
63

value and updating its clock. (It will receive clock values from all nonfaulty processes.)

The analysis introduces a new quantity, fJ1, representing an upper bound on the closeness of the

nonfaulty processes' clocks at tmaxr, That is, for any nonfaulty processes p and q, ICr (tmaxr) -p

Crq(tmaxr)1~ fJ1, We show that if the following five inequalities are satisfied by the parameters,
then the switch from the start-up algorithm to the maintenance algorithm (with parameter fJ) can

be accomplished.

(1) fJ1> 4£ + 4p(118 + 39£)

(2)fJ~(fJ1 + 2£ + p(6P-fJ1 + 28 + 12£))/(1-8p)

(3) P >2(1 + p)(fJ + £) + (1 + p)max{8, fJ + £} + p8

(4)P~fJ/4p-£/p-p(j3 + 8 + £)-2fJ-8-2£

(5) fJ ~ 4£ + 4p(3fJ + 8 + 3£) + 8p2(j3 + 8 + £)

The first inequality is imposed by the limitation on how closely the start-up algorithm can

synchronize. The second inequality reflects the inaccuracy introduced during the switch. The

last three are simply repeated from Section 4.5.1.

First we show that fJ1can be attained by the start-up algorithm.

Lemma 5.12: There exists an integer i such that Si < fJl'

Proof: Since fJ1 must be larger than 4£ + 4p(118 + 39£), the result follows from
Theorem 5-11, which states that the closeness of synchronization approaches 4£ +
4p(118 + 39£) as the round number, i, increases. I

Note that the number of rounds, r, that the processes agree on is ~ i, and that the worst-case Sf is

no more than the worst.case Si, which is at most Pr

Lemma 5.13 shows that the first multiple of P reached by a nonfaulty process after finishing the

start.up algorithm differs by at most one from that reached by another nonfaulty process.

Lemma 5.13: Let p and q be nonfaulty processes, Then

Icf (f ) - Cf (tf )1< P.qq pp-
ProofolCf (f ) - Cr (tf )1< ICf (tf ) + (1 + p)(tf _ tf ) _ Cf (tf \1° qq pp- qp q p PP'

< ICf (tf ) - Cf (tf )1 + (1 + p)(8 + 3£), by Lemma5.2- q p p p



64

+ (1 + p)(8 + 3e)

< 2p(tmaxr- trp) + /3, + (1 + p)(8 + 3£),by Lemma4.2anddefinitionofP,

~ 2p(8+ 3e)+ /3, + (1 + p)(8 + 3£),byLemma5-2

= /3, + (1 + 3p)(8+ 3e).

Supposein contradictionthat P<P, + (1 + 3p)(8 + 3£). Bysolvinginequality(2)for
/3" weget

/3, ~ (/3- 2£- p(8/3+ 28 + 12£+ 6P))/ (1- p),

which implies that

P< (j3- 2£- p(8/3+ 28 + 12£+ 6P)) i (1- p) + (1 + 3p)(8 + 3£).

Thissimplifiesto P< (j3 + 8 + e- 8p/3 + p8 - 3p£) / (1 + 5p).

Combining this with inequality (3) yields

2(1 + p)(j3 + e) + (1 + p)8 + p8 <P< (j3 + 8 + £-.8p/3 + p8 - 3p£)/ (1 + 5p).

Solvingfor /3gives/3<-(e + 6p8 + 15pe)/ (1 + 20p).whichisa contradiction. I

The rest of the section is devoted to showing that the difference in real times when nonfaulty

processes' clocks reach the first multiple of P at which they will all perform the maintenance

algorithm is less than or equal to /3. Consequently, this /3 can be preserved by the maintenance

algorithm.

Define kP to be the first multiple of P reached by any nonfaulty process' r-th clock. The first

multiple of P reached by any other nonfaulty process is either kP or (k + 1)P. by Lemma 5.13. At

(k + 1)P some of the nonfaulty processes will actually update their clocks. and at (k + 2)P all of

them will update their clocks.

Recall that (k+ 1)P = Tk+1 and Uk+1 = Tk+1 + (1 + p)(/3 + 8 + e). Let Uk+1 = cr (Uk+1) andp p

similarlyfor q.

Let sand t be two nonfaulty processes. Here is a description of the worst case:

. s has the smallest clock value at tmaxr, barely above (k-1)P, and its clock is slow.

. t's clock is fastand is/31aheadofs's at tmaxr.

. s updatesits clockat Uk+ 1,bydecrementingit asmuchaspossible.



65

. t updates its clock at Uk+ 1, by incrementing it as much as possible.

First we must bound how far apart in real time nonfaulty processes' r.th clocks reach Uk+1.

Lemma 5.14: Let p and q be nonfaulty processes. Then

ICfp(Uk+1)_Cfq(Uk+1)1 ~ (1-p){31 + 2p(2P + {3 + 8 + E).

Proof: Without loss of generality, suppose cfp(Uk+1) ;;:: Cfq(Uk + \ Then

Icf (Uk+1)_Cf (Uk+1)1 = cf (Uk+1)_Cf (Uk+1)p q p q

==(cf (Uk+1)_tmaxf)_(cf (Uk+1)_tmaxf)p q

«Cf (Uk+1 )_Cf (tmaxf»)(1 + p)_(Cf (Uk+1 )_Cf (tmaxf))(1-p),bytheboundson- p. p p q q q
the drift rate

~ (2P + (1 + p)({3 + 8 + E))(1 + p)-(2P + (1 + p)(f3 + 8 + E)-{31)(1-p)

= (1-p){31 + 2p(2P + {3 + 8 + E). I

Next, we bound the additional spread introduced by the resetting of the clocks.

Lemma 5.15: Let sand t be the nonfaulty processes described above. Then

(a)cf+1S(Uk+1)_CfS(Uk+1)~(1 + p)(E + p(4{3+ 8 + 5E),and

(b)cft(Uk+1)_cf+\(Uk+1)~(1 + p)(E+ p(4{3+ 8 + 5E).
Proof: (a)ByLemma4.15,weknowthats's newclock isat mosta = E + p(4{3 + 8 +
5E) less than the "smallest" of the previous nonfaulty clocks at cf (Uk+1) = uk+1
Since s had the smallest clock before, Cf+ 1 (Uk+ 1 ) > Cf (uk+ 1 ) ~a. By the low:rs s - s s
bound on the drift rate,

(b) Lemma 4-15 also states that 1's new clock is at most a more than the "largest" of

the previous nonfaulty clocks at Uk+1t' which was 1'sclock. The argument is similar to
(a). I

Finally, we can bound the maximum difference in real time between two nonfaulty processes"

clocks reaching Tk+2. Let i be the index of p's logical clock that is in effect when Tk+2 isp
reached.

Thea rem 5.16: Let p and q be nonfaulty processes and i = ipand j = iq' Then

Icip(Tk + 2) _ d~(Tk + 2)1 ~ p.

Proof: Without loss of generality, suppose cip(Tk+1)> dq(Tk+2). Then

Ici (Tk+1)_d (Tk+2)1= ci (Tk+1)_d (Tk+2)p q p q



66

for nonfaulty processes sand t that behave as described above.

We know from Lemma 4-2 that

~ 2p(P - (1 + p)(fJ + 8 + e)).

~ 2p(P-(1 + p)(fJ + 8 + e)) + cr+\(Uk+1)_cr+\(Uk+1)

= 2p(P-(1 + p)(fJ + 8 + e)) + cr+1s(Uk+1)_crs(Uk+1) + Crt(Uk+1)_cr+\(Uk+1)

~ 2p(P - (1 + p)(fJ + 8 + e)) + 2(1 + p)(e + p(4fJ + 8 + 5e))

~ 2p(P- (1 + p)(fJ + 8 + e)) + 2(1 + p)(e + p(4fJ + 8 + 5e))

+ (1 - p)fJ1 + 2p(2P + fJ + 8 + e),by Lemma 5-14

~ fJ, by inequality (2). I

This fJ is approximately 6£, which is slightly larger than the smallest one maintainable, 4e. To

shrink it back down, P can be made slightly smaller than required by the maintenance algorithm,

as long as the lower bound of inequality (3) isn't violated. Since the synchronization procedure is

performed more often, the clocks don't drift apart as much, and consequently, they can be more

closely synchronized. Once the desired fJ is reached, P can be increased again. (The

computational costs associated with performing the synchronization procedure and the possible

degradation of validity may make it advisable to resychronize more infrequently.)

5.6 Using Only the Start-up Algorithm

A natural idea is to use Algorithm 5-1 solely, and never switch to the mainenance algorithm. Both

algorithms can synchronize clocks to within approximately 4e, so such a policy would sacrifice

very little in accuracy. Using just the one algorithm is conceptually simpler and avoids

introducing the additional error during the switch-over. However, if the system does no work

during -the period of time when processeshaveclocks with different indices, it is importantto



67

minimize this interval. Algorithm 5.1 has such an interval ot, length 0 + 3£; for Algorithm 4.1, it is

approximately fJ + 2p(fJ + 0 + E). Depending on the choice of values for the parameters,

Algorithm 4.1 may be superior in this regard.



68

Chapter Six

Conclusion

6.1 Summary

In conclusion, we have presented a precise formal model to describe a system of distributed

processes, each of which has its own clock. Within this model we proved a lower bound on how

closely clocks can be synchronized even under strong simplifying assumptions.

The major part of the thesis was the description and analysis of an algorithm to synchronize the

clocks of a completely connected network in the presence of clock drift, uncertainty in the

message delivery time, and Byzantine process faults. Since it does not use digital signatures, the

algorithm requires that more than two thirds of the processes be nonfaulty. Our algorithm is an

improvement over those in [7] based on Byzantine Agreement protocols in that the number of

messages per round is n2 instead of exponential, and that the size of the adjustment made at each

round is a small amount independent of the number of faults.

The algorithm in [5] works for a more general communication network, and, since it uses digital

signatures, only requires that more than half the processes be nonfaulty. However, the size of the

adjustment depends on the number of faulty processes.

The issue of which algorithm synchronizes the the most closely is difficult to resolve because of

differing assumptions about the underlying model. For instance, Algorithm 4.1 of this thesis can

achieve a closeness of synchronization of approximately 4£ in O'-lrnotation. However, we assume

that local processing time is negligible; otherwise Lamport [8] claims that actually there is an

implicit factor of n in the £, in which case the closeness of synchronization achieved by our

algorithm depends on the number of processes as do those in [7].

We also modified Algorithm 4.1 to produce an algorithm to establish synchronization initially

among clocks with arbitrary values. This algorithm also handles clock drift, uncertainty in the

message delivery time, and Byzantine proces~ faults. This problem, as far as we know, had not

been addressed previously for real.time clocks.



69

6.2 Open Questions

It would be interesting to know more lower bounds on the closeness of synchronization

achievable. For example, a question posed by J. Halpern is to determine a lower bound when the

communication network has an arbitrary configuration and the uncertainty in the message

delivery time is different for each link.

There are also no known lower bounds for the case of clock drift and faulty processes.

The validity of algorithm 5-1 has not been computed. If this algorithm were used solely, knowing

how the processes' clocks increase in relation to real time would be of interest. Lower bounds in

general for the validity conditions are not known.

It seems reasonable that there is a tradeoff between the closeness of synchronization and the

validity, since the synchronization procedure must be performed more often in order to

synchronize more closely, but each resychronization event potentially worsens the validity. This

tradeoff has not been quantified.

M. Fischer [4] has suggested an "asynchronous" version of Algorithm 5-1 to establish

synchronization. In his version, a nonfaulty process wakes up at an arbitrary time with arbitrary

values for its correction variable and array of differences. Every P as measured on its physical

(not logical) clock, the process performs the fault-tolerant averaging function and updates its

clock. It seems that the clock values should converge, but at what rate?

What kind of algorithms that use the fault.tolerant averaging function can be used in more general

communication graphs?

Another avenue of investigation is using the fault-tolerant averaging function together with the

capability for authentication to see if algorithms with higher fault-tolerance than those of this

thesis and better accuracy than those in [5] can be designed.

I



70

Appendix A

Multisets

This Appendix consists of definitions and lemmas concerning multisets needed for the proofs of

Lemmas 4.9 and 5.10. These definitions and lemmas are analogous to some in [1].

A multiset U is a finite collection of real numbers in which the same number may appear more

than once. The largest value in U is denoted max(U), and the smallest value in U is denoted

min(U). The diameter of U, diam,(U) is max(U) - min(U). Let s(U) be the multiset obtained by

deleting one occurrence of min(U), and /(U) be the multiset obtained by deleting one occurrence

of max(U). If IUI ~ 2f + 1, we define reduce(U) to be Ifsf(U), the result of removing the f largest

and f smallest elements of U.

Given two multisets U and V with IUI :s; lVI, consider an injection c mapping U to V. For any

nonnegative real number x, define S/cJ to be {uEU: lu - c(u)1>x}. We define the x-distance

between U and V to be d (U,V) = mine{IS (c)/). We say c witnesses d (U,V)if IS (c)I = d (U,V).x x x x x

The x-distance between U and V is the number of elements of U that cannot be matched up with

an element of V which is the same to within x. If lu - c(u)1~ x, then we say u and c(u) are x-paired

by c. The midpoint of U, mid(U), is lh[max(U) + min(U)].

For any multiset U and real number r, define U + r to be the multiset obtained by adding r to every

element of U; that is, U + r = {u + r: u E U}. It is obvious that mid and reduce are invariant

under this operation.

The next lemma bounds the diameter of a reduced multiset.

Lemma A-1: Let U and W be multisets such that IUI = n, IWI = n - f, and d (W,U) =x
0,wheren ~ 2f + 1. Then

max(reduce(U» ~ max(W) + x and min(reduce(U» ~ min(W)- x.
Proof: We show the result for max; a ~imilar argument holds for min. Let c witness
d (W,U). Suppose none of the f elements deleted from the high end of U are x-pairedx
with elements of W by c. Since d (W,U) = 0, the remaining n - f elements of U arex
x-paired with elements of W by c, and thus every element of reduce(U) is x-paired with
an element of W. Suppose max(reduce(U» is x-paired with w in W by c. Then
max(reduce(U» <w + x ~ max(W)+ x.

Nowsupposeone of the elementsdeleted from the high end of U is x-pairedwith an



71

element of W by c. Let u be the largest such, and suppose it was paired with w in
W. Then max(reduce(U)) ~ u ~ w + x ~ max(W)+ x. I

We show that the x.distance between two multisets is not increased by removing the largest (or

smallest) element from each.
Lemma A.2: Let U and V be multisets. each with at least one element. Then

dx(I(U),I(V))~ dx(U.V)and dx(s(U),s(V)) ~ dx(U,V).
Proof: We give the proof in detail for I; a symmetric argument holds for s. Let M = I(U)
and N = I(V). Let c witness d (U,V). We construct an injection c' from M to Nandx

show that /Sx(c')j ~ /Sx(c)l. Since dx(M,N) ~ ISx(c')1and ISx(c)/ = dx(U,V), it follows
that dx(M,N) ~ dx(U,V).

Suppose u = max(U)and v = max(V). (These are the deleted elements.)

Case 1: c(u) = v. Define c'(m) = c(m) for all m in M. Obviously c' is an injection.
IS (c')1< IS (c)1since either S (c') = S (c) or S (c') = S (c) - {u}.x -x x x x x

Case 2: c(u) ~ v and there is no u' in U such that c(u') = v. This is the same as Case
1.

Case 3: c(u) ~ v, and there is u' in U such that c(u') = v. Suppose c(u) = v'. Define
c'(u') = v' and c'(m) = c(m) for all m in M besides v'. Obviously c' is an injection. Now

we show that ISx(c')1 ~ rSx(c)l.

If u or u' or both are in S (c) then whether or not u' is in S (c') the inequality holds. Thex x
only trouble arises if u and u' are both not in S (c) but u' is in S (c'). Suppose that isx x
the case. Then lu' - c'(u')1 = lu' - v'l >x. There are two possibilities:

(i) u' > Vi + x. Since u is not in Sx(c), lu - c(u)1 = lu - v'l ~ x. So v' ~ u - x. Hence u' >
v' + x > u - x + x, which implies that u' > u. But this contradicts u being the largest
element of U.

(ii) v' > u' + x. Since u' is.not in Sx(c), lu' - c(u')/ = lu' - vi ~ x. So u' ~ v-x. Hence
v' > u' + x ~ v - x + x, which impliesthat v' > v. But this contradicts v being the
largestelementof V.

I

The next lemma shows that the results of reducing two multisets, each of whose x.distance from a

third multiset is A,can't contain values that are too far apart.

Lemma A.3: Let U, V, and W be multisets such that IUI = !VI = nand IWI = n -',
where n >3f. If d (W,U) = a and d (W,V) = 0, thenx x

min(reduce(U» - max(reduce(V» ~ 2x.

Proof: First we show that d2x(U,V) ~ f. Let Cu witness dx(W'U)and Cv witness
dx(W,V). Define an injection c from U to Vas follows: if there is w in W such that cu(w)
;; U,then letc(u) ;; Cy(w);otherwise,let c(u)be anyunusedelementof V. Foreachof



72

the n - f elements w in W, there is u in U such that u = cu(w). Thus lu - c(u)1~ lu - wi
+ Iw - c(u)1 = Icu(w) - wi + Iw - cv(w)1~ x + x = 2x. Thus S2x(c)~ f, so d2x(U,V)~
f.

Then by applying Lemma A-2 f times, we know that d2x(reduce(U),reduce(V)) ~ f.
Since Ireduce(U)1 = Ireduce(V)1 = n - 2f > f, there are u in reduce(U) and v in
reduce(V) such that lu - vi ~ 2x. Thus min(reduce(U)) - max(reduce(V)) ~ u - v ~ 2x.
I

Lemma A.4 is the main multiset result. It bounds the difference between the midpoints of two-

reduced multisets in terms of a particular third multiset.

Lemma A.4: Let U, V, and W be multisets such that IUI = IVI = nand IWI = n - f,
where n >3f. If d (W,U) = a and d (W,V) = 0, thenx x

Imid(reduce(U)) - mid(reduce(V))1 ~ 1f2diam(W)+ 2x.

Proof: Imid(reduce(U)) - mid(reduce(V))1

= lhlmax(reduce(U)) + min(reduce(U)) - max(reduce(V)) - min(reduce(V))I

= ihlmax(reduce(U)) - min(reduce(V)) + min(reduce(U)) - max(reduce(V))1

If the quantity inside the absolute value signs is nonnegative, this expression is equal
to

1f2[max(reduce(U))- min(reduce(V)) + min(reduce(U)) - max(reduce(V))]

~ ih(max(W)+ x- (min(W)- x) + min(reduce(U)).- max(reduce(V))), by applying
Lemma A.1 twice

= lh(diam(W) + 2x + min(reduce(U)) - max(reduce(V»)

~ lh(diam(W) + 2x + 2x), by Lemma A.3

= lhdiam(W) + 2x.

If the quantity inside the absolute value is nonpositive, then symmetric reasoning gives
the result. I



73

Refe rences

[1] D. Dolev, N. Lynch, S. Pinter, E. Stark and W. Weihl.
Reaching Approximate Agreement in the Presence of Faults.
In Proceedings of the 3rd Annual IEEESymposium on Distributed Software and Database

Systems. 1983.

[2] D. Dolev, J. Halpern and R. Strong.
On the Possibility and Impossibility of Achieving Clock Synchronization.
In Proceedings of the 16thAnnual ACM Symposium on Theory of Computing. 1984.

[3] C. Dwork, N. Lynch and L. Stockmeyer.
Consensus in the Presence of Partial Synchrony.
In Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed

Computing. 1984.

[4] M. Fischer.
Personal communication.

[5] J. Halpern, 8. Simons and R. Strong.
Fault-Tolerant Clock Synchronization.
In ProcAedings of the 3rd Annual ACM Symposium on Principles of Distributed

Computing. 1984.

[6] L. Lamport.
Time, clocks. and the ordering of events in a distributed system.
Communications of the ACM 21(7), July, 1978.

[7] L. Lamport and P.M. Melliar.Smith.
Synchronizing clocks in the presence of faults.
Research Report, SRllnterna~ional, March, 1982.

[8] L. Lamport.
Personal communication.

[9] K. Marzullo.
Loosely-CoupledDistributedServices:a DistributedTimeService.
PhDthesis,StanfordUniversity,1983.




