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Space-filling Computers
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Amorphous Medium Approach
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Amorphous Medium Approach

Program the space... approximate with a network



Amorphous Medium Approach

The discretization hardly matters!
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* Dozens to

e Distributed

Discrete Model

local broac
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billions of simple, unreliable agents

through space, communicating by

* Agents may be added or removed

* No guaranteed glo
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routing, coordinates)

| services (e.g. time, naming,

* Relatively cheap power, memory, processing

* Partial synchrony



Kernel

* Responsibilities:
— Emulate amorphous medium
— Time evolution
— Interface with sensors, actuators
— Viral reprogramming
* Current platforms:
— Simulator
— Mica2 Mote

— McLurkin's Swarm



Amorphous Medium

* Manifold (locally Euclidean space)

- Assume Riemannian, smooth, compact

- Simple locally, complex globally



Amorphous Medium
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Space

* Points access past values in their neighborhood
— Information propagates at a fixed rate ¢

* Evaluation 1s repeated at fixed intervals



Neighborhood Abstraction

UID Timer Area Range Lag Exposed State
ME NA 032 56 1.1
703 1 043 03
398 3 021 87

exposed state

_

neighbor values

* Aggregate access to best-effort estimate of
neighbor state, space-time properties

* Neighbors decay without updates



Kernel Open Questions

* What 1s the optimal replacement policy when
there are more neighbors than table memory?

* What is the optimal decay rate?

* How much energy can be saved by throttling
update and decay rates?

* What are good ways to expose the
cost/responsiveness tradeoff to the programmer?



(Global v. Local v. Discrete
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Expressions

* An expression maps a manifold to a field
rgn: M — (M—R)



Expressions

* An expression maps a manifold to a field
rgn: M — (M—R)



Operators

e Operators map fields to fields (= rgn 2)
=: (M—R)X(M—R) - (M—B)



Composition & Abstraction

* Functional composition:
— operator o expressions = €xXpression
— operator o operators = operator
Lambda!

— scope © expression = operator

Purely functional pointwise computation



Computation over Neighborhoods

(or ((n xor) (nbrval x) (local x)))



Computation over Neighborhoods
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(or ((n xor) (nbrval x) (local x)))

- local, nbrval select fields of neighborhood fields



Computation over Neighborhoods

(or (

(n xor) (nbrval x) (local x)))

- n

oplies an operator to neighborhood fields



Computation over Neighborhoods

or ((n xor) (nbrval x) (local x)))

— Measures (e.g. or, integral) reduce fields to values

- Sugar: (reduce-nbrs or (xor x (local x)))



Neighborhood Open Questions

e Are the summary operations and, or, min, max,
and integral sufficient for all approximatable
continuous neighborhood computations?

e Are the field primitives local, nbrval nbr-
range, nbr-lag, and nbr-bearing
sufficient sources of neighborhood data?

* What 1s the discretization error of arbitrary
composite neighborhood computations?



Conditional Computation

(mux x (or (nbrval (restrict x vent)) #F)



Conditional Computation

(mux x (or (nbrval

(restrict x vent)

— restrict limits the ¢

lomain of a field

) #F)



Conditional Computation

(mux x (or (nbrval (restrict x vent)) #F)

— operations proceed normally 1n the restricted field



mux X

Conditional Computation
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(or (nbrval (restrict x vent))

— mux constructs a field piecewise from inputs

- Sugar: (if x (or (nbrval vent)))
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Computation with State

(delay default init)

— Previous values, current domain



Computation with State

(delay default init)

— Previous values, current domain



Computation with State

(delay default init)

— Previous values, current domain



Computation with State

(delay default init)

— Previous values, current domain



Computation with State

(letfed ((n O (+ n 1))) n)



Putting it all together

* State chains neighborhoods to arbitrary regions

— Example: relaxation to calculate distance

(lambda (src)
(letfed
((d o (mux src O
(reduce-nbrs min (+ d nbr-range)))))

o

d))
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Putting it all together

* State chains neighborhoods to arbitrary regions

— Example: relaxation to calculate distance

(lambda (src)
(letfed
((d o (mux src O
(reduce-nbrs min (+ d nbr-range)))))

d))




Program Open Questions

* Under what conditions does continuous
convergence 1imply discrete convergence?

* How do convergence properties compose?

* (G1ven a continuous program and desired error
bounds, what discretization will suffice?

* (Given a continuous program and a discretization,
what will the error bounds be?



Programs scale gracetully

100 nodes

(and (green (dilate (sense 1) 30))
(blue (dilate (sense 2) 20)))



Programs scale gracetully

1,000 nodes

(and (green (dilate (sense 1) 30))
(blue (dilate (sense 2) 20)))



Programs scale gracetully

10,000 nodes

(and (green (dilate (sense 1) 30))
(blue (dilate (sense 2) 20)))



Target Tracking




Target Tracking

(def | ocal -average (v) (/ (reduce-nbrs v integral) (reduce-nbrs integral 1)))
(def gradient (src)
(letfed ((n infinity
(+ 1 (mux src O (reduce-nbrs min (+ n nbr-range))))))
(- n1)))
(def grad-value (src v)
(let ((d (gradient src)))
(letfed ((x O (nmux src v (2nd (reduce-nbrs mn (tup d x))))))
X)))
(def distance (pl p2) (grad-value pl (gradient p2)))
(def channel (src dst w dth)
(let* ((d (distance src dst))
(trail (<= (+ (gradient src) (gradient dst)) d)))
(dilate wdth trail)))
(def track (target dst coord)
(let ((point
(if (channel target dst 10)
(grad-val ue target
(mux target
(tup (local -average (1lst coord))
(l ocal -average (2nd coord)))
(tup 0 0)))

(tup 0 0))))
(mux dst (vsub point coord) (tup 0 0))))



Threat Avoidance




Threat Avoidance

(def exp-gradient (src d)

(letfed ((n src (max (* d (reduce-nbrs max n)) src)))

nj)

(def sqg (x) (* x X))
(def dist (pl p2)

(sart (+ (sq (- (1st pl) (1st p2)))

(sq (- (2nd pl) (2nd p2))))))

(def I-int (pl vl p2 v2)

(pow (/ (- 2 (+ vl v2)) 2) (+ 1 (dist pl p2))))
(def max-survival (dst v p)

(letfed
((ps O (mux dst
1
(reduce-nbrs max (* (l-int p v (local p) (local v)) ps)))))
ps))

(def greedy-ascent (v coord)
(- (2nd (reduce-nbrs max (tup v coord))) coord))
(def avoid-threats (dst coords)
(greedy-ascent
( max- survi val
dst
(exp-gradient (sense :threat) 0.8) coords) coords))



Future Directions

e Continuous time evaluation

* Analysis of distortion from space discretization

* Evaluation on a changing manifold
* Actuation of the manifold

* Applications!



