm is guaranteed to
be finished in each invocation (although the result might be incorrect, since the rooted tree
has not stabilized yet), we are guaranteed that future invocations of the snapshot algorithm
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will take place. For a snapshot obtained at p, C,, we denote leader(C),) = true if there exists
a processor ¢ # p in (), such that leader, = true.

Let us assume that a complete snapshot C), is obtained at p. The four combinations of
leader, and leader(C,) determine the course of actions p must follow. First, consider the
most simple cases where leader, = false A leader(C,) =true or leader, =true Aleader(C)) =
false. 1In these cases, p should avoid taking any action, since, as far as p can tell, the
situation is correct. The complex cases are when there are no leaders in p’s vicinity and p
is not a leader itself or when p is a leader and can see another leader within a distance of z
from itself. In case leader,= false Aleader(C,)= false, p will first choose a random number
(from a predetermined range) and store it in rtp,. Then, p will assign true to candidate,
(Figure 6 lines 3-4). The next operation is propagating the information that p wishes to
become the leader of its neighborhood. This is achieved through the use of the snapshot
protocol which results in a new snapshot at p, C, (line 5). Now, if C; does not contain
information about a leader or another candidate, p can safely place itself as a leader and
set leader, =true. However, if leader(C’;) = true holds, p should set candidate, to false,
since there is now a leader in p’s neighborhood. Last, if there are other candidates in Cz,)’ P
will become a leader if (and only if) the tuple (rtp,,id,) is larger than all other candidate’s
tuples in C) (line 10).

The last case is when leader, =true Aleader(C,) =true (line 16). Upon detecting such a
condition, p will immediately assign leader, and candidate, with false and will start a new
cycle of the algorithm.

To prove that the asynchronous hierarchical construction algorithm works, we will take
an approach similar to the proof of the synchronous algorithm. We will denote a processor
p as stable in two cases. The first case is a stable leader, when leader, = true, ¥Yq €
neighborhood,(leader, = false). Furthermore, all topology tables for each processor within
p’s neighborhood are up to date and reflect p’s leadership and no other message exists in
the system denoting another processor as leader or candidate. The second case is of a stable
node, when p is not a leader, but there is a stable leader in p’s neighborhood.

Our first claim is that once a processor is stable, it will remain stable. Next, we show that
a processor has a positive probability of becoming stable. We then use the scheduler-luck
game to show that the algorithm stabilizes ([13], chapter 2.9)

Lemma 9. Let £ = (cy, ap, c1,a1,...) be a fair execution. If at a global configuration c;, a
processor p has become stable, then p will remain stable for all configurations c¢; € E, such
that j > 1.

Proof: First, let us consider the case in which p is a stable leader in ¢;. From the definition
of a stable leader, for each ¢ € neighborhood,, leader, = false and ¢ denotes p as a leader
in ¢’s update tables. Now, since the topology tables do not change, p can lose the stability
property only if another processor within p’s neighborhood becomes a leader too. Assume
that such a processor ¢ becomes a leader in ¢;, 7 > 7. Based on the leader election algorithm,
this is possible in two cases. Either ¢ was not a leader and did not see a leader in its
neighborhood, or ¢ was a leader and saw another leader. The first option is not feasible,
since ¢ is aware of p being a leader (from the definition of stable). The second option is not
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possible either, since ¢ will not set itself a leader as long as p is. Hence, a stable leader will
remain stable.

Now, we will proceed to discussing a stable node p (not a leader). From the definition of
a stable processor we deduce that there is a stable leader ¢ in the neighborhood of p. Since
g is a stable leader and will remain such, p will remain stable too. [ ]

Lemma 10. Let £ = (¢, a;,Cit1, g1, ...) be a fair execution, such that the update algo-
rithm and the snapshot algorithm have stabilized. Starting from any configuration in &, each
processor p has a positive probability to become stable within O(x) rounds.

Proof: The stabilization time for the topology update algorithm and the snapshot algo-
rithm is O(z). Consider now a processor p which is not stable in ¢y. Let ¢; be the first
configuration in which p has obtained a correct snapshot of its neighborhood, C, (obviously,
¢; is reached within O(z) rounds). If p is stable in ¢;, then the process has been completed.
Otherwise, we will show that p has a positive probability of becoming stable within O(z)
rounds.

We will now show that within 3 - z rounds at most, either p becomes stable or there
exists a processor in p’s neighborhood which chooses a new rtp value and has a positive
probability of becoming a stable leader. Assume, towards contradiction, that no processor
in p’s neighborhood chooses a new rtp value within 3-z rounds and p does not become stable
during this time. If there were no leaders in p’s neighborhood, p would have chosen a new rtp
value within z rounds (the number of rounds which would take p to finish a new snapshot).
Hence, there exists a processor ¢ € neighborhood, such that leader, = true (it is possible
that ¢ = p). Since p is not stable, we can deduce that ¢ is also not a stable leader. Suppose,
that after x rounds, ¢ has not set leader, to false and ¢ is still not stable. This implies
that a different processor which is also a leader exists in ¢’s neighborhood. After x rounds
at most, ¢ will detect this fact by way of a new snapshot and will set leader, to false. In a
similar manner, we can show that each leader in p’s neighborhood eventually either becomes
stable within 2 -z rounds or relinquishes leadership. If one leader becomes stable, the proof
is now completed. Otherwise, a processor in p’s neighborhood (possibly p) will notice the
fact that there are no leaders and will choose a new rtp value within = rounds. Overall, we
get that after O(x) rounds at least one new rtp value is chosen.

Denote p, as the processor which first chooses a new rtp value in p’s neighborhood. This
assignment is a result of p, finishing a snapshot C, (which takes O(x) rounds to complete)
and of noticing that no leaders exist in this snapshot. Our next claim is that between the
start of the snapshot that resulted in C, and the end of the next snapshot that p, will take
(line 5) and which is denoted C!, each processor in p,’s neighborhood cannot assign more
than one new value to its rtp if the right conditions hold. Denote cgq,¢ as the configuration
in which the snapshot C, started and c,,4 as the configuration in which C] ended. Assume
that each processor ¢, which chooses a new rtp value between cg,,s and c.,q chooses a value
smaller than that of p,. Once the PIF snapshots initiated by p, reach ¢, ¢ loses to p,, and
will not enter line 2. Thus, ¢ will not choose a new random r¢p value more than once between
Cstart aNd Cepng. The probability that p, will choose an rtp value in such a way is larger than
Pyecess- As aresult, p, will assign leader,, by true (line 10) and within 2 rounds will become
a stable leader. This way, p will also become stable within 4 - z rounds from ¢y. [ ]
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Thus, we can make the following corollary:

Corollary 1. In every fair execution, each processor has a positive probability of becoming
stable in every O(x) rounds and it holds by [24] that within O(logn) expected number of
rounds the algorithm converges to a stable state.

4.3 Hierarchy Construction

Constructing the hierarchy is achieved by a repeated application of the clustering algorithm.
We suggest using the clustering algorithm on the original graph G, constructing clusters
with x > 1 (in essence, a minimal z-dominating set). We then propose to dynamically
define an overlay network between the leaders of each cluster and apply the same scheme to
the resulting graph. The process is completed after a single cluster, composed of the entire
graph G, is finally defined. The resulting hierarchy is of O(logn) levels, and in each level i
(level 0 is the original graph, () there exist at most 3 processors. This bound arises from
the fact that each leader p has at least one processor directly connected to p, which is not
directly connected to any other leader. Since there exist O(logn) levels in the hierarchy and
since communication on overlay edges is considered non expensive, the hierarchy construction
algorithm stabilizes within O(log” n) expected rounds (O(logn) for each level, times O(logn)
levels), assuming the degree of each of the hierarchy levels is bounded.

Next, we describe the construction of the overlay network and present a graph class in
which the degree of each hierarchy level is bounded.

4.3.1 Overlay Network Construction

Let G = Gy = (Vi, Eg) be the original graph, to which we apply our clustering algorithm. We
define G; = (V;, E;) so that V; = {p € Vp|p is a leader in V;_1} and (p, q) € E; iff the length
of the shortest path between p and ¢ in Gy is at most 2 -z’ + 2! (where z is the parameter
of the clustering algorithm). This construction can be easily achieved by each leader p by
extending the update algorithm to include processors up to distance z +1 (instead of z) and
adding the list of leaders at distance x to each processor p to p’s tuple. We then apply the
clustering algorithm on G, so that leaders will dominate processors up to distance 2+ in
Gy. Note that the criteria for distance among leaders is expressed in terms of Gy and the
original z, namely; z'*! for level i of the hierarchy.

Lemma 11. Fach resulting graph G; is a connected graph.

Proof: By induction: Gy is a connected graph, by definition. Assume G, ; is also a
connected graph, and G is the result of the clustering algorithm. Let py and p, be processors
in V; such that pg,p1,...,px is a path between py and py in G;_; (such a path exists, since
G_y is a connected graph). Let g; be the chosen leader of p; (1 < j < k —1) in G,_1.
According to the overlay construction, (pg,q1) € E; A (qe—1,pr) € E;. Furthermore, V2 <
j <k—1(gj_1,q;) € E;, since the distance in G between p; ; and p; is at most 2-z% + 2"~
(or pj_1 = p;). Hence, po, q1, G2, ..., q—1, Pk is a path between py and pj in G;. ]
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To obtain higher levels of the hierarchy, we continue with the same construction recur-
sively. Suppose we have defined the levels of the hierarchy up to (and including) level i. The
processors of G; will participate in the clustering algorithm up to distance z**!. G;;; will be
composed of the resulting leaders of G;, such that two processor are neighbors iff the length
of the shortest path between them in Gy is at most 2 - 2'*! + 2. Each G, is, in turn, also
connected, according to Lemma 11. To realize this construction, we suggest each leader p
will add to its update table of G; all the topology p has collected in each G; up to now.

Next, we describe the geographically affined class of graphs such that the clustering algo-
rithm and the overlay construction, applied on these graphs, produces an overlay graph of
bounded degree. This class is implied by a typical deployment of sensor networks.

4.3.2 Geographically Affined Graphs

In this class of graphs we wish to explore the relation between the Euclidean distance between
processors and the length of the shortest path between them. This definition is similar to
the embedding schemes presented in [29]. We first define the geographically affined class of
graphs.

Definition 4.1. Let G = (V, E) be a graph embedded in the Euclidean plane. For p,q € V,
define ||(p, q)||2 as the Euclidean distance between p and ¢, and dist(p, ¢) as the number of
hops in a shortest path from p to ¢ in G. G is Geographically affined iff there exist a constant
¢ < 1 such that Vp,q € V : ¢ - dist(p,q) < |[(p,q)||2 < dist(p, q).

We will next show that each geographically affined graph has a bounded degree. Fur-
thermore, we also show that the hierarchy construction algorithm presented above produces
a bounded degree graph in each level of the hierarchy.

Lemma 12. Given a circle C' of radius v and a set S of points in C, where the minimal

distance between any two points is y, then |S| < 1‘;’52

Proof: Consider Figure 7. C' is contained in a square sq; whose edges are of length 2 - r.

In each square sg, whose edges are of length £, there can be at most one point from S. |S]

is obviously smaller than the number of sgy squares which can be fitted into sq;. Hence,

|S| < 4-r2 _ 1612 -
= y2/4 - y2 .

Lemma 13. Let Gy = (Vi Ey) be an Euclidean graph, such that Gy is geographically affined.
FEach graph in the series {G?};Ozgon, resulting from the consecutive application of the clustering
algorithm with parameter 1, has a degree at most i—? (2 2+ 1)%

Proof: Let p be a processor in G;, and N, the set of p’s neighbors in GG;. The shortest path
(in Gy) between p and a neighbor ¢ is at least x* (since in G;_; p and ¢ are leaders) and at
most 2 - /™! + 2! (p and ¢ are neighbors in G; iff their distance in G;_; is at most 2 - x + 1
hops, which is at most 2 - 2'T! + 2% hops in Gy). In a similar fashion, the shortest path (in
Go) between any ¢,r € N, is at least ' (if they are neighbors in G;). Since the graph is
geographically affined, we get the following equations:

c-z' <|[(pg)ll2 £ 22" + o'
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Figure 7: Maximal Number of Leaders

ez’ < (g, 1)l
Hence, each ¢ € N, must reside inside a circle C, centered at p and of radius 2 - 2™+ + 2.

According to Lemma 12, |N,| is bounded by 16 - % =82 z+1)?
]

4.4 Self-Organization Properties

Next, we prove that our algorithms are self-organizing. Firstly, for the clustering algorithm,
it is worthwhile noting that locality holds since the algorithm stabilizes within expected
O(logn) rounds. Thus, we focus our discussion on dynamic changes of the communication
graph — namely, on addition and removal of communication links. We wish to draw the
readers’ attention to the fact that addition (or removal) of processors can be modeled by
the addition (or removal) of their communication links (which is a bounded number of
operations). When we discuss addition of processors, we consider addition of processors in
a predefined state or in an arbitrary state. We only consider topology changes after the
algorithm has stabilized (otherwise, the global stabilization time applies).

Lemma 14. Starting in a safe configuration of the clustering algorithm, if the update table
of processor p has changed due to a channel (respectively, processor) addition or removal in
configuration c; and the channel (respectively, processor) is attached (a neighbor) to p, then
within expected O(x+log f(x)) = O(1) rounds, a safe configuration is reached. Furthermore,
for each processor q, such that dist(p,q) > 2 - x, q will remain stable.

Proof: Let us assume that p is a processor as described in the Lemma. Since the update
tables of each processor are restricted to processors of distance z, no processor ¢, such that
dist(p,q) > 2 - x, will change its own table. Furthermore, after O(x) rounds, each processor
will have correct tables. The clustering algorithm now has to stabilize only in the small
neighborhood of p, which takes O(log f(x)) expected number of rounds.
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Next, let us assume that ¢ was a stable leader in ¢; and dist(p,q) > 2-z. First, we argue
that each processor r in ¢’s neighborhood, maintains a correct tuple of the update algorithm
denoting ¢. This is obvious, since no topology changes were made in ¢’s neighborhood. As
a result, ¢ will correctly participate in each spanning tree constructed by such a processor
r. Consequently, each time r takes a snapshot of its neighborhood, r will see that leader, =
true. Hence, r will not assign true to leader, and ¢ will remain a stable leader. Thus, all
processor within ¢’s neighborhood will remain stable. [ ]

We now consider the effects that channel additions have on the clustering algorithm. Let
us assume that a new (bi-directional) channel, (p,q), is added between processors p and
q. We argue that any stable processor distanced more than 2 - x from either p or ¢ will
remain stable. Furthermore, within an expected constant number of rounds, the algorithm
will stabilize. This clearly follows from Lemma 14. Let us now assume that a channel (p, q)
is removed. Let NL be the set of all processors, so that the removal of (p,q) leaves them
leaderless or unstable. We argue that the constant number of processor in NL are at most
at distance z from either p or ¢ and that stable processors which are distanced farther than
x will remain stable. Processor removal is easily reduced to the removal of all channels
attached to this processor from the communication graph.

We also discuss additions and removals of processors. We argue that stable processors
which are farther than 2 -z from the removed/added processor will remain stable. This also
clearly follows from Lemma 14.

Thus, our clustering algorithm is self-organizing, since the expected convergence time is
O(logn) € o(n) and the number of processors which change state due to a dynamic topology
change is constant. In fact, when k changes occur approximately at the same time, the
expected convergence time is O(logk) following the last change occurrence.

Application to hierarchy; Let us examine a dynamic change at Gy. There are two proces-
sors, p and ¢, which are involved in the change ((p, ¢) was either added or removed). We first
concentrate on p. From Lemma 14 we infer that only processors within a distance of 2-x+1
hops from p can be affected in Gg. The dynamic change can influence the state of leaders
within this range, which can be regarded as a new dynamic change in G;. The radius of the
corresponding influenced region from p in G is therefore (2-22+2-2+1)+(2-2+1) around p
in Gy. In a similar way, the radius of the influenced region from p in G; is 2-2* +2-2' ! + 22+
(the radius of influence in G;_1). Overall, the area of effect around p in Gy is less than 4-2+2,
Since G is geographically affined, the Euclidean radius of such a circle is smaller than 4-2'*2
The minimal distance in G between processor in G; is at least z° (when counting real edges,
not virtual ones), since they are leaders in G;_;. Again, since G, is geographically affined,
the Euclidean distance between leaders is at least ¢ - z*. Using Lemma 12 (which appears in
the Appendix), it is evident that the number of processors affected at G; because of p is at

most % = 256 - x* = O(1). Since we have to consider ¢ as well, we double the total
number of changes to have a total of O(1) changes in each level.

To conclude, the hierarchy construction algorithm is self-organizing, since the expected
stabilization time is O(log® n) € o(n) and dynamic topology changes affect only O(logn) €
o(log2 n) processors. Similarly, when k changes occur approximately at the same time, the

expected convergence time is O(log? k) rounds following the last occurring change.
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5 Overlay Based Hierarchical Snapshot Algorithm

We now present a self-stabilizing and self-organizing snapshot scheme (which also enables
subsystems to take snapshots independently). Due to the use of overlay links, the resulting
snapshot is sublinear.

Let p be a node in ‘HT, so that p is a parent of leaves in H7T. Let pi,pa,...,pr be the
children of p in ‘H7. Note that p and pq, ps,...,p, reside in the same subsystem, subs;,
which is a connected component of G. A spanning tree of subs; rooted at p is constructed
and p is responsible for invoking snapshots in subs;.

Let ¢ be a node in HT, so that at least one child of ¢ in ‘H7T is a subsystem, consisting
of more than a single processor. Let us assume that ¢ represents (is the leader of) the
subsystem subs. Let subsi, subsy, ..., subs; be the subsystems represented by the children
of ¢ in HT. Note that the union of subs;, subs,, ..., subs; is identical to subs, the subsystem
represented by ¢q. Let ¢, ¢, . . ., q; be the processors that are leaders of subsy, subss, ..., subs;,
respectively. It is important to note that it is possible that the processor ¢, that is the leader
of subs, may also serve as a leader ¢; of (at most) one of the above subs;,. Using the
communication links in subs, we define an overlay network connecting q, q1,q2,...,q. A
spanning tree, rooted at ¢, of the obtained overlay network is constructed. ¢ is responsible
for invoking snapshots in subs using the spanning tree of the overlay network of subs. When
a snapshot is requested at ¢, it will initiate a snapshot in subs.

The snapshot initiated at subs can serve two purposes. On the one hand, the snapshot
algorithm of subs can be used to obtain a consistent snapshot only of ¢;,¢.,...,q and gq.
On the other hand, when ¢ sends a marker, it can add another indicator bit, which acts
as a snapshot request for ¢i,qo,...,q in subsy, subs, ..., subs;. The result is a recursive
invocation of the snapshot algorithm, resulting in a consistent snapshot of all processors in
subs.

The overlay network inside subsystem subs is needed to ensure fifo delivery of messages
between leaders. We also need to restrict cross subsystem communications (of the distributed
algorithm) to travel only through the subsystem leaders using the overlay network. This is
done in order to ensure that messages will not be able to bypass markers or to corrupt
snapshots.

The addition of the overlay network requires several adjustments of the snapshot algo-
rithm. The overlay network adds wvirtual links to the communication graph which should be
also recorded. In order to implement virtual links, routing information such as the one used
in the source routing scheme, must be added to messages. Consequently, each processor,
upon receiving a message through a physical link, can decide which virtual link this message
belongs to. Furthermore, the state of the processor is not affected by the arrival of this
message, since it is only forwarded to its destination. Hence, the processor can ignore this
message with regards to the snapshot algorithm without recording it on the physical link.
Such messages need to be recorded only at their destination, on the virtual link they traverse
on.
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6 Extensions and Concluding Remarks

Self-Organization. We have given a simple and intuitive definition of self-organization.
Furthermore, we have displayed the relevance of self-stabilization with regards to self-organization.
Our self-stabilizing and self-organizing snapshot algorithm implies sublinear time algorithms
in the overlay network model for many core distributed tasks.

Self-stabilizing and self-organizing leader election. The hierarchy construction algo-
rithm which is, by itself, a self-stabilizing and self-organizing algorithm, naturally defines a
leader for each subsystem. Thus, the topmost subsystem (which contains the entire system)
also has a leader, which we define to be the output of the leader election algorithm. Hence,
the output of the hierarchy construction algorithm can be used to define a self-stabilizing
leader election algorithm which converges in O(log® n) expected number of rounds and han-
dles topology changes gracefully in O(logn) rounds.

Our definition of self-organization can easily capture the effect of transient faults on the
system. It can be shown that a single transient fault in the system can effect only the local
updates of a constant number of processors and therefore influence O(1) states. Moreover,
the number of state changes following (approximately) simultaneous faults that occur in
neighboring processors is proportional to the group’s diameter in the graph. In the worst
case, when the faults are approximately x apart (say, all leaders change state to non-leaders)
the number of faults is O(n) allowing a complete stabilization phase.

Self-stabilizing and self-organizing snapshots. Building on top of the hierarchy con-
struction algorithm, we have presented a self-stabilizing snapshot scheme, where a global
snapshot can be collected in O(log2 n) rounds (in fact, if the hierarchy was previously de-
fined, only O(logn) rounds are necessary).

Self-stabilizing converter. Our self-stabilizing and self-organizing snapshot algorithm
implies a new efficient tool for converting distributed (reactive, or fixed output) algorithms
to self-stabilizing algorithms in sublinear time; the leader of the system can take repeated
snapshots and verify each snapshot for correctness. When a snapshot indicates an illegal
state, a global reset procedure may be initiated, using the infrastructure created by the
hierarchy definition algorithm, to reach a predefined (and safe) state.

Acknowledgments: Many thanks to Noga Alon for helpful discussions.
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