
Seth Gilbert
EPFL

Simple Communication-Optimal
Agreement Protocols

Dariusz R. Kowalski
University of Liverpool

Simple Communication-Optimal Agreement

Time Complexity Communication
Complexity

 seconds
 rounds
 throughput

 messages
 packets
 bits of data

Simple Communication-Optimal Agreement

Preliminaries
Consensus

• Agreement

• Validity

• Termination, eventually, with probability 1

Simple Communication-Optimal Agreement

Preliminaries
Basic network

• n nodes

• crash failures, majority correct

• synchronous network

Simple Communication-Optimal Agreement

Preliminaries
Randomized algorithms

• Oblivious adversary: fix in advance who fails when.

• Safety: guaranteed

• Termination: eventually guaranteed

• Efficiency: with high probability, i.e.,
(1-1/n)c

Simple Communication-Optimal Agreement

Prior Work
Message/Bit
Complexity

Round
Complexity Random?

FloodSet O(n3) O(n) No

GMY’95 O(n) O(n1+ε) No

CK’02,CK’06 O(n logO(1) n) O(n) No

CKS’09 O(n logO(1) n) O(n) No

CMS’89 O(n2 log n) O(log n) Yes

CK’09 O(n log n) O(log n) Yes

Today O(n) O(log n) Yes

Simple Communication-Optimal Agreement

Key Technique
Universe Reduction
1. Choose a small set of coordinators
2. Coordinators run (small) consensus protocol
3. Coordinators disseminate the decision

Simple Communication-Optimal Agreement

Universe Reduction
Piotr Berman, Juan A. Garay

• Asymptotically Optimal Distributed Consensus

Vinod Vaikuntanathan

• Randomized Algorithms for Reliable Broadcast

Ben-Or, Pavlov, Vaikuntanthan

• Byzantine Agreement in the Full-Information Model
in O(log n) rounds.

Simple Communication-Optimal Agreement

Universe Reduction
Kapron, Kempe, King, Saia, Sanwalani

• Fast Asynchronous Byzantine Agreement and
Leader Election with Full Information

King, Saia

• Fast, Scalable Byzantine Agreement in the Full
Information Model with a Nonadaptive Adversary

Simple Communication-Optimal Agreement

Protocol Presentation
Universe Reduction
1. Choose a small set of coordinators
2. Coordinators run (small) consensus protocol
3. Coordinators disseminate the decision
4. Fallback protocol

Simple Communication-Optimal Agreement

Protocol Presentation
Choosing Coordinators
1. Elect self coordinator with probability:

2. If coordinator: choose intermediaries
uniformly at random. Send each a message.

3. Each intermediary sends a response containing a list
of coordinators.

Θ(log n)
n

Θ(
√

n log n)

Simple Communication-Optimal Agreement

Protocol Presentation
Choosing Coordinators

• Claim: There are correct coordinators,
with high probability.
- There are n/2 correct nodes.
- There are (n/2)(clog n/n) correct coordinators, in

expectation.
- Chernoff bound...

Θ(log n)

Pr(X ≤ µ/2) ≤ e−µ/4

Simple Communication-Optimal Agreement

Protocol Presentation
Choosing Coordinators

• Claim: All non-failed coordinators know about all
other non-failed coordinators.

Simple Communication-Optimal Agreement

Protocol Presentation
Choosing Coordinators

• Claim: WHP, there exists a subset S such that:
i. Every process in S is a coordinator.
ii. Every non-failed coordinator is in S.
iii. For each non-failed coordinator, its list of

coordinators is a subset of S.
iv. If (p ∈ S), and (p ∉ a coordinator list), then:

p fails by the end of the protocol.

Simple Communication-Optimal Agreement

Protocol Presentation
Choosing Coordinators

• Claim: All non-failed coordinators know about all
other non-failed coordinators.
- Birthday paradox: any two coordinators share an

intermediary, with high probability.
(

1− |I|
n

)2c
√

n log n

≤
(

1− 2c
√

n log n

n

)2c
√

n log n

≤
(

1
2

)4c2 log2 n

≤
(

1
n

)c+2

Simple Communication-Optimal Agreement

Protocol Presentation
Choosing Coordinators

• Communication cost:
- # coordinators:
- msgs / coordinator:
- max message size:

• Time:

O(
√

n log n)
O(log2 n)

O(log n)
O(
√

n log4 n)

O(1)

Simple Communication-Optimal Agreement

Protocol Presentation
Universe Reduction
1. Choose a small set of coordinators
2. Coordinators run (small) consensus protocol
3. Coordinators disseminate the decision
4. Fallback protocol

Simple Communication-Optimal Agreement

Protocol Presentation
Limited Universe Consensus

• Each coordinators repeats rounds:
- Send estimate to other coordinators.
- Adopt minimum estimate received.

• Output estimate.

Θ(log n)

Simple Communication-Optimal Agreement

Protocol Presentation
Limited Universe Consensus

• Claim: With high probability, every coordinators
outputs the same value.
- Each coordinator has a complete list of other

coordinators, with high probability.
- In some round, no coordinator fails (by the

pigeon-hole principle).
- Ergo all coordinators adopt same estimate.

Simple Communication-Optimal Agreement

Protocol Presentation
Limited Universe Consensus

• Guarantees:
- Probabilistic agreement
- Validity
- Termination

• Communication Cost:

• Time:
O(log3 n)

O (l o gn)

Simple Communication-Optimal Agreement

Protocol Presentation
Universe Reduction
1. Choose a small set of coordinators
2. Coordinators run (small) consensus protocol
3. Coordinators disseminate the decision
4. Fallback protocol

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Decision

• Work sharing paradigm:
- Coordinators evenly divide up the work of

notifying processes.
- Check for unlikely problems.
- Related to Do-All: Chlebus, Kowalski ‘06

“Randomization helps to perform independent
tasks reliably.”

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Inputs:
- Value v to disseminate
- List of coordinators

• Outputs:
- Set of values V received
- Flag ds indicating success/failure

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

- Dissemination: The initial value of every non-
failed coordinator is sent to every process.

- Validity: Every value received was some
coordinators initial value.

- Consistency: If p and q both output success (ds =
true), then both had the same initial value.

- Termination

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

- Partition processes into (disjoint)
groups.

- Maintain:

• List of unnotified groups

• Count (lower bound) of responded processes

log n log∗ n

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Repeat times:
(a) Each coordinator chooses a group at random,

sends it the value to disseminate.
(b) Each node sends a response if it has received no

other values.
(c) Coordinators count responses, update list, and

exchange information.

Θ(log∗ n)

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Final steps:
- If list not empty:

• Coordinator sends value directly to everyone.

• Collects responses.
- If (count > n/2) then return true, else false.

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Claim: Dissemination
- If a coordinator’s list is empty, then the value has

been sent to everyone. Otherwise, it sends the
value directly.

• Claim: Validity

• Claim: Termination

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Claim: Consistency
- The count is a lower bound on the number of

processes that received value first.
- If (count > n/2) then a majority received value

first. Only possible for one value!

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Claim: Efficient
- By the end of rounds, every group

has been selected at least once by a non-failed
coordinator.

Θ(log∗ n)

Simple Communication-Optimal Agreement

Detour: Balls & Bins
Bin clearing (review)

• A player has:
- b balls
- b bins

• In each round:
- Throw balls at random into bins.
- If bin has >0 balls, then remove bin.

Simple Communication-Optimal Agreement

Detour: Balls & Bins
Bin clearing

• Claim: All the bins are cleared within
rounds, with high probability.

Θ(log∗ n)

Simple Communication-Optimal Agreement

Detour: Balls & Bins
Bin clearing

• Claim: All the bins are cleared within
rounds, with high probability.
- Round 1: b balls, b bins

Expected # remaining bins:

Θ(log∗ n)

b

(
1− 1

b

)b

≈ b/2

Simple Communication-Optimal Agreement

Detour: Balls & Bins
Bin clearing

• Claim: All the bins are cleared within
rounds, with high probability.
- Round 2: b balls, b/2 bins

Expected # remaining bins:

Θ(log∗ n)

b

(
1− 2

b

)b

≈ b

22

Simple Communication-Optimal Agreement

Detour: Balls & Bins
Bin clearing

• Claim: All the bins are cleared within
rounds, with high probability.
- Round 3: b balls, b/22 bins

Expected # remaining bins:

Θ(log∗ n)

b

(
1− 22

b

)b

≈ b

222

Simple Communication-Optimal Agreement

Detour: Balls & Bins
Bin clearing

• Claim: All the bins are cleared within
rounds, with high probability.
- Round log*b:

Expected # remaining bins:

Θ(log∗ n)

b

(
1− 22...2

b

)b

≈ b

22...2
≈ 1

Simple Communication-Optimal Agreement

Detour: Balls & Bins
Bin clearing

• Claim: All the bins are cleared within
rounds, with high probability.
- Round log*b:

Expected # remaining bins:

Θ(log∗ n)

b

(
1− 22...2

b

)b

≈ b

22...2
≈ 1Bogus Proof

Simple Communication-Optimal Agreement

Detour: Balls & Bins
Bin clearing

• Claim: All the bins are cleared within
rounds, with high probability.

Θ(log∗ n)

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Claim: Efficient
- By the end of rounds, every group

has been selected at least once by a non-failed
coordinator.

Θ(log∗ n)

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Claim: Efficient
- Within rounds, at most

groups remain un-notified.

• While (>2log n) unnotified groups: each
coordinator picks an un-notified group with
probability > 1/2.

• With high probability, # unnotified groups is
reduced by .

Θ(log∗ n) O (log n)

Θ(log n)

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Claim: Efficient
- Bin clearing:

• Number of groups:

• Number of coordinators:
- Conclusion:

• Within rounds, every group has
been notified, with high probability.

O (log n)

Θ(log n)

Θ(log∗ n)

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Claim: Efficient
- Total complexity:

• Rounds:

• Coordinators:

• Messages: of size

• Inter-coordinator message size:

• Inter-coordinator messages:

Θ(log∗ n)
O (log n)

O(n/ log n log∗ n) O(1)
O (log n)

O(log2 n log∗ n)

O(n)

Simple Communication-Optimal Agreement

Protocol Presentation
Complete Protocol

1. Choose coordinators
2. Limited universe consensus -> v
3. Disseminate(v) -> true/false (+ v)

• If false, then stop.
4. Disseminate(v) -> true/false + v

• Adopt estimate v.
5. Disseminate(v) -> (true/false) + v

• If v is estimate, decide(v)

Simple Communication-Optimal Agreement

Protocol Presentation
Complete Protocol

6. If undecided, send “FALLBACK” message to all.
7. If undecided or receive “FALLBACK” message,

then execute classical consensus protocol.

Simple Communication-Optimal Agreement

Protocol Presentation
CompleteProtocol

• Claim: Agreement
- Only one value possible after Step 3, due to

consistency property.

Simple Communication-Optimal Agreement

Protocol Presentation
Complete Protocol

1. Choose coordinators
2. Limited universe consensus -> v
3. Disseminate(v) -> true/false (+ v)

• If false, then stop.
4. Disseminate(v) -> true/false + v

• Adopt estimate v.
5. Disseminate(v) -> (true/false) + v

• If v is estimate, decide(v)

Simple Communication-Optimal Agreement

Protocol Presentation
CompleteProtocol

• Claim: Agreement
- Only one value possible after Step 3, due to

consistency property.
- Only one decision possible in Step 5...
- Only one decision possible in FALLBACK protocol...

Simple Communication-Optimal Agreement

Protocol Presentation
CompleteProtocol

• Claim: Agreement
- Only one value possible after Step 3, due to

consistency property.
- Only one decision possible in Step 5...
- Only one decision possible in FALLBACK protocol...
- If decision in Step 5, then all processes received

value in Step 4, so all processes start FALLBACK
with the same value.

Simple Communication-Optimal Agreement

Protocol Presentation
Complete Protocol

1. Choose coordinators
2. Limited universe consensus -> v
3. Disseminate(v) -> true/false (+ v)

• If false, then stop.
4. Disseminate(v) -> true/false + v

• Adopt estimate v.
5. Disseminate(v) -> (true/false) + v

• If v is estimate, decide(v)

Simple Communication-Optimal Agreement

Protocol Presentation
CompleteProtocol

• Claim: Agreement

• Claim: Validity

• Claim: Termination

• Claim: Efficiency
- With high probability, no process reaches the

FALLBACK protocol.

Simple Communication-Optimal Agreement

Protocol Presentation
Complete Protocol

1. Choose coordinators
2. Limited universe consensus -> v
3. Disseminate(v) -> true/false (+ v)

• If false, then stop.
4. Disseminate(v) -> true/false + v

• Adopt estimate v.
5. Disseminate(v) -> (true/false) + v

• If v is estimate, decide(v)

Simple Communication-Optimal Agreement

Protocol Presentation
Universe Reduction
1. Choose a small set of coordinators
2. Coordinators run (small) consensus protocol
3. Coordinators disseminate the decision
4. Fallback protocol

Complexity:
• Time: w.h.p.

• Communication: w.h.p.
O (log n)

O(n)

Simple Communication-Optimal Agreement

Partially Synchrony
What if...

• Some executions are synchronous

• Some executions are asynchronous

Goal:

• Efficiency in synchronous executions

• Correctness in all executions

Simple Communication-Optimal Agreement

Partial Synchrony
Model (in brief; see DLS)

• Processes have clocks.

• In synchronous executions:
- clock skew is bounded
- message delay is bounded

• Skew/delay bounds are known.

Simple Communication-Optimal Agreement

Partial Synchrony
Modifications

• Simulate synchronous rounds
- Wait long enough to ensure that, if the execution

is synchronous, every round r message is received
before starting round r+1.

- Start round r at time (according to local clock):

d

1− δ

r−1!

j=0

"
1 + δ

1− δ

j

Simple Communication-Optimal Agreement

Partial Synchrony
Modifications

• Fallback:
1. Attach estimate to “FALLBACK” request.
2. Abort immediately on “FALLBACK” request.
3. Adopt value received in “FALLBACK” request.
4. Send “FALLBACK” request to all.
5. Wait for a majority of “FALLBACK” messages

before beginning fallback protocol.
6. Use asynchronous fallback protocol.

Simple Communication-Optimal Agreement

Partial Synchrony
Re-analysis

• In asynchronous executions, no guarantee of good
coordinators or good agreement!

• Dissemination is still ok!
- Consistency/Dissemination do not depend on

synchrony.

Simple Communication-Optimal Agreement

Protocol Presentation
Disseminate Sub-Protocol

• Repeat times:
(a) Each coordinator chooses a group at random,

sends it the value to disseminate.
(b) Each node sends a response if it has received no

other values.
(c) Coordinators count responses, update list, and

exchange information.

• If not done, send value directly to all.

Θ(log∗ n)

Simple Communication-Optimal Agreement

Partial Synchrony
Re-analysis

• In asynchronous executions, no guarantee of good
coordinators or good agreement!

• Dissemination is still ok!
- Consistency/Dissemination do not depend on

synchrony.

• Only one decision value possible, even in
asynchronous executions.

Simple Communication-Optimal Agreement

Extensions

Simple Communication-Optimal Agreement

Extensions
Fault-tolerant Gossip

• Each process begins with initial rumor

• Goal: distribute every rumor to every process

Typical algorithm:

• Repeat:
- Choose target at random.
- Send it all rumors.

Simple Communication-Optimal Agreement

Extensions
Typical algorithm:

• Repeat:
- Choose target at random.
- Send it all rumors.

Complexity:

• Rounds:

• Message complexity:
O(log n)

O(n log n)

Simple Communication-Optimal Agreement

Extensions
Typical algorithm:

• Repeat:
- Choose target at random.
- Send it all rumors.

Complexity:

• Rounds:

• Message complexity:
O(log n)

O(n log n)

Simple Communication-Optimal Agreement

Extensions
Coordinator Gossip:
1. Choose coordinators
2. Collect rumors
3. Disseminate rumors
4. Disseminate “DONE”.
5. If not “DONE”, then send “FALLBACK” request.
6. Send rumor directly to all processes.

Simple Communication-Optimal Agreement

Extensions
Collect rumors:
1. Run Disseminate protocol
2. When a coordinator sends messages to a group,

each process attaches its rumor to its response.
3. Coordinators exchange (and aggregate) rumors.

Simple Communication-Optimal Agreement

Extensions
Complexity:

• Rounds:

• Messages:

• Communication depends on rumor size...

Θ(log∗ n)
O (n)

Simple Communication-Optimal Agreement

Extensions?
Local Algorithms

• No process sends too many messages

• Work is “evenly” shared.

Coordinator-based algorithms are not local!

Simple Communication-Optimal Agreement

Extensions?
Coordinator-based algorithms are not local!??

• Problem: coordinator sends too many messages
during Disseminate sub-protocol.

• Solution: coordinator initiates gossip in a group...

• Problem: coordinator discovery

• Solution: careful flooding

Simple Communication-Optimal Agreement

Extensions?
Upper / Lower Bound Gap

• Rounds:

• Lower bound:

O(log n)

Ω
(

log n

log log n

)

Simple Communication-Optimal Agreement

Extensions?
Expected running time gap

• Expected rounds:

• Easy (?) improvement:

• Lower bound:

O(log n)

Θ(log∗ n)

O(1)

Simple Communication-Optimal Agreement

Hard Open Question
Deterministic Algorithms

• Possible or impossible:
- Running time:
- Communication complexity: O(n)

O(n)

Simple Communication-Optimal Agreement

Hard Open Question
Deterministic Algorithms

- Conjecture: Impossible!

Simple Communication-Optimal Agreement

Hard Open Question
Deterministic Algorithms

- Conjecture: Impossible!

• Yoram Moses says:
“For simultaneous consensus, easy to see via
`knowledge-based’ analysis.

• Dan Alistarh / Petr Kouznetsov say:
“Maybe topology implies you need more
connectivity than is possible with so little
communication.”

Simple Communication-Optimal Agreement

Hard Open Question
Deterministic Algorithms

- Conjecture: Impossible!
Intuition:

- Each process sends only O(1) messages!

- Imagine a communication graph with
(average) degree O(1).

- No such graphs exist (?) that are (n/2)
node-connected!

- Ergo, partitioning argument...

Simple Communication-Optimal Agreement

Hard Open Question
Adaptive Randomized Algorithms

• Possible or impossible:
- Running time:
- Communication complexity: O(n)

O (log n)

Simple Communication-Optimal Agreement

Conclusions
Universe reduction is simple...
1. Choose a small set of coordinators
2. Coordinators run (smaller) protocol

3. Coordinators disseminate the decision

Universe reduction is efficient...

• Time: with high probability

• Communication: with high probability
O (log n)

O(n)

