
53

of their first waiting intervals. At the end of its second waiting interval, p broadcasts a READY

message indicating that it is ready to begin the next round. However, if p receives f + 1 READY

messages during its second waiting interval, it terminates its second interval early, and goes

ahead and broadcasts READY. As soon as p receives n - f READY messages, it updates the

clock according to the adjustment calculated earlier, and begins its next round by broadcasting

its new clock value. (This algorithm uses some ideas from [3].)

A process need only keep clock differences for one round at a time. The waiting intervals are

designed so that during round i a nonfaulty process p will not receive a READY message from

another nonfaulty process until p has finished collecting round i clock values. Round i + 1 clock

values are not broadcast until after READY is broadcast, so p will certainly not receive round i + 1

clock values until after it has finished collecting round i clock values. However, round i + 1 clock

values might arrive during the second waiting interval and while the process is collecting READY

messages. As a result, the adjustment is calculated at the end of the first waiting interval and the

difference for any round i + 1 clock value received during round i is decremented by the amount

of the adjustment.

5.2.2 Code for an Arbitrary Process

Global constants: ~, £, p, n, f: as usual.

Local variables (all initially arbitrary):

. T: clock time at which current round began.

. U: clock time at which the first waiting period is to end.

· V: clock time at which the second waiting period is to end.

· DIFF: array of clock differences between other processes and this one for current
round.

· SENT.READY: set of processes from whom READY messages have been received in
current round.

. CORR: correction variable.

. A: adjustment to clock.

The code is in Figure 5.1.



54

beginstep(w)
do forever Ie each iteration is a round el

T := NOW
broadcast(T)
U := T + (1 + p)(2~ + 4£)
set-timer(U)

Ie first waiting interval: collect clock values el

while -(w = TIMER & NOW = U) do
if w = (m,q) then DIFF[q]
endstep
beginstep(w)
endwhile

m + ~ - NOW endif

Ie end of first waiting interval el

A := mid(reduce(DIFF»
V := U + (1 + p)(4£ + 4p(~ + 2£) + 2p2(~ + 2£»
set-timer(V)
SENT - READY : = {lJ

Ie second waiting interval: collect READYmessages and clock values
for next round -I

while -(w = TIMER & NOW = V) do
if w = (READY,q) then

SENT-READY := SENT-READY U {q}
if ISENT-READYI= f + 1 then exit endif

elseif w = (m,q) then DIFF[q] := m + ~ - NOW endif
endstep
beginstep(w)
endwh il e

I- end of second waiting interval due to timer or f + 1 READYmessages -/

broadcast(READY)
endstep
beginstep(w)

Ie collect n - f READY messages and next round clock values -I

while true do
if w = (READY,q) then

SENT-READY:= SENT-READYU {q}
if ISENT-READYI= n - f then exit endif

elseif w = (m,q) then DIFF[q] := m + ~ - NOW endif
endstep
beginstep(w)
endwhile

Ie update clock and begin next round el

DIFF := DIFF - A
CORR :: CORR + A
endstep
beginstep(w)
enddo

Figu re 5.1 :Algorithm 5.1, Establishing Synchronization



55

5.3 Analysis

We will use the following notation in addition to that introduced already.

. VALi (q) is the value of q's round i messageto p.p

. DIFFi (q) = VALi (q) + ~ - ARRi (q), p's estimate of the difference between p's and
p p p

q's clocks.

. DIFFipis the multiset of DIFFip(q)values.

. ti is the real time when p begins round i.p

. ui is the real time when p begins the second waiting interval during round i.p

. vi is the real time when p sends READY during round i (and thus ends the second
w~iting interval).

. arri (q) is the real time when p first receives a round i clock value from q.p

. rdyi (q) is the real time when p first receives READYfrom Qduring round i.p

. tmaxi = max{ti } for p nonfaulty, the latest real time when a nonfaulty process begins
d

. p
roun I.

. Si = max{lci (tmaxi) - Ci (tmaxi)l) for p and q nonfaulty, the maximum differencep q .
between nonfaulty clock values at tmax'.

Note that tmaxi has a slightly different meaning from that in Chapter 4.

From now on, terms of order p2 and higher will be ignored. Since 10.6seconds is an often quoted

reasonable value for p [5, 7,9], terms of order p2 are negligible. The second. order terms in the

assignment to V in line 13 of the code are needed for strict correctness, but will not appear in the

analysis.

Lemma 5.2 proves together inductively that the time between two nonfaulty processes beginning

a round is bounded, and that when a nonfaulty process q receives READY from another nonfaulty

process, q has already finished the first waiting period. First we show a preliminary lemma

needed by Lemma 5.2.

Lemma 5.1: Let i ~ 0, p and q be any nonfaulty processes, and r be the first
nonfaultyprocesstosendREADYat roundi. Then

rdyi (p)> ui - (ti - ~) + 8 + 3e.q - q q r
Proof: Since r is the first nonfaulty process to send READY, it doesn't send until its full
second waiting interval has elapsed. Then



56

rdyiq(P) ~ Vip + 6 - e

> vi + 6 - e- r

~ tir + (26 + 4e) + (4e + 4p(6 + 2e» + 6- e, by definition of vir and the upper
boundon thedrift rate

= ti + 36 + 7e + 4p6 + ape,r

and

ui < ti + (ti _ ti ) + (ui _ ti )q - r q r q q

< ti + (ti _ ti ) + (1 + p)2(26 + 4e), by definition of ui and the lower bound on the- r q r q
drift rate

= ti + (ti - ti ) + 26 + 4e + 4p6 + ape.r q r

Thus, tir ~ uiq - (tiq - ti~ - 26 - 4e - 4p/) - ape, implying

rdyi (p»ui _(ti -ti)-26-4e-4p/)-ape + 36 + 7e + 4p6 + apeq - q q r

= ui _ (ti - ~) + 6 + 3e. I
q q r

Lemma 5-2: For any nonfaulty processes p and q and any i ~ 0,

(a) Itip - ~ql < 6 + 3e, and

(b) rdyiq(p) ~ uiq.
Proof: We proceed by induction on i.

Basis: i = O.

(a) ItO - to I ~ /) + e, because as soon as p wakes up, it sends its round 0 messageto
all ot~er p~ocesses. The receipt of this message, which occurs at most 6 + e later,
causes q to begin round 0, if it hasn't already done so.

(b) Let r be the first nonfaulty process to send READY at round 0. By Lemma 5.1,

rdyOq(p)~UOq-(tOq-tO~ + 6 + 3e

~ uOq- (6 + e) + /) + 3e, by part (a)

>uOq.

Induction: Assume for i - 1 and show for i.

(a) Let s be the first nonfaulty process to begin round i. Then s receives n - f READY
messages during 'its round i - 1.(after Ui.1). At least n - 2f of them are from nonfaultys
processes by part (b) of the induction hypothesis. These n - 2f nonfaulty processes



57

also send READY messages to all the other processes. By ti + 2£, every nonfaultys
process receives at least n - 2f ~ f + 1 READY messages and broadcasts READY.
Thus q receives n - f READY messages by ti + 2£ + l) + £. Thus,s

ti < ti + 6 + 3£q - s

~ tip + 6 + 3£, by choice of s,

which implies ti - ti < 6 + 3£.q p-

By reversing the roles of p and q in the above argument, we obtain ti - ti < 8 + 3£.p q-

(b) Let r be the first nonfaulty process to send READY at round i. By Lemma 5.1,

rdyiq(p) ~ uiq - (tiq - tir) + 8 + 3£

> ui - (8 + 3£) + 8 + 3£, by part (a)- q

= ui . I
q

Next we show that a process waits a sufficient length of time to receive clock values from all

nonfaulty processes before beginning the second waiting interval in a round.

Lemma 5.3: Letp andq be nonfaulty,andi ~ o. Then arrip(q) < uip'

Proof: By the lower bound on the drift rate, ui > ti + 28 + 4£. Lemma 5-2 implies. p - p . .that q sends its round i clock value by f + 8 + 3£. Thusarrl (q) < tl + 28 + 4£ <. p p - p -
ul I

p'

The next two lemmas bound how long a round can last for one process. First we bound how long

a process must wait after sending READY to receive n - f READY messages.

Lemma 5.4: Forp nonfaultyand i ~ 0,ti +1P- vip ~ 26 + 4£ + 4p(8 + 4£).
Proof: The worst case occurs if p is as far ahead of the other nonfaulty processes as
possible, its clock is fast, the other clocks are slow, and the slow processes' READY
messages take as long as possible to arrive. However, as soon as they arrive, p begins
the next round. Let q be one of the slow nonfaulty processes.

~+ 1 _ vi = (ti+1 _ vi ) + (vi _ ui ) + (ui _ ti ) + (ti _ ti ) _ (vi _ u' ) _ (ui _ ~)p p p q q q q q q p p p p p

< (8 + £) + (1 + p)2(4£+ 4p(8 + 2£» + (1 + p)2(26+ 4£) + (6 + 3£)
- (4£ + 4p(6 + 2£» - (26 + 4£)

= 28 + 4£ + 4p(8 + 4£), ignoring p2 terms. I

Lemma 5.5: For any nonfaulty process p and any i > 0,

~+1p_tip~48 + 12£ + 4p(36 + 10£).

Proof:~+1 _ti = (ti+1 -vi) + (vi _ui) + Cui _ti)pp P P P P pp



58

< 28 + 4e + 4p(8 + 4£) + (vi - Ui ) + (Ui - ti ), by Lemma 5.4- p p p p

< 28 + 4e + 4p(8 + 4£) + (1 + p)2(4e + 4p(8 + 2e)) + (1 + p)2(28 + 4e)

=48 + 12e + 4p(38 + 10e). I

Nowwe give an upper bound on how far apart tmaxiand tmaxi+1can be.

Lemma 5.6: For any i 2: o.

tmaxi+ 1 _ tmaxi ~ 48 + 12e + 4p(38 + 10e).

Proof: Letp be the nonfaultyprocess such that ti+1 = tmaxi + 1. Thenp

< 48 + 12e + 4p(38 + 10e), by Lemma 5.5. I

Lemma 5.7 bounds the amount of real time between the time a nonfaulty process receives a

round i message from another nonfaulty process and the time the last nonfaulty process begins

round i + 1.

Lemma 5.7: For any i 2: 0 and nonfaulty processes p and q,

tmaxi+1-arrip(q) ~58 + 1ge + 4p(38 + 10e).

proof.tmaxi+1-arri (q) = (tmaxi+1_ti+1) + (ti+1 _ti) + (ti _ti )-(ar~ (q)_ti). p p pp pq p q

~ (8 + 3e) + (48 + 12e + 4p(38 + 10e)) + (8 + 3e) - (8 - e), by Lemmas 5.2 and
5.5 and the lower bound on the messagedelay

= 58 + 19£ + 4p(38 + 10£). I

The next lemma bounds the error in a nonfaulty process' estimate of another nonfaulty process'

local time at a particular real time.

Lemma 5.8: Let p and r be nonfaulty. Then

IDIFFip(r) + Cip(tmaxi + 1)_ Cir(tmaxi + 1)1< £ + p(118 + 39£).

Proof'IDIFFi (r) + Ci (tmaxi + 1)_ Ci (tmaxi + 1)1. P P r

= IVALi (r) + 8 - ARRi (r) + Ci (tmaxi + 1) _ Ci (tmaxi + 1)1.p p p r

If the quantity in the absolute value signs is negative. then this expression is equal to

ci (tmaxi + 1) _ Ci (tmaxi + 1) + Ci (arri (r)) - 8 - VALi (r)r p p p p

< Ci (tmaxi+ 1) _ Ci (tmaxi + 1) + Ci (ar~ (r)) - 8 - Ci (ar~ (r)-8-£), since the delay is at-r p p p r p
most 8 + £



59

< ei (tmaxi+ 1)_ ei (tmaxi+1) + ei (arri (r)) - 8 - ei (arri (r)) + (1 + p)(8 + £),since-r p p p r p
the clock drift is at most 1 + P

::S;2p(tmaxi+1-ar~p(r)) + £ + p8 + p£,byLemma4-2

< 2p(58 + 19£) + £ + p8 + p£, by Lemma 5-7

= £ + p(118 + 39£).

If the quantity in the absolute value signs is positive, a similar argument shows that

IDIFFip(r) + eip(tmaxi+1)-eir(tmaxi+1)1::S; £ + p(118 + 37£). I

The next lemma bounds how far apart two processes' i-th clocks are at the time when the last

process begins round i + 1. The bound is in terms of how far apart the Clocks are when the last

process begins round i.

Lemma 5-9: For any nonfaulty p and q, and any i,

leip(tmaxi + 1) _ eiq(tmaxi + 1)1::S;Bi + Sp(8 + 3£).
Proof: lei (tmaxi+ 1)_ ei (tmaxi + 1)1p q

< lei (tmaxi)- ei (tmaxi)1 + I(e; (tmaxi + 1) - ei (tmaxi + 1)) - (ei (tmaxi) _ ei (tmaxi))l-p q q q p q

::S;Bi + 2p(tmaxi + 1- tmaxi), by definition of Bi and Lemma 4.2

::S;Bi + 2p(48 + 12£), by Lemma 5-6 and ignoring p2 terms

= Bi + Sp(8 + 3£). I

Now we can state the main result, bounding Bi + 1 in terms of Bi.

Theorem 5-10: Bi + 1 < thSi + 2£ + 2p(118 + 39£).

Proof: Bi + 1 = max{lei + 1p(tmaxi + 1) _ e! + 1q(tmaxi +1m for nonfaulty p and q.

Let x = £ + p(118 + 39£).

We now define three multisets U, V, and W that satisfy the hypotheses of Lemma A.4.
Let

U = DIFFi + ei (tmaXi + 1)p P I

V = DIF~ + ei (tmaxi+1) and
q q I

W = {ei (tmaxi+ 1): r is nonfaulty}.r

U and V have size n; W has size n - f.



60

Define an injection from W to U as follows. Map each element d in W to DIFFi (r) +
Ci (tmaxi +1) in U. Since Lemma 5-8 implies that r pp

IDIFFip(r) + dp(tmaxi +1)_ cir(tmaxi +1)1< x

for all the n - f nonfaulty processes, d (W,U) = O. Similarly, d (W,V) = O.x x

Sy Lemma 5-9, diam(W) ~ Si + 8p{cS+ 3£). Thus, Lemma A-4 implies

Imid{reduce{U» - mid{reduce{V»I ~ Ihdiam{W) + 2x

= thSi + 2£ + 2p{11cS+ 39£).

Since mid(reduce{U» = mid{reduce(DIFFi + Ci (tmaxi+1)))P P

= mid(reduce(DIFFi » + Ci (tmaxi+1)P P

= ADJi + d (tmaxi+1)p p

= Ci+1 (tmaxi+1)p

and similarly mid{reduce(V» = Ci + 1 (tmaxi + \ the result follows. Iq

We obtain an approximate bound on how closely this algorithm will synchronize the clocks by

considering the limit of Si as the round number increases without bound.

Theorem 5.11: Thisalgorithmcansynchronizeclocksto within4£ + 4p(11cS+ 39£).

Proof: Iimi-+ooSi

= 4£ + 4p(11cS + 39£), since the limit of the geometric series is 2. I

As was the case for Algorithm 4-1, if the number of processes, n, increases while f, the number of

faulty processes remained fixed, a greater closeness of synchronization can be achieved by

modifying Algorithm 5.1 so that it computes the mean instead of the midpoint of the range of

values. which approaches 2£ + 2pP as n approaches infinity.

After modifying Algorithm 5.1,we get

Si < Si-1f/{n-2f) + 2£ + 2p{11o + 39£).

This is the same as

Si < SOf/{n-2f) + (1- (f/{n-2f»i)/{1 - f/{n-2f»{2£ + 2p{110 + 39£),



61

which approaches 2£ + 2p(11~ + 39£)asn approachesinfinity.

5.4 Determining the Number of Rounds

The nonfaulty processes must determine how many rounds of this algorithm must be run to

establish the desired degree of synchronization before switching to the maintenance algorithm.

The basic idea is for each nonfaulty process p to estimate SO,and then calculate a sufficient

number of rounds, NROUNDS , using the known rate of convergence. SOis estimated by havingp

p calculate an overestimate and an underestimate for CO(tmaxo) for each q, and letting theQ
estimated SO be the difference between the maximum overestimate and the minimum

underestimate.

Let p's overestimate for CO(tmaxo) be OVER (q) and p's underestimate for CO(tmaxo) beQ p Q

UNDERp(q).

For the overestimate, we assume that q's clock is fast, and that the maximum amount of time

elapses between to (when q sent the message) and tmaxo. That maximum is ~ + £ since everyQ

nonfaulty process begins round a as soon as it receives a message. Thus,

OVER (q) = VAL° (q) + (1 + p)(~ + e).p p

Similarly, we can derive the underestimate. We assume that q is the last nonfaulty process to

begin round O. Thus,

UNDER (q) = VAL0 (q).p p

Process p computes its estimate of SO,

SO = max {OVERp(q)} - min {UNDER (q)}.P Q q P

Now p estimates how many rounds are needed until the spread is close enough. There is a

predetermined y ~ 4£ + 4p(11~ + 39£), which is the desired closeness of synchronization for

the start-up algorithm. Atter j rounds,

Process p sets the right hand side equal to y and solves for j to obtain its estimate of the required

number of rounds, NROUNDSp'



62

Now each process executes a Byzantine Agreement protocol on the vector of NROUNDSvalues,

one value for each process. The processes are guaranteed to have the same vector at the end of

the Byzantine Agreement protocol. Each process chooses the (f + 1).st smallest element of the

resulting vector as the required number of rounds. The smallest number of rounds computed by a

nonfaulty process will suffice to achieve the desired closeness of synchronization. Variations in

the number of rounds computed by different nonfaulty processes are due to spurious values

introduced by faulty processes and to different message delays. However, the range computed

by any nonfaulty process is guaranteed to include the actual values of all nonfaulty processes at

tmaxo, so the range determined by the process that computes the smallest number of rounds also

includes all the actual values. In order to guarantee that each process chooses a number of

rounds that is at least as large as the smallest one computed by a nonfaulty process, it chooses

the (f + 1).st smallest element of the vector of values.

Any Byzantine Agreement protocol requires at least f + 1 rounds. The processes can execute

this algorithm in parallel with the clock synchronization algorithm, beginning at round O. The

clock synchronization algorithm imposes a round structure on the processes' communications.

The Byzantine Agreement algorithm can be executed using this round structure. Each BA

message can also include information needed for the clock synchronization algorithm (namely,

the current clock value). However, the processes will always need to do at least f + 2 rounds, one

to obtain the estimated number of rounds and f + 1 for the Byzantine Agreement algorithm.

5.5 Switching to the Maintenance Algorithm

After the processes have done the required number of rounds (denoted by r throughout this

section) of the start.up algorithm, they cease executing it. The processes should begin the

maintenance algorithm as soon as possible after ending the start.up algorithm in order to

minimize the inaccuracy introduced by the clock drift.

In the maintenance algorithm each process broadcasts its clock value when its clock reaches Ti,

for i = A, 1, where Ti+1 = Ti + P. Let TObe a multiple of P. It is shown below in Lemma 5.13

that the first multiple of P reached by nonfaulty p's clock after finishing the required r rounds

differs by at most one from the first multiple reached by nonfaulty q's clock after the r rounds.

When a process reaches the first multiple of P after it has ended the start.up algorithm, it

broadcasts its clock value as in the maintenance algorithm, but doesn't update its clock. At the

next multiple of P, the process begins the full maintenance algorithm by broadcasting its clock




