Algorithms and Lower Bounds for
Distributed Coloring Problems

Fabian Kuhn

Parts are joint work with
Nicla Bernasconi, Dan Hefetz, Angelika Steger



Distributed Coloring

Given: Network = Graph G

VAN = N

Problem: Compute coloring of G by a distributed algorithm

Goal: Minimize number of colors

Applications:
— Frequencies (FDMA), time slots (TDMA) in wireless network MAC prot.
— Other distributed coordination tasks



Communication Model

e We use synchronous message passing model
e Network = graph (nodes: devices, edges: direct comm. links)
e Time is divided into rounds:

Each node sends message to
each of its neighbors

time complexity = number of rounds




Symmetry Breaking

e Main challenge: How to break symmetries?

e Two ways to break symmetries:
1. Randomization

2. Deterministic Symmetry Breaking
- Nodes have unique IDs or some other a priory labeling

e This talk: Mostly about deterministic symmetry breaking



Previous Work: Deterministic Algorithms

3-coloring of the ring in O(log”"n) rounds [Cole,Vishkin 86]

Lower Bound: QQ(log™n) rounds needed for O(1)-coloring a ring
[Linial 92]

General Graphs:

— (A+1)-coloring in time O(A%+log™n) [Goldberg,Plotkin,Shannon 88]
— O(A?)-coloring in time O(log™n) [Linial 92]

— (A+1)-coloring in time O(A-log n) [Awerbuch et al. 89]
- Combining the last two: (A+1) colors in O(A-logA+log™n) rounds

— Using network decompositions: (A+1) colors in time 20(vlogn)
[Awerbuch,Goldberg,Luby,Plotkin 89], [Panconesi,Srinivasan 95]

Algorithms efficient if degree small
Else: Huge gap between upper and lower bounds



Previous Work: Randomized Algorithms

Randomized O(A)-coloring in expected O(+/logn) rounds
[Kothapalli,Scheideler,0Onus,Schindelhauer 06]

Randomized (A+1)-coloring in expected O(log n) rounds:

— MIS in exp. O(log n) rounds [Alon,Babai,ltai 86], [Luby 86]
— Reduction from (A+1)-coloring to MIS [Linial 92]

Large gap between deterministic and randomized algorithms:

O(A) colors, deterministic: min {20(\/'09 ") O(Alog A + log* n)}

O(A) colors, randomized: O(+/logn)



One-Round Coloring Algorithms

Easiest non-trivial case, most local algorithms

Algorithm starts with unique IDs or initial coloring
Each node collects IDs or initial colors of its neighbors
Based on this information, a new color is determined

o

O O HU > new color

Many existing coloring alg.: iterative applications of one-
round alg.

Results in algorithms with short messages



One-Round Coloring Algorithms

e Assign new color to every possible one-hop view
@,

O O HD > new color

e Different colors for views of (possibly) neighboring nodes




Formally...

Given graph with max degree 4, initial m-coloring

One-hop view of node u: (x,,S,)

X,E[m]: color of u, S,C[m]: colors of u’s neighbors (|S,| <A, X,£S,)
Views (x,,S,), (x,,S,) can be views of neighbors if x €S, and x €S,

g-coloring algorithm: function f: (x,S) — color € [q]
f(x,,S,) = f(x,,S,) if x,€S, and x,€S,

g-coloring algorithm: g-coloring of neighborhood graph

Nodes: all possible pairs (x,S), Edge if x,€S, and x,€S,



One-Round Coloring: Related Work

e Given, graph of max degree 4, initial m-coloring
e Upper bound: O(A?:log m) [Linial 92]

e Lower bound: Q2(loglog m) [Linial 92] (holds on ring)



e Algorithm Idea

Coloring Algorithm

— For each new color, determine a total order (permutation) on old

colors

— Node takes new color if its old color appears before colors of
neighbors in corresponding order

e Example: 6 old

Ce0000

000000

colors OO @@ @® ), 4 new colors ( @O @ O)

—AAA




Coloring Algorithm

e Algorithm Idea:

— For each new color, determine a total order (permutation) on old
colors

— Node takes new color if its old color appears before colors of
neighbors in corresponding order

e Example: 60ld colors( OO @@ @®O), 4 new colors (@O @ O)

Ce0000

000000




One-Round Coloring: Upper Bound

e Theorem: (A+1)?In m different orders suffice

e Proof Sketch: (simple probabilistic method proof)
— Choose random orders

— Any one-hop view (center color + A adjacent colors) covered with
probability 1/(A+1)

— Prob. that a given view is not covered by (A+1)?-In m orders:
1 \(A+1)2Inm 1
. .
( A+1 mA+1
— Number of one-hop views (center col, A adj. cols) is at most m#*!
— Probability that there is a view that is not covered is < 1

— Probability that all views are covered >0
— There is a set of (A+1)%:In m orders which cover all views




Multicoloring

Assign sets of colors such that neighboring sets are disjoint
minimize total number of colors, maximize size of sets

Taking c-A?:In m colors for sufficiently large constant c:
Every possible one-hop view gets a color w.h.p.

In fact, every node can choose many colors

For c = O(1/6%), a node with degree d gets (1-0)/d-fraction of
all colors (by a simple Chernoff argument)

Might be useful for TDMA slot assignments
(extremely local algorithm, better usage of channel by
assigning multiple slots to each node)



Algebraic Constructions

e Uses a probabilistic argument = no explicit algorithm

e There are algebraic constructions that are almost as good:
— Py, - Py first k prime numbers
— Node with ID x can take colors (i, x mod p;) fori=1,...,k
— Choose a color that no neighbor can take

— Chinese remainder theorem:
upper bound on number of i such that for x #y: x =y (mod p,)
(if [L.p, > m#4, every node finds a color)

— Choosing k=0(A-log m / log(A-log m)) suffices
— Prime number theorem: there are sufficiently many small primes:
p, = O(A-log m)=> #colors = k- p, = O(A?-log?m / log A)
e Using similar algorithm based on polynomials over finite
fields: O(A%-log?’m / log?A) colors

e [terating O(log*m) times =2 O(A?)-coloring



Multicoloring Il

e Explicit algorithms can be extended to also get bounds for
multicoloring (parameter 0 € (0,1) ):

— Total number of colors: O(A? - log?m / log?A)
node of degree d gets O(¢ / (d** + log ,N))-fraction of colors

— Total number of colors: O(A%lee™m) . logm / log A)
node of degree d gets O(d/d*%)-fraction of colors

— Trade-off possible between the two extremes possible

e Open problem:
Find better explicit algorithms for graph multicoloring

 Randomized: With O(A-log(n)/d?) colors, possible to assign
(1-0)/d-fraction to each node of deg. d w.h.p. (n = # of nodes)



Defective Coloring

Generalization of the classical coloring problem

The defect d of a coloring of the vertices of a graph is the
maximum degree of a graph induced by one of the color
classes. (classic coloring: d=0)

Problem: Given d, minimize number of colors

Using similar techniques as for standard coloring:
deterministic d-defective O((A/d)?)-coloring in time O(log*m)

Tricky part: iterative application



Deterministic (A+1)-Coloring Algorithm

e |f number of colors m > A+2
We can reduce by a factor of (A+1)/(A+2) in one round
[Kuhn,Wattenhofer 06]

e Algorithm (assume O(A?)-coloring is given):
— Compute (A/2)-defective c-coloring
(O(1) colors in O(log*A) rounds)
— Recursively compute (A/2 + 1)-coloring for each color class
(can be done in parallel)

— Combination of the two colorings gives c-(A/2 + 1) = O(A)-coloring
— Reduce to A+1 colors in O(A) rounds

e Recursion for time: T(A) < T(A/2) + O(A), T(2) = O(1)



(A+1)-Coloring Algorithm: Analysis

Recursion for time: T(A) < T(A/2) + a- A, T(2) < 4o
(for some constant «)

Theorem: T(A) < 2a-A
— Truefor A=2
— A>2:T(AQ) <2a-AJ2 + o A=2c-A

Obtaining O(A?)-coloring to begin: O(log*m) time
Total time for (A+1)-coloring: O(A + log*m)

Same idea gives A-(A+1)-coloring in O(A/A + log*m) rounds
for every A\>1 (e.g. A32-coloring in O(AY2 + log*m) time)



Weak Colorings

One of the first papers on local algorithms by Naor and
Stockmeyer considered the following weak coloring problem:
Assign colors to nodes such that every node has at least one
neighbor with a different color

Generalization: Assign colors to nodes such that every node has
at least k neighbors with different color

O(k?) colors in O(log*m) rounds

k+1 colors in O(k + log*m) time
(same technique as for (A+1)-coloring, trade-off also possible)



Lower Bound for One-Round Algorithms

o Q(A?/log?A)-lower bound on number of colors for
deterministic algorithms in [Kuhn,Wattenhofer 06]

 New: Improved Q(A?)-lower bound, much simpler proof

e Observation (IDs can be replaced by initial colors):

— Nodes u, v with IDs ¥, y, set of neighbor IDs: S, S,

— Ify€S,and x €S, uand v must choose different colors
(otherwise, there is a graph on which the algorithm does not work)

— The color sets of nodes with ID x and a neighbor with ID y are disjoint
from the color sets of nodes with ID y and a neighbor with ID x



Edge Orientations

A new color can be seen as an orientation on the edges of K |

A node with ID x, neighbor IDs S, can choose a new color « if
in corresponding orientations all edges (x,y) fory € S, are
orientedasx 2 vy

Find orientations on the edges of K such that V x, S (x ¢ S,
|S| < A), dan orientation such thatx > yforally € S

Lower bound for coloring: Show that a certain number of
orientations does not suffice!

Remark: Edge orientation problem for general graphs G:
Condition must hold for all x, S as before where ally € S are
neighbors of x



Sources

X C [m] ([m]={1, .., m})
X € X is source w.r.t. X for a given orientation
if X2y, Vy#Xx,ye€X

For every orientation and every X C [m]: at most one source

Theorem: If m > A?%/4 + AJ2, A?/4 orientations do not suffice
Proof (A even):

— There are at most A?/4 sources w.r.t. [m] and some orientation
- there are at least A/2 non-sources

— Let X be set of A/2 of non-sources

— Show: there is one-hop view (x, S) with |S| = A —1 that gets no color
(x € X,S=X\ {x}U{A/2 other IDs})



Lower Bound Proof

Need to find (x, S) such that
for all orientations, thereisy € S withy =2 x

Per orientation, at most one source w.r.t. X

— on average, IDs in X source for
(A2/4)/(A[/2) = A/2 orientations w.r.t. X
- dx € X that is source for at most A/2 orientations

Jy € S=X\ {x} with y = x for all but these A/2 orientations

Because x is non-source, for every orientation, there isy € [m]
for whichy 2 x

Hence, we can add A/2 additional IDs to the set S to “cover” all
orientations



Summary: One-Round Lower Bounds

Hence, form > A?/4 + A/2, Q(A?) colors are best possible
for deterministic one-round algorithms

Combined with Linial’s ring lower bound: Q(A? + loglog m)
Randomized algorithms:
For A = Q(log n), Q(A-log n / loglog n) colors needed

Proof based on more complicated counting argument and
Yao’s principle



The Color Reduction Problem

We want an algorithm that works for any graph G with max.
degree A and initial m-coloring (assume A and m are known)

Goal: Reduce the number of colors as quickly as possible
(time complexity of algorithm should be function of m and A)

Note: There is no bound on the size of the graph

Because size of graph is not bounded:
randomization does not help!



Color Reduction Lower Bound

 Problem has nice recursive structure that can be exploited

 Proof Sketch:

— N.(m,A): neighborhood graph for r rounds,
X(N.(m,A)) = number of colors needed by r-round algorithm

— 1, 4(G): number of edge orientations needed for graph G
— We have seen: x(NV;(m,A)) =n, o(K,) (note that K, = Ay(m,A))
— It can be shown: x(NV,(m,A)) = 1, A(N,.,(m,A))

— Recursive structure allows to show the following lemma:
If after removing s independent sets from A/ (m,A), a t-clique remains,
removing s independent sets from NV,,,(m,A) leaves a t’-clique
(for some specific value of t and t’)

— Proof of lemma uses same basic technique as lower bound on 7, 4(K)
e Result: x(N.(m,A)) = Q(A?/r)
e Hence, our algorithm is essentially tight



Distributed Coloring: Open Problems

Lower bound for deterministic distributed coloring algorithms
(or is there really a polylog algorithm?)

Lower bound for randomized algorithms
(QA(log*n) best current lower bound)

Explicit multicoloring, other coloring variants

Dynamic case?
(maybe more realistic communication models in general)



