Randomized Wait-Free Consensus using An Atomicity Assumption

Ling Cheung

Institute for Computing and Information Sciences Radboud University Nijmegen, the Netherlands

OPODIS, 12-14 December 2005, Pisa, Italy

Outline

- Introduction
 - Problem Statement
 - Assumptions
- 2 Proposed Algorithm
 - Main Ideas
 - Example: Binary Consensus
 - Correctness
- Model Checking with PRISM
- 4 Conclusions

A protocol run by ${\it N}$ parallel processes, each given an initial preference value.

Goal: To agree on a single preference value.

A protocol run by ${\it N}$ parallel processes, each given an initial preference value.

Goal: To agree on a single preference value.

Correctness Criteria:

- (Validity) Final decision value was the initial preference of some process.
- (Agreement) No two processes decide on different values.
- (*Termination*) Every live process eventually decides on some value.

A protocol run by N parallel processes, each given an initial preference value.

Goal: To agree on a single preference value.

Correctness Criteria:

- (Validity) Final decision value was the initial preference of some process.
- (Agreement) No two processes decide on different values.
- (*Termination*) Every live process eventually decides on some value.

Randomization: processes can toss coins.

A protocol run by ${\it N}$ parallel processes, each given an initial preference value.

Goal: To agree on a single preference value.

Correctness Criteria:

- (Validity) Final decision value was the initial preference of some process.
- (Agreement) No two processes decide on different values.
- (Termination) Every live process eventually decides on some value.

Randomization: processes can toss coins.

• (*Probabilistic Termination*) With probability 1, every live process eventually decides on some value.

- Failure model:
 - undetected, irreversible crash failures;
 - up to N-1 failures (i.e., wait-free).

- Failure model:
 - undetected, irreversible crash failures;
 - up to N-1 failures (i.e., wait-free).
- Communication:
 - asynchronous communication via shared memory;
 - multi-writer multi-reader (MWMR) atomic registers.

- Failure model:
 - undetected, irreversible crash failures;
 - up to N-1 failures (i.e., wait-free).
- Communication:
 - asynchronous communication via shared memory;
 - multi-writer multi-reader (MWMR) atomic registers.
- Complexity measure:
 - expected total number of Rd/Wrt memory operations.

- Failure model:
 - undetected, irreversible crash failures;
 - up to N-1 failures (i.e., wait-free).
- Communication:
 - asynchronous communication via shared memory;
 - multi-writer multi-reader (MWMR) atomic registers.
- Complexity measure:
 - expected total number of Rd/Wrt memory operations.
- Adversary model:
 - atomic random-write operation.

Given finite history, adversaries determine which process performs the next operation.

Given finite history, adversaries determine which process performs the next operation.

 Randomized setting: an adversary induces a probabilistic tree, where branching corresponds to coin tosses.

Given finite history, adversaries determine which process performs the next operation.

- Randomized setting: an adversary induces a probabilistic tree, where branching corresponds to coin tosses.
- Expected complexity with respect to a single tree.

Given finite history, adversaries determine which process performs the next operation.

- Randomized setting: an adversary induces a probabilistic tree, where branching corresponds to coin tosses.
- Expected complexity with respect to a single tree.
- Worst expected complexity among all trees.

Given finite history, adversaries determine which process performs the next operation.

- Randomized setting: an adversary induces a probabilistic tree, where branching corresponds to coin tosses.
- Expected complexity with respect to a single tree.
- Worst expected complexity among all trees.

Their "goal" is to prevent consensus: model adverse conditions in computation environment.

Worst expected complexity: under worst possible adversary.

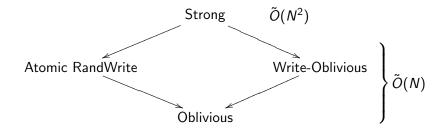
Given finite history, adversaries determine which process performs the next operation.

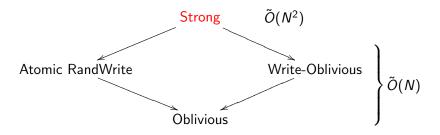
- Randomized setting: an adversary induces a probabilistic tree, where branching corresponds to coin tosses.
- Expected complexity with respect to a single tree.
- Worst expected complexity among all trees.

Their "goal" is to prevent consensus: model adverse conditions in computation environment.

Worst expected complexity: under worst possible adversary.

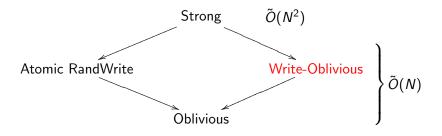
Adversaries may have complete or partial access to dynamic information, thus different complexity results.





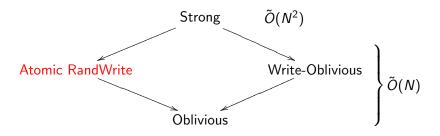
Complete information over execution history.

- Bracha and Rachman, 1991: $O(N^2 \log N)$
- Aspnes, 1998: $\Omega(N^2/\log^2 N)$



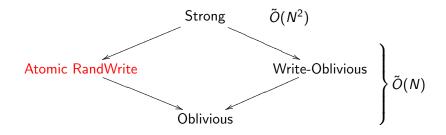
Consensus gets easier when adversaries "know" less.

Example: $O(N \log N)$ against write-oblivious adversaries in MWMR model [Aumann, 1997].



This paper: coin flip and write in one atomic step.

Expected total work $O(N \log(\log N))$.



This paper: coin flip and write in one atomic step.

Expected total work $O(N \log(\log N))$.

Based on [Chor, Isreali and Li, 1994]: $O(N^2)$.

Consensus as a race amongst preference values, using a round structure.

• Each process "supports" one value: advance with prob. $\frac{1}{2N}$.

- Each process "supports" one value: advance with prob. $\frac{1}{2N}$.
- Breaking symmetry:
 - "lucky" values move ahead, "unlucky" ones stay put;

- Each process "supports" one value: advance with prob. $\frac{1}{2N}$.
- Breaking symmetry:
 - "lucky" values move ahead, "unlucky" ones stay put;
 - processes switch from slow values to fast ones.

- Each process "supports" one value: advance with prob. $\frac{1}{2N}$.
- Breaking symmetry:
 - "lucky" values move ahead, "unlucky" ones stay put;
 - processes switch from slow values to fast ones.
- Two-round lead guarantees consensus.

Consensus as a race amongst preference values, using a round structure.

- Each process "supports" one value: advance with prob. $\frac{1}{2N}$.
- Breaking symmetry:
 - "lucky" values move ahead, "unlucky" ones stay put;
 - processes switch from slow values to fast ones.
- Two-round lead guarantees consensus.

[Chor, Israeli and Li, 1994]: race amongst processes in SWMR model.

Consensus as a race amongst preference values, using a round structure.

- Each process "supports" one value: advance with prob. $\frac{1}{2N}$.
- Breaking symmetry:
 - "lucky" values move ahead, "unlucky" ones stay put;
 - processes switch from slow values to fast ones.
- Two-round lead guarantees consensus.

[Chor, Israeli and Li, 1994]: race amongst processes in SWMR model.

Different from consensus from shared-coin (often based on voting) e.g. [Bracha and Rachman, 1991] and [Aumann, 1997].

 $K \times R$ one-bit registers

K = 2

 $R = 2\log N + 2 = 6$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	0
0	0
0	0
1	1

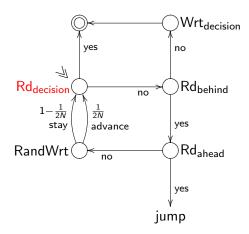
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	v_1
<u>0</u>	0
0	0
0	0
0	0
0	0
1	1

$$r_i = 0, \ p_i = v_0, \ d_i = \bot$$



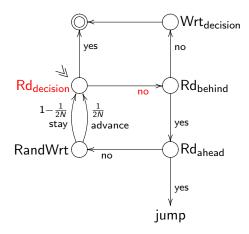
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	v_1
0	0
0	0
0	0
0	0
0	0
1	1

$$r_i = 0, \ p_i = v_0, \ d_i = \bot$$



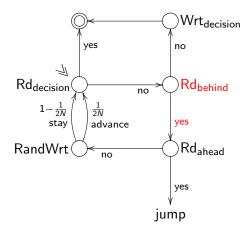
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	v_1
0	0
0	0
0	0
0	0
0	0
1	1

$$r_i = 0, p_i = v_0, d_i = \bot$$



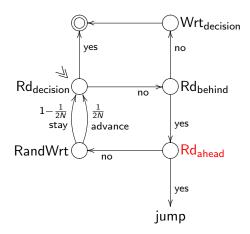
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2 \log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	0
0	0
0	0
1	1

$$r_i = 0, \ p_i = v_0, \ d_i = \bot$$



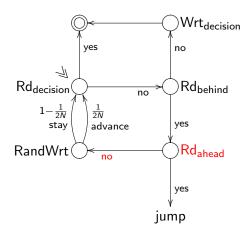
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	v_1
0	0
0	0
0	0
0	0
0	0
1	1

$$r_i = 0, p_i = v_0, d_i = \bot$$



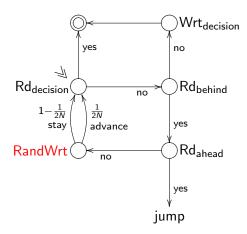
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	v_1
0	0
0	0
0	0
0	0
0	0
1	1

$$r_i = 0, \ p_i = v_0, \ d_i = \bot$$



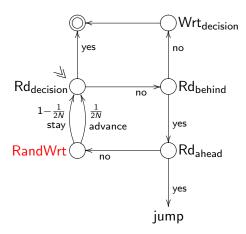
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	0
0	0
0	1
1	1

$$r_i = 0, p_i = v_0, d_i = \bot$$



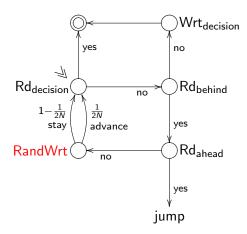
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	0
0	1
0	1
1	1

$$r_i = 0, p_i = v_0, d_i = \bot$$



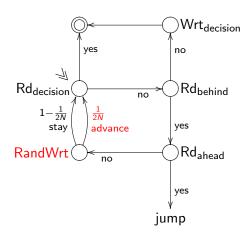
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2 \log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 1, p_i = v_0, d_i = \bot$$



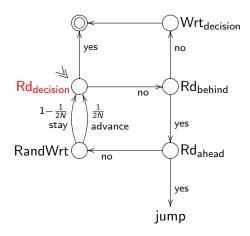
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2 \log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 1, p_i = v_0, d_i = \bot$$



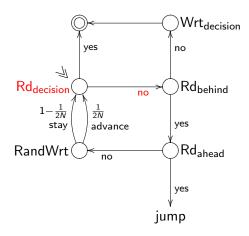
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	<u>0</u>
0	0
0	0
0	1
1	1
1	1

$$r_i = 1, p_i = v_0, d_i = \bot$$



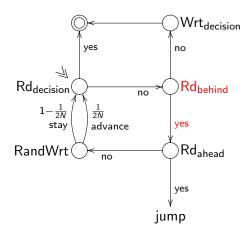
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2 \log N + 2 = 6$$

$$\begin{array}{c|cc} v_0 & v_1 \\ \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \hline 0 & 1 \\ 1 & 1 \\ \hline \end{array}$$

$$r_i = 1, p_i = v_0, d_i = \bot$$



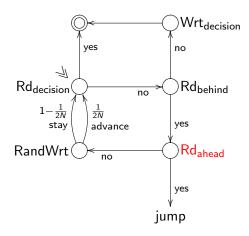
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	v_1
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 1, p_i = v_0, d_i = \bot$$



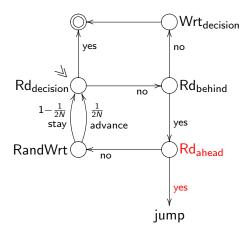
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	v_1
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 1, p_i = v_0, d_i = \bot$$



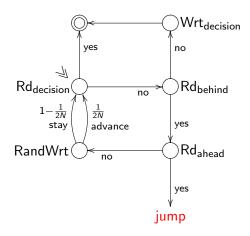
 $K \times R$ one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 2, p_i = v_1, d_i = \bot$$



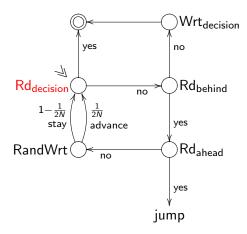
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 2, p_i = v_1, d_i = \bot$$



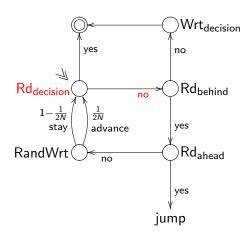
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2 \log N + 2 = 6$$

<i>v</i> ₀	v_1
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 2, p_i = v_1, d_i = \bot$$



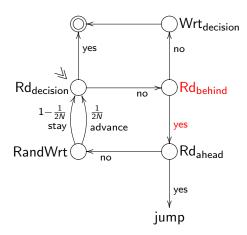
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2 \log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 2, p_i = v_1, d_i = \bot$$



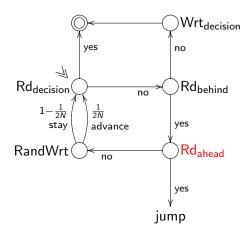
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	v_1
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 2, p_i = v_1, d_i = \bot$$



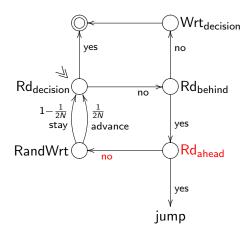
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 2, p_i = v_1, d_i = \bot$$



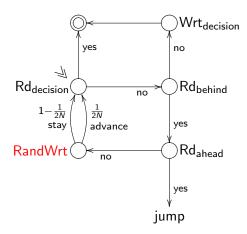
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	v_1
0	0
0	0
0	0
0	1
1	1
1	1

$$r_i = 2, p_i = v_1, d_i = \bot$$



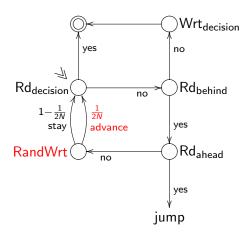
 $K \times R$ one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	1
0	1
1	1
1	1

$$r_i = 3, p_i = v_1, d_i = \bot$$



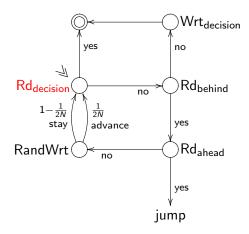
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	1
0	1
1	1
1	1

$$r_i = 3, p_i = v_1, d_i = \bot$$



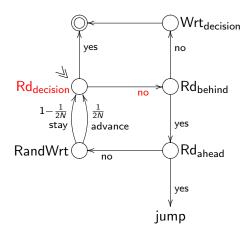
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	<u>0</u>
0	0
0	1
0	1
1	1
1	1

$$r_i = 3, p_i = v_1, d_i = \bot$$



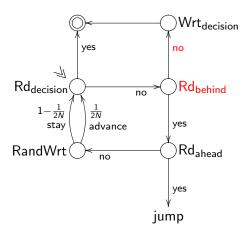
$$K \times R$$
 one-bit registers

$$K = 2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	0
0	0
0	1
0	1
1	1
1	1

$$r_i = 3, p_i = v_1, d_i = 1$$



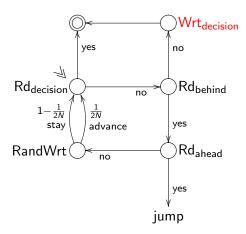
$$K \times R$$
 one-bit registers

$$K=2$$

$$R = 2\log N + 2 = 6$$

<i>v</i> ₀	<i>v</i> ₁
0	1
0	0
0	1
0	1
1	1
1	1

$$r_i = 3$$
, $p_i = v_1$, $d_i = 1$



Validity

Easy: a value moves ahead only if supported by some process.

Validity

Easy: a value moves ahead only if supported by some process.

Agreement

$$s \models \Phi(v, v', r)$$

"In state s, the value v eliminates the value v' in round r."

Validity

Easy: a value moves ahead only if supported by some process.

Agreement

$$s \models \Phi(v, v', r)$$

"In state s, the value v eliminates the value v' in round r."

<i>v</i> ₀	v_1
0	0
0	0
0	0
0	1
0	1
1	1

Validity

Easy: a value moves ahead only if supported by some process.

Agreement

$$s \models \Phi(v, v', r)$$

"In state s, the value v eliminates the value v' in round r."

Proof by contradiction: disagreement implies two distinct values eliminate each other.

v_0	v_1
0	0
0	0
0	0
0	1
0	1
1	1

Start from any reachable state, with highest occupied round r.

Start from any reachable state, with highest occupied round r.

Consider events E_1 and E_2 :

 E_1 : "a success occurs before 5N attempts to move from r to r+1 are made and all subsequent such attempts fail;"

Start from any reachable state, with highest occupied round r.

Consider events E_1 and E_2 :

 E_1 : "a success occurs before 5N attempts to move from r to r+1 are made and all subsequent such attempts fail;"

 E_2 : "a success occurs before 5N attempts to move from r+1 to r+2 are made."

Start from any reachable state, with highest occupied round r.

Consider events E_1 and E_2 :

 E_1 : "a success occurs before 5N attempts to move from r to r+1 are made and all subsequent such attempts fail;"

 E_2 : "a success occurs before 5N attempts to move from r+1 to r+2 are made."

Claims:

• $E_1 \wedge E_2 \Rightarrow$ "at least one process terminates successfully in round r + 2 before 15N complete loops are executed."

Start from any reachable state, with highest occupied round r.

Consider events E_1 and E_2 :

 E_1 : "a success occurs before 5N attempts to move from r to r+1 are made and all subsequent such attempts fail;"

 E_2 : "a success occurs before 5N attempts to move from r+1 to r+2 are made."

Claims:

- $E_1 \wedge E_2 \Rightarrow$ "at least one process terminates successfully in round r+2 before 15N complete loops are executed."
- $P[E_1 \wedge E_2] \geq 0.511$.

Start from any reachable state, with highest occupied round r.

Consider events E_1 and E_2 :

 E_1 : "a success occurs before 5N attempts to move from r to r+1 are made and all subsequent such attempts fail;"

 E_2 : "a success occurs before 5N attempts to move from r+1 to r+2 are made."

Claims:

- $E_1 \wedge E_2 \Rightarrow$ "at least one process terminates successfully in round r+2 before 15N complete loops are executed."
- $P[E_1 \wedge E_2] \geq 0.511$.
- Wait-free; $O(N \log(\log N))$.

Input language: based on *reactive modules* of [Alur and Henzinger, 1999].

• Modules: variable declarations and commands.

Input language: based on *reactive modules* of [Alur and Henzinger, 1999].

- Modules: variable declarations and commands.
- Each command has a guard and a finite number of updates.

Input language: based on *reactive modules* of [Alur and Henzinger, 1999].

- Modules: variable declarations and commands.
- Each command has a guard and a finite number of updates.
- Communication via global variables or action synchronization.

Input language: based on *reactive modules* of [Alur and Henzinger, 1999].

- Modules: variable declarations and commands.
- Each command has a guard and a finite number of updates.
- Communication via global variables or action synchronization.

In our model:

 shared memory modeled as global variables (so no action synchronization);

Input language: based on *reactive modules* of [Alur and Henzinger, 1999].

- Modules: variable declarations and commands.
- Each command has a guard and a finite number of updates.
- Communication via global variables or action synchronization.

In our model:

- shared memory modeled as global variables (so no action synchronization);
- trivial to encode atomic random-write assumption.

Underlying model: Markov Decision Processes (MDP).

Specification language: Probabilistic Computation Tree Logic (PCTL).

Underlying model: Markov Decision Processes (MDP).

Specification language: Probabilistic Computation Tree Logic (PCTL).

Example:

Pmin=? [true U
$$((s0=7) | (s1=7) | (s2=7) | (s3=7))$$
]

PRISM returns the minimum probability that "eventually at least one process decides."

Probabilistic Symbolic Model Checker (PRISM)

Underlying model: Markov Decision Processes (MDP).

Specification language: Probabilistic Computation Tree Logic (PCTL).

Example:

Pmin=? [true U
$$((s0=7) | (s1=7) | (s2=7) | (s3=7))$$
]

PRISM returns the minimum probability that "eventually at least one process decides."

Caution: non-determinism resolved under perfect information.

Model Checking Results

N	R	#Phases	Model Construction		Agreement
			#States	Time(sec)	Time(sec)
2	2	30	42,320	4	0.025
3	4	90	12,280,910	213	0.094
4	2	60	45,321,126	429	0.078
4	4	40	377,616,715	5,224	3.926

Model Checking Results

N	R	#Phases	Model Construction		Agreement
			#States	Time(sec)	Time(sec)
2	2	30	42,320	4	0.025
3	4	90	12,280,910	213	0.094
4	2	60	45,321,126	429	0.078
4	4	40	377,616,715	5,224	3.926

N	R	#Phases	Probabilistic Termination		
			Time(sec)	MinProb	AnalyticBd
2	2	30	6	0.745	0.511
3	4	90	2,662	0.971	0.667
4	2	60	602	0.755	0.511
4	4	40	55,795	0.765	0.750

MWMR Memory

• "comparable" to SWMR: both involve O(N) slowdown if implemented from SWSR.

- "comparable" to SWMR: both involve O(N) slowdown if implemented from SWSR.
- Space requirement: $O(\log N)$ registers of one bit each.

- "comparable" to SWMR: both involve O(N) slowdown if implemented from SWSR.
- Space requirement: $O(\log N)$ registers of one bit each.
- Processes anonymous.

- "comparable" to SWMR: both involve O(N) slowdown if implemented from SWSR.
- Space requirement: $O(\log N)$ registers of one bit each.
- Processes anonymous.
- Reduced data: each memory access carries one bit.

- "comparable" to SWMR: both involve O(N) slowdown if implemented from SWSR.
- Space requirement: $O(\log N)$ registers of one bit each.
- Processes anonymous.
- Reduced data: each memory access carries one bit.
- Model checking feasible.

Per Process Work

• Expected work for isolated process: $\Omega(N)$.

Per Process Work

- Expected work for isolated process: $\Omega(N)$.
- Can this be reduced to $O(\log N)$?

Per Process Work

- Expected work for isolated process: $\Omega(N)$.
- Can this be reduced to $O(\log N)$?

Comments on PRISM

• Minimal learning effort, so useful for rapid prototyping.

Per Process Work

- Expected work for isolated process: $\Omega(N)$.
- Can this be reduced to $O(\log N)$?

Comments on PRISM

- Minimal learning effort, so useful for rapid prototyping.
- Symmetry reduction . . .

Per Process Work

- Expected work for isolated process: $\Omega(N)$.
- Can this be reduced to $O(\log N)$?

Comments on PRISM

- Minimal learning effort, so useful for rapid prototyping.
- Symmetry reduction . . .
- Partial information model checking?

- End -

Other Weak-Adversary Algorithms

Write-oblivious: unread register content hidden from adversary.

- Chandra, 1996: $O(N \log^2 N)$, MWMR
- Aumann, 1997: $O(N \log^4 N)$, SWMR; $O(N \log N)$, MWMR

Value-oblivious: all parameter values hidden from adversary.

- Aumann and Kapah-Levy, 1999: $O(N \log N \cdot e^{\sqrt{\log N}})$, SWSR
- Aumann and Bender, 2004: O(N log² N), MWMR

Oblivious: predetermined list of process names, independent of dynamic random choices.

 Aumann, Bender and Zhang, 1997: O(N log N log(log N)) for N processes and N words, MWMR

