
46

messages aren't received until after the time when p sets its (i + 1)-st clock.

By the lower bound on messagedelays, q's message to p took at least ~ - e time. Then

at real time t' (defined above), we have Ciq(t') ~ Ti + ~ - e.Butthenciq(t') >(1 + p)(t'
- tmino) + rD + ie.

But then the inductive hypothesis is violated, since t', the time when p receives q's Ti
message, is greater than or equal to Ui-1 ,the time when q sets its round i clock. Iq

Now, we can state the validity condition. Let cp = (P - (1 + p)(fJ + E) - p~) / (1 + p). This is the

size of the shortest round in real time since the amount of clock time elapsed during a round is at

least P minus the maximum adjustment.

Theorem 4.21: The algorithm preserves (a1,a2,a3)-validity,

wherea1 = 1-p-e/cp,a2 = 1 + P + e/cp,anda3 = e.

Proof: We must show for all t ~ tOpand all nonfaulty p that

a1 (t - tmaxo) + TO- a3 < Lp(t)~ a2(t- tminO) + rD + a3.

We know from the preceding lemma that for i ~ 0, t > Ui-1P (or tOp)' and non faulty p

(1 - p)(t - tmaxO) + TO- ie ~ Cip(t) ~ (1 + p)(t - tminO) + rD + ie.

Since L (t) is equal to Ci (t) for some i, we just need to convert i into an expression in
terms oft, etc. An upperbound on i is 1 + (t - tmaxO)/cp. Then

(1 + p)(t - tminO) + TO+ ie ~ (1 + p)(t - tminO) + TO + (1 + (t - tmaxO)/cp)e

~ (1 + P + e/cp)(t-tminO) + rD + e,since tminO~ tmaxO,

and that

(1 - p)(t - tmaxo) + rD- ie ~ (1- p)(t - tmaxO) + TO- (1 + (t - tmaxO)/cp)e

~ (1 - P - e/cp)(t - tmaxO) + TO- e.

The result follows. I

4.8 Reintegrating a Repaired Process

Our algorithm can be modified to allow a faulty process which has been repaired to synchronize

its clock with the other nonfaulty processes. Let p be the process to be reintegrated into the

system. During some round i. p will gather messages from the other processes and perform the

same averaging procedure described previously to obtain a value for its correction variable such



47

that its clock becomes synchronized. Since p'S clock is now synchronized, it will reach Ti+1

within p of every other nonfaulty process. At that point, p is no longer faulty and rejoins the main

algorithm, sending out Ti+1messages.

We assume that p can awaken at an arbitrary time during an execution, perhaps during the middle

of a round. It is necessary that p identify an appropriate round i at which it can obtain all the Ti

messages from nonfaulty processes. Since p might awaken during the middle of a round, p will

orient itself by observing the arriving messages. More specifically, p seeks an i such that f Ti.1

messages arrive within an interval of length at most (1 + p)(P + 2£) as measured on its clock.

There will always be such an i because all messages from nonfaulty processes for each round

arrive within p + 2£ real time of each other, and thus within (1 + p)(P + 2£) clock time. At the

same time as p is orienting itself, it is collecting Ti messages, for all j.

Assuming that p itself is still counted as one of the faulty processes, at least one of the f arriving

messages must be from a nonfaulty process. Thus, p knows that round i - 1 is in progress or has

just ended, and that it should use Ti messages to update its clock.

Nowp collectsonlyTi messages.It mustwait (1 + p)(fJ + 2£ + (1 + p)(P + (1 + pHP + £) +

po), as measured on its clock, after receiving the f.th Ti.1 message in order to guarantee that it

has received Ti messagesfrom all nonfaulty processes. The maximum amount of real time p must

wait, (P + 2£ + (1 + p)(P + (1 + p)(P + 2£) + po), elapses if the f.th Ti.1 message is from a

nonfaulty process q and it took 0 - £ time to arrive, if q's round i - 1 lasts a long as possible, (1 +

p)(P + (1 +p){P + £) + po) (because its clock is slow and it adds the maximum amount to its

clock), and if there is a nonfaulty process r that is Pbehind q in reaching Ti and its Ti message to

p takes 0 + £. The process waits trns maximum amount of time multiplied by (1 + p) to account

for a fast clock.

(Some extra bookkeeping in the algorithm is necessitated by the fact that Ti messages from

nonfaulty processes can arrive at p before p has received the f.th Ti.1 message. This scenario

shows why: Suppose p receives the first Ti.1message at real time a, it is from a nonfaulty process

q, and its delay is 0 + £, and that the f.th Ti.1 message is received P + 2£ after the first one. Also

suppose that q's round i - 1 is as short as possible in real time, P - (1 + p)(P + £) - po) / (1 + p),

that there is a nonfaulty process r that begins round iPbefore q does, and that r's Ti messageto p

arrives at real time b and has delay 0 - E.

We show that b < a + P + 2£, implying that the Ti message is received before the f.th Ti.1

---I



48

message.

b=ti+6-er

= ti.1 + (P- (1 + p)(fJ + e) - p8) / (1 + p) - fJ + 8 -eq

>ti.1 + «1 + p)(3fJ + 3e) + p8 - (1 + p)(fJ + e). p8) / (1 + p) - fJ + 8 - e, by lowerbound on Pq

= ti-1 + fJ + 8 + eq

= a - 8 - e + fJ + 8 + e.

Thus, b > a + fJ. However, if P is very close to the lower bound, then b is approximately a + fJ,

which is less than a + fJ + 2e.)

Immediatelyafter p determines it has waited long enough" it carries out the averaging procedure

and determines a value for its correction variable.

We claim that preaches Ti+1 on its new clock within fJ of every other nonfaulty process. First,

observe that it does not matter that p's clock begins initially unsynchronized with all the other

clocks; the arbitrary clock will be compensated for in the subtraction of the average arrival time.

Second, observe that it does not matter that p is not sending out a Ti message; p is being counted

as one of the faulty processes, which could always fail to send a message. (Processes do not

treat themselves specially in our algorithm, so it does not matter that p fails to receive a message

from itself.) Finally, observe that it does not matter that p adjusts its correction variable whenever

it is ready (rather than at the time specified for correct processes in the ordinary algorithm). The

adjustment is only the addition of a constant, so the (additive) effect of the change is the same in

either case.

We want to ensure that when a process that is reintegrating itself into the system firiishes

collecting Ti messages and updates its clock, this new clock hasn't already passed Ti+1. The

reason for ensuring this is that the process is supposed to be nonfaulty by Ti+1and send out its

clock value at that time.

The code is in Figure 4.2.

INFOis an array, each entry of which is a set of (process name, clock time) pairs. When a ri



49

beginstep(u)
do forever

if u = (Ti,q) and (q,T) ~ INFO[i] for any T then
INFO[i] := INFO[i] U {(q,NOW)}
if 1{(q,T) E INFO[i]: q is any process and

T ~ NOW- (1 + p) (f3 + 2£)} I = f
then ex it end if

endif
endstep
beginstep(u)
enddo

/* P knows it should use round i values */

do for each (q,T) E INFO[i]
ARR[q] := T
enddo .

set-timer(NOW + (1 + p)(f3 + 2£ + (1 + p)(P + (1 + p)(f3 + £) + p8»)
endstep

beginstep(u).
while u = (T',q) for the chosen i do

ARR[q] := NOW
endstep
beginstep(u)
endwhile

/* fallout of loop when timer goes off */

AV := mi9(reduce(ARR»
ADJ := T' + 8 - AV
CORR := CORR + ADJ
set-timer(Ti + P)
endstep

/* switch to Algorithm 4-1 */

Figure 4-2:Algorithm 4-2, Reintegrating a Repaired Process

message arrives from process q, p checks that q hasn't already sent it a Ti message. If not, then

q's name and the receiving time are added to the set of senders of Ti, INFO[i]. If f distinct Ti

messages have been received within the last (1 + p)(f3 + 2£) time, then p knows that it should

use Ti messages to update its clock.

The current lower bound on P, the round length, is not large enough to ensure that when the

reintegrating process finishes collecting Ti messages and updates its clock, this new clock hasn't

already passed Ti +1.

There are two ways to solve this problem:



50

1. make the minimum P approximately three times as large as it currently must be;

2. have the process send out its clock value at Ti+2. It can be collecting Ti+1messages
all along, but now it knows a tighter bound on when to stop collecting them (since its
(i + 1).st clock is synchronized with the other nonfaulty processes' clocks). This will
work as long as the time at which it stops collecting Ti messages isn't after the
process' (i + 2).nd clock has reached Ti+2.

Now we show that P must be about three times as large as the previous lower bound in order to

prevent the reintegrating process from waiting too long before updating its clock. The actual

criterion we use is that the processmust updateits clock at least13 beforeany other nonfaulty

process' (i + 1).st clock reaches Ti+1. (Since the process' new clock is synchronized with those

of the nonfaultyprocesses,it will not reachTi+1 more than 13before any other nonfaulty clock

does.)

Let p be a process being reintegrated during round i and let t be the real time when p stops

collecting Ti messages

Lemma 4.22: If t ~ ci + \(Ti + 1) - 13 for any nonfaulty process q, then

P> (613+ I) + 9£ + p(8f3 + 31) + 16£) + p2(6f3 + I) + 14£) + p3(4f3 + 31) + 8£)
+ p4(f3 + I) + 2£)) / (1 - 5p _ 3p2 _ p3).

Proof: The worst case occurs if p waits as long as possible to finish collecting Ti
messages and another nonfaulty process q reaches Ti +1as soon as possible.

Suppose p receives the first Ti.1 message at real time 1',and the f.th Ti-1message at t'
+ (1 + p)2(f3 + 2£) (because its clock is slow). According to the reintegration
algorithm, p will then wait (1 + p)(f3 + 2£ + (1 + p)(P + (1 + p)(f3 + 2£) + pI))) on its
clock, which means it will wait (1 + p) times as long in real time.

Thus,t = t' + (1 + p)2(2f3+ 4£ + (1 + p)(P + (1 + p)(f3 + 2£) + pl)).

Now assume that the first Ti-1message received by p was from a nonfaulty process q
and that it took I) + £ time to arrive. Thus Ci-1 (Ti.1) = t' - I) - £. If round i - 1 and

round i both take the shortest amount of real tic:ne,(1 - p)(P - (1 + p)(f3 + £) - pl),
then

Ci+1 (Ti+1) = Ci.1 (Ti'1) + 2(1-p)(P-(1 + p)(f3 + E)-pl).q q

We want to ensure that ci + \(Ti + 1)- t ~ 13,i.e.,

1'-1)-£ + 2(1-p)(P-(1 + p)(f3 + E)-pI)
- l' - (1 + p)2(2f3+ 4£ + (1 + p)(P + (1 + p)(f3 + 2E) + pl))) ~ 13.

This inequality simplifies to the stated bound. I



51

This new lower bound on P is about three times the sizeof the previous one, which was

P >2{3 + ~ + 2£ + 2p(f3 + ~ + e).

If increasing the lower bound on P is unacceptable, the second solution can be employed. Its

drawback is that now it will take longer for a process to be reintegrated. A similar argument to the

above shows that in order to guarantee that p finishes collecting Ti messages at least {3 before

any nonfaulty process reaches Ti+2, we must have

P ~ (S{J+ ~ + 10£ + 2p(5{J+ 2~ + 9£» / (2. 4p), ignoring p2 terms.

This lower bound is fairly close to the original one. For absolute certainty that the original lower

bound will suffice, the process can wait until Ti+3.



52
1

Chapter Five

Establishing Synch ronization

5.1 Int roduction

In this chapter we present an algorithm to synchronize clocks in a distributed system of

processes, assuming the clocks initially have arbitrary values. The algorithm handles arbitrary

failures of the processes and clQck drift. We envision the processes running this algorithm until

the desired degree of synchronization is obtained, and then switching to the maintenance

algorithm described in the previous chapter.

5.2 The Algorithm

5.2.1 General Description

The structure of the start.up algorithm is similar to that of the algorithm which maintains

synchronization. It runs in rounds. During each round, the processes exchange clock values and

use the same fault.tolerant averaging function as before to calculate the corrections to their

clocks. However, each round contains an additional phase, in which the processes exchange

messages to decide that they are ready to begin the next round. This method of beginning rounds

stands in contrast to that used by the maintenance algorithm, in which rounds begin when local

clocks reach particular values. A more detailed description follows.

Nonfaulty processes will begin each round within real time ~ + 3£ of each other. Each nonfaulty

process begins the algorithm, and its round 0, as soon as it first receives a message. (It will be

shown that this must be within ~ + 3£.) At the beginning of each round, each nonfaulty process p

broadcasts its local time. Then p waits a certain length of time guaranteed to be long enough for

it to receive a similar message from each nonfaulty process. At the end of this waiting interval, p

calculates the adjustment it will make to its clock at the current round, but does not make the

adjustment yet.

Then p waits a second interval of time before sending out additional messages, to make sure that

these new messages are not received before the other nonfaulty processes havereachedtheend

I




