63

value and updating its clock. (It will receive clock values from all nonfaulty processes.)

The analysis introduces a new quantity, ﬁv representing an upper bound on the closeness of the
nonfaulty processes’ clocks at tmax’. That is, for any nonfaulty processes p and g, fC’g(tmaxr ) =
C’q(tmax’)l € 51' We show that if the following five inequalities are satisfied by the parameters,

then the switch from the start-up algorithm to the maintenance algorithm (with parameter ) can

be accomplished.

(1) B,>4e + 4p(118 + 39)

(2)B > (B, + 2 + p(6P - B, + 28 + 12¢)) / (1-8p)
@B)P>2(1 + p)(B + &) + (1 + p)max{8, B + €} + pd
(@) P <B/ap-e/p-pB + 8+ €)-2B-8-2¢
(5) B >4e + 4p(3B + 8 + 3e) + 8pX(B + & + ¢)

The first inequality is imposed by the limitation on how closely the start-up algorithm can
synchronize. The second inequality reflects the inaccuracy introduced during the switch. The

last three are simply repeated from Section 4.5.1.

First we show that 31 can be attained by the start-up algorithm.

Lemma 5-12: There exists an integer i such that B’ <8,

Proof: Since B, must be larger than 4e + 4p(118 + 39¢), the result follows from
Theorem 5-11, which states that the closeness of synchronization approaches 4¢ +
4p(118 + 39¢) as the round number, i, increases. I

Note that the number of rounds, r, that the processes agree on is > i, and that the worst-case B is

no more than the worst-case B, which is at most 3.

Lemma 5-13 shows that the first multiple of P reached by a nonfaulty process after finishing the

start-up algorithm differs by at most one from that reached by another nonfaulty process.
Lemma 5-13: Let p and q be nonfaulty processes. Then

" ) -C I P.
. r r [ ogar r r r
Proof: |C q(t q) -C IJ(t p)l <|Ic q(t p) + (1 + p)t 4 -t'p) - C'p(t'p)l

<I|C" (t")-C" (t" )] + (1 + p)(8 + 3¢), by Lemma 5-2
q PP

< ](C’q(t’p) - C'q(tmaxr)) - (C'p(t'pj - c’p(tmax’m + |c'q(tmax') - Crp(tmax')|



+ (1 + p)(8 + 3¢)
< 2p(tmax’-t'p) + B, + (1 + p)(8 + 3e), by Lemma 4-2 and definition of 8,
<2p(8 + 3e) + B, + (1 + p)(§ + 3¢), by Lemma 5-2
= 31 + (1 + 3p)(6 + 3e).

Suppose in contradiction that P< B, + (1 + 3p)(§ + 3e). By solving inequality (2) for
B ,» we get

B, < (B-2e-p(BB + 28 + 12¢ + 6P)) / (1-p),
which implies that

PL(B-2e-p(8B + 26 + 126 + BP)) / (1-p) + (1 + 3p)(§ + 3e).

This simplifiesto P<(8 + 8§ + e-8pB + pd-3pe) /(1 + 5p).

Combining this with inequality (3) yields

21 +p)(B +¢€)+ (1 +p)8 +pd<PL(B+8+¢e-8pB + pb-3pe) /(1 + 5p).

Solving for B gives B {-(e + 6pd + 15pe) / (1 + 20p), which is a contradiction. 1

The rest of the section is devoted to showing that the difference in real times when nonfaulty
processes’ clocks reach the first multiple of P at which they will all perform the maintenance

algorithm is less than or equal to 8. Consequently, this 8 can be preserved by the maintenance

algorithm.

Define kP to be the first multiple of P reached by any nonfaulty process' r-th clock. The first
multiple of P reached by any other nonfaulty process is either kP or (k + 1)P, by Lemma 5-13. At
(k + 1)P some of the nonfaulty processes will actually update their clocks, and at (k + 2)P all of

them will update their clocks.

Recallthat (k+1)P = T**Tand UK*" = T**1 4 (1 + p)(B + & + ¢). Let u"”p = c’p(u"“)and

similarly for q.

Let s and t be two nonfaulty processes. Here is a description of the worst case:

e s has the smallest clock value at tmax", barely above (k-1)P, and its clock is slow.
o t's clock is fast and is B, ahead of s's at tmax".

e s updates its clock at U * !, by decrementing it as much as possible,
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e t updates its clock at e, by incrementing it as much as possible.

First we must bound how far apart in real time nonfaulty processes' r-th clocks reach ur+1,

Lemma 5-14: Let p and q be nonfaulty processes. Then

Jc’p{u"”)-ch(u"”n S(1=p)B, +2p(2P + B + 8§ + ¢).
Proof: Without loss of generality, suppose crp{Uk+ h> c’q(Uk" '). Then

r k+1 ks _ A e+ _ A k+1
le" U T) -l U T)] = e U - Ut
= (" (U**") - tmax") - (¢"_(U**) - tmax")

T AT p Q

o {uk”p)—C' (tmax"))(1 + p)m(qu(uk”q)-er(tmaxr))ﬁ - p), by the bounds on
the drift rate
S@P+(+p)B+3d+e)(1+p)-(2P + (1 +p)B+3d+e)-B)1-p)

=(1-p)B, + 20(2P + B + & + ¢). 1

Next, we bound the additional spread introduced by the resetting of the clocks.
Lemma 5-15: Let s and t be the nonfaulty processes described above. Then

() "' (UK =" (UK < (1 + p)(e + p(4B + & + 5e), and

(b) (U ) =" (WA (1 + p)le + p(4B + § + Se).

Proof: (a) By Lemma 4-15, we know that s's new clock isat mosta = ¢ + p(48 + & +
5¢) less than the "smallest”" of the previous nonfaulty clocks at ¢’ (UK*") = u**?
Since s had the smallest clock before, C'* 1s(u"* 15) 5 C’s’(uIw 15) - a. By the lower
bound on the drift rate,

Cr+1s(uk+1}_crs(uk+1) S (1 + p)a.

(b) Lemma 4-15 also states that t's new clock is at most a more than the "largest" of
the previous nonfaulty clocks at uk+ 't. which was t's clock. The argument is similar to

(a). 1

Finally, we can bound the maximum difference in real time between two nonfaulty processes”

clocks reaching T2 (et iIJ be the index of p’s logical clock that is in effect when T**2 is

reached.
Theorem 5-16: Let p and q be nonfaulty processesand i = ip andj = iq. Then

I (T3 -l (™31 < 8.
Proof: Without loss of generality, suppose cip(Tk =hig ch(Tk *2) Then

Icip(Tk+1) _ ch(-rk+2)l . cip(Tk+ - ch(-rk+2)



r+1 ;rhk+2 r+1 ,rk+2
ST =T 9

for nonfaulty processes s and t that behave as described above.
We know from Lemma 4-2 that
(Cr+1s(-rk+2)_cr+1l{Tk+2))_(cr+13(Uk+1}_cr+1t(uk+1))
S20(P-(1+p)(B + 4 +¢)).
Thus ¢+ (TH*2) - "+ 1 (Tk+2)
<2p(P-(1+p)(B + 8+ &) + ¢! (U T) - (UKHT)
=2p(P-(1+ p)(B + 8 + &) + T (UKTT) =" (UKT) + cT(UR T T) - T U T)
" cfs(uk+1J_crt{Uk+1)
S<2p(P-(1 +p)(B + 8 +¢)+ 201+ p)e +p(4B + & + 5¢))
+ ¢ (UK - ¢ (U T), by Lemma 5-15
<20P-(1 +p)(B+ 8 +¢)+ 201 + p)e + p4B8 + & + 5¢))
+ (1 —p)ﬂ1 +2p(2P + 8 + 8 + €), byLemma5-14

< B, by inequality (2). 1

This B is approximately B¢, which is slightly larger than the smallest one maintainable, 4e. To
shrink it back down, P can be made slightly smaller than required by the maintenance algorithm,
as long as the lower bound of inequality (3) isn’t violated. Since the synchronization procedure is
performed more often, the clocks don’t drift apart as much, and consequently, they can be more
closely synchronized. Once the desired B is reached, P can be increased again. (The
computational costs associated with performing the synchronization procedure and the possible

degradation of validity may make it advisable to resychronize more infrequently.)

5.6 Using Only the Start-up Algorithm

A natural idea is to use Algorithm 5-1 solely, and never switch to the mainenance algorithm. Both
algorithms can synchronize clocks to within approximately 4¢, so such a policy would sacrifice
very little in accuracy. Using just the one algorithm is conceptually simpler and avoids
introducing the additional error during the switch-over. However, if the system does no work

during ¢he period of time when processes have clocks with different indices, it is important to
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minimize this interval. Algorithm 5-1 has such an interval of length § + 3e; for Algorithm 4-1, it is
approximately 8 + 2p(B + 8 + ¢). Depending on the choice of values for the parameters,

Algorithm 4-1 may be superior in this regard.
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Chapter Six

Conclusion

6.1 Summary

In conclusion, we have presented a precise formal model to describe a system of distributed
processes, each of which has its own clock. Within this model we proved a lower bound on how

closely clocks can be synchronized even under strong simplifying assumptions.

The major part of the thesis was the description and analysis of an algorithm to synchronize the
clocks of a completely connected network in the presence of clock drift, uncertainty in the
message delivery time, and Byzantine process faults. Since it does not use digital signatures, the
algorithm requires that more than two thirds of the processes be nonfaulty. Our algorithm is an
improvement over those in [7] based on Byzantine Agreement protocols in that the number of
messages per round is n?instead of cxponential, and that the size of the adjustment made at each

round is a small amount independent of the number of faults.

The algorithm in [5] works for a more general communication network, and, since it uses digital
signatures, only requires that more than half the processes be nonfaulty. However, the size of the

adjustment depends on the number of faulty processes.

The issue of which algorithm synchronizes the the most closely is difficult to resolve because of
differing assumptions about the underlying madel. For instance, Algorithm 4-1 of this thesis can
achieve a closeness of synchronization of approximately 4¢ in our notation. However, we assume
that local processing time is negligible; otherwise Lamport [8] claims that actually there is an
implicit factor of n in the ¢, in which case the closeness of synchronization achieved by our

algorithm depends on the number of processes as do those in [7].

We also modified Algorithm 4-1 to produce an algorithm to establish synchronization initially
among clocks with arbitrary values. This algorithm also handles clock drift, uncertainty in the
message delivery time, and Byzantine procest faults. This problem, as far as we know, had not

been addressed previously for real-time clocks.
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6.2 Open Questions

It would be interesting to know more lower bounds on the closeness of synchronization
achievable. For example, a question posed by J. Halpern is to determine a lower bound when the
communication network has an arbitrary configuration and the uncertainty in the message

delivery time is different for each link.
There are also no known lower bounds for the case of clock drift and faulty processes.

The validity of algorithm 5-1 has not been computed. [f this algorithm were used solely, knowing
how the processes’ clocks increase in relation to real time would be of interest. Lower bounds in

general for the validity conditions are not known.

It seems reasonable that there is a tradeoff between the closeness of synchronization and the
validity, since the synchronization procedure must be performed more often in order to

synchranize more closely, but each resychronization event potentially worsens the validity. This

tradeoff has not been gquantified.

M. Fischer [4] has suggested an "asynchronous" version of Algorithm 5-1 to establish
synchronization. In his version, a nonfaulty process wakes up at an arbitrary time with arbitrary
values for its correction variable and array of differences. Every P as measured on its physical
(not logical) clock, the process performs the fault-tolerant averaging function and updates its

clock. It seems that the clock values should converge, but at what rate?

‘What kind of algorithms that use the fault-tolerant averaging function can be used in more general

communication graphs?

Another avenue of investigation is using the fault-tolerant averaging function together with the
capability for authentication to see if algorithms with higher fault-tolerance than those of this

thesis and better accuracy than those in [5] can be designed.
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Appendix A

Multisets

This Appendix consists of definitions and lemmas concerning multisets needed for the proofs of

Lemmas 4-9 and 5-10. These definitions and lemmas are analogous to some in [1].

A muitiset U is a finite collection of real numbers in which the same number may appear more
than once. The largest value in U is denoted max(U), and the smallest value in U is denoted
min(U). The diameter of U, diam(U), is max(U) - min(U). Let s(U) be the multiset obtained by
deleting one occurrence of min{(U), and /(U) be the multiset obtained by deleting one occurrence
of max(U). If U] > 2f + 1, we define reduce(U) to be I's'(U), the result of removing the f largest

and f smallest elements of U.

Given two multisets U and V with JU| < |V|, consider an injection ¢ mapping U to V. For any
nonnegative real number x, define S, (c) to be {u€U: |u - c(u)| > x}. We define the x-distance
between U and V to be d (U,V) = minc{ISx(c}l}. We say ¢ witnesses d (U,V) if S (c)| = d, (U,V).
The x-distance between U and V is the number of elements of U that cannot be matched up with
an element of V which is the same to within x. If Ju - ¢(u)| < x, then we say u and c(u) are x-paired

by c. The midpaint of U, mid(U), is %2[max(U) + min(U)].

For any multiset U and real number r, define U + r to be the multiset obtained by adding r to every

element of U; thatis, U + r = {u + r. u € U}. Itis obvious that mid and reduce are invariant

under this operation.

The next lemma bounds the diameter of a reduced multiset.
Lemma A-1: Let U and W be multisets such that [U| = n, [W| = n-f, and d (WU) =
0, wheren > 2f + 1. Then

max(reduce(U)) < max(W) + x and min(reduce(U)) > min(W) - x.

Proof: We show the result for max; a similar argument holds for min. Let ¢ witness
dK(W.U}. Suppose none of the f elements deleted from the high end of U are x-paired
with elements of W by c. Since d _(W,U) = 0, the remaining n - f elements of U are
x-paired with elements of W by ¢, and thus every element of reduce(U) is x-paired with
an element of W. Suppose max(reduce(U)) is x-paired with w in W by ¢. Then
max(reduce(U)) <w + x < max(W) + x.

Now suppose one of the elements deleted from the high end of U is x-paired with an
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element of W by c. Let u be the largest such, and suppose it was paired with w in
W. Then max(reduce(U)) K u<w + x < max(W) + x. 1

We show that the x-distance between two multisets is not increased by removing the largest (or

smallest) element from each.
Lemma A-2: Let U and V be multisets, each with at least one element. Then
d (IU).I(V)) < d (U.V) and d (s(U),s(V)) <d (UV).
Proof: We give the proof in detail for I; a symmetric argument holds fors. LetM = I(U)
and N = [(V). Let ¢ witness dx(U.V), We construct an injection ¢’ from M to N and
show that JSx(c’)I % fo{c)l. Since d (M\N) < }Sx{c')l and Jsx(c)l = d (U\V), it follows
thatd (M,\N) < d (U.V).

Suppose u = max(U) and v = max(V). (These are the deleted elements.)

Case 1: c(u) = v. Define ¢'(m) = c(m) for all m in M. Obviously ¢’ is an injection.
IS () < IS (c)l since either S (c') = S (c) or S (¢') = S (c) - {u}.

Case 2: c(u) # v and there is no U’ in U such thatc(u’) = v. This is the same as Case
1:

Case 3: c(u) # v, and there is U’ in U such that c(u') = v. Suppose c(u) = v'. Define
c'(v') = v and ¢’'(m) = ¢(m) for all m in M besides v'. Obviously ¢’ is an injection. Now
we show that [S (c')] < [S (c)I.

If uor v’ or both are in Sx(c) then whether or not u’ is in Sx{c') the inequality holds. The
only trouble arises if u and u’ are both not in S (c) but u’ is in Sx(c‘). Suppose that is
the case. Then |u’-c'(u’)] = [u'-V'| > x. There are two possibilities:

(Ju'>Vv + x. SinceuisnotinS (c), ju-c(u)| = Ju-v|<x. Sov' > u-x. Henceu'>
V' + x > u-x + x, which implies that u' > u. But this contradicts u being the largest
element of U.

(i) v > u' + x. Sinceu’isnotin S (c), u'-c(u')] = Ju'-v| < x. Sou’ > v-x. Hence
V' > U + x 2 v-Xx + x, which implies that v’ > v. But this contradicts v being the
largest element of V.

The next lemma shows that the results of reducing two multisets, each of whose x-distance from a

third multiset is 0, can't contain values that are too far apart.
Lemma A-3: Let U, V, and W be multisets such that |[U| = |V| = nand |W|] = n-f,
where n > 3f. If d,(W,U) = Oand d (W,V) = 0, then

min(reduce(U)) - max(reduce(V)) < 2x.

Proof: First we show that dh(U,V) < f Let Cy witness d J‘(W.U) and cy witness
dx{W,V). Define an injection c from U to V as follows: if there is w in W such that cu(w)
= u, then let c(u) = ¢, (w); otherwise, let c(u) be any unused element of V. For each of
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the n - felements w in W, there is u in U such that u = ¢ (w). Thus |u-c(u)] < [u-w|
+ w=-c(u)| = |cu(w}—wl + iw—cv(w)| <x +x=2x ThusS, (c) <f,s0 d, (UV) <
f.

Then by applying Lemma A-2 f times, we know that d,, (reduce(U) reduce(V)) < f.

Since |reduce(U)| = |reduce(V)| = n - 2f > f, there are u in reduce(U) and v in
reduce(V) such that |u - v| < 2x. Thus min(reduce(U)) - max(reduce(V)) < u-v < 2x.
|

Lemma A-4 is the main multiset result. It bounds the difference between the midpoints of two

reduced multisets in terms of a particular third multiset.

Lemma A-4: Let U, V, and W be multisets such that |U| = |[V| = nand [W| = n -,
where n > 3f. Ifdx{W‘U) = 0 and dx(W.V) = 0, then

|[mid(reduce(U)) - mid(reduce(V))| < Y%diam(W) + 2x.
Proof: |mid(reduce(U)) - mid(reduce(V))|

= 4|max(reduce(U)) + min(reduce(U)) - max(reduce(V)) - min(reduce(V))|
= Y2|max(reduce(U)) - min(reduce(V)) + min(reduce(U)) - max(reduce(V))|

If the quantity inside the absolute value signs is nonnegative, this expression is equal
to

Y2[max(reduce(U)) - min(reduce(V)) + min(reduce(U)) - max(reduce(V))]

< %(max(W) + x=(min(W)-x) + min(reduce(U))-- max(reduce(V))), by applying
Lemma A-1 twice

= lY2(diam(W) + 2x + min(reduce(U)) - max(reduce(V)))
< %a(diam(W) + 2x + 2x), by Lemma A-3
= ladiam(W) + 2x.

If the quantity inside the absolute value is nonpositive, then symmetric reasoning gives
the result. 1
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