
Fault-tolerant Consensus
in Directed Networks

Lewis Tseng

Boston College
Oct. 13, 2017

 (joint work with Nitin H. Vaidya)

Fault-tolerant Consensus

Each node has an input

• Agreement: good nodes must agree

• Validity: some constraints on output

• Termination
Exact vs. Approximate

Message-Passing Communication

undirected graph

3

B

C

A

Message-Passing Communication

directed graph

B

C

A

S

- Partially connected
- links may not be bi-directional

Presenter
Presentation Notes
Wireless link

Goal

Precise characterization of networks
that can solve consensus

• Known for undirected graphs

• Unknown for directed graphs

5

Consensus
Fault
Model System/Output Graph Results

Crash
Synchronous

Exact

Approximate

Asynchronous

Byzantine

Synchronous
Exact

Approximate

Asynchronous

Presenter
Presentation Notes
Lili’s work  Byzantine + synchronous + approximate + general

Consensus
Fault
Model System/Output Graph Results

Crash
Synchronous

Exact
Undirected Well-known Results
Directed

Approximate
Undirected Decentralized Control

(e.g., [Tsitsiklis ‘84]
[Jadbabaei ‘03])

Directed

Asynchronous
Undirected
Directed

Byzantine

Synchronous
Exact

Undirected [PSL ‘80] [FLM ‘85]

Directed

Approximate
Undirected [Dolev ‘83] [FLM ‘85]
Directed

Asynchronous
Undirected [Dolev ‘83] [FLM ‘85]

Directed

Presenter
Presentation Notes
Lili’s work  Byzantine + synchronous + approximate + general

Consensus
Fault
Model System/Output Graph Results

Crash
Synchronous

Exact
Undirected Well-known Results
Directed PODC ‘15

Approximate
Undirected Decentralized Control

(e.g., [Tsitsiklis ‘84]
[Jadbabaei ‘03])

Directed

Asynchronous
Undirected
Directed PODC ‘15

Byzantine

Synchronous
Exact

Undirected [PSL ‘80] [FLM ‘85]

Directed PODC ‘15

Approximate
Undirected [Dolev ‘83] [FLM ‘85]
Directed PODC ‘12

Asynchronous
Undirected [Dolev ‘83] [FLM ‘85]

Directed Open

Presenter
Presentation Notes
Lili’s work  Byzantine + synchronous + approximate + general

Why Directed Networks?

• Motivated by properties of wireless links

• Better understanding of network

requirements for consensus

• Directed networks considered in several
related contexts

Past Work on Directed Networks

• Decentralized control

 [Tsitsiklis ‘84],[Bertsekas, Tsitsiklis ‘97],[Jadbabaei et al. ‘03]

• Malicious fault model

 [Zhang et al. ‘12], [LeBlanc et al. ‘13]

• Different problems

 [Desmedt, Wang ‘02], [Bansal et al. ‘11], [Biely et al. ‘12],
 [Pagourtzis et al. ‘14], [Maurer et al. ‘14], [Biely et al. ‘14]

Presenter
Presentation Notes
Reliable communication
Byzantine broadcast from fault-free source

Algorithms

General Algorithm
• topology information

Iterative Algorithm
• local computation

B

C

A

S

This Talk: Exact Consensus

General Algorithm:

• Crash + Synchronous

• Byzantine + Synchronous

[Tseng and Vaidya, PODC ‘15]

12

Intuition

- Remove some nodes

- For any node partition L, C, R,
either L or R has enough neighbors from outside

x

y

z
w

Presenter
Presentation Notes
Remove impact, how many nodes are enough?

Intuition

- Remove some nodes

- For any node partition L, C, R,
either L or R has enough neighbors from outside

x

y

z
w

L = {x} R = {z} C = {w}

No info. propagation

Presenter
Presentation Notes
Remove impact, how many nodes are enough?

Why L, C, R?

- Remove some nodes

- For any node partition L, C, R,
either L or R has enough neighbors from outside

x

y

z
w

L = {x, w} R = {z}

x

y

z
w

L = {x} R = {z} C = {w}

One-way info. propagation No info. propagation

Presenter
Presentation Notes
Remove impact, how many nodes are enough?

Crash Failures + Synchrony

Exact Consensus

17

Each node has a binary input

• Agreement: Good nodes agree on an

 exact value

• Validity: Agreed value is an
 input at some node

• Termination

Crash in Undirected Graphs

Known result:

 n > f and connectivity > f

necessary and sufficient

 n nodes, up to f failures

Presenter
Presentation Notes
Node connectivity is not appropriate for directed graph

k-propagate

A B if at least k distinct nodes in set A
 have links to nodes in set B

{x, y} {z}

x

y

z

2

k

k-propagate

A B if at least k distinct nodes in set A
 have links to nodes in set B

{x, y} {z}

x

y

z

2

k

Whether set B has
enough neighbors from outside?

Crash Failures + Synchrony

Exact consensus possible iff

For any node partition L, C, R, F with

 L, R non-empty and |F| ≤ f,

 L ∪ C R

 or

 R ∪ C L

21

1

1

Presenter
Presentation Notes
After removing f, in any node partition L or R must have enough neighbors from outside

Example

x

y

z
w

Example

 L ∪ C R

 R ∪ C L

L = {x} R = {z}
F = {y}
C = {w}

1
/

1
/

x

y

z
w

Example

 L ∪ C R

 R ∪ C L

L = {x} R = {z}
F = {y}
C = {w}

1
/

1
/

x

y

z
w

Cannot tolerate
1 crash fault

Presenter
Presentation Notes
Also show why node connectivity not appropriate, and why we need the C

If condition is not true,

• all removed nodes crash

• two groups of nodes cannot communicate with

each other

Necessity: Intuition

1

0 x

y

z
w

f=1

If condition is not true,

• all removed nodes crash

• two groups of nodes cannot communicate with

each other

Necessity: Intuition

1

0 x

y

z
w

f=1

Equivalent Condition

 Removing up to f nodes,
 the remaining graph contains a

 directed rooted spanning tree

Presenter
Presentation Notes
Only binary consensus, multi-valued in thesis

Example

 L ∪ C R
1

x

y

z

L = {x} R = {z}
F = {y}
C = { }

Example

 L ∪ C R
1

x

y

z

L = {x} R = {z}
F = {y}
C = { }

Can tolerate
1 crash fault

Sufficiency: Intuition

Source(s) can propagate its state

x

y

z
1

0

0

f=1

Sufficiency: Intuition

Source(s) can propagate its state

x

y

z
1 0 0

1

0 1

f=1

Sufficiency: Intuition

Source(s) can propagate its state

• Which source is fault-free?

x

y

z
1 0 0

1

0 1
no failure: pick 1

f=1

Sufficiency: Intuition

Source(s) can propagate its state

• Which source is fault-free?

y

z x

no failure: pick 1
x fails:

1

0

1 0 0

1

f=1

Sufficiency: Intuition

Source(s) can propagate its state

• Which source is fault-free?

y

z x

no failure: pick 1
x fails: pick 0

1

0

1 0 0

1

f=1

Presenter
Presentation Notes
We don’t need to know which source,
as long as we run alg. long enough

Algorithm Min-Max
vi = input

Phase p = 1 to 2f+2

 Flood vi
 Receive set of values Ri
 if p is even
 vi = min(Ri) (Min Phase)
 else
 vi = max(Ri) (Max Phase)

Output vi after 2f+2 phases

binary consensus

vi = input

Phase p = 1 to 2f+2

 Flood vi
 Receive set of values Ri
 if p is even
 vi = min(Ri) (Min Phase)
 else
 vi = max(Ri) (Max Phase)

Output vi after 2f+2 phases

Algorithm Min-Max
binary consensus

vi = input

Phase p = 1 to 2f+2

 Flood vi
 Receive set of values Ri
 if p is even
 vi = min(Ri) (Min Phase)
 else
 vi = max(Ri) (Max Phase)

Output vi after 2f+2 phases

Algorithm Min-Max

vi = input

Phase p = 1 to 2f+2

 Flood vi
 Receive set of values Ri
 if p is even
 vi = min(Ri) (Min Phase)
 else
 vi = max(Ri) (Max Phase)

Output vi after 2f+2 phases

Algorithm Min-Max

Algorithm Min-Max
vi = input

Phase p = 1 to 2f+2

 Flood vi
 Receive set of values Ri
 if p is even
 vi = min(Ri) (Min Phase)
 else
 vi = max(Ri) (Max Phase)

Output vi after 2f+2 phases

vi = input

Phase p = 1 to 2f+2

 Flood vi
 Receive set of values Ri
 if p is even
 vi = min(Ri) (Min Phase)
 else
 vi = max(Ri) (Max Phase)

Output vi after 2f+2 phases

Algorithm Min-Max

Algorithm Min-Max
vi = input

Phase p = 1 to 2f+2

 Flood vi
 Receive set of values Ri
 if p is even
 vi = min(Ri) (Min Phase)
 else
 vi = max(Ri) (Max Phase)

Output vi after 2f+2 phases

two consecutive
fault-free phases

Sufficiency: Correctness
Two consecutive fault-free phases p and p’
Suppose p = min phase and
 p’ = max phase

If any source in phase p has 0, then done
Otherwise, the source(s) can propagate 1 in

phase p’

Sufficiency: Correctness
Two consecutive fault-free phases p and p’
Suppose p = min phase and
 p’ = max phase

If any source in phase p has 0, then done
Otherwise, the source(s) can propagate 1 in

phase p’

Necessary condition:
 there exists a directed rooted spanning tree

Byzantine Failures + Synchrony

Exact Byzantine Consensus

45

Each node has a binary input

• Agreement: Good nodes agree on an

 exact value

• Validity: Agreed value is an
 input at some good node

• Termination

Byzantine Failures + Synchrony

Exact consensus possible iff

For any node partition L, C, R, F with

 L, R non-empty, and |F| ≤ f

 L ∪ C R

 or

 R ∪ C L

46

f+1

f+1

Presenter
Presentation Notes
Key difference, no F, f+1

Example

x

y

z
w

Tolerate 1 crash fault

Example

 L ∪ C R

 R ∪ C L

2
/

2
/

x

y

z

L = {x} R = {z} C = {w} F = {y}

w

Example

 L ∪ C R

 R ∪ C L

2
/

2
/

x

y

z

L = {x} R = {z} C = {w} F = {y}

w

Cannot tolerate
1 Byzantine fault

Necessity: Intuition

 L ∪ C R

 R ∪ C L

2
/

2
/

x

y

z

L = {x} R = {z} C = {w} F = {y}

w

Cannot tolerate
1 Byzantine fault

Necessity: Intuition

 L ∪ C R

 R ∪ C L

2
/

2
/

x

y

z

L = {x} R = {z} C = {w} F = {y}

w

Cannot tolerate
1 Byzantine fault

- x cannot hear
from z
- z cannot
receive x’s
msg reliably

1

1 1

0

Equivalent Condition

52

1. Remove F (|F| ≤ f)
2. Remove outgoing links of F1 (|F1| ≤ f)

Then, the remaining graph contains a

 directed rooted spanning tree

Key Properties

53

In the graph:

SC

 strongly connected (of size > f)

 f+1 paths excluding F to the
rest of the graph

F

~~~~~~~~ Rest 



Sufficiency: Algorithm BC 
 
OUTER Loop: enumerating over all possible F 

 
 INNER Loop:  enumerating over all partitions 
 
    SC propagates values 

54 



Propagation 
 
 

 
 

• SC: using f+1 paths excluding F to send values 
 

• Rest: if same received values, 
                  state := value 

SC 

F 

~~~~~ 
Rest

Propagation

• SC: check if states are the same,
 use f+1 paths excluding F to send state v

• Rest: if same received values,
 state := value

SC

F

~~~~~ 
Rest 



Propagation 
 
 

 
 

• SC:  check if states are the same, 
   use f+1 paths excluding F to send state v 

 
• Rest: if same received values, 
                  state := value 

SC 

F 

~~~~~ 
Rest

Agreement is achieved:
• F = actual fault set
• nodes in SC have
same state

States stay valid

Algorithm BC

OUTER Loop: enumerating over all possible F

 INNER Loop: enumerating over all partitions

 SC propagates values

Algorithm BC

OUTER Loop: enumerating over all possible F

 INNER Loop: enumerating over all partitions

 SC propagates values

SC

F

~~~ Rest 



Algorithm BC 
 
OUTER Loop: enumerating over all possible F 

 
 INNER Loop:  enumerating over all partitions  
 
    SC propagates values 

SC 

F 

~~~ Rest 

Propagation:
 values stay valid

Algorithm BC

OUTER Loop: enumerating over all possible F

 INNER Loop: enumerating over all partitions

 SC propagates values

SC

F

~~~ Rest 

Propagation: 
    values stay valid 
 
Agreement is achieved 
        when nodes in SC have the same value 

F = actual fault set 



u1 u2 u3 u4 u5 u6 u7 

K1:     
clique of 7 nodes 

w1 w2 w3 w4 w5 w6 w7 

K2:     
clique of 7 nodes 

2-clique Network 

4 directed links 
in each direction 

between the cliques 

Can tolerate 2 
Byzantine faults 



u1 u2 u3 u4 u5 u6 u7 

K1:     
clique of 7 nodes 

w1 w2 w3 w4 w5 w6 w7 

K2:     
clique of 7 nodes 

2-clique Network 

4 directed links 
in each direction 

between the cliques 

K1 and K2 cannot talk 
reliably with each other? 

Can tolerate 2 
Byzantine faults 



Consensus 
Fault 
Model System/Output Graph Results 

Crash 
Synchronous 

Exact 
Undirected Well-known Results 
Directed PODC ‘15 

Approximate 
Undirected Decentralized Control 

(e.g., [Tsitsiklis ‘84]  
[Jadbabaei ‘03]) 

Directed 

Asynchronous 
Undirected 
Directed PODC ‘15 

Byzantine 

Synchronous 
Exact 

Undirected [PSL ‘80] [FLM ‘85] 

Directed PODC ‘15 

Approximate 
Undirected [Dolev ‘83] [FLM ‘85] 
Directed PODC ‘12 

Asynchronous 
Undirected [Dolev ‘83] [FLM ‘85] 

Directed Open 

Presenter
Presentation Notes
Lili’s work  Byzantine + synchronous + approximate + general



Our Other Work 

Fault Model Results 

up to f failures [Vaidya, Tseng, Liang, PODC ‘12] 

Generalized [Tseng, Vaidya, ICDCN ‘13] 

Link failures [Tseng, Vaidya, NETYS ‘14] 

Mobile faults [Tseng, SSS ‘17] 

Byzantine + Synchronous + Approximate + Iterative: 

Byzantine Broadcast: 
  - [Tseng, Vaidya, Bhandari, IPL ’16], [Tseng NCA ‘17] 
Convex Hull Consensus: 
  - [Tseng, Vaidya, PODC ‘14] 



Open Problems 

• Graph property for Asynchrony + 
Byzantine 

• More efficient algorithms 
• Lower bound on time complexity 
• Given G, find the maximum number 

of faults that can be tolerated 

66 



Open Problems 

• Other types of consensus 
• k-consensus 
• different fault models 
• different validity conditions 

• Other types of networks 
• time-varying network 
• Different network interpretation, e.g., 

network of trusts 

67 



Network of Trusts 

68 
From Ripple Consensus White Paper [2014] 



Thanks! 

69 


	Fault-tolerant Consensus �in Directed Networks���Lewis Tseng����Boston College�Oct. 13, 2017�� (joint work with Nitin H. Vaidya)
	Fault-tolerant Consensus
	Message-Passing Communication
	Message-Passing Communication
	Goal
	Consensus
	Consensus
	Consensus
	Why Directed Networks?
	Past Work on Directed Networks
	Algorithms
	This Talk: Exact Consensus
	Intuition
	Intuition
	Why L, C, R?
	Crash Failures + Synchrony
	Exact Consensus
	Crash in Undirected Graphs
	k-propagate
	k-propagate
	Crash Failures + Synchrony
	Example
	Example
	Example
	Necessity: Intuition
	Necessity: Intuition
	Equivalent Condition
	Example
	Example
	Sufficiency: Intuition
	Sufficiency: Intuition
	Sufficiency: Intuition
	Sufficiency: Intuition
	Sufficiency: Intuition
	Algorithm Min-Max
	Slide Number 36
	Slide Number 37
	Algorithm Min-Max
	Algorithm Min-Max
	Slide Number 40
	Algorithm Min-Max
	Sufficiency: Correctness
	Sufficiency: Correctness
	Byzantine Failures + Synchrony
	Exact Byzantine Consensus
	Byzantine Failures + Synchrony
	Example
	Example
	Example
	Necessity: Intuition
	Necessity: Intuition
	Equivalent Condition
	Key Properties
	Sufficiency: Algorithm BC
	Propagation
	Propagation
	Propagation
	Algorithm BC
	Algorithm BC
	Algorithm BC
	Algorithm BC
	2-clique Network
	2-clique Network
	Consensus
	Our Other Work
	Open Problems
	Open Problems
	Network of Trusts
	Thanks!

