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Abstract

We analyze and extend the definition of failures detectors to iterated
communication models. In particular we focus on iterated immediate
snapshot model, but the results can be extended to iterated models
in general. We start by examining the behavior of failures on iterated
models and define the concepts of implicit failure and equivalence
failure. We prove that without modification, the traditional definition
of failure detectors does not augment the computational power of
iterated models at the same rate that it does on non- iterated
models. Finally we provide new definitions and algorithms to extent
the concept of failures and failure detectors to iterated
communication models.
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Communication models Atomic snapshot

Atomic snapshot

In a system with n processes, an atomic snapshot object is built
using n shared registers. This object provides two operations:

1 Write: A process i writes a value v in register i .
2 Read: A process i reads 1 . . . n registers such that all vectors

read are linearizable.
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It is possible to wrap this two operations in a single compound
operation WriteRead, without loosing expressiveness.
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Communication models Immediate snapshot

Immediate snapshot

In a system with n processes, an immediate snapshot object is
built using n shared registers. This object provides a single
operation:

1 Snapshot: Process i writes a value in register i and reads
register 1 . . . n such that the vector read is atomic and
immediate with respect to the write.
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Communication models Iterated models

Iterated models

Given a communication object of class M , an iterated model
provides an array of instances M0, M1, . . ., where each object is
used consecutivly and each operation on M can only be used
once (one-shot).

In particular for the iterative immediate snapshot (IIS) model,
the full information protocol looks like this:

1: v ←⊥, w ←⊥
2: for i = 0, 1, . . . do
3: w ← f (i , v , w)
4: v ← Mi .Snapshot(w)
5: end for
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Communication models Iterated models

IIS properties

In the iterative setting, the immediate snapshot properties can
be restated more succintly.

1 Self containment: vi ∈ Si

2 Atomicity: Si ⊆ Sj or Sj ⊆ Si

3 vi ∈ Sj → Si ⊆ Sj .
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Failures Traditional Failures

Traditional Failures

We say that a process is faulty if its behaviour differs from the
one described by the algorithm it is executing.

Most research has focused on three types of failures:
1 Crash: A crashed process stops its execution permaturly and

never recovers.
2 Omission: A process fails to receive or send a subset of

messages.
3 Byzantine: A byzantine process can behave arbitrarly (ie.

conspire with other byzantine processes to sabotage execution)
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Failures Implicit failures

Implicit Failures

The notion of implicit failures can only be described within the
context of a given model M and an existing failure definition
DEF .

Informally, implicit failures ocurr when there is an unrecoverable
communication failure that escapes the definition off failure
given by DEF in M .

Informal definition

A process p ∈ Π in a given model M with a failure definition DEF
suffers an implicit failure at time t if for all t ′ > t it is unable to
communicate with a subset Q ⊂ Π, and ∃q ∈ Q such that q and p
are correct under DEF .
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Failures Implicit failures

Implicit Failures

Example

Supose a setting with two processes p and q in the IIS snapshot
model where we only consider crash type failures, and both processes
are correct. It is possible that Sp ( Sq for all snapshots, and this is
still a valid execution under this model and definition of failures.
However, it is obvious that q is never seen by p, and thus there is an
implicit failure.
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Failures Equivalence failures

Equivalence failures

If under 〈M , DEF 〉 there is room for implicit failures, this seems
to suggest that somehow the definition of 〈M , DEF 〉 is flawed.

With equivalence failures we want to be able to define models
〈M , EQ〉 where implicit failures do not occurr.

Informally, in an infinite execution, only the smallest set of
processes thatexecute a protocol without deviating and exchange
infinite information are considered correct by equivalence failures.

Definition

In an infinite execution let P ⊂ Π be the set of processes that take
an infinite number of steps without deviating from the algorithm. We
can define a partial order over P where p � q if q recieves an infinite
amount of information from p.
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Failures Failure detectors

Failure detectors

Failure detectors can be used as a bridge between syncrhonous
and asyncrhonous systems.

They are only an abstraction that encapsulates underlying
assumptions about the system.

Given a failure definition, we can define a failure pattern and a
failure environment.

Failure detectors are defined in the context of a given failure
environment, and usually it is characterized in terms of
completeness and accuracy properties.
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IIS with failure detectors Impossible to generalize simulation

Impossibility of general simulation

There are algorithms to simulate wait-free atomic snapshot
protocols in the iterative immediate snapshot model (IIS).

However, it is trivial to prove that no such simulation exists for
arbitrary protocols, therefore the iterative immediate snapshot
model is strictly weaker than the atomic snapshot model.
(explain)

In a model augmented with failure detection, it is not reasonable
to demand that processes continue to take steps independent of
the progress of other processes.

Given the two previous statements, it seems that the IIS model
cannot be used with failure detectors.
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IIS with failure detectors Impossible to generalize simulation

IIS+D is weaker than IS+D

To prove this, it is sufficient to prove that there exists a task T
which is solvable by the shared memory model augmented with
D but that cannot be solved by IIS augmented with D.

Informal proof.

Supose a protocol that solves consensus in an asyncrhonous system
using an eventual leadership failure detector Ω. In IIS given Ω,
supose that Ω behaves well from the begining and returns the id of a
correct process `. The executions where ` always executes the
snapshot last and thus is never seen by any other process are all
valid. If consensus were to be solved in these executions, this would
imply that consensus can be solved without Ω.
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IIS with failure detectors IIS and equivalence failures

IIS and equivalence failures

The definition of equivalence failures solve part of the problem
by eliminating implicit failures.

However, even with equivalence failures the existing simulations
fail to guarantee termination for correct processes.

Within the definition of equivalence failures it is possible to
construct an algorithm which guarantees termination for correct
processes, even for non wait-free protocols.
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IIS with failure detectors IIS and equivalence failures

Aided Converging Vector Algorithm

1: function AidedConvergingVector(vi )
2:

3: Wi← vi

4:

5: repeat
6: Si ← Mri .Copia(Wi ), ri ← ri + 1
7:

8:

9:

10:

11:

12:

13: until f (Si ), Wi ← Si

14: return Wi

15: end function
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2: Wi

P ←Wi , Fi
P ← Fi

3: Wi [i ]← vi

4: Fi [i ]← Fi [i ] + 1
5: repeat
6: Si ← Mri .Copia(< Fi , Wi , Fi

P , Wi
P >), ri ← ri + 1

7: if ∃Fj
P ∈ Si .Fj

P [i ] = Fi [i ] then
8: < Fi , Wi >←< Fj

P , Wj
P >
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IIS with failure detectors Future work

Future work

In the same vein as the notion of the hierarchy of failure
detectors and communication objects, we can also define a
hierarchy of failures.

In this hierarchy, what is the weakest failure which allows the
iterated models to simulate non iterated models.

Given a failure detector inside the IIS, examine what changes
from the topological perspective that allows the system to solve
more problems.
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