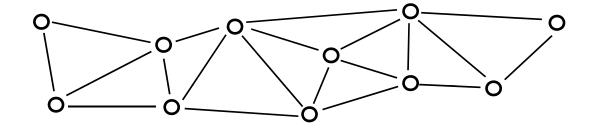
Algorithms and Lower Bounds for Distributed Coloring Problems

Fabian Kuhn

Parts are joint work with Nicla Bernasconi, Dan Hefetz, Angelika Steger

Distributed Coloring

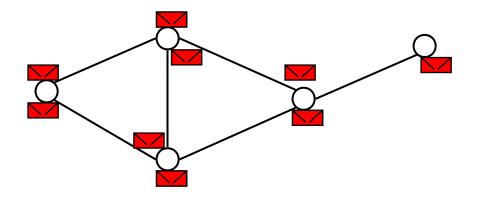
Given: Network = Graph G



- Problem: Compute coloring of G by a distributed algorithm
- Goal: Minimize number of colors
- Applications:
 - Frequencies (FDMA), time slots (TDMA) in wireless network MAC prot.
 - Other distributed coordination tasks

Communication Model

- We use synchronous message passing model
- Network = graph (nodes: devices, edges: direct comm. links)
- Time is divided into rounds:



Each node sends message to each of its neighbors

time complexity = number of rounds

Symmetry Breaking

- Main challenge: How to break symmetries?
- Two ways to break symmetries:
 - 1. Randomization
 - 2. Deterministic Symmetry Breaking
 - → Nodes have unique IDs or some other a priory labeling
- This talk: Mostly about deterministic symmetry breaking

Previous Work: Deterministic Algorithms

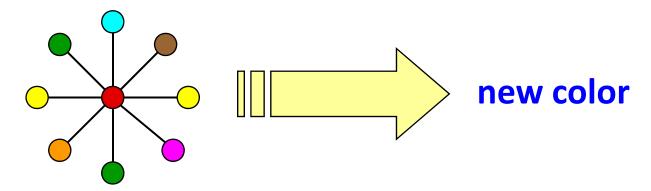
- 3-coloring of the ring in O(log*n) rounds [Cole,Vishkin 86]
- Lower Bound: $\Omega(\log^* n)$ rounds needed for O(1)-coloring a ring [Linial 92]
- General Graphs:
 - $(\Delta+1)$ -coloring in time $O(\Delta^2 + \log^* n)$ [Goldberg, Plotkin, Shannon 88]
 - $O(\Delta^2)$ -coloring in time $O(\log^* n)$ [Linial 92]
 - (Δ +1)-coloring in time O(Δ ·log n) [Awerbuch et al. 89] → Combining the last two: (Δ +1) colors in O(Δ ·log Δ +log*n) rounds
 - Using network decompositions: (Δ +1) colors in time $2^{O(\sqrt{\log n})}$ [Awerbuch, Goldberg, Luby, Plotkin 89], [Panconesi, Srinivasan 95]
- Algorithms efficient if degree small
- Else: Huge gap between upper and lower bounds

Previous Work: Randomized Algorithms

- Randomized O(Δ)-coloring in expected $O(\sqrt{\log n})$ rounds [Kothapalli,Scheideler,Onus,Schindelhauer 06]
- Randomized (Δ +1)-coloring in expected O(log n) rounds:
 - MIS in exp. O(log n) rounds [Alon, Babai, Itai 86], [Luby 86]
 - Reduction from (Δ +1)-coloring to MIS [Linial 92]
- Large gap between deterministic and randomized algorithms:
- $O(\Delta)$ colors, deterministic: $\min \left\{ 2^{O(\sqrt{\log n})}, O(\Delta \log \Delta + \log^* n) \right\}$
- $O(\Delta)$ colors, randomized: $O(\sqrt{\log n})$

One-Round Coloring Algorithms

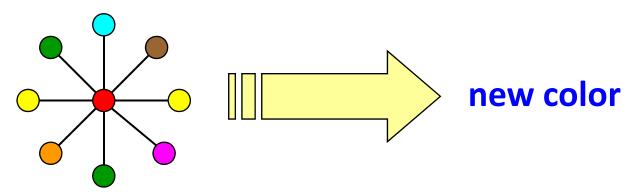
- Easiest non-trivial case, most local algorithms
- Algorithm starts with unique IDs or initial coloring
- Each node collects IDs or initial colors of its neighbors
- Based on this information, a new color is determined



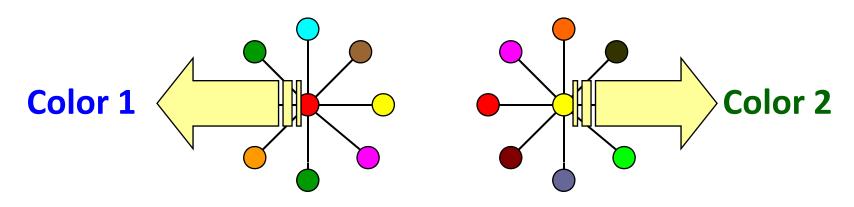
- Many existing coloring alg.: iterative applications of oneround alg.
- Results in algorithms with short messages

One-Round Coloring Algorithms

Assign new color to every possible one-hop view



• Different colors for views of (possibly) neighboring nodes



Formally...

- Given graph with max degree Δ , initial m-coloring
- One-hop view of node u: (x_u,S_u)

 $x_u \in [m]$: color of u, $S_u \subset [m]$: colors of u's neighbors ($|S_u| \leq \Delta$, $X_u \notin S_u$)

- Views (x_u, S_u) , (x_v, S_v) can be views of neighbors if $x_u \in S_v$ and $x_v \in S_u$
- q-coloring algorithm: function f: $(x,S) \rightarrow color \in [q]$ $f(x_u,S_u) \neq f(x_v,S_v)$ if $x_u \in S_v$ and $x_v \in S_u$
- q-coloring algorithm: q-coloring of neighborhood graph

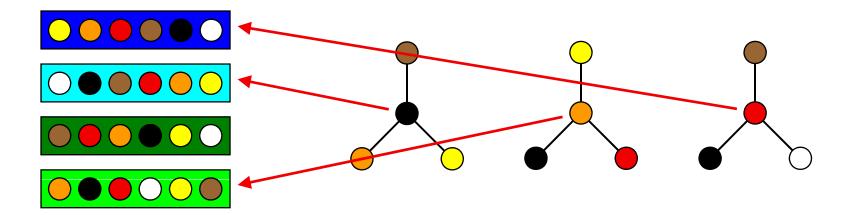
Nodes: all possible pairs (x,S), Edge if $x_u \in S_v$ and $x_v \in S_u$

One-Round Coloring: Related Work

- Given, graph of max degree Δ , initial m-coloring
- Upper bound: $O(\Delta^2 \cdot \log m)$ [Linial 92]
- Lower bound: $\Omega(\log \log m)$ [Linial 92] (holds on ring)

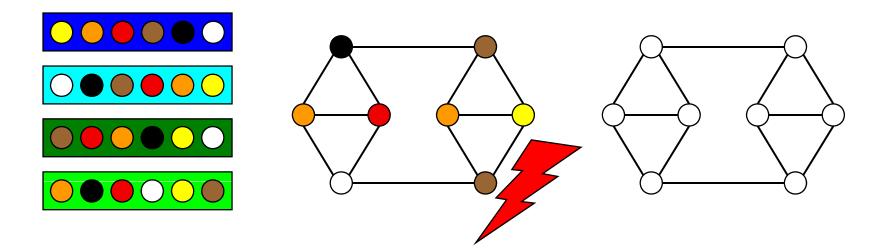
Coloring Algorithm

- Algorithm Idea:
 - For each new color, determine a total order (permutation) on old colors
 - Node takes new color if its old color appears before colors of neighbors in corresponding order
- Example: 6 old colors (○ ● ○), 4 new colors (○ ●)



Coloring Algorithm

- Algorithm Idea:
 - For each new color, determine a total order (permutation) on old colors
 - Node takes new color if its old color appears before colors of neighbors in corresponding order
- Example: 6 old colors (○ ● ○), 4 new colors (○ ●)



One-Round Coloring: Upper Bound

- Theorem: $(\Delta + 1)^2 \cdot \ln m$ different orders suffice
- Proof Sketch: (simple probabilistic method proof)
 - Choose random orders
 - Any one-hop view (center color + Δ adjacent colors) covered with probability $1/(\Delta+1)$
 - Prob. that a given view is not covered by $(\Delta+1)^2 \cdot \ln m$ orders:

$$\left(1 - \frac{1}{\Delta + 1}\right)^{(\Delta + 1)^2 \ln m} < \frac{1}{m^{\Delta + 1}}$$

- Number of one-hop views (center col, Δ adj. cols) is at most $m^{\Delta+1}$
- Probability that there is a view that is not covered is < 1
- Probability that all views are covered > 0
- There is a set of $(\Delta+1)^2 \cdot \ln m$ orders which cover all views

Multicoloring

- Assign sets of colors such that neighboring sets are disjoint minimize total number of colors, maximize size of sets
- Taking $c \cdot \Delta^2 \cdot \ln m$ colors for sufficiently large constant c: Every possible one-hop view gets a color w.h.p.
- In fact, every node can choose many colors
- For $c = O(1/\delta^2)$, a node with degree d gets $(1-\delta)/d$ -fraction of all colors (by a simple Chernoff argument)
- Might be useful for TDMA slot assignments (extremely local algorithm, better usage of channel by assigning multiple slots to each node)

Algebraic Constructions

- Uses a probabilistic argument no explicit algorithm
- There are algebraic constructions that are almost as good:
 - $-p_1, ..., p_k$: first k prime numbers
 - Node with ID x can take colors (i, x mod p_i) for i = 1,...,k
 - Choose a color that no neighbor can take
 - Chinese remainder theorem: upper bound on number of i such that for $x \neq y$: $x \equiv y \pmod{p_i}$ (if $\prod_i p_i \geq m^{\Delta}$, every node finds a color)
 - Choosing $k = O(\Delta \cdot \log m / \log(\Delta \cdot \log m))$ suffices
 - Prime number theorem: there are sufficiently many small primes: $p_k = O(\Delta \cdot \log m) \rightarrow \#colors = k \cdot p_k = O(\Delta^2 \cdot \log^2 m / \log \Delta)$
- Using similar algorithm based on polynomials over finite fields: $O(\Delta^2 \cdot \log^2 m / \log^2 \Delta)$ colors
- Iterating O(log*m) times \rightarrow O(Δ^2)-coloring

Multicoloring II

- Explicit algorithms can be extended to also get bounds for multicoloring (parameter $\delta \in (0,1)$):
 - Total number of colors: $O(\Delta^2 \cdot \log^2 m / \log^2 \Delta)$ node of degree d gets $O(\delta / (d^{1+\delta} + \log_{\Delta} N))$ -fraction of colors
 - Total number of colors: $O(\Delta^{O(\log^* m)} \cdot \log m / \log \Delta)$ node of degree d gets $O(\delta/d^{1+\delta})$ -fraction of colors
 - Trade-off possible between the two extremes possible
- Open problem:
 Find better explicit algorithms for graph multicoloring
- Randomized: With $O(\Delta \cdot \log(n)/\delta^2)$ colors, possible to assign $(1-\delta)/d$ -fraction to each node of deg. d w.h.p. (n = # of nodes)

Defective Coloring

- Generalization of the classical coloring problem
- The defect d of a coloring of the vertices of a graph is the maximum degree of a graph induced by one of the color classes. (classic coloring: d=0)
- Problem: Given d, minimize number of colors
- Using similar techniques as for standard coloring: deterministic d-defective $O((\Delta/d)^2)$ -coloring in time $O(\log^* m)$
- Tricky part: iterative application

Deterministic (Δ +1)-Coloring Algorithm

- If number of colors m $\geq \Delta$ +2 We can reduce by a factor of $(\Delta+1)/(\Delta+2)$ in one round [Kuhn,Wattenhofer 06]
- Algorithm (assume $O(\Delta^2)$ -coloring is given):
 - Compute $(\Delta/2)$ -defective c-coloring $(O(1) \text{ colors in } O(\log^* \Delta) \text{ rounds})$
 - Recursively compute $(\Delta/2 + 1)$ -coloring for each color class (can be done in parallel)
 - Combination of the two colorings gives $c \cdot (\Delta/2 + 1) = O(\Delta)$ -coloring
 - Reduce to Δ +1 colors in O(Δ) rounds
- Recursion for time: $T(\Delta) \le T(\Delta/2) + O(\Delta)$, T(2) = O(1)

$(\Delta+1)$ -Coloring Algorithm: Analysis

- Recursion for time: $T(\Delta) \le T(\Delta/2) + \alpha \cdot \Delta$, $T(2) \le 4\alpha$ (for some constant α)
- Theorem: $T(\Delta) \leq 2\alpha \cdot \Delta$
 - True for $\Delta = 2$
 - $-\Delta > 2$: $T(\Delta) \le 2\alpha \cdot \Delta/2 + \alpha \cdot \Delta = 2\alpha \cdot \Delta$
- Obtaining $O(\Delta^2)$ -coloring to begin: $O(\log^* m)$ time
- Total time for $(\Delta+1)$ -coloring: $O(\Delta + \log^* m)$
- Same idea gives $\lambda \cdot (\Delta + 1)$ -coloring in $O(\Delta/\lambda + \log^* m)$ rounds for every $\lambda \ge 1$ (e.g. $\Delta^{3/2}$ -coloring in $O(\Delta^{1/2} + \log^* m)$ time)

Weak Colorings

- One of the first papers on local algorithms by Naor and Stockmeyer considered the following weak coloring problem: Assign colors to nodes such that every node has at least one neighbor with a different color
- Generalization: Assign colors to nodes such that every node has at least k neighbors with different color
- O(k²) colors in O(log*m) rounds
- k+1 colors in O(k + log*m) time (same technique as for $(\Delta+1)$ -coloring, trade-off also possible)

Lower Bound for One-Round Algorithms

- $\Omega(\Delta^2/\log^2\Delta)$ -lower bound on number of colors for deterministic algorithms in [Kuhn,Wattenhofer 06]
- New: Improved $\Omega(\Delta^2)$ -lower bound, much simpler proof
- Observation (IDs can be replaced by initial colors):
 - Nodes u, v with IDs x, y, set of neighbor IDs: S_x , S_v
 - If $y \in S_x$ and $x \in S_y$, u and v must choose different colors (otherwise, there is a graph on which the algorithm does not work)
 - The color sets of nodes with ID x and a neighbor with ID y are disjoint from the color sets of nodes with ID y and a neighbor with ID x

Edge Orientations

- A new color can be seen as an orientation on the edges of K_m
- A node with ID x, neighbor IDs S_x can choose a new color α if in corresponding orientations all edges (x,y) for y ∈ S_x are oriented as x → y
- Find orientations on the edges of K_m such that \forall x, S (x \notin S, $|S| \leq \Delta$), \exists an orientation such that x \rightarrow y for all y \in S
- Lower bound for coloring: Show that a certain number of orientations does not suffice!
- Remark: Edge orientation problem for general graphs G: Condition must hold for all x, S as before where all y ∈ S are neighbors of x

Sources

- $X \subseteq [m] ([m] = \{1, ..., m\})$
- $x \in X$ is source w.r.t. X for a given orientation if $x \rightarrow y$, $\forall y \neq x$, $y \in X$
- For every orientation and every $X \subseteq [m]$: at most one source
- Theorem: If m $\geq \Delta^2/4 + \Delta/2$, $\Delta^2/4$ orientations do not suffice
- Proof (Δ even):
 - There are at most $\Delta^2/4$ sources w.r.t. [m] and some orientation \rightarrow there are at least $\Delta/2$ non-sources
 - Let X be set of $\Delta/2$ of non-sources
 - Show: there is one-hop view (x, S) with $|S| = \Delta 1$ that gets no color (x \in X, S = X \ {x} \cup { Δ /2 other IDs})

Lower Bound Proof

- Need to find (x, S) such that for all orientations, there is y ∈ S with y → x
- Per orientation, at most one source w.r.t. X \rightarrow on average, IDs in X source for $(\Delta^2/4)/(\Delta/2) = \Delta/2$ orientations w.r.t. X $\rightarrow \exists x \in X$ that is source for at most $\Delta/2$ orientations
- $\exists y \in S = X \setminus \{x\}$ with $y \rightarrow x$ for all but these $\Delta/2$ orientations
- Because x is non-source, for every orientation, there is y ∈ [m] for which y → x
- Hence, we can add $\Delta/2$ additional IDs to the set S to "cover" all orientations

Summary: One-Round Lower Bounds

- Hence, for m $\geq \Delta^2/4 + \Delta/2$, $\Omega(\Delta^2)$ colors are best possible for deterministic one-round algorithms
- Combined with Linial's ring lower bound: $\Omega(\Delta^2 + \log\log m)$
- Randomized algorithms:
- For $\Delta = \Omega(\log n)$, $\Omega(\Delta \cdot \log n / \log \log n)$ colors needed
- Proof based on more complicated counting argument and Yao's principle

The Color Reduction Problem

- We want an algorithm that works for any graph G with max. degree Δ and initial m-coloring (assume Δ and m are known)
- Goal: Reduce the number of colors as quickly as possible (time complexity of algorithm should be function of m and Δ)
- Note: There is no bound on the size of the graph
- Because size of graph is not bounded: randomization does not help!

Color Reduction Lower Bound

- Problem has nice recursive structure that can be exploited
- Proof Sketch:
 - $-\mathcal{N}_{r}(m,\Delta)$: neighborhood graph for r rounds, $\chi(\mathcal{N}_{r}(m,\Delta))$ = number of colors needed by r-round algorithm
 - $-\eta_{r,\Delta}(G)$: number of edge orientations needed for graph G
 - We have seen: $\chi(\mathcal{N}_1(\mathsf{m},\Delta)) = \eta_{\mathsf{r},\Delta}(\mathsf{K}_\mathsf{m})$ (note that $\mathsf{K}_\mathsf{m} = \mathcal{N}_0(\mathsf{m},\Delta)$)
 - It can be shown: $\chi(\mathcal{N}_r(\mathsf{m},\Delta)) = \eta_{r,\Delta}(\mathcal{N}_{r-1}(\mathsf{m},\Delta))$
 - Recursive structure allows to show the following lemma: If after removing s independent sets from $\mathcal{N}_r(\mathsf{m},\Delta)$, a t-clique remains, removing s independent sets from $\mathcal{N}_{r+1}(\mathsf{m},\Delta)$ leaves a t'-clique (for some specific value of t and t')
 - Proof of lemma uses same basic technique as lower bound on $\eta_{\rm r, \Delta}({\rm K_m})$
- Result: $\chi(\mathcal{N}_r(m,\Delta)) = \Omega(\Delta^2/r)$
- Hence, our algorithm is essentially tight

Distributed Coloring: Open Problems

- Lower bound for deterministic distributed coloring algorithms (or is there really a polylog algorithm?)
- Lower bound for randomized algorithms $(\Omega(\log^* n) \text{ best current lower bound})$
- Explicit multicoloring, other coloring variants
- Dynamic case?
 (maybe more realistic communication models in general)