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of their first waiting intervals. At the end of its second waiting interval, p broadcasts a READY
message indicating that it is ready to begin the next round. However, if p receives f + 1 READY
messages during its second waiting interval, it terminates its second interval early, and goes
ahead and broadcasts READY. As soon as p receives n — f READY messages, it updates the
clock according to the adjustment calculated earlier, and begins its next round by broadcasting

its new clock value. (This algorithm uses some ideas from [3].)

A process need only keep clock differences for one round at a time. The waiting intervals are
designed so that during round i a nonfaulty process p will not receive a READY message from
another nonfaulty process until p has finished collecting round i clock values. Round i + 1 clock
values are not broadcast until after READY is broadcast, so p will certainly not receive round i + 1
clock values until after it has finished collecting round i clock values. However, round i + 1 clock
values might arrive during the second waiting interval and while the process is collecting READY
messages. As a result, the adjustment is calculated at the end of the first waiting interval and the
difference for any round i + 1 clock value received during round i is decremented by the amount

of the adjustment.

5.2.2 Code for an Arbitrary Process

Global constants: §, ¢, p, n, f. as usual.
Local variables (all initially arbitrary):
e T: clock time at which current round began.
e U: clock time at which the first waiting period is to end.
e V: clock time at which the second waiting period is to end.

¢ DIFF: array of clock differences between other processes and this one for current
round.

e SENT-READY: set of processes from whom READY messages have been received in
current round.

e CORR: correction variable.

e A: adjustment to clock.

The code is in Figure 5-1.



beginstep(w)
do forever /* each iteration is a round */
T := NOW
broadcast(T)
U:=T+ (1 + p)(28 + 4¢)
set-timer(U)

/* first waiting interval: collect clock values */

while ~(w = TIMER & NOW = U) do
if w = (m,q) then DIFF[q] := m + § - NOW endif
endstep
beginstep(w)
endwhile

/* end of first waiting interval */

A := mid(reduce(DIFF))

Vi= U+ (1+p)(de + 4p(8 + 2¢) + 2p%(8 + 2¢))
set-timer(V)

SENT-READY := &

wow

/* second waiting interval: <collect READY messages and clock values
for next round */

TIMER & NOW = V) do
(READY,q) then

SENT-READY := SENT-READY U {q}

if |SENT-READY| = f + 1 then exit endif
elseif w = (m,q) then DIFF[q] := m + § - NOW endif
endstep
beginstep(w)
endwhile

while ~(w
if w

/* end of second waiting interval due to timer or f + 1 READY messages */

broadcast(READY)
endstep
beginstep(w)

/* collect n - f READY messages and next round clock values */

while true do
if w = (READY,q) then
SENT-READY := SENT-READY U {q}
if |SENT-READY| = n - f then exit endif
elseif w = (m,q) then DIFF[q] := m + & - NOW endif
endstep
beginstep(w)
endwhile

/* update clock and begin next round */

DIFF := DIFF - A
CORR := CORR + A
endstep
beginstep(w)
enddo

Figure 5-1:Algorithm 5-1, Establishing Synchronization
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5.3 Analysis
We will use the following notation in addition to that introduced already.
° VALip(q) is the value of g's round i message to p.

° DIFFip(q) = VALip{q) + 8- ARR‘p(q), p's estimate of the difference between p's and
q's clocks.

. DIFFip is the multiset of DIFFip(q) values.
B tip is the real time when p begins round i.
° uip is the real time when p begins the second waiting interval during round i.

2 vip is the real time when p sends READY during round i (and thus ends the second
waiting interval).

@ arrip(q) is the real time when p first receives a round i clock value from g.
° rdyip(q) is the real time when p first receives READY from q during round i.

o tmax' = max{tip} for p nonfaulty, the latest real time when a nonfaulty process begins
round i.

eB = max{lCi {tmaxi] . (tmaxi)[} for p and q nonfaulty, the maximum difference
between nonfaulty clock values at tmax.

Note that tmax' has a slightly different meaning from that in Chapter 4.

From now on, terms of order p2 and higher will be ignored. Since 10°® seconds is an often quoted
reasonable value for p [5, 7, 9], terms of order p2 are negligible. The second-order terms in the

assignment to V in line 13 of the code are needed for strict correctness, but will not appear in the

analysis.

Lemma 5-2 proves together inductively that the time between two nonfaulty processes beginning
a round is bounded, and that when a nonfaulty process q receives READY from another nonfaulty

process, q has already finished the first waiting period. First we show a preliminary lemma

needed by Lemma 5-2.
Lemma 5-1: Leti > 0, p and g be any nonfaulty processes, and r be the first
nonfaulty process to send READY at round i. Then

rdyiq(p) > uiq -(tiq -t) + 8 + 3e.
Proof: Since r is the first nonfaulty process to send READY, it doesn't send until its full
second waiting interval has elapsed. Then



i i
rdyq(p)va+ 6-¢
2v5r+ §-¢

> tir + (26 + 4e) + (4e + 4p(8 + 2¢)) + 6 - ¢, by definition c:)fwir and the upper
bound on the drift rate

=tir+38 + 7e + 4pd + 8pe,

and

)

i i i i i i
qut,-*' (tq—tr) + (uq—t

<t + (t*ca ~t) + (1 + p)%(28 + 4e), by definition of u‘q and the lower bound on the
drift rate

q

=t + (tl-t]) + 28 + 4¢ + 4p5 + Bpe.
Thus,t > u‘q = . t\) - 28 - 4¢ - 4p8 - 8pe, implying
rdyiq(p) > Uiq-(tiq-—tir)-—26—4£—4p5—ﬁp€ + 30 + 7e + 4pd + Bpe

= uiq-(tiq-tjr) +8 +3e. 1
Lemma 5-2: For any nonfaulty processes pandgand anyi> 0,

(a) |tip-tiq| < 8 + 3¢, and

(b) rdy' (p) 2 u'_.
Proof: We proceed by induction on i.

Basis: i = 0.

(a) It° it ] < 8§ + &, because as soon as p wakes up, it sends its round 0 message to
all other processes. The receipt of this message, which occurs at most § + ¢ later,
causes q to begin round 0, if it hasn't already done so.

(b) Let r be the first nonfaulty process to send READY at round 0. By Lemma 5-1,
0 0 0 .0
rdy q(p)Zu q-(t q-t r) + 08 + 3¢
Zuoq-(b' + €) + & + 3¢, by part (a)
0
u &
Induction: Assume fori-1 and show fori.
(a) Let s be the first nonfaulty process to begin round i. Then s receives n - f READY

messages during its round i - 1 (after T s). At least n - 2f of them are from nonfaulty
processes by part (b) of the induction hypothesis. These n - 2f nonfaulty processes
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also send READY messages to all the other processes. By lis + 2, every nonfaulty
process receives at least n - 2f > f + 1 READY messages and broadcasts READY.

Thus q receives n - f READY messages by t, + 2¢ + & + &. Thus,
i i
t'q Sto+ 8+ 3
< t"p + & + 3¢, by choice of s,
which implies tiq—tip <34 + 3e
By reversing the roles of p and q in the above argument, we obtain t*p - tiq <468 + 3e.
(b) Let r be the first nonfaulty process to send READY at round i. By Lemma 5-1,
i i i
rdyq(p) > uq-{tq—tr} + 6 + 3¢
> uiq-(ﬁ + 3¢) + 8 + 3¢, by part (a)

i
=u_.l
q

Next we show that a process waits a sufficient length of time to receive clock values from all
nonfaulty processes before beginning the second waiting interval in a round.
Lemma 5-3: Let p and q be nonfaulty, and i > 0. Then arrip(q) < uip.

Proof: By the lower bound on the drift rate, uip > t o+ 28 + 4¢. Lemma 5.2 implies
that q sends its round i clock value by t‘p + 8 + 3e. Thus arr'p{q) < t‘p +20 +4e <
TH |

p

The next two lemmas bound how long a round can last for one process. First we bound how long
a process must wait after sending READY to receive n - f READY messages.

Lemma 5-4: For p nonfaulty andi > 0, ti”'J -v*p <28 + 4e + 4p(8 + 4e).

Proof: The worst case occurs if p is as far ahead of the other nonfaulty processes as
possible, its clock is fast, the other clocks are slow, and the slow processes’ READY
messages take as long as possible to arrive. However, as soon as they arrive, p begins
the next round. Let q be one of the slow nonfaulty processes.

t‘”p-v‘p = (t‘*‘n—v‘q) + (v‘q-u*q) + (uiq-tiq) + (t‘q-t'p)-(v‘p-u‘p)-(u*p-t‘p)
<@+¢e)+(1+ p)2(4e +4p(8 + 2€)) + (1 + p)2(26 + 4¢) + (6 + 3¢)
- (4 + 4p(8 + 2¢)) - (26 + 4¢)

= 28 + 4e + 4p(8 + 4e¢), ignoring 92 terms. 1§
Lemma 5-5: For any nonfaulty process p and any i > 0,

t‘”p-tipgetﬁ + 12¢ + 4p(38 + 10¢).
LR R Rl o coch b _4
Proof: t =t (t . v'p)+(vp up)-n-(up tp)
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< 28 + 4¢ + 4p(8 + 4¢) + {vip-uip) + (u‘p—t‘p),by Lemma 5-4
<28 + 4e + 4p(8 + 4¢) + (1 + p)2(de + 4p(8 + 2¢)) + (1 + p)%(26 + 4e)

=48 + 12¢ + 4p(38 + 10¢). 1

Now we give an upper bound on how far apart tmax' and tmax'* ' can be.
Lemma 5-6: Foranyi > 0,

tmax'* ! - tmax' <46 + 12¢ + 4p(38 + 10¢).
Proof: Let p be the nonfaulty process such that tmp = tmax'*'. Then
tmax'*'-tmax' = t*' —tmax' <t'*! -t
p =" p 'p
<468 + 12¢ + 4p(36 + 10¢), by Lemma 5-5. |

Lemma 5-7 bounds the amount of real time between the time a nonfaulty process receives a

round i message from another nonfaulty process and the time the last nonfaulty process begins

roundi + 1.
Lemma 5-7: Foranyi > 0and nonfaulty processes p and q,

tmax'* -arrip(q) <56 + 19¢ + 4p(38 + 10¢).

A i+1_ i - i+1_ i+ i+1 i iy i _
Proof: tmax arr' (q) = (tmax PR et #il=t) (arr’p{q) tq)

< (8 + 3¢) + (48 + 12e + 4p(38 + 10¢)) + (8 + 3e) - (6 - ¢), by Lemmas 5-2 and
5-5 and the lower bound on the message delay

= 58 + 19¢ + 4p(38 + 10¢). 1

The next lemma bounds the error in a nonfaulty process’ estimate of another nonfaulty process’

local time at a particular real time.
Lemma 5-8: Let p and r be nonfaulty. Then

IDIFF (1) + C| (tmax'*") - C' (tmax* )| < & + p(118 + 39%).
Proof: [DIFF! (r) + C| (tmax'*") - C' (tmax'* ")

= |vAL! o) + 8- ARRip(r) ¥ Cip(tmax“ ') - C (tmax'*").

If the quantity in the absolute value signs is negative, then this expression is equal to
i i+1 i i+1 i i i

C [(tmax )-C p(tmax )+ C p(arr p(r)) -8 -VAL |J(r)

< Cir(tmaxi L 5, p(tmax“ )+ cip(arrip(r)) -8~ Cir(arrip(r)-ﬁ-e), since the delay is at
mostd + e
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SC"r(tma\:u:j”)—Ci (tmax'*") + ij(arrip(r)}—S—Cir(arrip(r)) + (1 + p)(8 + ¢g),since
the clock drift is at most 1 + p
= (c"r(:max“‘)-C‘p(tmax“")}-{c"r(arrip(r)}-c‘p(arrip(r)n—a +8+e+pd+pe
< 2p(tmax'*’ -arrip{r)) + €+ pb + pe, by Lemma 4-2
< 2p(56 + 19¢) + ¢ + pd + pe, by Lemma 5-7
=¢€ + p(118 + 39¢).

I the quantity in the absolute value signs is positive, a similar argument shows that
[DIFF‘p(r) + C'p(tmax'*1}—C'r[tmax'”)l <e+ p(118 + 37¢). 1

The next lemma bounds how far apart two processes’ i-th clocks are at the time when the last

process begins round i + 1. The bound is in terms of how far apart the clocks are when the last

process begins round i.
Lemma 5-9: For any nonfaulty p and g, and any i,

|Cip(tmaxi+T}-Ciq(tmaxi”)l < B + 8p(8 + 3e).

Proof: ECip(tmaxi e Ciq(tmaxi )

< ]Cip{tmaxi) - Ciq(tmaxi)l + I(qu(tmaxi g™ Ciq{tmaxi 2y (Cip(tmaxi} > Ciq(tmaxi))l
< B' + 2p(tmax'* ' - tmax'), by definition of B' and Lemma 4-2

< B + 2p(48 + 12¢), by Lemma 5-6 and ignoring p" terms

=B+ 8p(8 + 3e). 1

Now we can state the main result, bounding B'*'interms of B'.
Theorem 5-10: B'*' < %B' + 2¢ + 2p(118 + 39%).

Proof: B'*! = max{|C'* ’n(tmaxi+ i+ 1q(tmaxi“ ")[} for nonfaulty p and q.
Letx = &€ + p(118 + 39¢).

We now define three muitisets U, V, and W that satisfy the hypotheses of Lemma A-4.
Let

- i i Li+
U= DIFFp + Cp(tmax )
V = DIFF . c‘q(tmax‘*‘), and
W = {Cir(tmaxi”): r is nonfaulty}.

Uand V have size n; W has size n-f.
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Define an injection from W to U as follows. Map each element C' in W to DIFF' (r) +
5 (zmax' *1)in U. Since Lemma 5-8 implies that

[DIFF’ o) + c‘p(tmax'*‘) -C' (tmax'*")| < x

for all the n - f nonfaulty processes, dK(W,U} = 0. Similarly, dx[W,V) =1
By Lemma 5-9, diam(W) < B' + 8p(8 + 3¢). Thus, Lemma A-4 implies
|mid(reduce(U)) - mid(reduce(V))| < "2diam(W) + 2x

= KB + 2¢ + 2p(118 + 39e).

Since mid(reduce(U)) = mid{reduce(DIFF‘p + Cip(tmax“‘)))

= mid(reduce(DIFFip)) * & p{tmax“‘)

= ADJ' + C' (tmax'*")

_ Ci+1p(tmaxi+1)

and similarly mid(reduce(V)) = Ci”q(tmaxi“). the result follows. 1

We obtain an approximate bound on how closely this algorithm will synchronize the clocks by

considering the limit of B' as the round number increases without bound.
Theorem 5-11: This algorithm can synchronize clocks to within 4e + 4p(11§ + 39¢).

il; i
Proof: "mi—;ooB

n

lim_,oo[B%/2" + (1 + 172 + .. + 1/2"")(2e + 2p(118 + 39¢))]

4¢ + 4p(118 + 39¢), since the limit of the geometric seriesis 2. 1

As was the case for Algorithm 4-1, if the number of processes, n, increases while f, the number of
faulty processes remained fixed, a greater closeness of synchronization can be achieved by
modifying Algorithm 5-1 so that it computes the mean instead of the midpoint of the range of

values. which approaches 2e + 2pP as n approaches infinity.
After modifying Algorithm 5-1, we get

Bl < B'#/(n-2f) + 2 + 2p(118 + 39¢).

This is the same as

B < BO%/(n-2f) + (1= (1/(n-20))/(1 - £/(n-20))(2¢ + 2p(118 + 39e),
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which approaches 2¢ + 2p(118 + 39¢) as n approaches infinity.

5.4 Determining the Number of Rounds

The nonfaulty processes must determine how many rounds of this algorithm must be run to
establish the desired degree of synchronization before switching to the maintenance algorithm.
The basic idea is for each nonfaulty process p to estimate BO, and then calculate a sufficient
number of rounds, NFIOUNDSD, using the known rate of convergence. B is estimated by having
p calculate an overestimate and an underestimate for Coq(tmaxo) for each q, and letting the

estimated B° be the difference between the maximum overestimate and the minimum

underestimate.

Let p's overestimate for Coq(tmaxo) be OVERp(q) and p’s underestimate for Coq(tmaxo) be

UNDERp(q).

For the overestimate, we assume that g's clock is fast, and that the maximum amount of time
elapses between taq (when q sent the message) and tmax®. That maximum is & + e since every

nonfaulty process begins round O as soon as it receives a message. Thus,

OVER_(q) = VAL"p(q) +(1+p)d +e)

Similarly, we can derive the underestimate. We assume that q is the last nonfaulty process to

begin round 0. Thus,

UNDER (q) = VALop(q).

Process p computes its estimate of B,

B°p = max _{OVER (q)} - min_{UNDER_(a)}.

Now p estimates how many rounds are needed until the spread is close enough. There is a

predetermined y > 4e + 4p(116 + 39¢), which is the desired closeness of synchronization for

the start-up algorithm. After j rounds,
B < B°p/2i + (1 +1/2 + .. + 1725")(2e + 2p(118 + 39¢)).

Process p sets the right hand side equal to y and solves for j to obtain its estimate of the required
number of rounds, NF!OUNDSP.
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Now each process executes a Byzantine Agreement protocol on the vector of NROUNDS values,
one value for each process. The processes are guaranteed to have the same vector at the end of
the Byzantine Agreement protocol. Each process choases the (f + 1)-st smallest element of the
resulting vector as the required number of rounds. The smallest number of rounds computed by a
nonfaulty process will suffice to achieve the desired closeness of synchronization. Variations in
the number of rounds computed by different nonfaulty processes are due to spurious values
introduced by faulty processes and to different message delays. However, the range computed
by any nonfaulty process is guaranteed to include the actual values of all nonfaulty processes at
tmaxo, so the range determined by the process that computes the smallest number of rounds also
includes all the actual values. In order to guarantee that each process chooses a number of
rounds that is at least as large as the smallest ane computed by a nonfaulty process, it chooses

the (f + 1)-st smallest element of the vector of values.

Any Byzantine Agreement protocol requires at least f + 1 rounds. The processes can execute
this algorithm in parallel with the clock synchronization algorithm, beginning at round 0. The
clock synchronization algorithm imposes a round structure on the processes’ communications.
The Byzantine Agreement algorithm can be executed using this round structure. Each BA
message can also include information needed for the clock synchronization algorithm (namely,
the current clock value). However, the processes will always need to do at least f + 2 rounds, one

to obtain the estimated number of rounds and f + 1 for the Byzantine Agreement algorithm.

5.5 Switching to the Maintenance Algorithm

After the processes have done the required number of rounds (dencoted by r throughout this
section) of the start-up algorithm, they cease executing it. The processes should begin the
maintenance algorithm as soon as possible after ending the start-up algorithm in order to

minimize the inaccuracy introduced by the clock drift.

In the maintenance algorithm each process broadcasts its clock value when its clock reaches Ti.
fori = 0, 1, ..., where T*' =T +P.LetT’bea multiple of P. It is shown below in Lemma 5-13
that the first multiple of P reached by nonfaulty p's clock after finishing the required r rounds
differs by at most one from the first multiple reached by nonfaulty q's clock after the r rounds.
When a process reaches the first multiple of P after it has ended the start-up algorithm, it
broadcasts its clock value as in the maintenance algorithm, but doesn't update its clock. At the
next multiple of P, the process begins the full maintenance algorithm by broadcasting its clock





