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Fault-tolerant Consensus 

Each node has an input 
 
• Agreement:        good nodes must agree 

 
 

• Validity:              some constraints on output 
 
 

• Termination 
Exact   vs.   Approximate 



Message-Passing Communication 

undirected graph 
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Message-Passing Communication 

directed graph 
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- Partially connected 
- links may not be bi-directional 
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Goal 

 
Precise characterization of networks 
that can solve consensus 
 
• Known for undirected graphs 

 
• Unknown for directed graphs 
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Consensus 
Fault 
Model System/Output Graph Results 

Crash 
Synchronous 

Exact 

Approximate 
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Asynchronous 
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Why Directed Networks? 

• Motivated by properties of wireless links 

 
• Better understanding of network 

requirements for consensus 
 

• Directed networks considered in several 
related contexts 

 



Past Work on Directed Networks 

• Decentralized control 

    [Tsitsiklis ‘84],[Bertsekas, Tsitsiklis ‘97],[Jadbabaei et al. ‘03] 

• Malicious fault model 

    [Zhang et al. ‘12], [LeBlanc et al. ‘13] 

• Different problems 

    [Desmedt, Wang ‘02], [Bansal et al. ‘11], [Biely et al. ‘12],  
    [Pagourtzis et al. ‘14], [Maurer et al. ‘14], [Biely et al. ‘14] 
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Algorithms 

General Algorithm 
• topology information 
 
Iterative Algorithm 
• local computation 
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This Talk: Exact Consensus 

General Algorithm: 
 
• Crash  +  Synchronous 

 
• Byzantine  +  Synchronous 

 
[Tseng and Vaidya, PODC ‘15] 
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Intuition 

- Remove some nodes 

- For any node partition L, C, R, 
either L or R has enough neighbors from outside 
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Intuition 

- Remove some nodes 

- For any node partition L, C, R, 
either L or R has enough neighbors from outside 

x 

y 

z 
w 

L = {x} R = {z} C = {w} 

No info. propagation 
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Why L, C, R? 

- Remove some nodes 

- For any node partition L, C, R, 
either L or R has enough neighbors from outside 

x 

y 

z 
w 

L = {x, w} R = {z} 

x 

y 

z 
w 

L = {x} R = {z} C = {w} 

One-way info. propagation No info. propagation 
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Crash Failures + Synchrony 



Exact Consensus 

17 

Each node has a binary input 
 
• Agreement: Good nodes agree on an 

       exact value 
 

• Validity:        Agreed value is an 
                input at some node 
 

• Termination 
 



Crash in Undirected Graphs 

 
Known result: 
 
               n > f    and    connectivity > f  
                         

necessary and sufficient 
 
 n nodes, up to f failures 
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k-propagate 

A            B    if at least k distinct nodes in set A 
        have links to nodes in set B 
 
 
 
{x, y}            {z} 
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k-propagate 

A            B    if at least k distinct nodes in set A 
        have links to nodes in set B 
 
 
 
{x, y}            {z} 
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Whether set B has  
enough neighbors from outside? 



Crash Failures + Synchrony 

Exact consensus possible  iff 
 
For any node partition L, C, R, F with  

      L, R non-empty   and   |F| ≤ f, 

               L ∪ C                  R 

                       or 

           R ∪ C                  L 
  

21 

1 

1 

Presenter
Presentation Notes
After removing f, in any node partition L or R must have enough neighbors from outside



Example 
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Example 
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Example 
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Cannot tolerate  
1 crash fault 
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If condition is not true, 

• all removed nodes crash  

• two groups of nodes cannot communicate with 

each other 

Necessity: Intuition 
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If condition is not true, 

• all removed nodes crash  

• two groups of nodes cannot communicate with 

each other 

Necessity: Intuition 
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Equivalent Condition 

 
 Removing up to f nodes,  
 the remaining graph contains a 
  
                   directed rooted spanning tree 
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Example 
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L = {x} R = {z} 
F = {y} 
C = { } 



Example 

 
 
 
 
 

            L ∪ C            R 
1 
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L = {x} R = {z} 
F = {y} 
C = { } 

Can tolerate  
1 crash fault 



Sufficiency: Intuition 

Source(s) can propagate its state 
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Sufficiency: Intuition 

Source(s) can propagate its state 
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Sufficiency: Intuition 

Source(s) can propagate its state 

• Which source is fault-free? 
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Sufficiency: Intuition 

Source(s) can propagate its state 

• Which source is fault-free? 
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Sufficiency: Intuition 

Source(s) can propagate its state 

• Which source is fault-free? 
 

y 

z x 

no failure:  pick 1 
x fails:        pick 0 

1 

0 

1 0 0 

1 

f=1 
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Algorithm Min-Max 
vi  = input 
 
Phase p = 1 to 2f+2 
 
      Flood vi  
      Receive set of values  Ri  
      if p is even 
                 vi  = min( Ri )                   (Min Phase) 
      else 
                 vi  = max( Ri )                  (Max Phase) 
 
Output vi after 2f+2 phases 

binary consensus 
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Algorithm Min-Max 
vi  = input 
 
Phase p = 1 to 2f+2 
 
      Flood vi  
      Receive set of values  Ri  
      if p is even 
                 vi  = min( Ri )                   (Min Phase) 
      else 
                 vi  = max( Ri )                  (Max Phase) 
 
Output vi after 2f+2 phases 

two consecutive  
fault-free phases 



Sufficiency: Correctness 
Two consecutive fault-free phases p and p’ 
Suppose  p = min phase    and      
   p’ = max phase 

 
If any source in phase p has 0, then done 
Otherwise, the source(s) can propagate 1 in 

phase p’ 
 



Sufficiency: Correctness 
Two consecutive fault-free phases p and p’ 
Suppose  p = min phase    and      
   p’ = max phase 

 
If any source in phase p has 0, then done 
Otherwise, the source(s) can propagate 1 in 

phase p’ 
 

Necessary condition:  
 there exists a directed rooted spanning tree 



Byzantine Failures + Synchrony 



Exact Byzantine Consensus 
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Each node has a binary input 
 
• Agreement: Good nodes agree on an 

       exact value 
 

• Validity:        Agreed value is an 
                input at some good node 
 

• Termination 
 



Byzantine Failures + Synchrony 

Exact consensus possible  iff 
 
For any node partition L, C, R, F with  

      L, R non-empty,    and   |F| ≤ f 

               L ∪ C                  R 

                       or 

           R ∪ C                  L 
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Example 
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Necessity: Intuition 
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Equivalent Condition 
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1. Remove F    (|F| ≤ f) 
2. Remove outgoing links of F1   (|F1| ≤ f)  
 
Then, the remaining graph contains a 
  

          directed rooted spanning tree 



Key Properties 
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In the graph: 
 

SC 

 strongly connected (of size > f) 
 

 f+1 paths excluding F to the 
rest of the graph 

F 

~~~~~~~~ Rest 



Sufficiency: Algorithm BC 
 
OUTER Loop: enumerating over all possible F 

 
 INNER Loop:  enumerating over all partitions 
 
    SC propagates values 
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Propagation 
 
 

 
 

• SC: using f+1 paths excluding F to send values 
 

• Rest: if same received values, 
                  state := value 

SC 

F 

~~~~~ 
Rest 



Propagation 
 
 

 
 

• SC:  check if states are the same, 
   use f+1 paths excluding F to send state v 

 
• Rest: if same received values, 
                  state := value 

SC 

F 

~~~~~ 
Rest 



Propagation 
 
 

 
 

• SC:  check if states are the same, 
   use f+1 paths excluding F to send state v 

 
• Rest: if same received values, 
                  state := value 

SC 

F 

~~~~~ 
Rest 

Agreement is achieved: 
•  F = actual fault set 
•  nodes in SC have 
same state  

States stay valid 
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Algorithm BC 
 
OUTER Loop: enumerating over all possible F 

 
 INNER Loop:  enumerating over all partitions  
 
    SC propagates values 

SC 

F 

~~~ Rest 

Propagation: 
    values stay valid 
 
Agreement is achieved 
        when nodes in SC have the same value 

F = actual fault set 



u1 u2 u3 u4 u5 u6 u7 

K1:     
clique of 7 nodes 

w1 w2 w3 w4 w5 w6 w7 

K2:     
clique of 7 nodes 
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4 directed links 
in each direction 
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Byzantine faults 
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K1:     
clique of 7 nodes 

w1 w2 w3 w4 w5 w6 w7 

K2:     
clique of 7 nodes 

2-clique Network 

4 directed links 
in each direction 

between the cliques 

K1 and K2 cannot talk 
reliably with each other? 

Can tolerate 2 
Byzantine faults 
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Our Other Work 

Fault Model Results 

up to f failures [Vaidya, Tseng, Liang, PODC ‘12] 

Generalized [Tseng, Vaidya, ICDCN ‘13] 

Link failures [Tseng, Vaidya, NETYS ‘14] 

Mobile faults [Tseng, SSS ‘17] 

Byzantine + Synchronous + Approximate + Iterative: 

Byzantine Broadcast: 
  - [Tseng, Vaidya, Bhandari, IPL ’16], [Tseng NCA ‘17] 
Convex Hull Consensus: 
  - [Tseng, Vaidya, PODC ‘14] 



Open Problems 

• Graph property for Asynchrony + 
Byzantine 

• More efficient algorithms 
• Lower bound on time complexity 
• Given G, find the maximum number 

of faults that can be tolerated 
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Open Problems 

• Other types of consensus 
• k-consensus 
• different fault models 
• different validity conditions 

• Other types of networks 
• time-varying network 
• Different network interpretation, e.g., 

network of trusts 
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Network of Trusts 

68 
From Ripple Consensus White Paper [2014] 



Thanks! 
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