Title: Sound cryptographic abstractions for automated proofs Speaker: Birgit Pfitzmann, IBM Zurich Place: 32-G449, Patil/Kiva, Stata Center, 32 Vassar St. Time: 10:30 am - noon Date: Friday, September 22, 2006 Abstract: Security-critical systems are an important application area for formal methods. However, such systems often contain cryptographic subsystems. The natural definitions of these subsystems are probabilistic and in most cases computational. Hence it is not obvious how one can treat cryptographic subsystems in a sound way within formal methods, in particular if one does not want to encumber the proof of an overall system by probabilities and computational restrictions due only to its cryptographic subsystems. We survey our progress on integrating cryptography into formal models, in particular our work on reactive simulatability (RSIM), a refinement notion suitable for cryptography. We also present the underlying system model which unifies a computational and a more abstract presentation and allows generic distributed scheduling. We show the relation of RSIM and other types of specifications. In particular, we present soundness results as well as impossibility results for the classical abstractions of cryptography used in the formal-methods community, the abstraction by initial models of term algebras, also called Dolev-Yao models or symbolic cryptography.