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MIT

Slobodan Mitrović§
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Abstract

The last decade has witnessed the success of a number of massive parallel computation (MPC)

frameworks, such as MapReduce, Hadoop, Dryad, or Spark. These frameworks allow for much more

local memory and computation, compared to the classical distributed or PRAM models. In this context,

we investigate the complexity of one of the most fundamental graph problems: Maximum Matching. We

show that if the memory per machine is Ω(n) (or even only n/(logn)O(log logn)), then for any fixed

constant ǫ > 0, one can compute a (2 + ǫ)-approximation to Maximum Matching in O
(
(log logn)2

)

MPC rounds. This constitutes an exponential improvement over previous work—both the one designed

specifically for MPC and the one obtained via connections to PRAM or distributed algorithms—which

required Θ(logn) rounds to achieve similar approximation guarantees.

The starting point of our result is a (distributed) algorithm that computes an O(1)-approximation

in O(log n) parallel phases. Its straightforward MPC implementation requires Θ(logn) rounds. Our

exponential speedup stems from compressing several phases of a modified version of this algorithm into

a constant number of MPC rounds. We obtain this via a careful analysis of controlled randomness, which

enables the emulation of multiple phases on separate machines without any coordination between them.

We leave it as an intriguing open question whether a similar speedup can be obtained for other PRAM

and distributed graph algorithms.
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1 Introduction

Over the last decade, massive parallelism became a major paradigm in computing, and we have witnessed

the deployment of a number of very successful massively parallel computation frameworks, such as MapRe-

duce [DG04, DG08], Hadoop [Whi12], Dryad [IBY+07], or Spark [ZCF+10]. This paradigm and the

corresponding models of computation are rather different from classical parallel algorithms models con-

sidered widely in literature, such as the PRAM model. In particular, in this paper, we study the Massive

Parallel Computation (MPC) model (also known as Massively Parallel Communication model) that was

abstracted out of capabilities of existing systems, starting with the work of Karloff, Suri, and Vassilvit-

skii [KSV10, GSZ11, BKS13, ANOY14, BKS14]. The main difference between this model and the PRAM

model is that it allows for much more local storage (polynomial in the input size) and much more (in princi-

ple, unbounded) local computation. This enables it to capture a more “coarse–grained,” and thus, potentially,

more meaningful aspect of parallelism. It is often possible to simulate one clock step of PRAM in a constant

number of rounds on MPC [KSV10, GSZ11]. This implies that algorithms for the PRAM model usually

give rise to MPC algorithms without incurring any asymptotic blow up in the number of parallel rounds. As

a result, a vast body of work on PRAM algorithms naturally translates to the new model.

It is thus natural to wonder: Are the MPC parallel round bounds “inherited” from the PRAM model

tight? In particular, which problems can be solved in significantly smaller number of MPC rounds than

what the lower bounds established for the PRAM model suggest?

It is not hard to come up with an example of a problem for which indeed the MPC parallel round

number is much smaller than its PRAM round complexity. For instance, computing the parity of n Boolean

values takes only O(1) parallel rounds in the MPC model when space per machine is nΩ(1), while on

PRAM it provably requires Ω(log n/ log log n) time [BH87] (as long as the total number of processors is

polynomial). However, the answer is typically less obvious for other problems. This is particularly the

case for graph problems, whose study in a variant of the MPC model was initiated already by Karloff et

al. [KSV10].

In this paper, we focus on one such problem, which is also one of the most central graph problems

both in sequential and parallel computations: maximum matching. Maximum matchings have been the

cornerstone of algorithmic research since 1950s and their study inspired many important ideas, including

the complexity class P [Edm65]. In the PRAM model we can compute 1 − ǫ approximate matching in

O(log n) rounds [LPP15] using randomization. Deterministically, a 2 + ǫ approximation can be computed

in O
(
log2 n

)
rounds [FG17]. We note that these results hold in a distributed message passing setting, where

processors are located at graph nodes and can communicate only with neighbors. In such a distributed

setting Ω
(√

log n/ log log n
)

time lower bound is known for computing any constant approximation to

maximum matching [KMW06].

So far, in the MPC setting, the only prior results are due to Lattanzi, Moseley, Suri, and Vassilvit-

skii [LMSV11] and Ahn and Guha [AG15]. Lattanzi et al. [LMSV11] put forth algorithms for several graph

problems, such as connected components, minimum spanning tree, and maximum matching problem, that

were based on a so-called filtering technique. In particular, using this technique, they have obtained an

algorithm that can compute a 2-approximation to maximum matching in O(1/δ) MPC rounds, provided S,

the space per machine, is significantly larger than the total number of vertices n, that is S = Ω
(
n1+δ

)
, for

any constant δ ∈ (0, 1). Later on, Ahn and Guha [AG15] provided an improved algorithm that computes a

(1 + ǫ)-approximation in O(1/(δǫ)) rounds, provided S = Ω
(
n1+δ

)
, for any constant δ > 0. Both these

results, however, crucially require that space per machine is significantly superlinear in n, the number of

vertices. In fact, if the space S is linear in n, which is a very natural setting for massively parallel graph
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algorithms, the performance of both these algorithms degrades toO(log n) parallel round complexity, which

matches what was known for the PRAM model, i.e., when the space S of each machine is only constant.

We also note that the known PRAM maximal independent set algorithms [Lub86, ABI86] can be used

to find a maximal matching (i.e., 2-approximation to maximum matching) in O(log n) MPC rounds as long

as space per machine is at least nΩ(1) (i.e., S ≥ nc for some constant c > 0). We omit further details here,

except mentioning that a more or less direct simulation of those algorithms is possible via an O(1)-round

sorting subroutine [GSZ11].

The above results give rise to the following fundamental question: Can the maximum matching be

(approximately) solved in o(log n) parallel rounds in O(n) space per machine? The main result of this

paper is an affirmative answer to that question. We show that, for any S = Ω(n), one can obtain an O(1)-
approximation to maximum matching using O

(
(log log n)2

)
parallel MPC rounds. So, not only do we

break the existing Ω(log n) barrier, but also provide an exponential improvement over the previous work.

Our algorithm can also provide a (2 + ǫ), instead of O(1)-approximation, at the expense of the number of

parallel rounds increasing by a factor of O(log(1/ǫ)). Finally, our approach can also provide algorithms

that have o(log n) parallel round complexity also in the regime of S being (mildly) sublinear. For instance,

we obtain O
(
(log log n)2

)
MPC rounds even if space per machine is S = n/(log n)O(log logn). The exact

comparison of our bounds with previous results is given in Table 1.2.

1.1 The model

In this work, we adopt a version of the model introduced by Karloff, Suri, and Vassilvitskii [KSV10] and

refined in later works [GSZ11, BKS13, ANOY14]. We call it massive parallel computation (MPC), which

is a mutation of the name proposed by Beame et al. [BKS13].

In the MPC model, we have m machines at our disposal and each of them has S words of space.

Initially, each machine receives its share of the input. In our case, the input is a collection E of edges and

each machine receives approximately |E|/m of them.

The computation proceeds in rounds. During the round, each of the machines processes its local data

without communicating with other machines. At the end of each round, machines exchange messages. Each

message is sent only to a single machine specified by the machine that is sending the message. All messages

sent and received by each machine in each round have to fit into the machine’s local memory. Hence, their

total length is bounded by S.1 This in particular implies that the total communication of the MPC model is

bounded by m · S in each round. The messages are processed by recipients in the next round.

At the end of the computation, machines collectively output the solution. The data output by each

machine has to fit in its local memory. Hence again, each machine can output at most S words.

The range of values for S and m. If the input is of size N , one usually wants S sublinear in the N , and

the total space across all the machines to be at least N—so the input fits onto the machines—and ideally not

much larger. Formally, one usually considers S ∈ Θ
(
N1−ǫ

)
, for some ǫ > 0.

In this paper, the focus is on graph algorithms. If n is the number of vertices in the graph, the input size

can be as large as Θ
(
n2
)
. Our parallel algorithm requires Θ(n) space per machine (or even slightly less),

which is polynomially less than the size of the input for dense graphs.

1This for instance allows a machine to send a single word to S/100 machines or S/100 words to one machine, but not S/100
words to S/100 machines if S = ω(1), even if the messages are identical.
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Communication vs. computation complexity. The main focus of this work is the number of (commu-

nication) rounds required to finish computation. Also, even though we do not make an effort to explicitly

bound it, it is apparent from the design of our algorithms that every machines performs O(S polylog S)
computation steps locally. This in particular implies that the overall work across all the machines is

O(rN polylogS), where r is the number of rounds and N is the input size (i.e., the number of edges).

The total communication during the computation is O(rN) words. This is at most O
(
rn2
)

words

and it is known that computing a (1 + ǫ)-approximate matching in the message passing model with Θ(n)
edges per player may require Ω

(
n2/(1 + ǫ)2

)
bits of communication [HRVZ15]. Since our value of r is

O
(
(log log n)2

)
when Θ(n) edges are assigned to each player, we lose a factor of Θ̃(log n) compared to

this lower bound if words (and vertex identifiers) have Θ(log n) bits.

1.2 Our results

In our work, we focus on computing an O(1)-approximate maximum matching in the MPC model. We

collect our results and compare to the previous work in Table 1.2. The table presents two interesting regimes

Source Approx. Space Rounds Remarks

[LMSV11] 2
n1+Ω(1) O(1)

Maximal matching
O(n) O(log n)

[AG15] 1 + ǫ O
(
n1+1/p

)
O(p/ǫ) p > 1

2 nΩ(1) O(log n)
Maximal matching

Simulate [Lub86, ABI86, II86]

O(1)
O(n)

O
(
(log logn)2

)

2 + ǫ O
(
(log logn)2 · log(1/ǫ)

)
ǫ ∈ (0, 1/2)

here O(1)
O(n)/f(n)

O
(
(log logn)2 + log f(n)

)
2 ≤ f(n) = O

(
n1/2

)

2 + ǫ O
(
(log logn)2 + log f(n)

)
· log(1/ǫ)

Table 1: Comparison of our results for computing approximate maximum size matchings to the previous

results for the MPC model.

for our algorithms. On the one hand, when the space per machine is S = O(n), we obtain an algorithm

that requires O((log log n)2) rounds. This is the first known algorithm that, with linear space per machine,

breaks the O(log n) round barrier. On the other hand, in the mildly sublinear regime of space per machine,

i.e., when S = O(n/f(n)), for some function f(n) that is no(1), we obtain an algorithm that still requires

o(log n) rounds. This, again is the first such result in this regime. In particular, we prove the following

result.

Theorem 1.1. There exists an MPC algorithm that constructs anO(1)-approximation to maximum matching

with Ω(1) probability inO
(
(log log n)2 +max

(
log n

S , 0
))

rounds, where S = nΩ(1) is the amount of space

on each machine.

As a corollary, we obtain the following result that provides nearly 2-approximate maximum matching.

Corollary 1.2. For any ǫ ∈ (0, 12), there exists an MPC algorithm that constructs a (2+ǫ)-approximation to

maximum matching with 99/100 probability in O
(
(log log n)2 +max

(
log n

S , 0
))
· log(1/ǫ) rounds, where

S = nΩ(1) is the amount of space on each machine.
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1.3 Related work

We note that there were efforts at modeling MapReduce computation [FMS+10] before the work of Karloff

et al. Also a recent work [RVW16] investigates the complexity of the MPC model.

In the filtering technique, introduced by Lattanzi et al. [LMSV11], the input graph is iteratively sparsified

until it can be stored on a single machine. For the matching problem, the sparsification is achieved by first

obtaining a small sample of edges, then finding a maximal matching in the sample, and finally removing

all the matched vertices. Once a sufficiently small graph is obtained, a maximal matching is computed on

a single machine. In the S = Θ(n) regime, the authors show that their approach reduces the number of

edges by a constant factor in each iteration. Despite this guarantee, until the very last step, each iteration

may make little progress towards obtaining even an approximate maximal matching, resulting in a O(log n)
round complexity of the algorithm. Similarly, the results of Ahn and Guha [AG15] require n1+Ω(1) space

per machine to compute a O(1)-approximate maximum weight matching in a constant number of rounds

and do not imply a similar bound for the case of linear space.

We note that the algorithm of Lattanzi et al. [LMSV11] cannot be turned easily into a fast approximation

algorithm when space per machine is sublinear. Even with Θ(n) space, their method is able to remove only

a constant fraction of edges from the graph in each iteration, so Ω(log n) rounds are needed until only a

matching is left. When S = Θ(n), their algorithm works as follows: sample uniformly at random Θ(n)
edges of the graph, find maximal matching on the sampled set, remove the matched vertices, and repeat.

We do not provide a formal proof here, but on the following graph this algorithm requires Ω̃(log n) rounds,

even to discover a constant factor approximation. Consider a graph consisting of t separate regular graphs

of degree 2i, for 0 ≤ i ≤ t−1, each on 2t vertices. This graph has t2t nodes and the algorithm requires Ω̃(t)
rounds even to find a constant approximate matching. The algorithm chooses edges uniformly at random,

and few edges are selected each round from all but the densest remaining subgraphs. Thus, it takes multiple

rounds until a matching of significant size is constructed for sparser subgraphs. This example emphasizes

the weakness of direct edge sampling and motivates our vertex sampling scheme that we introduce in this

paper.

Similarly, Ahn and Gupta [AG15] build on the filtering approach of Lattanzi et al. and design a primal-

dual method for computing a (1 − ǫ)-approximate weighted maximum matching. They show that each

iteration of their distributed algorithm either makes large progress in the dual, or they can construct a large

approximate matching. Regardless of their new insights, their approach is inherently edge-sampling based

and does not break the O(log n) round complexity barrier when S = O(n).
Despite the fact that MPC model is rather new, computing matching is an important problem in this

model, as the above mentioned two papers demonstrate. This is further witnessed by the fact that the

distributed and parallel complexity of maximal matching has been studied for many years already. The best

deterministic PRAM maximal matching algorithm, due to Israeli and Shiloach [IS86], runs in O
(
log3 n

)

rounds. Israeli and Itai [II86] gave a randomized algorithm for this problem that runs in O(log n) rounds.

Their algorithm works as well in CONGEST, a distributed message-passing model with a processor assigned

to each vertex and a limit on the amount of information sent along each edge per round. A more recent

paper by Lotker, Patt-Shamir, and Pettie [LPP15] gives a (1 − ǫ)-approximation to maximum matching in

O(log n) rounds also in the CONGEST model, for any constant ǫ > 0. On the deterministic front, in the

LOCAL model, which is a relaxation of CONGEST that allows for an arbitrary amount of data sent along

each edge, a line of research initiated by Hańćkowiak, Karoński, and Panconesi [HKP01, HKP99] led to an

O
(
log3 n

)
-round algorithm by Fischer and Ghaffari [FG17].

On the negative side, Kuhn, Moscibroda, and Wattenhofer [KMW06] showed that any distributed algo-
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rithm, randomized or deterministic, when communication is only between neighbors requires Ω
(√

log n/ log log n
)

rounds to compute a constant approximation to maximum matching. This lower bound applies to all dis-

tributed algorithms that have been mentioned above. Our algorithm circumvents this lower bound by loos-

ening the only possible assumption there is to be loosened: single-hop communication. In a sense, we assign

subgraphs to multiple machines and allow multi-hop communication between nodes in each subgraph.

Finally, the ideas behind the peeling algorithm that is a starting point for this paper can be traced back

to the papers of Israeli, Itai, and Shiloach [II86, IS86], which can be interpreted as matching high degree

vertices first in order to reduce the maximum degree. A sample distributed algorithm given in a work

of Parnas nad Ron [PR07] uses this idea to compute an O(log n) approximation for vertex cover. Their

algorithm was extended by Onak and Rubinfeld [OR10] in order to provide an O(1)-approximation for

vertex cover and maximum matching in a dynamic version of the problems. This was achieved by randomly

matching high-degree vertices to their neighbors in consecutive phases while reducing the maximum degree

in the remaining graph. This approach was further developed in the dynamic graph setting by a number of

papers [BHI15, BHN16, BHN17, BCH16]. Ideas similar to those in the paper of Parnas and Ron [PR07]

were also used to compute polylogarithmic approximation in the streaming model by Kapralov, Khanna,

and Sudan [KKS14]. Our version of the peeling algorithm was directly inspired by the work of Onak and

Rubinfeld [OR10] and features important modifications in order to make our analysis go through.

1.4 Overview of our techniques

The main technical contribution underlying our result is a new method of round compression. We transform

a global multi-phase algorithm for maximum matching into an MPC algorithm with a very small number

of rounds. The underlying idea is quite simple: we take multiple phases of a global multi-phase algorithm

and run them on every single machine independently. This approach, however, has obvious challenges since

the machines cannot communicate in a single round of the MPC algorithm. In particular, the algorithm may

commit to some sub-optimally chosen matching on one machine that can later lead to a strong deficiency

globally. As a result, the output of the MPC algorithm could strongly deviate from the guarantees of the

original algorithm’s output. To cope with these challenges, we introduce a carefully crafted emulation of

the global multi-phase algorithm that uses controlled randomness to simulate multiple phases of the global

algorithm on separate machines without any coordination between the machines, thus allowing for a small

number of parallel MPC rounds.

In what follows, we discuss this approach in more detail.

Global algorithm. Our starting point is a sequential peeling algorithm GlobalAlg (see page 9), which

is a modified version of an algorithm used by Onak and Rubinfeld [OR10]. The algorithm had to be signifi-

cantly adjusted in order to make our later analysis of a parallel version possible.

The execution of GlobalAlg is divided into Θ(log n) phases. In each phase, the algorithm first com-

putes a set H of high-degree vertices. Then it selects a set F of vertices, which we call friends. Next the

algorithm selects a matching M̃ between H and F , using a simple randomized strategy. F is carefully con-

structed so that both F and M̃ are likely to be of order Θ(|H|). Finally, the algorithm removes all vertices

in H ∪F , hence reducing the maximum vertex degree in the graph by a constant factor, and proceeds to the

next phase. The central property of GlobalAlg is that it returns an O(1)-multiplicative approximation to

Maximum Matching with constant probability (Corollary 2.4). A full description of GlobalAlg is given

in Section 2.
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Vertex based sampling. All the previous works on the distributed maximal matching problem known to

the authors ([LMSV11], [AG15], [II86], simulation of [Lub86, ABI86]) process the input graph by sampling

a subset of edges and performing the computation on the sampled subset only. These kinds of approaches,

however, tend to select many “unnecessary” edges incident to high degree vertices while picking only very

few edges from a hidden large matching. This tendency appears to be a fundamental barrier in reducing the

number of computation rounds needed to obtain a maximal matching. Intuitively, if there is a large “hidden”

matching, then it may takes many rounds to “peel off” edges that do not contribute to the large matching

size. The starting point of our new approach is alleviating this sampling issue by resorting to a more careful

vertex based sampling. Specifically, at each round, we randomly partition the vertex set into sets V1, . . . , Vm
and consider induced graphs on those subsets independently. This sampling scheme allows for faster edge

elimination and maximum vertex degree reduction. We show that throughout our local algorithm execution

local vertex degrees on each induced subgraph correspond to global vertex degrees.

Parallel emulation of the global algorithm. The following two ways could be used to execute GlobalAlg

in the MPC model: (1) place the whole graph on one machine, and trivially execute all the phases of

GlobalAlg in a single round; or (2) simulate one phase of GlobalAlg in one MPC round while us-

ing O(n) space per machine, by distributing vertices randomly onto machines (see Section 5.1 for details).

However, each of these approaches has severe drawbacks. The first approach requires Θ(|E|) space per

machine, which is likely to be prohibitive for large graphs. On the other hand, while the second approach

uses O(n) space, it requires Θ(log n) rounds of MPC computation. We achieve the best of both worlds by

showing how to emulate the behavior of multiple phases of GlobalAlg in a single MPC round with each

machine using O(n) space, thus obtaining an MPC algorithm requiring o(log n) rounds. More specifically,

we show that it is possible to emulate the behavior of GlobalAlg in O
(
(log log n)2

)
rounds with each

machine using O(n) space.

Before we provide more details about our parallel emulation of GlobalAlg, let us mention some of

the main obstacles such an emulation encounters. First, at the beginning of every phase GlobalAlg has

access to the full graph. Therefore, it can easily compute the set of heavy vertices H . Machines in our MPC

algorithm use O(n) space and thus have access only to a small subgraph of the input graph (when |E| ≫ n).

Second, the degrees of vertices can significantly change from phase to phase. After each phase, it is not

clear how to select high degree vertices in the next phase without inspecting the entire graph again. Hence,

one of the main challenges in designing a multi-phase emulation of GlobalAlg is to ensure that machines

at the beginning of every phase can estimate global degrees of vertices well enough to identify the set of

heavy vertices. This property is achieved using a few modifications to the algorithm.

Preserving randomness. Our algorithm partitions the vertex set into m disjoint subsets Vi by assigning

each vertex independently and uniformly at random. Then the graph induced by each subset Vi is processed

on a separate machine. Each machine finds a set of heavy vertices, Hi, by estimating the global degree of

each vertex of Vi. It is not hard to argue (using a standard concentration bound) that there is enough random-

ness in the initial partition so that local degrees in each induced subgraph roughly correspond to the global

degrees. Hence, after the described partitioning, sets H and
⋃
i∈[m]Hi have very similar properties. This

observation crucially relies on the fact that initially the vertices are distributed independently and uniformly

at random.

However, if one attempts to execute more than one phase without randomly reassigning vertices to

sets, the remaining vertices are no longer distributed independently and uniformly at random. This can

in principle lead to a situation in which there are many edges going between sets Vi in the partition, but
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proportionally very few edges are present in graphs Hi. In other words, after inspecting the neighborhood

of every vertex locally and making a decision based on it, the randomness of the initial random partition

may significantly decrease. We now discuss in more detail how we preserve two crucial properties of our

vertex assignments throughout the execution of multiple phases:

Independence: A key and counter-intuitive step in our approach is to estimate even local degrees of

vertices (in contrast to computing them exactly). To implement this feature, we sample a small set

of vertices on each machine, called reference sets, and use the set to estimate the local degrees. Very

crucially, all the vertices that are used in computing a matching in one emulated phase (including

the reference sets) are discarded at the end of the phase, even if they do not participate in the ob-

tained matching. Intuitively, this way we secure an independent distribution of the vertices across the

machines in the next phase.

We also note, without going into details, that obtaining full independence required modifying how the

set of friends is selected, compared to the approach of Onak and Rubinfeld. In their approach, each

heavy vertex selected one friend at random. This, however, introduces dependencies between vertices

that have not been selected. In our GlobalAlg, every vertex selects itself as a friend independently

and proportionally to the number of high degree vertices. The final properties of the obtained sets in

either approach are very similar.

Uniformity: A very desired property in the task of emulating multiple phases of GlobalAlg is a uni-

form distribution of vertices across all the machines at every phase. For such a distribution, we know

the expected number of neighbors of each desired type assigned to the same machine. Obtaining

perfect uniformity seems difficult—if not impossible in our setting—and we therefore settle for near

uniformity of vertex assignments. The probability of the assignment of each vertex to each machine

is allowed to differ slightly from that in the uniform distribution. Initially, the distribution of each

vertex is uniform and with every phase it can deviate more and more from the uniform distribution.

We bound the rate of the decay with high probability and execute multiple rounds as long as the devi-

ation from the uniform distribution is negligible. More precisely, in the execution of the entire parallel

algorithm, the sufficiently uniform distribution is on average kept over Ω
(

logn

(log logn)2

)
phases of the

emulation of GlobalAlg.

In order to achieve the near uniformity, we modify the procedure for selecting H , the set of high-

degree vertices, is selected. Instead of a hard threshold on the degrees of vertices that are included in

H as in the sequential algorithm, we randomize the selection by using a carefully crafted threshold

function µH . This function specifies the probability with which a vertex is included in H . It takes

as input the ratio of the vertex’s degree to the current threshold and it smoothly transitions from 0 to

1 in the neighborhood of the original hard threshold (see Figure 1). The main intuition behind the

introduction of this function is that we want to ensure that a vertex is not selected for H with almost

the same probability, independently of the machine on which it resides. For a hard threshold, it could

happen that due to the composition of reference sets, it becomes clear after even a single phase that

a given vertex that has not been removed could not have been on a given machine, because it would

have landed above the threshold and would have been removed. At this point the distribution is clearly

no longer uniform.

Function µH has further useful properties that we extensively exploit in our analysis. We just note

that in order to ensure near uniformity with high probability, we also have to ensure that each vertex

is selected for F , the set of friends, with roughly the same probability on each machine.
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1.5 Future challenges

We show a parallel matching algorithm in the MPC model by taking an algorithm that can be seen as a

distributed algorithm in the so-called LOCAL model. This algorithm requires Θ(log n) rounds and can

be simulated in Θ(log n) MPC rounds relatively easily with nΩ(1) space per machine. We develop an ap-

proximate version of the algorithm that uses much fewer rounds by repeatedly compressing a superconstant

number of rounds of the original algorithm to O(1) rounds. It is a great question if a this kind of speedup

can be obtained for other—either distributed or PRAM—algorithms.

As for the specific problem considered in this paper, an obvious question is whether our round complex-

ity is optimal. We conjecture that there is a better algorithm that requires O(log log n) rounds, the square

root of our complexity. Unfortunately, a factor of log n in one of our functions (see the logarithmic factor in

α, a parameter defined later in the paper) propagates to the round complexity, where it imposes a penalty of

log log n.

Note also that as opposed to the paper of Onak and Rubinfeld [OR10], we do not obtain an O(1)-
approximation to vertex cover. This stems from the fact that we discard so-called reference sets, which can

be much bigger than the minimum vertex cover. This is unfortunately necessary in our analysis. Is there a

way to fix this shortcoming of our approach?

Finally, we suspect that there is a simpler algorithm for the problem that avoids the intricacies of our

approach and proceeds by simply greedily matching high degree vertices on induced subgraphs without a

sophisticated sampling in every phase. Unfortunately, we do not know how to analyze this kind of approach.

1.6 Paper organization

We start by giving a description of GlobalAlg in Section 2. Section 3 describes our emulation of a single

phase of GlobalAlg in the MPC model. Section 4 gives and analyzes our parallel algorithm by putting

together components developed in the previous sections. Section 5 describes additional implementation

details in the MPC model.

1.7 Notation

Neighbor set. In our algorithms and analysis, we write N(v) to denote the set of neighbors of a vertex v
in the input graph.

Induced subgraphs. For a graph G = (V,E) and V ′ ⊆ V , we write G[V ′] to denote the subgraph of G

induced by V ′. Formally, G[V ′]
def
= (V ′, E ∩ (V ′ × V ′)).

Concise range notation. Multiple times throughout a paper, we want to denote a range around some

value. Instead of writing, say, [x − δ, x + δ], we introduce a more concise notation. In this specific case,

we would simply write Jx± δK. More formally, let E be a numerical expression that apart from standard

operations also contains a single application of the binary or unary operator ±. We create two standard

numerical expressions from E: E− and E+ that replace ± with − and +, respectively. Now we define

JEK def
= [min{E−, E+},max{E−, E+}].

As another example, considerE =
√
101± 20. We haveE− =

√
101 − 20 = 9 andE+ =

√
101 + 20 =

11. Hence
q√

101 ± 20
y
= [min{9, 11},max{9, 11}] = [9, 11].
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2 Global Algorithm

2.1 Overview

The starting point of our result is a peeling algorithm GlobalAlg that takes as input a graph G, and

removes from it vertices of lower and lower degree until no edge is left. See Algorithm 1 for its pseudocode.

We use the term phase to refer to an iteration of the main loop in Lines 2–6.

Each phase is associated with a threshold ∆. Initially, ∆ equals ∆̃, the upper bound on the maximum

vertex degree. In every phase, ∆ is divided by two until it becomes less than one and the algorithm stops.

Since during the execution of the algorithm we maintain the invariant that the maximum degree in the graph

is at most ∆, the graph has no edge left when the algorithm terminates.

In each phase the algorithm matches, in expectation, a constant fraction of the vertices it removes. We

use this fact to prove that, across all the phases, the algorithm computes a constant-factor approximate

matching.

Algorithm 1: GlobalAlg(G, ∆̃)

Global matching algorithm

Input: Graph G = (V,E) of maximum degree at most ∆̃
Output: A matching in G

1 ∆← ∆̃, M ← ∅, V ′ ← V
2 while ∆ ≥ 1 do

/* Invariant: the maximum degree in G[V ′] is at most ∆ */

3 Let H ⊂ V ′ be a set of vertices of degree at least ∆/2 in G[V ′]. We call vertices in H heavy.

4 Create a set F of friends by selecting each vertex v ∈ V ′ independently with probability |N(v) ∩H |/4∆.

5 Compute a matching M̃ in G[H ∪ F ] using MatchHeavy(H,F ) and add it to M .

6 V ′ ← V ′ \ (H ∪ F ), ∆← ∆/2

7 return M

Algorithm 2: MatchHeavy(H,F )
Computing a matching in G[H ∪ F ]

Input: set H of heavy vertices and set F of friends

Output: a matching in G[H ∪ F ]
1 For every vertex v ∈ F pick uniformly at random a heavy neighbor v⋆ in N(v) ∩H .

2 Independently at random color each vertex in H ∪ F either red or blue.

3 Select the following subset of edges: E⋆ ← {(v, v⋆) : v ∈ F ∧ v is red ∧ v⋆ ∈ H ∧ v⋆ is blue}.
4 For every blue vertex w incident to an edge in E⋆, select one such edge and add it to M̃ .

5 return M̃

We now describe in more detail the execution of each phase. First, the algorithm creates H , the set

of vertices that have degree at least ∆/2 (Line 3). We call these vertices heavy. Then, the algorithm uses

randomness to create F , a set of friends (Line 4). Each vertex v is independently included in F with

probability equal to the number of its heavy neighbors divided by 4∆. We show that E [|F |] = O(|H|)
and G[H ∪ F ] contains a matching of expected size Ω(|H|). This kind of matching is likely found by

MatchHeavy in Line 5.
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Note that GlobalAlg could as well compute a maximal matching in G[H ∪ F ] instead of calling

MatchHeavy. However, for the purpose of the analysis, using MatchHeavy is simpler, as we can directly

relate the size of the obtained matching to the size of H . In addition, we later give a parallel version of

GlobalAlg, and MatchHeavy is easy to parallelize.

At the end of the phase, vertices in both H and F are removed from the graph, while the matching found

in G[H ∪ F ] is added to the global matching being constructed. It is easy to see, that by removing H , the

algorithm ensures that no vertex of degree larger than ∆/2 remains in the graph, and therefore the bound on

the maximum degree decreases by a factor of two.

2.2 Analysis

We start our analysis of the algorithm by showing that the execution of MatchHeavy in each phase of

GlobalAlg finds a relatively large matching in expectation.

Lemma 2.1. Consider one phase of GlobalAlg. Let H be the set of heavy vertices. MatchHeavy finds

a matching M̃ such that E
[∣∣∣M̃

∣∣∣
]
≥ 1

40 |H|.

Proof. Observe that the set E⋆ is a collection of vertex-disjoint stars: each edge connects a red vertex with

a blue vertex and the red vertices have degree 1. Thus, a subset of E⋆ forms a valid matching as long as no

blue vertex is incident to two matched edges. Note that this is guaranteed by how edges are added to M̃ in

Line 4.

The size of the computed matching is the number of blue vertices in H that have at least one incident

edge in E⋆. Let us now lower bound the number of such vertices. Consider an arbitrary u ∈ H . It has the

desired properties exactly when the following three independent events happen: some v ∈ F selects u in

Line 1, u is colored blue, and v is colored red. The joint probability of the two latter events is exactly 1
4 .

The probability that u is not selected by some v ∈ F is

(
1− 1

4∆

)|N(u)∩V ′|

≤
(
1− 1

4∆

)∆/2

≤ exp

(
− 1

4∆
· ∆
2

)
≤ exp

(
−1

8

)
≤ 9

10
.

This implies that u is selected by a neighbor v ∈ F with probability at least 1
10 . Therefore, with probability

at least 1
10 · 14 = 1

40 , u is blue and incident to an edge in E⋆. Hence, E
[∣∣∣M̃

∣∣∣
]
≥ 1

40 |H|.

Next we show an upper bound on the expected size of F , the set of friends.

Lemma 2.2. Let H be the set of heavy vertices selected in a phase of GlobalAlg. The following bound

holds on the expected size of F , the set of friends, created in the same phase: E [|F |] ≤ 1
4 |H|.

Proof. At the beginning of a phase, every vertex u ∈ V ′—including those inH—has its degree, |N(u)∩V ′|,
bounded by ∆. Reversing the order of the summation and applying this fact, we get:

E [|F |] =
∑

v∈V ′

|N(v) ∩H|
4∆

=
∑

u∈H

|N(u) ∩ V ′|
4∆

≤ |H| ·∆
4∆

=
|H|
4
.

We combine the last two bounds to lower bound the expected size of the matching computed by GlobalAlg.
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Lemma 2.3. Consider an input graphGwith an upper bound ∆̃ on the maximum vertex degree. GlobalAlg(G, ∆̃)

executes T
def
= ⌊log ∆̃⌋ + 1 phases. Let Hi, Fi, and M̃i be the sets H , F , and M̃ constructed in phase i for

i ∈ [T ]. The following relationship holds on the expected sizes of these sets:

T∑

i=1

E

[∣∣∣M̃i

∣∣∣
]
≥ 1

50

T∑

i=1

E [|Hi|+ |Fi|]

Proof. For each phase i ∈ [T ], by applying the expectation over all possible settings of the set Hi, we learn

from Lemmas 2.1 and 2.2 that

E

[∣∣∣M̃i

∣∣∣
]
≥ 1

40
E [|Hi|] and E [|Fi|] ≤

1

4
E [|Hi|] .

It follows that

1

50
E [|Hi|+ |Fi|] ≤

1

50
E [|Hi|] +

1

200
E [|Hi|] =

1

40
E [|Hi|] ≤ E

[∣∣∣M̃i

∣∣∣
]
,

and the statement of the lemma follows by summing over all phases.

We do not use this fact directly in our paper, but note that the last lemma can be used to show that

GlobalAlg can be used to find a large matching.

Corollary 2.4. GlobalAlg computes a constant factor approximation to the maximum matching with

Ω(1) probability.

Proof. First, note that GlobalAlg finds a correct matching, i.e., no two different edges in M share an

endpoint. This is implied by the fact that M is extended in every phase by a matching on a disjoint set of

vertices.

Let T and sets Hi, Fi, and M̃i for i ∈ [T ] be defined as in the statement of Lemma 2.3. Let MOPT be a

maximum matching in the graph. Observe that at the end of the algorithm execution, the remaining graph is

empty. This implies that the size of the maximum matching can be bounded by the total number of removed

vertices, because each removed vertex decreases the maximum matching size by at most one:

T∑

i=1

|Hi|+ |Fi| ≥ |MOPT| .

Hence, using Lemma 2.3,

E [|M |] =
T∑

i=1

E

[∣∣∣M̃i

∣∣∣
]
≥ 1

50

T∑

i=1

E [|Hi|+ |Fi|] ≥
1

50
|MOPT| .

Since |M | ≤ |MOPT|, |M | ≥ 1
100 |MOPT| with probability at least 1

100 . Otherwise, E [|M |] would be

strictly less than 1
100 · |MOPT|+ 1 · 1

100 |MOPT| = 1
50 |MOPT|, which is not possible.
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3 Emulation of a Phase in a Randomly Partitioned Graph

In this section, we introduce a modified version of a single phase (one iteration of the main loop) of

GlobalAlg. Our modifications later allow for implementing the algorithm in the MPC model. The pseu-

docode of the new procedure, EmulatePhase, is presented as Algorithm 3. We partition the vertices of

the current graph into m sets Vi, 1 ≤ i ≤ m. Each vertex is assigned independently and almost uniformly at

random to one of the sets. For each set Vi, we run a subroutine LocalPhase (presented as Algorithm 4).

This subroutine runs a carefully crafted approximate version of one phase of GlobalAlg with an appro-

priately rescaled threshold ∆. More precisely, the threshold passed to the subroutine is scaled down by a

factor of m, which corresponds to how approximately vertex degrees decrease in subgraphs induced by each

of the sets. The main intuition behind this modification is that we hope to break the problem up into smaller

subproblems on disjoint induced subgraph, and obtain similar global properties by solving the problem ap-

proximately on each smaller part. Later, in Section 4, we design an algorithm that assigns the subproblems

to different machines and solves them in parallel.

Algorithm 3: EmulatePhase(∆, G⋆,m,D)
Emulation of a single phase in a randomly partitioned graph

Input:

• threshold ∆
• induced subgraphG⋆ = (V⋆, E⋆) of maximum degree 3

2∆
• number m of subgraphs

• ǫ-near uniform and independent distribution D on assignments of V⋆ to [m]
Output: Remaining vertices and a matching

1 Pick a random assignment Φ : V⋆ → [m] from D
2 for i ∈ [m] do

3 Vi ← {v ∈ V⋆ : Φ(v) = i}
4 (V ′

i ,Mi)← LocalPhase(i, G⋆[Vi],∆/m) /* LocalPhase = Algorithm 4 */

5 return (
⋃m

i=1 V
′

i ,
⋃m

i=1Mi)

We now discuss LocalPhase (i.e., Algorithm 4) in more detail. Table 2 introduces two parameters, α
and µR, and two functions, µH and µF , which are used in LocalPhase. Note first that α is a parameter

used in the definition of µH but it is not used in the pseudocode of LocalPhase (or EmulatePhase)

for anything else. It is, however, a convenient abbreviation in the analysis and the later parallel algorithm.

The other three mathematical objects specify probabilities with which vertices are included in sets that are

created in an execution of LocalPhase.

Apart from creating its own versions ofH , the set of heavy vertices, and F , the set of friends, LocalPhase

constructs also a set Ri, which we refer to as a reference set. In Line 1, the algorithm puts each vertex in

Ri independently and with the same probability µR. The reference set is used to estimate the degrees of

other vertices in the same induced subgraph in Line 2. For each vertex vi, its estimate d̂v is defined as

the number of v’s neighbors in Ri multiplied by µ−1
R to compensate for sampling. Next, in Line 3, the

algorithm uses the estimates to create Hi, the set of heavy vertices. Recall that GlobalAlg uses a sharp

threshold for selecting heavy vertices: all vertices of degree at least ∆/2 are placed in Hi. LocalPhase

works differently. It divides the degree estimate by the current threshold ∆⋆ and uses function µH to decide

with what probability the corresponding vertex is included in Hi. A sketch of the function can be seen in

Figure 1. The function transitions from almost 0 to almost 1 in the neighborhood of 1
2 at a limited pace.

As a result vertices of degrees smaller than, say, 1
4∆ are very unlikely to be included in Hi and vertices of

12



A multiplicative constant used in the exponent of µH :

α
def
= 96 lnn.

The probability of the selection for a reference set:

µR
def
=
(
106 · logn

)−1
.

The probability of the selection for a heavy set (used with r equal to the ratio of the

estimated degree to the current threshold):

µH(r)
def
=

{
1
2 exp

(
α
2 (r − 1/2)

)
if r ≤ 1/2,

1− 1
2 exp

(
−α

2 (r − 1/2)
)

if r > 1/2.

The probability of the selection for the set of friends (used with r equal to the ratio of

the number of heavy neighbors to the current threshold):

µF (r)
def
=

{
max{r/4, 0} if r ≤ 4,

1 if r > 4.

Table 2: Global parameters α ∈ (1,∞) and µR ∈ (0, 1) and functions µH : R→ [0, 1] and µF : R→ [0, 1]
used in the parallel algorithm. α, µR, and µH depend on n, the total number of vertices in the graph.

degree greater than 3
4∆ are very likely to be included in Hi. GlobalAlg can be seen as an algorithm that

instead of µH , uses a step function that equals 0 for arguments less than 1
2 and abruptly jumps to 1 for larger

arguments. Observe that without µH , the vertices whose degrees barely qualify them as heavy could behave

very differently depending on which set they were assigned to. We use µH to guarantee a smooth behavior

in such cases. That is one of the key ingredients that we need for making sure that a set of vertices that

remains on one machine after a phase has almost the same statistical properties as a set of vertices obtained

by new random partitioning.

Finally, in Line 4, LocalPhase creates a set of friends. This step is almost identical to what happens

in the global algorithm. The only difference is that this time we have no upper bound on the number of

heavy neighbors of a vertex. As a result that number divided by 4∆⋆ can be greater than 1, in which case

we have to replace it with 1 in order to obtain a proper probability. This is taken care of by function µF .

Once Hi and Fi have been created, the algorithm finds a maximal matching Mi in the subgraph induced

by the union of these two sets. The algorithm discards from the further consideration not only Hi and Fi,
but also Ri. This eliminates dependencies in the possible distribution of assignments of vertices that have

not been removed yet if we condition this distribution on the configuration of sets that have been removed.

Intuitively, the probability of a vertex’s inclusion in any of these sets depends only on Ri and Hi but not on

any other vertices. Hence, once we fix the sets of removed vertices, the assignment of the remaining vertices

to subgraphs is fully independent.2 The output of LocalPhase is a subset of Vi to be considered in later

phases and a matching Mi, which is used to expand the matching that we construct for the entire input

2By way of comparison, consider observing an experiment in which we toss the same coin twice. The bias of the coin is not

fixed but comes from a random distribution. If we do not know the bias, the outcomes of the coin tosses are not independent.

However, if we do know the bias, the outcomes are independent, even though they have the same bias.
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Algorithm 4: LocalPhase(i,Gi,∆⋆)
Emulation of a single phase on an induced subgraph

Input:

• induced subgraph number i (useful only for the analysis)

• induced subgraphGi = (Vi, Ei)
• threshold ∆⋆ ∈ R+

Output: Remaining vertices and a matching on Vi

1 Create a reference set Ri by independently selecting each vertex in Vi with probability µR.

2 For each v ∈ Vi, d̂v ← |N(v) ∩Ri|/µR.

3 Create a set Hi of heavy vertices by independently selecting each v ∈ Vi with probability µH

(
d̂v/∆⋆

)
.

4 Create a set Fi of friends by independently selecting each vertex in v ∈ Vi with probability

µF (|N(v) ∩Hi|/∆⋆).
5 Compute a maximal matching Mi in G[Hi ∪ Fi].
6 return (Vi \ (Ri ∪Hi ∪ Fi),Mi)

11

2

1

1

2

µH(r)

r

Figure 1: An idealized version of µH : R → [0, 1], in which n was fixed to a small constant and the

multiplicative constant inside the exponentiation operator was lowered.

graph. We now introduce additional concepts and notation. They are useful for describing and analyzing

properties of the algorithm. A configuration describes sets Ri, Hi, and Fi, for 1 ≤ i ≤ m, constructed

in an execution of EmulatePhase. We use it for conditioning a distribution of vertex assignments as

described in the previous paragraph. We also formally define two important properties of distributions of

vertex assignments: independence and near uniformity.

Configurations. Let m and V⋆ be the parameters to EmulatePhase: the number of subgraphs and the

set of vertices in the graph to be partitioned, respectively. We say that

C = ({Ri}i∈[m], {Hi}i∈[m], {Fi}i∈[m])

is an m-configuration if it represents a configuration of sets Ri, Hi, and Fi created by EmulatePhase in

the simulation of a phase. Recall that for any i ∈ [m], Ri, Hi, and Fi are the sets created (and removed) by

the execution of LocalPhase for Vi, the i-th subset of vertices.
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We say that a vertex v is fixed by C if it belongs to one of the sets in the configuration, i.e.,

v ∈
⋃

i∈[m]

(Ri ∪Hi ∪ Fi) .

Conditional distribution. LetD be a distribution on assignments ϕ : V⋆ → [m]. Suppose that we execute

EmulatePhase forD and let C be a non-zero probability m-configuration—composed of sets Ri, Hi, and

Fi for i ∈ [m]—that can be created in this setting. Let V ′
⋆ be the set of vertices in V⋆ that are not fixed by C.

We write D[C] to denote the conditional distribution of possible assignments of vertices in V ′
⋆ to [m], given

that for all i ∈ [m], Ri, Hi, and Fi in C were the sets constructed by LocalPhase for the i-th induced

subgraph.

Near uniformity and independence. Let D be a distribution on assignments ϕ : Ṽ → [m] for some set

Ṽ and m. For each vertex v ∈ Ṽ , let pv : [m] → [0, 1] be the probability mass function of the marginal

distribution of v’s assignment. For any ǫ ≥ 0, we say that D is ǫ-near uniform if for every vertex v and

every i ∈ [m], pv(i) ∈ J(1± ǫ)/mK. We say that D is an independent distribution if the probability of every

assignment ϕ in D equals exactly
∏
v∈V ′ pv(ϕ(v)).

Concentration inequality. We use the following version of the Chernoff bound that depends on an upper

bound on the expectation of the underlying independent random variables. It can be shown by combining

two applications of the more standard version.

Lemma 3.1 (Chernoff bound). LetX1, . . . ,Xk be independently distributed random variables taking values

in [0, 1]. Let X
def
= X1+ · · ·+Xk and let U ≥ 0 be an upper bound on the expectation of X, i.e., E[X] ≤ U .

For any δ ∈ [0, 1], Pr(|X − E[X]| > δU) ≤ 2 exp(−δ2U/3).

We now show the properties of EmulatePhase that we use to obtain our final parallel algorithm.

3.1 Expected matching size

First, we show that EmulatePhase computes a large matching. Each vertex belonging to Hi or Fi that

EmulatePhase removes in the calls to LocalPhase can decrease the maximum matching size in the

graph induced by the remaining vertices by one. We show that the matching that EmulatePhase con-

structs in the process captures on average at least a constant fraction of that loss. We also show that the

effect of removing Ri is negligible.

We start the proof by showing that the expected total size of sets Hi and Fi is not significantly impacted

by relatively low-degree vertices classified as heavy or by an unlucky assignment of vertices to subgraphs

resulting in local vertex degrees not corresponding to global degrees. Namely, we show that the expected

number of friends a heavy vertex adds is O(1) and at the same time the probability that the vertex gets

matched is Ω(1).

Lemma 3.2. Let ∆, G⋆ = (V⋆, E⋆), m, and D be parameters for EmulatePhase such that

• D is an independent and ǫ-near uniform distribution on assignments of vertices V⋆ to [m] for ǫ ∈
[0, 1/200],

• ∆
m ≥ 4000µ−2

R ln2 n,
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• the maximum degree of a vertex in G⋆ is at most 3
2∆.

For each i ∈ [m], letHi, Fi, andMi be the sets constructed by LocalPhase for the i-th induced subgraph.

Then, the following relationship holds for their expected sizes:
∑

i∈[m]

E [|Hi ∪ Fi|] ≤ n−9 + 1200
∑

i∈[m]

E [|Mi|] .

Proof. We borrow more notation from EmulatePhase and the m executions of LocalPhase initiated

by it. For i ∈ [m], Vi is the set inducing the i-th subgraph. Value ∆⋆ =
∆
m is the rescaled threshold passed

to the executions of LocalPhase. Ri is the reference set created by LocalPhase for the i-th induced

subgraph.

For each induced subgraph, LocalPhase computes a maximal matching Mi in Line 5. While such a

matching is always large—its size is at least half the maximum matching size—it is hard to relate ts size

directly to the sizes of Hi and Fi. Therefore, we first analyze the size of a matching that would be created

by MatchHeavy(G⋆[Hi ∪ Fi],Hi, Fi). We refer to this matching as M̃i and we later use the inequality∣∣∣M̃i

∣∣∣ ≤ 2 |Mi|.
We partition each Hi, i ∈ [m], into two sets: H ′

i and H ′′
i . H ′

i is the subset of vertices in Hi of degree

less than 1
8∆ in G⋆. H ′′

i,t+1 is its complement, i.e., H ′′
i

def
= Hi \ H ′

i. We start by bounding the expected

total size of sets H ′
i. What is the probability that a given vertex v of degree less than 1

8∆ is included in⋃
i∈[m]Hi? Suppose that v ∈ Vk, where k ∈ [m]. The expected number of v’s neighbors in Rk is at

most (1 + ǫ) · µR · 18∆/m ≤ 3
16µR∆⋆ due to the independence and ǫ-near uniformity of D[C]. Using the

independence, Lemma 3.1, and the lower bound on ∆⋆, we obtain the following bound:

Pr

[
µRd̂v >

1

4
µR∆⋆

]
≤ 2 exp

(
−1

3
·
(
1

3

)2

· 3
16
µR∆⋆

)
≤ 2 exp (−27 lnn) = 2n−27.

If d̂v ≤ 1
4∆⋆, the probability that v is selected to Hk is at most µH(d̂v/∆⋆) ≤ µH(1/4) ≤ 1

2n
−12. Hence

v is selected to Hk—and therefore to H ′
k—with probability at most 2n−27 + 1

2n
−12 ≤ n−12. This implies

that
∑

i∈[m] E [|H ′
i|] ≤ n · n−12 = n−11.

We also partition the sets of friends, Fi for i ∈ [m], into two sets each: F ′
i and F ′′

i . This partition is

based on the execution of MatchHeavy for the i-th subgraph. In Line 1, this algorithm selects for every

vertex v ∈ Fi a random heavy neighbor v⋆ ∈ Hi. If v⋆ ∈ H ′
i, we assign v to F ′

i . Analogously, if v⋆ ∈ H ′′
i ,

we assign v to F ′′
i . Obviously, a heavy vertex in H ′

i can be selected only if H ′
i is non-empty. By Markov’s

inequality and the upper bound on
∑

i∈[m] E [|H ′
i|], the probability that at least one set H ′

i is non-empty is at

most n−11. Even if for all i ∈ [m], all vertices in Fi select a heavy neighbor in H ′
i whenever it is available,

the total expected number of vertices in sets F ′
i is at most

∑
i∈[m] E

[∣∣∣F ′
i,t+1

∣∣∣
]
≤ n · n−11 = n−10.

Before we proceed to bounding sizes of the remaining sets, we prove that with high probability, all

vertices have a number of neighbors close to the expectation. Let ϕ : V⋆ → [m] be the assignment of

vertices to subgraphs. We define E as the event that for all v ∈ V⋆,∣∣∣∣
1

m
|N(v) ∩ V⋆| −

∣∣N(v) ∩ Vϕ(v)
∣∣
∣∣∣∣ ≤

1

16
∆⋆.

Consider first one fixed v ∈ V⋆. The degree of v in G⋆ is |N(v) ∩ V⋆| ≤ 3
2∆. Due to the near-uniformity

and independence,
∣∣∣∣
1

m
|N(v) ∩ V⋆| − E

[∣∣N(v) ∩ Vϕ(v)
∣∣]
∣∣∣∣ ≤ ǫ ·

3

2

∆

m
≤ 3

400
∆⋆.
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This in particular implies that E
[∣∣N(v) ∩ Vϕ(v)

∣∣] ≤
(
3
2 + 3

400

)
∆⋆ ≤ 2∆⋆. Using the independence of D,

Lemma 3.1, and the lower bound on ∆⋆ (i.e., ∆⋆ =
∆
m ≥ 4000µ−2

R ln2 n = 4 · 1015 · ln4 n),

Pr

[∣∣E
[∣∣N(v) ∩ Vϕ(v)

∣∣]−
∣∣N(v) ∩ Vϕ(v)

∣∣∣∣ > 1

20
∆⋆

]
≤ 2 exp

(
−1

3
·
(

1

20
· 1
2

)2

· 2∆⋆

)

≤ 2 exp
(
−(1012 + 3) ln n

)

≤ n−(1012+2) ≤ n−12.

As a result, with this probability, we have
∣∣∣∣
1

m
|N(v) ∩ V⋆| −

∣∣N(v) ∩ Vϕ(v)
∣∣
∣∣∣∣ ≤

1

20
∆⋆ +

3

400
∆⋆ ≤

1

16
∆⋆.

By the union bound, this bound holds for all vertices in V⋆ simultaneously—and hence E occurs—with

probability at least 1− n · n−12 = 1− n−11.

If E does not occur, we can bound both
∑

i∈[m] |H ′′
i | and

∑
i∈[m] |F ′′

i | by n. This contributes at most

n−11 ·n = n−10 to the expected size of each of these quantities. Suppose now that E occurs. Consider an ar-

bitrary v ∈ H ′′
i for some i. The number of neighbors of v in Vi lies in the range

[
1
8∆⋆ − 1

16∆⋆,
3
2∆⋆ +

1
16∆⋆

]
⊆[

1
16∆⋆, 2∆⋆

]
. Moreover, the expected number of vertices w ∈ F ′′

i that select v in w⋆ in Line 1 of

MatchHeavy is bounded by 2∆⋆ · 1
4∆⋆

= 1
2 . It follows that E [|F ′′

i |] ≤ 1
2 E [|H ′′

i |], given E . We now

lower bound the expected size of M̃i given E . What is the probability that some vertex w ∈ Fi selects v as

w⋆ in MatchHeavy and (v,w) is added to M̃i?

This occurs if one of v’s neighbors w is added to Fi and selects v as w⋆, and additionally, v and w are

colored blue and red, respectively. The number of v’s neighbors is at least 1
16∆⋆. Since each vertex w in

Vi has at most 2∆⋆ neighbors, the number of heavy neighbors of w is bounded by the same number. This

implies that in the process of selecting Fi, only the first branch in the definition of µF is used and each

vertex w is included with probability exactly equal to the number of its neighbors in Hi divided by 4∆t+1.

Then each heavy neighbor of w is selected as w⋆ with probability one over the number of heavy neighbors

of w. What this implies is that each neighbor w of v is selected for Fi and selects v as w⋆ with probability

exactly (4∆⋆)
−1. Hence the probability that v is not selected as w⋆ by any of its at least 1

16∆⋆ neighbors w
can be bounded by (

1− 1

4∆⋆

) 1
16

∆⋆

≤ exp

(
− 1

4∆⋆
· 1
16

∆⋆

)
= e−1/64.

Therefore the probability that v is selected by some vertex w ∈ Fi as w⋆ is at least 1 − e−1/64 ≥ 1/100.

Then with probability 1/4, these two vertices have appropriate colors and this or another edge incident to

v with the same properties is added to M̃i. In summary, the probability that an edge (v,w) for some w as

described is added to M̃i is at least 1/400. Since we do not count any edge in the matching twice for two

heavy vertices, by the linearity of expectation E

[∣∣∣M̃i

∣∣∣
]
≥ 1

400 E [|H ′′
i |] given E . Overall, given E , we have

∑

i∈[m]

E
[∣∣H ′′

i

∣∣+
∣∣F ′′
i

∣∣] ≤ 3

2

∑

i∈[m]

E
[∣∣H ′′

i

∣∣] ≤ 600
∑

i∈[m]

E

[∣∣∣M̃i

∣∣∣
]
.

In general, without conditioning on E ,

∑

i∈[m]

E
[∣∣H ′′

i

∣∣+
∣∣F ′′
i

∣∣] ≤ 2 · n−10 + 600
∑

i∈[m]

E

[∣∣∣M̃i

∣∣∣
]
.
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We now combine bounds on all terms to finish the proof of the lemma.
∑

i∈[m]

E [|Hi ∪ Fi|] ≤
∑

i∈[m]

E
[∣∣H ′

i

∣∣+
∣∣F ′
i

∣∣+
∣∣H ′′

i

∣∣+
∣∣F ′′
i

∣∣]

≤ n−11 + n−10 + 2n−10 + 600
∑

i∈[m]

E

[∣∣∣M̃i

∣∣∣
]

≤ n−9 + 1200
∑

i∈[m]

E [|Mi|] .

3.2 Independence

Note that Lemma 3.2 requires that the vertices are distributed independently and near uniformly in the m
sets. This is trivially the case right after the vertices are partitioned independently at random. However,

in the final algorithm, after we partition the vertices, we run multiple phases on each machine. In the rest

of this section we show that running a single phase preserves independence of vertex distribution and only

slightly disturbs the uniformity (Lemma 3.3 and Lemma 3.6). As we have mentioned before, independence

stems from the fact that we use reference sets to estimate vertex degrees. We discard them at the end and

condition on them, which leads to the independence of the distribution of vertices that are not removed.

Lemma 3.3. Let D be an independent distribution of assignments of vertices in V⋆ to [m]. Let C be a non-

zero probability m-configuration that can be constructed by EmulatePhase for D. Let V ′
⋆ be the set of

vertices of V⋆ that are not fixed by C. Then D[C] is an independent distribution of vertices in V ′
⋆ on [m].

Now we prove Lemma 3.3. We start with an auxiliary lemma that gives a simple criterion under which

an independent distribution remains independent after conditioning on a random event. Consider a random

vector with independently distributed coordinates. Suppose that for any value of the vector, a random

event E occurs when all coordinates “cooperate,” where each coordinate cooperates independently with

probability that depends only on the value of that coordinate. We then show that the distribution of the

vector’s coordinates given E remains independent.

Lemma 3.4. Let k be a positive integer and A an arbitrary finite set. Let X = (X1, . . . ,Xk) be a random

vector in Ak with independently distributed coordinates. Let E be a random event of non-zero probability.

If there exist functions pi : A→ [0, 1], for i ∈ [k], such that for any x = (x1, . . . , xk) ∈ Ak appearing with

non-zero probability,

Pr[E|X = x] =

k∏

i=1

pi(xi),

then the conditional distribution of coordinates in X given E is independent as well.

Proof. Since the distribution of coordinates in X is independent, there are k probability mass functions

p′i : A → [0, 1], i ∈ [k], such that for every x = (x1, . . . , xk) ∈ Ak, Pr[X = x] =
∏k
i=1 p

′
i(xi). The

probability of E can be expressed as

Pr[E ] =
∑

x=(x1,...,xk)∈Ak

Pr[E ∧X = x] =
∑

x=(x1,...,xk)∈A
k

Pr[X=x]>0

Pr[E|X = x] · Pr[X = x]

=
∑

x=(x1,...,xk)∈Ak

k∏

i=1

pi(xi)p
′
i(xi) =

k∏

i=1

∑

y∈A

pi(y)p
′
i(y).
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Note that since the probability of E is positive, each multiplicative term
∑

y∈A pi(y)p
′
i(y), i ∈ [k], in the

above expression is positive. We can express the probability of any vector x = (x1, . . . , xk) ∈ Ak given E
as follows:

Pr[X = x|E ] = Pr[E ∧X = x]

Pr[E ] =
Pr[E|X = x] · Pr[X = x]

Pr[E ]

=

∏k
i=1 pi(xi)p

′
i(xi)∏k

i=1

∑
y∈A pi(y)p

′
i(y)

=
k∏

i=1

pi(xi)p
′
i(xi)∑

y∈A pi(y)p
′
i(y)

.

We define p′′i : A → [0, 1] as p′′i (x)
def
= pi(xi)p

′
i(xi)/

∑
y∈A pi(y)p

′
i(y) for each i ∈ [k]. Each p′′i is a valid

probability mass function on A. As a result we have Pr[X = x|E ] = ∏k
i=1 p

′′
i (xi), which proves that the

distribution of coordinates in X given E is still independent with each coordinate distributed according to

its probability mass function p′′i .

We now prove Lemma 3.3 by applying Lemma 3.4 thrice. We refer to functions pi, which describe the

probability of each coordinate cooperating, as cooperation probability functions.

of Lemma 3.3. C can be expressed as

C =
(
{R⋆i }i∈[m], {H⋆

i }i∈[m], {F ⋆i }i∈[m]

)

for some subsets R⋆i , H⋆
i , and F ⋆i of V⋆, where i ∈ [m]. We write Φ to denote the random assignment of

vertices to sets selected in Line 1 of EmulatePhase. Φ is a random variable distributed according to D.

Let ER be the event that for all i ∈ [m], the reference set Ri generated for the i-th induced subgraph by

LocalPhase equals exactly R⋆i . A vertex v that is assigned to a set Vi is included in Ri with probability

exactly µR, independently of other vertices. Hence once we fix an assignment ϕ : V⋆ → [m] of vertices to

sets Vi, we can express the probability of ER as a product of probabilities that each vertex cooperates. More

formally, Pr[ER|Φ = ϕ] =
∏
v∈V⋆

qv(ϕ(v)) for cooperation probability functions qv : [m]→ [0, 1] defined

as follows.

• If v ∈ ⋃i∈[m]R
⋆
i , there is exactly one i ∈ [m] such that v ∈ R⋆i . If v is not assigned to Vi, ER cannot

occur. If it is, v cooperates with ER with probability exactly µR, i.e., the probability of the selection

for Ri. For this kind of v, the cooperation probability function is

qv(i)
def
=

{
µR if v ∈ R⋆i ,

0 if v 6∈ R⋆i .

• If v 6∈ ⋃i∈[m]R
⋆
i , v cooperates with ER if it is not selected for Rϕ(v), independently of its assignment

ϕ(v), which happens with probability exactly 1 − µR. Therefore, the cooperation probability can be

defined as qv(i)
def
= 1− µR for all i ∈ [m].

We invoke Lemma 3.4 to conclude that the conditional distribution of values of Φ given ER is independent

as well.

We now define an event EH that both ER occurs and for all i ∈ [m], Hi, the set of heavy vertices

constructed for the i-th subgraph equals exactly H⋆
i . We want to show that the conditional distribution of

values of Φ given EH is independent. Note that if Φ is selected from the conditional distribution given ER
(i.e., all sets Ri are as expected) and we fix the assignment φ : V⋆ → [m] of vertices to sets Vi, then each
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vertex v ∈ V⋆ is assigned to Hφ(v)—this the only set Hi to which it can be assigned—independently of

other vertices. As a result, we can express the probability of EH given ER and ϕ being the assignment as a

product of cooperation probabilities for each vertex. More precisely, Pr[EH |Φ = ϕ, ER] =
∏
v∈V⋆

q′v(ϕ(v))
for cooperation probability functions q′v : [m] → [0, 1] defined as follows, where ∆⋆ is the threshold used

in the m executions of LocalPhase.

• If v ∈ ⋃i∈[m]H
⋆
i , then there is exactly one i such that v ∈ H⋆

i . EH can only occur if v is in-

cluded in the corresponding Hi. This cannot happen if v is not assigned to the corresponding Vi
by ϕ. If v is assigned to this Vi, it has to be selected for Hi, which happens with probability

µH (|N(v) ∩R⋆i |/(µR∆⋆)). The cooperation probability function can be written in this case as

q′v(i)
def
=

{
µH(|N(v) ∩R⋆i |/(µR∆⋆)) if v ∈ H⋆

i ,

0 if v 6∈ H⋆
i .

• If v 6∈ ⋃i∈[m]H
⋆
i , v cannot be included in Hi corresponding to the set Vi to which it is assigned for

EH to occur. This happens with probability 1 − µH(|N(v) ∩ R⋆i |/(µR∆⋆)). Hence, we can define

q′v(i)
def
= 1− µH(|N(v) ∩R⋆i |/(µR∆⋆)) for all i ∈ [m].

We can now invoke Lemma 3.4 to conclude that the distribution of values of Φ given EH is independent.

Finally, we define EF to be the event that both EH occurs and for each i ∈ [m], Fi, the set of friends

selected for the i-th induced subgraph, equals exactly F ⋆i . We observe that once Φ is fixed to a specific

assignment ϕ : V⋆ → [m] and EH occurs (i.e., all sets Ri and Hi are as in C), then each vertex is indepen-

dently included in Fϕ(v) with some specific probability that depends only on Hϕ(v), which is already fixed.

In this setting, we can therefore express the probability of EF , which exactly specifies the composition of

sets Fi, as a product of values provided by some cooperation probability functions q′′v : [m]→ [0, 1]. More

precisely, Pr[EF |Φ = ϕ, EH ] =
∏
v∈V⋆

q′′v (ϕ(v)) for q′′v that we define next.

• If v ∈ ⋃i∈[m] F
⋆
i , then there is exactly one i such that v ∈ F ⋆i . EF cannot occur if v is not assigned to

Vi and selected for Fi. Hence, the cooperation probability function for v is

q′′v (i)
def
=

{
µF (|N(v) ∩H⋆

i |/∆⋆) if v ∈ F ⋆i ,

0 if v 6∈ F ⋆i .

• If v 6∈ ⋃i∈[m] F
⋆
i , to whichever set Vi vertex v is assigned, it should not be included in Fi in order for

EF to occur. Hence, q′′v (i)
def
= 1− µF (|N(v) ∩H⋆

i⋆,t
|/∆t).

We invoke Lemma 3.4 to conclude that the distribution of values of Φ given EF is independent as well. This

is a distribution on assignments for the entire set V⋆. If we restrict it to assignments of V ′
⋆ ⊆ V⋆, we obtain

a distribution that first, is independent as well, and second, equals exactly D[C].

3.3 Near Uniformity

The proof of near uniformity is the most involved proof in this paper. In a nutshell, the proof is structured

as follows. We pick an arbitrary vertex v that has not been removed and show that with high probability it

has the same number of neighbors in all sets Ri. The same property holds for v’s neighbors in all sets Hi.

We use this to show that the probability of a fixed configuration of sets removed in a single phase is roughly
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the same for all assignments of v to subgraphs. In other words, if v was distributed nearly uniformly before

the execution of EmulatePhase, it is distributed only slightly less uniformly after the execution.

We begin by proving a useful property of µH (see Table 2 for definition). Recall that GlobalAlg

selects H , the set of heavy vertices, by taking all vertices of degree at least ∆/2. In LocalPhase the

degree estimate of each vertex depends on the number of neighbors in the reference set in the vertex’s

induced subgraph. We want the decision taken for each vertex to be approximately the same, independently

of which subgraph it is assigned to. Therefore, we use µH—which specifies the probability of the inclusion

in the set of heavy vertices—which is relatively insensitive to small argument changes. The next lemma

proves that this is indeed the case. Small additive changes to the parameter x to µH have small multiplicative

impact on both µH(x) and 1− µH(x).
Lemma 3.5 (Insensitivity of µH ). Let δ ∈ [0, (α/2)−1 ] = [0, (48 ln n)−1]. For any pair x and x′ of real

numbers such that |x− x′| ≤ δ,
µH(x

′) ∈ JµH(x)(1 ± αδ)K
and

1− µH(x′) ∈ J(1− µH(x))(1 ± αδ)K .

Proof. We define an auxiliary function f : R→ [0, 1]:

f(r)
def
=

{
1
2 exp

(
α
2 r
)

if r ≤ 0,

1− 1
2 exp

(
−α

2 r
)

if r > 0.

It is easy to verify that for all r ∈ R, µH(r) = f(r − 1/2) and 1− µH(r) = f(−(r − 1/2)). Therefore, in

order to prove the lemma, it suffices to prove that for any r and r′ such that |r − r′| ≤ δ,

f(r)(1− αδ) ≤ f(r′) ≤ f(r)(1 + αδ), (1)

i.e., a small additive change to the argument of f has a limited multiplicative impact on the value of f .

Note that f is differentiable in both (−∞, 0) and (0,∞). Additionally, it is continuous in the entire

range—the left and right branch of the function meet at 0—and both the left and right derivatives at 0 are

equal. This implies that it is differentiable at 0 as well. Its derivative is

f ′(r) =

{
α
4 · exp

(
α
2 r
)

if r ≤ 0,
α
4 · exp

(
−α

2 r
)

if r > 0,

which is positive for all r, and therefore, f is strictly increasing. Note that f ′ is increasing in (−∞, 0] and

decreasing in [0,∞). Hence the global maximum of f ′ equals f ′(0) = α/4.

In order to prove Inequality 1 for all r and r′ such that |r − r′| ≤ δ, we consider two cases. Suppose

first that r ≥ 0. By the upper bound on the derivative of f ,

f(r)− α

4
· |r − r′| ≤ f(r′) ≤ f(r) + α

4
· |r − r′|.

Since r ≥ 0, f(r) ≥ 1/2. This leads to

f(r)− f(r) · α
2
· |r − r′| ≤ f(r′) ≤ f(r) + f(r) · α

2
· |r − r′|.

By the bound on |r − r′|,
f(r)(1− αδ) ≤ f(r′) ≤ f(r)(1 + αδ),
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which finishes the proof in the first case.

Suppose now that r < 0. Since f is increasing, it suffices to bound the value of f from below at r − δ
and from above and at r + δ. For r − δ, we obtain

f(r − δ) = 1

2
exp

(α
2
(r − δ)

)
= f(r) exp

(
−α
2
δ
)

≥ f(r)
(
1− α

2
δ
)
≥ f(r)(1− αδ).

For r + δ, let us first define a function g : R→ R as

g(y)
def
=

1

2
exp

(α
2
y
)
.

For y ≤ 0, f(y) = g(y). For y > 0, g′(y) ≥ f ′(y) and hence, for any y ∈ R, g(y) ≥ f(y). As a result, we

obtain

f(r + δ) ≤ g(r + δ) =
1

2
exp

(α
2
(r + δ)

)
= f(r) · exp

(α
2
δ
)
.

By the bound on δ in the lemma statement, α2 δ ≤ 1. It follows from the convexity of the exponential function

that for any y ∈ [0, 1], exp(y) ≤ y · exp(1) + (1 − y) · exp(0) ≤ 3y + (1 − y) = 1 + 2y. Continuing the

reasoning,

f(r + δ) ≤ f(r) ·
(
1 + 2 · α

2
δ
)
= f(r)(1 + αδ),

which finishes the proof of Inequality (1).

The main result of this section is Lemma 3.6 that states that if a distribution D of vertex assignments is

near uniform, then EmulatePhase constructs a configuration C such that D[C] is near uniform as well,

and also, the maximum degree in the graph induced by the vertices not removed by EmulatePhase is

bounded.

Lemma 3.6. Let ∆, G⋆ = (V⋆, E⋆), m, and D be parameters for EmulatePhase such that

• D is an independent and ǫ-near uniform distribution on assignments of vertices V⋆ to [m] for ǫ ∈
[0, (200 ln n)−1],

• ∆
m ≥ 4000µ−2

R ln2 n.

Let C be an m-configuration constructed by EmulatePhase. With probability at least 1 − n−4 both the

following properties hold:

• The maximum degree in the graph induced by the vertices not fixed in C is bounded by 3
4∆.

• D[C] is 60α
((

∆
m

)−1/4
+ ǫ
)

-near uniform.

Proof overview. This is the most intricate proof of the entire paper. We therefore provide a short overview.

First, we list again the variables in EmulatePhase and LocalPhase to which we refer in the proof and

define additional convenient symbols. Then we introduce five simple random events (Events 1–5) that

capture properties needed to prove Lemma 3.6. In Claim 3.7, we show that the probability of all these

events occurring simultaneously is high. The proof of the claim follows mostly from a repetitive application

of the Chernoff bound. In the next claim, Claim 3.8, we show that the occurrence of all the events has a
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few helpful consequences. First, high degree vertices get removed in the execution of EmulatePhase

(which is one of our final desired properties). Second, each vertex v that is not fixed in C has a very similar

number of neighbors in all sets Ri and it has a very similar number of neighbors in all sets Hi. In the final

proof of Lemma 3.6, we use the fact that this implies that to whichever set Vi vertex v was assigned in

EmulatePhase, the probability of its removal in EmulatePhasewas more or less the same. This leads

to the conclusion that if v was distributed nearly uniformly in D, it is distributed only slightly less uniformly

in D[C].

Notation. To simplify the presentation, for the rest of Section 3.3, we assume that ∆, G⋆ = (V⋆, E⋆),
m, and D are the parameters to EmulatePhase as in the statement of Lemma 3.6. Additionally, for

each i ∈ [m], Ri, Hi, and Fi are the sets constructed by LocalPhase for the i-th subgraph in the

execution of EmulatePhase. We also write C denote the corresponding m-configuration, i.e., C =(
{Ri}i∈[m], {Hi}i∈[m], {Fi}i∈[m]

)
. Furthermore, for each v ∈ V⋆, d̂v is the estimate of v’s degree in the

subgraph to which it was assigned. This estimate is computed in Line 2 of LocalPhase. We also use ∆⋆

to denote the rescaled threshold passed in all calls to LocalPhase, i.e., ∆⋆ =
∆
m .

We also introduce additional notation, not present in EmulatePhase or LocalPhase. For each

v ∈ V⋆, dv def
= |N(v) ∩ V⋆|, i.e., dv is the degree of v in G⋆. For each vertex v ∈ V⋆, we also introduce a

notion of its weight: wv
def
= µH(dv/∆), which can be seen as a very rough approximation of v’s probability

of being selected for the set of heavy vertices. For any v ∈ V⋆ and U ⊆ V⋆, we also introduce notation for

the total weight of v’s neighbors in U :

Wv(U)
def
=

∑

u∈N(v)∩U

wu.

Finally, for all i ∈ [m] and v ∈ V⋆, we also introduce a slightly less intuitive notion of the expected number

of heavy neighbors of v in the i-th subgraph after the degree estimates are fixed in Line 2 of LocalPhase

and before vertices are assigned to the heavy set in Line 3:

hv,i
def
=

∑

u∈N(v)∩Vi

µH

(
d̂u/∆⋆

)
.

Obviously, each hv,i is a random variable.

Convenient random events. We now list five random events that we hope all to occur simultaneously with

high probability. The first event intuitively is the event that high-degree vertices are likely to be included in

the set of heavy vertices in Line 3 of LocalPhase.

Event 1

For each vertex v ∈ V⋆ such that dv ≥ 3
4∆,

µH

(
d̂v/∆⋆

)
≥ 1− 1

2
n−6.

Another way to define this event would be to state that d̂v for such vertices v is high, but this form is more

suitable for our applications later. The next event is the event that all such vertices are in fact classified as
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heavy.

Event 2

Each vertex v ∈ V⋆ such that dv ≥ 3
4∆ belongs to

⋃
i∈[m]Hi.

The next event is the event that low-degree vertices have a number of neighbors in each set Ri close to the

mean. This implies that if we were able to move a low-degree vertex v to Vi, for any i ∈ [m], its estimated

degree d̂v would not change significantly.

Event 3

For each vertex v ∈ V⋆ such that dv <
3
4∆ and each i ∈ [m],∣∣∣∣

1

µR
|N(v) ∩Ri| −

dv
m

∣∣∣∣ ≤ ∆
3/4
⋆ +

3

4
ǫ∆⋆.

The next event is the event that low-degree vertices have a number of neighbors in each set Ri close to the

mean. This implies that if we were able to move a low-degree vertex v to Vi, for any i ∈ [m], its estimated

degree d̂v would not change significantly.

Event 4

For each vertex v ∈ V⋆ such that dv <
3
4∆ and each i ∈ [m],

|Wv(Vi)−Wv(V⋆)/m| ≤ ∆
3/4
⋆ +

3

4
ǫ∆⋆.

Recall that hv,i intuitively expresses the expected number of v’s neighbors in the i-th induced subgraph at

some specific stage in the execution of LocalPhase for the i-th induced subgraph. The final event is the

event that for all bounded hv,i, the actual number of v’s neighbors in Hi does not deviate significantly from

hv,i.

Event 5

For each vertex v ∈ V⋆ and each i ∈ [m], if hv,i ≤ 2∆⋆, then

||N(v) ∩Hi| − hv,i| ≤ ∆
3/4
⋆ .

High probability of the random events. We now show that the probability of all the events occurring is

high. The proof follows mostly via elementary applications of the Chernoff bound.

Claim 3.7. If ǫ ∈ [0, 1/100] and ∆
m ≥ 4000µ−2

R ln2 n, then Events 1–5 occur simultaneously with probabil-

ity at least 1− n−4.

Proof. We consider all events in order and later show by the union bound that all of them hold simulta-

neously with high probability. In the proof of the lemma, we extensively use the fact that ∆⋆ = ∆
m ≥

4000µ−2
R ln2 n = 4 · 1015 · ln4 n.

First, we consider Event 1 and Event 2, which we handle together. Consider a vertex v such that dv ≥
3
4∆. Let i⋆ be the index of the set to which it is assigned. Since D is ǫ-near uniform, the expectation of

|N(v) ∩Ri⋆ |, the number of v’s neighbors in Ri⋆ , is at least (1 − ǫ)34µR∆
m ≥ 297

400µR∆⋆. Since vertices are

both assigned to machines independently and included in the reference set independently as well, we can
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apply Lemma 3.1 to bound the deviation with high probability. The probability that the number of neighbors

is smaller than 9
10 · 297400µR∆⋆ ≥ 5

8µR∆⋆ is at most

2 exp

(
−1

3
·
(

1

10

)2

· 297
400

µR∆⋆

)
≤ 2 exp

(
− 1

405
µR∆⋆

)
≤ 2n−9 ≤ 1

2
n−6.

Hence with probability at least 1 − 1
2n

−6, d̂v ≥ 5
8∆⋆ and µH

(
d̂v/∆⋆

)
≥ 1 − 1

2n
−6. If this is the case,

v is not included in the set of heavy vertices in Line 3 of LocalPhase with probability at most 1
2n

−6.

Therefore, v has the desired value of µH

(
d̂v/∆⋆

)
and belongs to Hi⋆ with probability at least 1 − n−6.

By the union bound, this occurs for all high degree vertices with probability at least 1− n−5, in which case

both Event 1 and Event 2 occur.

We now show that Event 3 occurs with high probability. Let v be an arbitrary vertex such that dv <
3
4∆

and let i ∈ [m]. Let Xv,i
def
= |N(v) ∩Ri|. Xv,i is a random variable. Since D is ǫ-near uniform, E [Xv,i] ∈

J(1± ǫ)µRdv/mK. In particular, due to the bounds on dv and ǫ, E[Xv,i] ≤ µR∆⋆. Due to the independence,

we can use Lemma 3.1 to bound the deviation of Xv,i from its expectation. We have

Pr
(
|Xv,i − E[Xv,i]| > µR∆

3/4
⋆

)
≤ 2 exp


−1

3
·
(

1

∆
1/4
⋆

)2

· µR∆⋆




= 2exp

(
−1

3
µR∆

1/2
⋆

)
≤ 2n−21.

Hence with probability 1− 2n−21, we have

∣∣∣∣Xv,i − µR
dv
m

∣∣∣∣ ≤ |Xv,i − E[Xv,i]|+
∣∣∣∣E[Xv,i]− µR

dv
m

∣∣∣∣ ≤ µR∆
3/4
⋆ + ǫµR

dv
m

≤ µR∆3/4
⋆ +

3

4
ǫµR∆⋆.

By dividing both sides by µR, we obtain the desired bound

∣∣∣∣
Xv,i

µR
− dv
m

∣∣∣∣ =
∣∣∣∣
1

µR
|N(v) ∩Ri| −

dv
m

∣∣∣∣ ≤ ∆
3/4
⋆ +

3

4
ǫ∆⋆.

By the union bound, this holds for all v and i of interest—and therefore, Event 3 occurs—with probability

at least 1− |V⋆| ·m · 2n−21 ≥ 1− n−5.

We now move on to Event 4. Consider a vertex v such that dv <
3
4∆ and i ∈ [m]. Note that since

the weight of every vertex is at most 1, Wv(V⋆)/m ≤ dv/m < 3
4∆⋆. Since D[C] is ǫ-near uniform,

E [Wv(Vi)] ∈ J(1± ǫ)Wv(V⋆)/mK. In particular, E [Wv(Vi)] ≤ 101
100Wv(V⋆)/m ≤ 101

100 · 34∆⋆ ≤ ∆⋆. Since

vertices are assigned to machines independently, we can apply Lemma 3.1 to bound the deviation of Wv(Vi)
from the expectation:

Pr
(
|Wv(Vi)− E [Wv(Vi)]| > ∆

3/4
⋆

)
≤ 2 exp


−1

3
·
(

1

∆
1/4
⋆

)2

·∆⋆




= 2exp

(
−1

3
∆

1/2
⋆

)
≤ 2n−21.
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As a result, with probability at least 1− 2n−21,

|Wv(Vi)−Wv(V⋆)/m| ≤ |Wv(Vi)− E [Wv(Vi)]|+ |E [Wv(Vi)]−Wv(V⋆)/m|

≤ ∆
3/4
⋆ + ǫWv(V⋆)/m ≤ ∆

3/4
⋆ + ǫdv/m ≤ ∆

3/4
⋆ +

3

4
ǫ∆⋆.

By the union bound, this holds for all v and i of interest—and therefore, Event 4 occurs—with probability

at least 1− |V⋆| ·m · 2n−21 ≥ 1− n−5.

To show that Event 5 occurrs with high probability, recall first that hv,i is the expected number of v’s

neighbors to be added in Line 3 to Hi in the execution of LocalPhase for the i-th subgraph. Note that

the decision of adding a vertex to Hi is made independently for each neighbor of v. Fix a v ∈ V⋆ and

i ∈ [m] such that hv,i ≤ 2∆⋆. We apply Lemma 3.1 to bound the probability of a large deviation from the

expectation:

Pr
(
||N(v) ∩Hi| − hv,i| > ∆

3/4
⋆

)
≤ 2 exp


−1

3
·
(

1

2∆
1/4
⋆

)2

· 2∆⋆




= 2exp

(
−1

6
∆

1/2
⋆

)
≤ 2n−10.

By the union bound the probability that this bound does not hold for some v and i such that hv,i ≤ 2∆⋆ is

by the union bound at most |V⋆| ·m ·2n−10 ≤ n−5. Hence, Event 5 occurs with probability at least 1−n−5.

In summary, Events 1–5 occur simultaneously with probability at least 1−4 ·n−5 ≥ 1−n−4 by another

application of the union bound.

Consequences of the random events. We now show that if all the random events occur, then a few helpful

properties hold for every vertex v that is not fixed by the constructed configuration C. Namely, v’s degree is

at most 3
4∆, the number of v’s neighbors is similar in all sets Ri is approximately the same, and the number

of v’s neighbors is similar in all sets Hi.

Claim 3.8. If Events 1–5 occur for ǫ ∈ [0, (200 ln n)−1] and ∆
m ≥ 4000µ−2

R ln2 n, then the following

properties hold for every vertex v ∈ V⋆ that is not fixed by C:

1. dv <
3
4∆.

2. There exists χv such that for all i ∈ [m],

|N(v) ∩Ri| /µR ∈
s
χv ±

(
∆

3/4
⋆ +

3

4
ǫ∆⋆

){
.

3. There exists ψv ∈
[
0, 34∆⋆

]
such that for all i ∈ [m],

|N(v) ∩Hi| ∈
r
ψv ± α

(
∆

3/4
⋆ + ǫ∆⋆

)z
.

Proof. We use in the proof of the claim the fact that ∆⋆ =
∆
m ≥ 4000µ−2

R ln2 n = 4 · 1015 · ln4 n. To prove

the lemma, we fix a vertex v that is not fixed by C. The first property is directly implied by Event 2. Suppose

that dv ≥ 3
4∆. Then v is included in the Hi corresponding to the subgraph to which it has been assigned

and v is fixed by C. We obtain a contradiction that implies that dv <
3
4∆.
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For the second property, we now know that dv <
3
4∆. The property follows then directly from Event 3

with χv
def
= dv/m.

The last property requires a more complicated reasoning. We set ψv
def
= Wv(V⋆)/m < 3

4∆⋆. Consider

any i ∈ [m]. By Event 4,

Wv(Vi) ∈
s
ψv ±

(
∆

3/4
⋆ +

3

4
ǫ∆⋆

){
. (2)

Consider now an arbitrary u ∈ V⋆. We bound the difference between wu = µH (du/∆), which can be seen

as the ideal probability of the inclusion in the set of heavy vertices, and µH

(
d̂u/∆⋆

)
, the actual probability

of this event in Line 3 of the appropriate execution of LocalPhase. Let δ⋆
def
= α

(
∆

−1/4
⋆ + 3

4ǫ
)

. We

consider two cases.

• If du <
3
4∆, by Event 3, the monotonicity of µH , and Lemma 3.5,

µH

(
d̂u/∆⋆

)
∈

s
µH

(
du
∆
±
(
∆

−1/4
⋆ +

3

4
ǫ

)){

⊆ Jwu · (1± δ⋆)K .

Note that Lemma 3.5 is applied properly because ∆
−1/4
⋆ + 3

4ǫ ≤ (200 ln n)−1 + (200 ln n)−1 ≤
(48 ln n)−1.

• If du ≥ 3
4∆, by Event 1, µH

(
d̂u/∆⋆

)
∈
[
1− 1

2n
−6, 1

]
. Concurrently, wu ∈ [µH(3/4), 1] =

[
1− 1

2n
−12, 1

]
. Because ∆⋆ is relatively small, i.e., ∆⋆ ≤ n,

µH

(
d̂u/∆⋆

)
∈

r
wu

(
1±∆

−1/4
⋆

)z
⊆ Jwu · (1± δ⋆)K ,

which is the same bound as in the previous case.

It follows from the bound that we just obtained and the definitions of Wv and hv,i that

hv,i =
∑

u∈N(v)∩Vi

µH

(
d̂u/∆⋆

)
∈

u
v(1± δ⋆) ·

∑

u∈N(v)∩Vi

wu

}
~

= JWv (Vi) · (1± δ⋆)K . (3)

We now combine bounds (2) and (3):

hv,i ∈
[
ψv (1− δ⋆)−

(
∆

3/4
⋆ +

3

4
ǫ∆⋆

)
(1 + δ⋆) , ψv (1 + δ⋆) +

(
∆

3/4
⋆ +

3

4
ǫ∆⋆

)
(1 + δ⋆)

]

⊆
s
ψv ±

(
ψvδ⋆ +

(
∆

3/4
⋆ +

3

4
ǫ∆⋆

)
(1 + δ⋆)

){
.

Due to the lower bound on ∆⋆, we obtain δ⋆ ≤ α
(
(200 ln n)−1 + (200 ln n)−1

)
≤ 1. This enables us to
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simplify and further transform the bound on hv,i:

hv,i ∈
s
ψv ±

(
ψvδ⋆ + 2

(
∆

3/4
⋆ +

3

4
ǫ∆⋆

)){

⊆
s
ψv ±

(
3

4
α∆

3/4
⋆ +

9

16
αǫ∆⋆ + 2∆

3/4
⋆ +

3

2
ǫ∆⋆

){

⊆
s
ψv ± α

(
4

5
∆

3/4
⋆ + ǫ∆⋆

){
.

By applying the bound on ∆⋆ again, we obtain a bound on the magnitude of the second term in the above

bound:

α

(
4

5
∆

3/4
⋆ + ǫ∆⋆

)
= α

(
4

5
∆

−1/4
⋆ + ǫ

)
∆⋆ ≤ 96 ln n

(
1

200 ln n
+

1

200 ln n

)
∆⋆ ≤ ∆⋆.

This implies that hv,i ≤ ψv+∆⋆ ≤ 2∆⋆. The condition in Event 5 holds, and therefore, ||N(v) ∩Hi| − hv,i| ≤
∆

3/4
⋆ . We combine this with the bound on hv,i to obtain

|N(v) ∩Hi| ∈
s
ψv ±

(
α
4

5
∆

3/4
⋆ + αǫ∆⋆ +∆

3/4
⋆

){
⊆

r
ψv ± α

(
∆

3/4
⋆ + ǫ∆⋆

)z
.

Wrapping up the proof of near uniformity. We now finally prove Lemma 3.6. Recall that it states that

an ǫ-near uniform D is very likely to result in a near uniform D[C] with a slightly worse parameter and

that all vertices not fixed by C have bounded degree. The proof combines the last two claims: Claim 3.7

and Claim 3.8. We learn that C, the m-configuration constructed in the process is very likely to have the

properties listed in Claim 3.8. One of those properties is exactly the property that all vertices not fixed by

C have bounded degree. Hence we have to prove only the near uniformity property. We accomplish this by

observing that the probability of C equal to a specific m-configuration C⋆ with good properties—those in

Claim 3.8—does not depend significantly on to which induced subgraph a given vertex v not fixed in C⋆ is

assigned. This can be used to show that the conditional distribution of v given that C = C⋆ is near uniform

as desired.

Proof of Lemma 3.6. By combining Claim 3.7 and Claim 3.8, we learn that with probability at least 1−n−4,

all properties listed in the statement of Claim 3.8 hold for C, the configuration constructed by EmulatePhase.

Since one of the properties is exactly the same as in the statement of Lemma 3.6, it suffices to prove the

other one: that D[C] is 60α
(
∆

−1/4
⋆ + ǫ

)
-near uniform for C with this set of properties.

Fix C̃ =
(
{R̃i}i∈[m], {H̃i}i∈[m], {F̃i}i∈[m]

)
to be an m-configuration that has non-zero probability

when EmulatePhase is ran for D and has the properties specified by Claim 3.8. Consider an arbitrary

vertex v ∈ V⋆. In order to prove the near uniformity of D
[
C̃
]
, we show that v is assigned by it almost

uniformly to [m]. Let E be the event that EmulatePhase constructs C̃, i.e., C = C̃. For each i ∈ [m],
let E→i be the event that v is assigned to the i-th induced subgraph. Let p : [m] → [0, 1] be the probability

mass function describing the probability of the assignment of v to each of the m subgraphs inD. Obviously,

p(i) = Pr[E→i] for all i ∈ [m]. Due to the ǫ-near uniformity of D, p(i) =
q

1
m (1± ǫ)

y
.

For each i ∈ [m], let qi
def
= Pr[E|E→i]. In order to express all qi’s in a suitable form, we conduct a

thought experiment. Suppose v were not present in the graph, but the distribution of all the other vertices in
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the modifiedD remained the same. Let q⋆ be the probability of E , i.e., C = C̃, in this modified scenario. How

does the probability of E change if we add v back and condition on its assignment to a machine i? Note

first that conditioning on E→i does not impact the distribution of the other vertices, because vertices are

assigned to machines independently in D. In order for E still to occur in this scenario, v cannot be assigned

to any of Ri, Hi, or Fi, for which it is considered. Additionally, as long as this the case, v does not impact

the behavior of other vertices which only depends on the content of these sets and independent randomized

decisions to include vertices. As a result we can express qi as a product of q⋆ and three probabilities: of v
not being included in sets Ri, Hi, or Fi.

qi = q⋆ · (1− µR) ·


1− µH




∣∣∣N(v) ∩ R̃i
∣∣∣ /µR

∆⋆




 ·


1− µF




∣∣∣N(v) ∩ H̃i

∣∣∣
∆⋆




 . (4)

Using the properties listed in Claim 3.8, we have

∣∣∣N(v) ∩ R̃i
∣∣∣ /µR ∈

s
χv ±

(
∆

3/4
⋆ +

3

4
ǫ∆⋆

){
,

and ∣∣∣N(v) ∩ H̃i

∣∣∣ ∈
r
ψv ± α

(
∆

3/4
⋆ + ǫ∆⋆

)z
,

where χv and ψv are constants independent of machine i to which v has been assigned and ψ ≤ 3
4∆⋆. In the

next step, we use these bounds to derive bounds on the multiplicative terms in Equation (4) that may depend

on i. We also repeatedly use the bounds ∆⋆ =
∆
m ≥ 4000µ−2

R ln2 n = 4 · 1015 · ln4 n and ǫ ≤ (200 ln n)−1

from the lemma statement. First, due to Lemma 3.5,

1− µH




∣∣∣N(v) ∩ R̃i
∣∣∣ /µR

∆⋆


 ∈

s
1− µH

(
χv
∆⋆
±
(
∆

−1/4
⋆ +

3

4
ǫ

)){

⊆
s(

1− µH
(
χv
∆⋆

))
·
(
1± α

(
∆

−1/4
⋆ +

3

4
ǫ

)){
.

(Note that the application of Lemma 3.5 was correct, because ∆
−1/4
⋆ + 3

4ǫ ≤ (200 ln n)−1+(200 ln n)−1 <
(96 ln n)−1.) Second,

1− µF




∣∣∣N(v) ∩ H̃i

∣∣∣
∆⋆


 ∈

s
1− µF

(
ψv
∆⋆
± α

(
∆

−1/4
⋆ + ǫ

)){
.

Since ψv/∆⋆ ≤ 3
4 and α

(
∆

−1/4
⋆ + ǫ

)
≤ (96 ln n) ·

(
(200 ln n)−1 + (200 ln n)−1

)
< 1, the argument to

µF in the above bound is always less than 4, and therefore, only one branch of µF ’s definitions gets applied.

Hence, we can eliminate µF :

1− µF




∣∣∣N(v) ∩ H̃i

∣∣∣
∆⋆


 ∈

s
1− ψv

4∆⋆
± α

4

(
∆

−1/4
⋆ + ǫ

){
.
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Since 1− ψv

4∆⋆
≥ 3

4 , we can further transform the bound to

1− µF




∣∣∣N(v) ∩ H̃i

∣∣∣
∆⋆


 ∈

s(
1− ψv

4∆⋆

)(
1± α

3

(
∆

−1/4
⋆ + ǫ

)){
.

Let δ1
def
= α

(
∆

−1/4
⋆ + 3

4ǫ
)

and δ2
def
= α

3

(
∆

−1/4
⋆ + ǫ

)
As a result, every qi can be expressed as qi = ηvλiλ

′
i,

where ηv is a constant independent of i, λi ∈ J1± δ1K, and λ′i ∈ J1± δ2K. For every i, we can also write

Pr[E ∧ E→i] = Pr[E|E→i] · Pr[E→i] = ηvλiλ
′
i · p(i) =

ηv
m
λiλ

′
iλ

′′
i ,

where λ′′i ∈ J1± ǫK. We now express the conditional probability of v being assigned to the i-th subgraph in

D given E :

Pr[E→i|E ] =
Pr[E ∧ E→i]∑m
j=1 Pr[E ∧ E→j]

=
λiλ

′
iλ

′′
i∑m

j=1 λjλ
′
jλ

′′
j

.

Note that for any i, this implies that

1

m
· (1− δ1)(1− δ2)(1− ǫ)
(1 + δ1)(1 + δ2)(1 + ǫ)

≤ Pr[E→i|E ] ≤
1

m
· (1 + δ1)(1 + δ2)(1 + ǫ)

(1− δ1)(1− δ2)(1− ǫ)
. (5)

Observe that

δ1 ≤ (96 ln n) ·
(
(7000 ln n)−1 + (250 ln n)−1

)
< 1/2,

and

δ2 ≤
1

3
· (96 ln n) ·

(
(7000 ln n)−1 + (200 ln n)−1

)
< 1/2.

Hence all of δ1, δ2, and ǫ are at most 1/2. We can therefore transform (5) to

1

m
· (1− δ1)2(1− δ2)2(1− ǫ)2 ≤ Pr[E→i|E ] ≤

1

m
· (1 + δ1)(1 + δ2)(1 + ǫ)(1 + 2δ1)(1 + 2δ2)(1 + 2ǫ),

and then
1

m
· (1− 2δ1 − 2δ2 − 2ǫ) ≤ Pr[E→i|E ] ≤

1

m
· (1 + 45δ1 + 45δ2 + 45ǫ).

Hence

Pr[E→i|E ] ∈
s
1

m
· (1± 45(δ1 + δ2 + ǫ))

{
⊆

s
1

m
·
(
1± 60α

(
∆

−1/4
⋆ + ǫ

)){
,

which finishes the proof that D
[
C̃
]

is 60α
(
∆

−1/4
⋆ + ǫ

)
-near uniform.

4 Parallel Algorithm

In this section, we introduce our main parallel algorithm. It builds on the ideas introduced in EmulatePhase.

EmulatePhase randomly partitions the graph into m induced subgraphs and runs on each of them

LocalPhase, which resembles a phase of GlobalAlg. As we have seen, the algorithm performs well

even if vertices are assigned to subgraphs not exactly uniformly so long as the assignment is fully inde-

pendent. Additionally, with high probability, if we condition on the configuration of sets Ri, Hi, and Fi
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that were removed, the distribution of assignments of the remaining vertices is still nearly uniform and also

independent.

These properties allow for the main idea behind the final parallel algorithm. We partition vertices ran-

domly into m induced subgraphs and then run LocalPhase multiple times on each of them with no

repartitioning in the meantime. In each iteration, for a given subgraph, we halve the local threshold ∆⋆.

This corresponds to multiple phases of the original global algorithm. As long as we can show that this

approach leads to finding a large matching, the obvious gain is that multiple phases of the original algorithm

translate to O(1) parallel rounds. This approach enables our main result: the parallel round complexity

reduction from O(log n) to O((log log n)2).

Algorithm 5: ParallelAlg(G,S)
The final parallel matching algorithm

Input:

• graph G = (V,E) on n vertices

• parameter S ∈ Z+ such that S ≤ n and S = nΩ(1) (each machine uses O(S) space)

Output: matching in G

1 ∆← n, V ′ ← V , M ← ∅
2 while ∆ ≥ n

S (200 lnn)32 do

/* High-probability invariant: maximum degree in G[V ′] bounded by 3
2∆ */

3 m←
⌊√

n∆
S

⌋
/* number of machines used */

4 τ ←
⌈

1
16 log120α (∆/m)

⌉
/* number of phases to emulate */

5 Partition V ′ into m sets V1, . . . , Vm by assigning each vertex independently uniformly at random.

6 foreach i ∈ [m] do in parallel

7 If the number of edges in G[Vi] is greater than 8S, Vi ← ∅.
8 for j ∈ [τ ] do (Vi,Mi,j)← LocalPhase

(
i, G[Vi],∆/

(
2j−1m

))

9 V ′ ← ⋃m
i=1 Vi

10 M ←M ∪⋃m
i=1

⋃τ
j=1Mi,j

11 ∆← ∆/2τ

12 Compute degrees of vertices V ′ in G[V ′] and remove from V ′ vertices of degree at least 2∆.

13 Directly simulate M ′ ← GlobalAlg(G[V ′], 2∆), using O(1) rounds per phase.

14 return M ∪M ′

We present ParallelAlg, our parallel algorithm, as Algorithm 5. We write S to denote a parameter

specifying the amount of space per machine. After the initialization of variables, the algorithm enters

the main loop in Lines 2–11. The loop is executed as long as ∆, an approximate upper bound on the

maximum degree in the remaining graph, is large enough. The loop implements the idea of running multiple

iterations of LocalPhase on each induced subgraph in a random partition. At the beginning of the loop,

the algorithm decides on m, the number of machines, and τ , the number of phases to be emulated. Then it

creates a random partition of the current set of vertices that results in m induced subgraphs. Next for each

subgraph, the algorithm first runs a security check that the set of edges fits onto a single machine (see Line 7).

If it does not, which is highly unlikely, the entire subgraph is removed from the graph. Otherwise, the entire

subgraph is sent to a single machine that runs τ consecutive iterations of LocalPhase. Then the vertices

not removed in the executions of LocalPhase are collected for further computation and new matching

edges are added to the matching being constructed. During the execution of the loop, the maximum degree in

the graph induced by V ′, the set of vertices to be considered is bounded by 3
2∆ with high probability. Once
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the loop finishes, we remove from the graph vertices of degree higher than 2∆—there should be none—and

we directly simulate GlobalAlg on the remaining graph, using O(1) rounds per phase.

4.1 Preliminaries

Before we analyze the behavior of the algorithm, we observe that the value of ∆
m inside the main loop

is at least polylogarithmic and that the same property holds for the rescaled threshold that is passed to

LocalPhase.

Lemma 4.1. Consider a single iteration of the main loop of ParallelAlg (Lines 2–11). Let ∆ and m be

set as in this iteration. The following two properties hold:

• ∆/m ≥ (200 log n)16.

• The threshold ∆/
(
2j−1m

)
passed to LocalPhase in Line 8 is always at least (∆/m)15/16 ≥

4000µ−2
R ln2 n.

Proof. Let τ be also as in this iteration of the loop. The smallest threshold passed to LocalPhase is

∆/(2τ−1m). Let λ
def
= S∆/n, where S is the parameter to ParallelAlg. Due to the condition in

Line 2, λ ≥ (200 ln n)32. Note that ∆ = λn/S. Hence m ≤
√
n∆/S = n

S

√
λ. This implies that

∆/m ≥
√
λ ≥ (200 ln n)16, which proves the first claim. Due to the definition of τ ,

2τ−1 ≤ (120α)τ−1 ≤ (∆/m)1/16.

This implies that

∆/(2τ−1m) ≥ (∆/m)15/16 ≥ (200 ln n)15 > 4 · 1015 · ln4 n = 4000µ−2
R ln2 n.

We also observe that the probability of any set of vertices deleted by the security check in Line 7 of

ParallelAlg is low as long as the maximum degree in the graph induced by the remaining vertices is

bounded.

Lemma 4.2. Consider a single iteration of the main loop of ParallelAlg and let ∆ and V ′ be as in that

iteration. If the maximum degree in G[V ′] is bounded by 3
2∆, then the probability of any subset of vertices

deleted in Line 7 is n−8.

Proof. Let m be as in the same iteration of the main loop of ParallelAlg. Consider a single vertex

v ∈ V ′. The expected number of v’s neighbors assigned to the same subgraph is at most 3
2∆/m. Recall

that due to Lemma 4.1, ∆
m ≥ 200 ln n. Since the assignment of vertices to machines is fully independent, by

Lemma 3.1 (i.e., the Chernoff bound), the probability that v has more than 2∆/m neighbors is bounded by

2 exp

(
−1

3
·
(
1

3

)2

· 3
2
· ∆
m

)
≤ 2 exp

(
− 1

18
· 200 ln n

)
≤ n−10.

Therefore, by the union bound, with probability 1−n−9, no vertex has more than 2∆ neighbors in the same

induced subgraph. As |V ′| ≤ n, the expected number of vertices in each set Vi constructed in the iteration

of the main loop is at most n/m ≥ ∆/m ≥ 200 ln n. What is the probability that |Vi| > 2n/m? By the

independence of vertex assignments and Lemma 3.1, the probability of such event is at most

2 exp

(
−1

3
· n
m

)
≤ 2 exp

(
−1

3
· 200 ln n

)
≤ n−10.
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Again by the union bound, the event |Vi| ≤ 2n/m, for all i simultaneously, occurs with probability at least

1−n−9. Combining both bounds, with probability at least 1−2n−9 ≥ 1−n−8, all induced subgraphs have

at most 2n/m vertices and the degree of every vertex is bounded by 2∆/m. Hence the number of edges in

one induced subgraph is at most 1
2 · 2nm · 2∆m = 2n∆

m2 . By the definition of m and the setting of parameters

in the algorithm, m ≥ 1
2

√
n∆
S , where S is the parameter to ParallelAlg. This implies that the number

of edges is at most 2n∆/

(
1
2

√
n∆
S

)2

= 8S in every induced subgraph with probability 1− n−8, in which

case no set Vi is deleted in Line 7 of ParallelAlg.

4.2 Matching Size Analysis

The parallel algorithm runs multiple iterations of LocalPhase on each induced subgraph, without repar-

titioning. A single iteration on all subgraphs corresponds to running EmulatePhase once. We now show

that in most cases, the global algorithm simulates EmulatePhase on a well behaved distribution with in-

dependently assigned vertices and all vertices distributed nearly uniformly conditioned on the configurations

of the previously removed sets Ri, Hi, and Fi. We also show that the maximum degree in the remaining

graph is likely to decrease gracefully during the process.

Lemma 4.3. With probability at least 1− n−3:

• all parallel iterations of LocalPhase in ParallelAlg on each induced subgraph correspond

to running EmulatePhase on independent and (200 ln n)−1-near uniform distributions of assign-

ments,

• the maximum degree of the graph induced by the remaining vertices after the k-th simulation of

EmulatePhase is 3
2∆/2

k.

Proof. We first consider a single iteration of the main loop in ParallelAlg. Let ∆, τ , and m be set as

in this iteration of the loop. For j ∈ [τ ], let ∆j
def
= ∆/

(
2j−1m

)
be the threshold passed to LocalPhase

for the j-th iteration of LocalPhase on each of the induced subgraphs. The parallel algorithm assigns

vertices to subgraphs and then iteratively runs LocalPhase on each of them. In this analysis we ignore

the exact assignment of vertices to subgraphs until they get removed as a member of one of sets Ri, Hi, or

Fi. Instead we look at the conditional distribution on assignments given the configurations of sets Ri, Hi,

and Fi removed in the previous iterations corresponding to EmulatePhase. We write Dj , 1 ≤ j ≤ τ , to

denote this distribution of assignments before the execution of j-th iteration of LocalPhaseon the induced

subgraphs, which corresponds to the j-th iteration of EmulatePhase for this iteration of the main loop of

ParallelAlg. Additionally, we write Dτ+1 to denote the same distribution after the τ -th iteration, i.e.,

at the end of the execution of the parallel block in Lines 6–8 of ParallelAlg. Due to Lemma 3.3, the

distributions of assignments are all independent. We define ǫj , j ∈ [τ +1], to be the minimum positive value

such that Dj is ǫj-near uniform. Obviously, ǫ1 = 0, since the first distribution corresponds to a perfectly

uniform assignment. We want to apply Lemma 3.6 inductively to bound the value of ǫj+1 as a function of

ǫj with high probability. The lemma lists two conditions: ǫj must be at most (200 ln n)−1 and the threshold

passed to EmulatePhase has to be at least 4000µ−2
H ln2 n. The latter condition holds due to Lemma 4.1.

Hence as long as ǫj is sufficiently small, Lemma 3.6 implies that with probability at least 1− n−4,

ǫj+1 ≤ 60α

((
∆

2τ−1m

)−1/4

+ ǫj

)
≤ 60α

((
∆

m

)−15/64

+ ǫj

)
,
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and no high degree vertex survives in the remaining graph. One can easily show by induction that if this

recursion is satisfied for all 1 ≤ j ≤ τ , then ǫj ≤ (120α)j−1 ·
(
∆
m

)−15/64
for all j ∈ [τ + 1]. In particular,

by the definition of τ and Lemma 4.1, for any j ∈ [τ ],

ǫj ≤ (120α)τ−1 ·
(
∆

m

)−15/64

≤
(
∆

m

)1/16

·
(
∆

m

)−15/64

≤
(
∆

m

)−11/64

≤ (200 ln n)−1,

This implies that as long the unlikely events specified in Lemma 3.6 do not occur for any phase in any

iteration of the main loop of ParallelAlg, we obtain the desired properties: all intermediate distributions

of possible assignments are (200 ln n)−1-near uniform and the maximum degree in the graph decreases at

the expected rate. It remains to bound the probability of those unlikely events occurring for any phase. By

the union bound, their total probability is at most log n · n−4 ≤ n−3.

We now prove that the algorithm finds a large matching with constant probability.

Theorem 4.4. LetMOPT be an arbitrary maximum matching in a graphG. With Ω(1) probability, ParallelAlg

constructs a matching of size Ω(|MOPT|).

Proof. By combining Lemma 4.2 and Lemma 4.3, we learn that with probability at least 1−n ·n−8−n−3 ≥
1 − 2n−3, we obtain a few useful properties. First, all relevant distributions corresponding to iterations of

EmulatePhase are independent and (200 ln n)−1-near uniform. Second, the maximum degree in the

graph induced by vertices still under consideration is bounded by 3
2∆ before and after every simulated

execution of EmulatePhase, where ∆ is the corresponding. As a result, no vertex is deleted in Lines 7

or 12 due to the security checks.

We now use Lemma 3.2 to lower bound the expected size of the matching created in every EmulatePhase

simulation. Let τ⋆ be the number of phases we simulate this way. We have τ⋆ ≤ log n. Let Hj , Fj , and

Mj be random variables equal to the total size of sets Hi, Fi, and Mi created in the j-th phase. If the corre-

sponding distribution in the j-th phase is near uniform and the maximum is bounded, Lemma 3.2 yields

E [Hj + Fj] ≤ n−9 + 1200 · E [Mj ] ,

i.e.,

E [Mj ] ≥
1

1200

(
E [Hj + Fj ]− n−9

)
.

Overall, without the assumption that the conditions of Lemma 3.2 are always met, we obtain a lower bound

∑

j∈[τ⋆]

E [Mj ] ≥
∑

j∈[τ⋆]

1

1200

(
E [Hj + Fj]− n−9

)
− 2n−3 · n

2
,

in which we consider the worst case scenario that we lose as much as n/2 edges in the size of the con-

structed matching when the unlikely negative events happen. ParallelAlg continues the construction of

a matching by directly simulating the global algorithm. Let τ ′⋆ be the number of phases in that part of the

algorithm. We define H
′
j , F

′
j , and M

′
j , for j ∈ [τ ′⋆], to be random variables equal to the size of sets H , F ,

and M̃ in GlobalAlg in the j-th phase of the simulation. By Lemma 2.3, we have

∑

j∈[τ ′⋆]

E
[
M

′
j

]
≥
∑

j∈[τ ′⋆]

1

50

(
E
[
H

′
j + F

′
j

])
.
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By combining both bounds we obtain a lower bound on the size of the constructed matching. Let

M⋆
def
=
∑

j∈[τ⋆]

E [Mj ] +
∑

j∈[τ ′⋆]

E
[
M

′
j

]

be the expected matching size, and let

V⋆
def
=
∑

j∈[τ⋆]

E [Hj + Fj] +
∑

j∈[τ ′⋆]

E
[
H

′
j + F

′
j

]
.

We have

M⋆ ≥
1

1200
V⋆ −

1

n2
.

Consider a maximum matching MOPT. At the end of the algorithm, the graph is empty. The expected

number of edges in MOPT incident to a vertex in one of the reference sets is bounded by |MOPT| · 2µR ·
log n ≤ 10−5|MOPT|. The expected number of edges removed by the security checks is bounded by n

2 ·n−3.

Hence the expected number of edges in MOPT deleted as incident to vertices that are heavy or are friends is

at least (1− 10−5)|MOPT| − 1/(2n2). Since we can assume without the loss of generality that the graph is

non-empty, it is at least 1
2 |MOPT|. Hence V⋆ ≥ 1

2 |MOPT|, and M⋆ ≥ 1
2400 |MOPT| − 1

n2 . For sufficiently

large n (say, n ≥ 50), M⋆ ≥ Ω (|MOPT|) and by an averaging argument, ParallelAlg has to output an

O(1)-multiplicative approximation to the maximum matching with Ω(1) probability. For smaller n, it is not

difficult to show that at least one edge is output by the algorithm with constant probability as long as it is

not empty.

Finally, we want to argue that the above procedure can be used to compute 2 + ǫ approximation to

maximum matching at the cost of increasing the running time by a factor of log(1/ǫ). The idea is to;

execute algorithm ParallelAlg to compute constant approximate matching; remove this matching from

the graph; and repeat.

Corollary 4.5. Let MOPT be an arbitrary maximum matching in a graph G. For any ǫ > 0, executing

ParallelAlg on G and removing a constructed matching repetitively, O(log(1/ǫ)) times, finds a multi-

plicative (2 + ǫ)-approximation to maximum matching, with Ω(1) probability.

Proof. Assume that the ParallelAlg succeeds with probability p and computes c-approximate matching.

Observe that each successful execution of ParallelAlg finds a matching Mc of size at least 1
c |MOPT|.

Removal of Mc from the graph decreases the size of optimal matching by at least 1
c |MOPT| and at most

by 2
c |MOPT|, because each edge of Mc can be incident to at most two edges of MOPT. Hence, when the

size of the remaining matching drops to at most ǫ|MOPT|, we have an 2 + ǫ-multiplicative approximation

to maximum matching constructed. The number t of successful applications of ParallelAlg need to

satisfy. (
1− 1

c

)t
≤ ǫ.

This gives t = O(log(1/ǫ)). In ⌈t/p⌉ = O(log(1/ǫ)) executions, we have t successes with probability at

least 1/2 by the properties of the median of the binomial distribution.
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5 MPC Implementation

In this section we present an MPC implementation of our algorithm and analyze its round and space com-

plexity. In the description we heavily use some of the subroutines described in [GSZ11]. While the model

used there is different, the properties of the distributed model used in [GSZ11] also hold in the MPC model.

Thus, the results carry over to the MPC model.

The results of [GSZ11] allow us to sort a set A of O(N) key-value pairs of size O(1) and for every

element of a sorted list, compute its index. Moreover, we can also do a parallel search: given a collection A
ofO(N) key-value pairs and a collection ofO(N) queries, each containing a key of an element ofA, we can

annotate each query with the corresponding key-value pair from A. Note that multiple queries may ask for

the same key, which is nontrivial to parallelize. If S = nΩ(1), all the above operations can be implemented

in O(1) rounds.

The search operation allows us to broadcast information from vertices to their incident edges. Namely,

we can build a collection of key-value pairs, where each key is a vertex and the value is the corresponding

information. Then, each edge {u, v} may issue two queries to obtain the information associated with u and

v.

5.1 GlobalAlg

We first show how to implement GlobalAlg, which is called in Line 13 of ParallelAlg.

Lemma 5.1. Let S = nΩ(1). There exists an implementation of GlobalAlg in the MPC model, which with

high probability executes O(ln ∆̃) rounds and uses O(S) space per machine.

Proof. We first describe how to solve the following subproblem. Given a set X of marked vertices, for each

vertex v compute |N(v) ∩X|. When all vertices are marked, this just computes the degree of every vertex.

The subproblem can be solved as follows. Create a set AX = {(u, v) | u ∈ V, v ∈ X, {u, v} ∈
E} ∪ {(v,−∞), (v,∞) | v ∈ V }, and sort its elements lexicographically. Denote the sorted sequence by

QX . Then, for each element of AX compute its index in QA.

Note that |N(v) ∩ X| is equal to the number of elements in QX between (v,−∞) and (v,∞). Thus,

having computed the indices of these two elements, we can compute |N(v) ∩X|.
Let us now describe how to implement GlobalAlg. We can compute the degrees of all vertices, as

described above. Once we know the degrees, we can trivially mark the vertices in H . The next step is to

compute F and for that we need to obtain |N(v) ∩H|, which can be done as described above.

After that, GlobalAlg computes a matching inG[H∪F ] by calling MatchHeavy (see Algorithm 2).

In the first step, MatchHeavy assigns to every v ∈ F a random neighbor v⋆ in H . This can again be easily

done by using the sequence QH (i.e. QX build for X = H). Note that for each v ∈ F we know the

number of neighbors of v that belong to H . Thus, each vertex v can pick an integer rv ∈ [1, |N(v) ∩ H|]
uniformly at random. Then, by adding rv and the index of (v,−∞) inQH , we obtain the index inQH , which

corresponds to an edge between v and its random neighbor in H . The remaining lines of MatchHeavy are

straightforward to implement. The vertices can trivially pick their colors. After that, the set E⋆ can be easily

computed by transmitting data from vertices to their adjacent edges. Implementing the following steps of

MatchHeavy is straightforward. Finally, picking the edges to be matched is analogous to the step, when

for each v ∈ F we picked a random neighbor in H .

Overall, each phase of GlobalAlg (that is, iteration of the main loop) is executed in O(1) rounds.

Thus, by Lemma 2.3, GlobalAlg can be simulated in O(ln ∆̃) rounds as advertised.
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5.2 Vertex and edge partitioning

We now show how to implement Line 5 and compute the set of edges that are used in each call to LocalPhase

in Line 8 of ParallelAlg. Our goal is to annotate each edge with the machine number it is supposed to

go to. To that end, once the vertices pick their machine numbers, we broadcast them to their adjacent edges.

Every edge that receives two equal numbers x is assigned to machine x.

In the implementation we do not check whether a machine is assigned too many edges (Line 7), but rather

show in Lemma 4.2 that not too many edges are assigned with high probability.

5.3 LocalPhase

We now discuss the implementation of LocalPhase. Observe that LocalPhase is executed locally.

Therefore, the for loop at Line 8 of ParallelAlg can also be executed locally on each machine. Thus,

we only explain how to process the output of LocalPhase.

Instead of returning the set of vertices and matched edges at Line 6 of LocalPhase, each vertex that

should be returned is marked as discarded, and each matched edge is marked as matched. After that,

we need to discard edges, whose at least one endpoint has been discarded. This can be done by broadcasting

information from vertices to adjacent edges. Note that some of the discarded edges might be also marked as

matched.

5.4 Putting all together

Lines 5, 7 and 8 can be implemented as described in sections 5.2 and 5.3. Lines 9 and 10 do not need an

actual implementation, as by that point all the vertices that are not marked as discarded constitute V ′,

and all the edges incident to V \V ′ will be marked as discarded. Similarly, all the matched edges will be

marked as matched by the implementation of LocalPhase. All the edges and vertices that are marked

as discarded will be ignored in further processing. After all the rounds are over, the matching consists

of the edges marked as matched.

Let ∆⋆ be the value of ∆ at Line 12, and hence the value of ∆ at the end of the last while loop iteration.

Let ∆′ be the value of ∆ just before the last iteration, i.e. ∆⋆ = ∆′/2τ , for the corresponding τ . Now

consider the last call of LocalPhase at Line 8. The last invocation has ∆′/(2τ−1) as a parameter. On

the other hand, by Claim 3.7 and Claim 3.8 we know that after the last invocation of LocalPhase with

high probability there is no vertex that has degree greater then 3
4∆

′/(2τ−1) < 2∆⋆. Therefore, with high

probability there is no vertex that should be removed at Line 12, and hence we do not implement that line

either.

An implementation of Line 13 is described in Section 5.1. Finally, we can state the following result.

Lemma 5.2. There exists an implementation of ParallelAlg in the MPC model that with high probabil-

ity executes O
(
(log log n)2 +max

(
log n

S , 0
))

rounds.

Proof. In the proof we analyze the case S ≤ n. Otherwise, for the case S > n, we think of each machine

being split into ⌊S/n⌋ "smaller" machines, each of the smaller machines having space n.

We will analyze the number of iterations of the while loop ParallelAlg performs. Let ∆i and τi be

the value of ∆ and τ at the end of iteration i, respectively. Then, from Line 3 and Line 4 we have

τi =

⌈
1

16
log120α (∆i−1/m)

⌉
≥ 1

16
log120α (∆i−1/m) ≥ 1

16
log120α

√
S∆i−1

n
.
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Define γ := 1
32 log2 120α

. By plugging in the above bound on τi, from Line 11, we derive

∆i = ∆i−1 · 2τi ≤ ∆i−1 · 2−
1
16

log120α

√

S∆i−1
n = ∆i−1 · 2−

log2
S∆i−1

n
32 log2 120α = ∆1−γ

i−1

(n
S

)γ
(6)

To obtain the number of iterations the while loop of ParallelAlg performs, we derive for which

i ≥ 1 the condition at Line 2 does not hold.

Unraveling ∆i−1 further from (6) gives

∆i ≤ ∆
(1−γ)i

0

(n
S

)γ∑i−1
j=0(1−γ)

j

≤ n(1−γ)i
(n
S

)γ 1−(1−γ)i

1−(1−γ)
= n(1−γ)

i
(n
S

)1−(1−γ)i

(7)

Observe that (c log log n)−1 ≤ γ ≤ (32 log log n)−1 < 1/2, for an absolute constant c and n ≥ 4.

For S ≤ n and as γ < 1/2 we have

(n
S

)1−(1−γ)i

≤ n

S
. (8)

On the other hand, for i⋆ =
log logn

γ ≤ c(log log n)2 we have

n(1−γ)
i⋆
< log n. (9)

Now putting together (7), (8), and (9) we conclude

∆i⋆ <
n

S
lnn,

and hence the number of iteration the while loop of ParallelAlg performs is O
(
(log log n)2

)
.

Total round complexity. Every iteration of the while loop can be executed in O(1) MPC rounds with

probability at least 1− 1/n3. Since there are O
(
(log log n)2

)
iterations of the while loop, all the iterations

of the loop can be performed in O
(
(log log n)2

)
many rounds with probability at least 1− 1/n2.

On the other hand, by Lemma 5.1 and the condition at Line 2 of ParallelAlg, the computation

of Line 13 of ParallelAlg can be performed in O
(
log
(
n
S (ln n)

32
))

rounds. Putting the both bounds

together we conclude that the round complexity of ParallelAlg is O
(
(log log n)2 + log n

S

)
for the case

S ≤ n. For the case S > n (recall that in this regime we assume that each machine is divided into machines

of memory n) the round complexity is O
(
(log log n)2

)
.
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