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Lemma 4.6: Let p be nonfaulty. Then IADJipl~ (1 + p)(j3 + e) + p~.
Proof: ADJi = Ti + ~ _ AVi .

P p

Thus, for some nonfaulty q and r. Lemma 4.5 implies that

Then Lemma 4.4 implies that:

(a)ADJip~Ti + ~_(Ti + (1 + p)(p + ~ + £)) = -(1 + p)(j3 + £)-p~.

(b) If ~ - e ~ p. then ADJip~ Ti + ~ - (Ti + (1 - p)(~ - £- 13))= (1 - p)(p + e) + p~.

(c) If ~ - £ ~ 13,then ADJip ~ Ti + ~ - (Ti - (1 + p)(p - ~ + £)) = (1 + p)(p + £) - p~.

The conclusion is immediate. I

4.5.4 Timers Are Set in the Future

Earlier. we gave a lower bound on P and described two conditions which that bound was

supposed to guarantee (that timers are set in the future and that messages arrive after the

appropriate clocks have been set). In this subsection. we show that the given bound on P is

sufficient to guarantee that the first of these two conditions holds.

Lemma 4.7: Let p be nonfaulty. Then Ui + ADJi <Ti + 1.p

Proof: Ui + ADJip ~ Ui + (1 + p)(p + £) + P~. by Lemma 4.6

= Ui + (2(1 + p)(p + e) + (1 + p)~ + p~) - (1 + p)(p + ~ + e)

< Ui + P- (1 + p)(j3 + ~ + £).by the assumed lower bound on P

This lemma implies that timers are set in the future and that ti +1 is defined. the first of the threep
inductive properties which we mus\ verify.

4.5.5 Bounding the Separation of Clocks

Next, we prove several lemmas which lead to bounds on the distance between the new clocks of

nonfaulty processes. The first lemma gives an upper bound on the error in a process' estimate of

the difference in real time between its own clock and another nonfaulty process' clock reaching

Ti.

Lemma 4.8: Let p, q and r be nonfaulty. Then

-- - - --



37

I(ARRip(q)- (Ti + 8)) - (Ciq(Ti) - Cip(Ti»1$; E + p(fJ + 8 + E).
Proof: Let a be the real time of arrival of q's message at process p. Then a is at most
ci (Ti) + 8 + E. Define a new auxiliary clock, D, with rate exactly equal to 1, and suchq . .
that D('a) = Cl (a). Thus, ARR' (q) = D(a). So the expression we want to bound is atp p
most equal to:

First we demonstrate that the first of these two terms is at most E.

ID(a)- (Ti + 8) - ci (Ti) + d(Ti)1q

= la - d(Ti + 8) - ci (Ti) + d(Ti)l, since D has rate 1q

= la - ci (Ti) + Ti - (Ti + 8)1q

$; Iciq(Ti) + 8 + E- Ciq(Ti) - 81

= E.

Next we show that the second term, Ici (Ti) - d(Ti)j, is at most p(fJ + 8 + e).p

Case 1:Cip(Ti)$; a. So preaches Ti before q's message arrives.

Let y = a - cip(Ti). Then y ~ fJ + 8 + e.

Subcase 1a:d(Ti) ~ cip(Ti). So Cphas rate slower than real time.

Then d(Ti) - ci (Ti) is largest when C goes at the slowest possible rate, 1/(1 + p). In

this case, d(Tif - ci (Ti) = Y - (a - d{ri)), where a - d(Ti) = y/(1 + p). Thus, d(Ti) -. . P
c'p(T')= y(1 -1/(1 + p)) = yp/(1 + p) $; yp $; p({J+ 8 + e).

Subcase 1b:d(Ti) $; cip(Ti). So Cp has rate faster than real time.

Then ci (Ti) - d(Ti) is largest when C goes at the fastest possible rate, 1 + p. Then. . p . P
c'p(T') - d(T') = y(1 + p) - y = yp $; p(fJ + 8 + e).

Case2: Cip(Ti)~ a. SopreachesTiafterq's messagearrives.

Let y = Cip(Ti) - a. Then y ~ fJ- 8 + e.

Subcase 2a: d(Ti ) > ci (Ti). So C has rate faster than real time.- p p

An argument similar to that for case 1b shows that d(Ti) - Cip(Ti) ~ yp $;p(fJ- 8 + e),
which suffices.

Subcase 2b: d(Ti) ~ cip(Ti). So Cphas rate slower than real time.

An argument similar to that for case 1a shows that Cip(Ti)- d(Ti)$;yp ~ p({J- 8 + e),
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which suffices. .

In order to prove the next lemma, we use some results about multisets, which are presented in the

Appendix. This is a key lemma because the distance between the clocks is reduced from p to

PI2, roughly. The halving is due to the properties of the fault-tolerant averaging function used in

the algorithm. Consequently, the averaging function can be considered the heart of the

algorithm.

Lemma 4.9: Let p and q be nonfaulty. Then

I(ci (Ti) - ci (Ti)) - (ADJi - ADJi )1 <P/2 + 2£ + 2p(P + 8 + E).P q P q-
Proof: We define multisets U, V, and W, and show they satisfy the hypotheses of
Lemma A.4. Let

U = Cip(Ti)- (Ti + 8) + ARRip'

V = ci (Ti) - (Ti + 8) + ARRi ,andq q

W = {ci (Ti): r is nonfaulty}.r

U and V have size nand W has size n - f.

Letx = £ + p(p + 8 + E).

Definean injectionfromWto Uasfollows. Mapeachelementci (Ti)inWto ci (Ti)_ (Ti. . r. p . .
+ 8) + ARR' (r) in U. Since Lemma 4.8 implies that I(ARR' (r) - (T' + 8)) - (cl (T') -
Cip(Ti))1~ £ .:p(P + 8 + £) for all the elements of W, dx(w,B) = O. Similarly, djw,V)
= O.

Since any two nonfaulty processes reach Ti within P real time of each other, diam(W)
= p.

By Lemma A.4, Imid(reduce(U)) - mid(reduce(V))1~ pl2 + 2£ + 2p(p + 8 + e).

Since mid(reduce(U)) = mid(reduce(ci (Ti) - (Ti + 8) + ARRi )) = ci (Ti) - ADJi ,and
similarly mid(reduce(V)) = ci (Ti) - ADJ I the result follows. .p p pqq.

The next lemma is analogous to the previous one, except that it involves Ui instead of Ti.

Lemma 4.10: Let p and q be nonfaulty. Then

I(ci (Ui)- ci (Ui))- (ADJi - ADi )1< pl2 + 2£ + 2p(2 + p)(P + 8 + E).P q P q-
Proof: Thegivenexpressionis

~ pl2 + 2£ + 2p(p + 8 + £) + 2p(1 + p)(P + 8 + E),byLemmas4-9 and 4-2.

--
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This reduces to the claimed expression. I

Next we bound the distance in real time between two nonfaulty processes switching to their new
" .

clocks. It is crucial that the distance between the new clocks reaching U' be less than f3in order

to accommodate their relative drift during the interval between Ui and Ti+1.

Lemma 4.11: Let p, q be nonfaulty. Then

Ici+1p(ui) _ ci +\(Ui)1 ~ {J/2 + 2E+ 2p(3{J+ 2l) + 3£) + 4p2(fJ+ l) + E).
Proof: We define idealized clocks, D and D , as follows. Both have rate exactly 1.
Also, D (ui ) = ci +1 (ui ) = Ui + AD! , and similarly for q. Thenp p p p p .

Ici + 1 (ui) _ ci + 1 (Ui)1< Ici + 1 (Ui) _ d (Ui)1 + Id (Ui) _ d (Ui)1 + Id (Ui) _ ci +1 (Ui)l.p q - p p p q q q

We bound each of these three terms separately.

First, consider Ici + 1p(ui) _ dp(Ui)l. Now, Ui + ADJip = Dp(uip) = Ci + 1p(Ui/ So

Ici + 1 (Ui) _ d (Ui)1 < I(ci +1 (Ui) _ d (Ui)) _ (ci + 1 (Ui + ADi ) _ d (Ui + ADJi ))1p p - p p p p p p

~ piADJipl, by Lemma 4-2

< p«1 + p)({J+ E)+ pl)),by Lemma4.6.

The same bound holds for the third term.

Finally, consider the middle term, Id (Ui) - d (Ui)l. We know that d (Ui) = d (Ui +. . . . p. q p P
ADJ' ) - ADJ' = ul - ADJ' ,and similarlyfor q.p p p p

~ {J/2 + 2E+ 2p(2 + p)(fJ + l) + E),by Lemma 4.10.

Combining these three bounds, we get the required bound. I

Finally, we can show the second of our inductive properties, bounding the distance between

times when clocks reach Ti+1.

Lemma 4.12: LetP,q benonfaulty. ThenIti+1p_ti+\1 ~ {J.
Proof: Iti+1 _ti+1 Ip q

= Ici+1 (Ti+1)_Ci+1 (Ti+1)1p q

<1(ci+1 (Ti+1)_Ci+1 (Ti+1))_(Ci+1 (Ui)_Ci+1 (Ui))! + Ici+1 (Ui)_Ci+1 (Ui)1- p q p q p q

~ 2p(P - (1 + p)(f3 + l) + E)) + {J/2 + 2E + 2p(3{J + 2.5 + 3£) + 4p2(fJ + l) + E), by
Lemmas 4.2 and 4-11.
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The assumed upper bound on P implies that this expression is at most /3. I

4.5.6 Bound on Message Arrival Time

In this subsection, we show that the third and final inductive assumption holds. That is, we show

that messages arrive after the appropriate clocks have been set.

Lemma 4.13: Letp andq be nonfaulty. Thenti+1 + 8 - e>ui .q p
Proof: Since ti +1 + 8 - e> ti + 1 - IJ + 8- e, it suffices to show thatq _ p t'

ti+1 _ui >/3-8 + e.p p

Now, ti+1 - ui ~ (P - (1 + p)(/3 + 8 + e) - ADJi )/(1 + p) since the numerator
representgthe ~mallestpossibledifferencein the valJesof the clock Ci+1 at the two.

I
. p

givenrea times.

But the lower bound on P implies that P > 3(1 + p)(f3 + e) + p8. Also, the bound on

the adjustment shows that ADJip :s;(1 + p)(/3 + e) + p8. Therefore,

ti+1 _ui >(3(1 + p)(/3 + e) + p8-(1 + p)(/3 + 8 + e)-(1 + p)(/3 + e)-p8)/(1 +
p) p p

= /3-8 + e, as needed. I

Thus, we have shown that the three inductive hypotheses hold. Therefore, the claims made in this

section for a particular i, in fact hold for all i.

4.6 Some General Properties

In this section, we state several consequences of the results proved in the preceding section.

First, we state a bound on the closeness with which the various clocks reach corresponding

values.

Lemma 4.14: Let p, q be nonfaulty, i > O. Assume that T is chosen so that Ui.1 :s; T
:s;Ui, if i > 1, or so that r<>:s;T :s;Uo,if i = O.

Then Icip(T)- ciq(T>I:s; /3 + 2p(1 + p)(/3 + 8 + e).

Proof: Basis: i = O. Then TO:S;T ~ UO.

IcO (T) - CO(T)I < I(co (T) - cO (T» - (CO (r<» - cO (TO»! + IcO (TO) _ CO (TO)Ip q - p q p q p q

:s;2p(T - r<» + /3,by Lemma 4.2 and assumption 3

-5: {J+ 2p(1+ p)({J+ {)+ e).

-- -
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Induction: i ~ O. Choose T with Ui.1 ~ T ~ Ui.

Ici (T) - ci (T}I < I(ci (T) _ ci (T)) _ (ci (Ui'1) _ ci (Ui'1))1 + Ici (Ui.1) _ ci (Ui.1)1p q - p q p q p q

~ 2pP + {3/2 + 2£ + 2p(3{3 + 2~ + 3£) + 4l({3 + 0 + E),by Lemmas 4.2 and 4-11.

The upper bound on P implies the result. I

Next, we prove a bound for a nonfaulty process' (i + 1)-st clock, in terms of nonfaulty processes'

j.th clocks.

Lemma 4-15: Let p be nonfaulty, i ~ O. Then there exist nonfaulty processes, q and
r, suchthat for ui < t < umaxi,p- -

Ciq(t)- a ~ ci + 1pet) ~ cir(t) + a,

where a = £ + p(4{3 + ~ + 5£) + 4p2({3+ ~ + £) + 2p3({3+ 0 + E).

Proof: Ci+1 (t) = Ci (t) + Ti + 0 - AVi . Therefore, by Lemma 4.5 there are nonfaulty
processes, cfand r, f8r which p

Cip(t) + Ti + ~ _ ARRip(q)~ Ci + 1pet) ~ cip(t) + Ti + 0 - ARRip(r).

We show the right-hand inequality first. Let a = ci (ARRi (r)), the real time at which

the message arrives at p from r. Thus, Cip(a) = ARRip(r). ~ote that circa) ~ Ti + (1 -
p)(~- E).

ci + 1 (t) < ci + Ti + ~ - ARRi (r), from abovep - p p

< ci (t) + Ci (a)- Ci (a) + Ti + 0 - ARRi (r) + (ci (t) - Ci (t)) - (Ci (a)- Ci (a))-r p r p p r p r

< Ci (t) + Ci (a) - Ci (a) + Ti + 0 - ARRi (r) + 2p(t - a), by Lemma 4.2 since t >a- r p r p

~ Cir(t) + ARRip(r) - Ti - (1 - pHo - £) + Ti + ~ - ARRip(r) + 2p(t - a)

= Cir(t) + £ + po - p£ + 2p(t - a).

It remains to bound t - a. The worst case occurs when t = umaxi. The longest
possible elapsed real time between a particular nonfaulty process reaching Ti and Ui
on the same clock is (1 + p)2({3 + ~ + E). Thus,umaxi- tmini ~ {3 + (1 + p)2({3 + 0
+ E). But a ~ tmini + ~ - £. Therefore, t - a ~ {3 + (1 + p)2({3 + 0 + £) - 0 + £

Thus,Ci+1p(t)~Cir(t) + £ + p~-p£ + 2p({3 + (1 + p)2({3 + 0 + £)-0 + £)

= Cir(t) + £ + p(4{3 + 0 + 3£) + 4p2({3 + 0 + £) + 2p3({3+ 0 + £)

<Ci (t) + a.r

For the left-hand inequality, we see that Ci (t) - £ - p~- p£ - 2p(t - a) ~ Ci +1 (t), where. . q p
a = d (ARR' (q)). The factor t - a is bounded exactly as before, so that we obtain:p p

--
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4.7 Agreement and Validity Conditions

We are now ready to show that the agreement and validity properties hold. The main effort is in

restating bounds proved earlier concerning the closeness in real times when clocks reach the

same value, in terms of the closeness of clock values at the same real time.

4.7.1 Agreement

The first lemma implies that the local times of two nonfaulty processes are close in those intervals

where both use a clock with the same index.

Lemma 4.16: Let p, q be nonfaulty. Then

ICip(t) - Ciq(t)1~ (1 + p)(p + 2p(1 + p)(P + 8 + e»

for max{ui.1 ,ui.1 } < t < max{ ui ,Ui } , if i > 1,p q-- pq -

and for min{tOp,tOq} :::;t :::;max{uop'uOq}' if i = O.
Proof: Basis: i = O. Lemma 4.14 implies that

Icip(T)- ciq(T)1~ p + 2p(1 + p)(p + 8 + e)

for all T, Ui.1< T :::;Ui if i ;::: 1 and for all T, TO:::;T ~ UOif i = O. ThenLemma4-3
immediately implies the needed result for i = O.

Induction: i;:::1. Lemma 4.3 implies the result for all t with

It remains to show the bound for t with

max{ui'1 p,ui.\} ~ t < min{cip(Ui.1),Ciq(Ui.1)}.

Without loss of generality, assume that ci (Ui'1) ~ ci (Ui'1), so that the minimum is, ' 1 P q
equal to d (ul- ).P

Ici (t) - ci (t)l < /(Ci(t)_ ci (t» _ (Ci (ci (Ui.1»_ ci (ci (Ui'1m/p q - p q pp qp

+ Ici (ci (Ui.1»_ ci (ci (Ui'1»1p p q p

T~e first .term,.by Lemma 4-2, is at most 2p(cip(Ui.1)- t). Since t ;::: max{ui'1p' ui.\} ;:::
UI.1 > d.1 (U1.1) we have

p - p ,
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Since Ci-1p(Ui-1) = cip(T) for some T with IT - Ui.11~ IADJipl,this quantity is

~ 2plcip(Ui.1) _ cip(T)1

~ 2p(1 + P)IUi-1 - TI, by Lemma 4.1

~ 2p(1 + p)IADJipl

~ 2p(1 + p)((1 + p)(fJ + E) + p~), by Lemma 4-6.

To bound the second term we note that Lemma 4-11 implies that

Icip(Ui-1)- Ciq(Ui-1)1~ fJ/2 + 2£ + 2p(3fJ + 21)+ 3£) + 4p2{p + ~ + E) = a,

and so Lemma 4-3, with T1 = T2 = Ui.1,implies that

ICi (ci (Ui.1))_d (ci (Ui-1))1< (1 + p)a.p p q p -

The assumed lower bound on fJgives the result that

2p(1 + p)((1 + p)(fJ + E) + p~) + (1 + p)a ~ (1 + p)(fJ + 2p(1 + p){P + ~ + E)) I

Here is the main result, bounding the error in the synchronization at any time.

Theorem 4.17: The algorithm guarantees 'Y-agreement,

where'Y = fJ + E + p(7fJ + 31)+ 7E) + 8p2(fJ + 1)+ £) + 4p3{p + ~ + E).

Proof: The result for intervals in which the processes use clocks with the same indices
has been covered in the preceding lemma. The expression in the statement of that

lemma simplifies to

which is less than 'Y.

Next, we must consider the case where one of the processes has changed to a new
clock, while the other still retains the old clock. Consider lei +1 Ct)- Ci Ct)1for some t
with ui < t < ui . Lemma 4-15 implies that there exist nonfa~lty Prodesses rand sp - - q
such tflat

Cir(t) - a ~ Ci + 1pCt) ~ Cis(t) + a,

where a = £ + p(4fJ + ~ + 5£) + 4p2(fJ + ~ + E) + 2p3(fJ + ~ + E).

Ici+ 1 (t) - ci (t)1< a + max{ld (t) - ci (t)I,Ici (t)- ci (t)!)p q - r q s q

~ a + (1 + p) (p + 2p(1 + p)(fJ + ~ + E)),by the preceding lemma

= fJ + £ + p(7fJ+ 3~ + 7E)+ 8p2{p+ ~ + E)+ 4p3{p + ~ + E),asneeded.I

I
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In some applications, it may never be the case that clocks with different indices are compared,

perhaps because use of the clocks for processing ceases during the interval in which confusion is

possible. In that case, the closeness of synchronization achieved by Algorithm 4.1 is given by

Lemma 4.16, and is approximately /3 + p(3/3+ 2~ + 2e). This value is more than £ less than the

bound obtained when clocks with different indices must be compared.

Now we can sketch why it is reasonable for /3 to be approximately 4£ + 4pP, as mentioned at the

end of Section 4.5.1. Assume P is fixed. The j-th clocks reach Ti within /3of eachother. Afterthe

processes reset their clocks, the new clocks reach Ui within /3/2 + 2£ (ignoring p terms). By the

end of the round, the clocks reach Ti+1within about /3/2 + 2£ + 2pP of each other, because of

drift. Thisquantitymustbe at most/3. Theinequality/3/2 + 2£ + 2pP :::;/3yields/3~ 4£ + 4pP.

Suppose we alter the algorithm so that during each round, the processes exchange clock values

k times instead of just once. Then we get /3/2k + (4 - 22-k)£ + 2pP :::;/3,whichsimplifiesto /3>

4£ + 2pP(2k/(2k.1)). It appears that /3~ 4£ + 2pP is approachable.

If the number of processes, n, increases while f, the number of faulty processes remained fixed, a

greater closen~ss of synchronization can be. achieved by modifying Algorithm 4.1 so that it

computes the mean instead of the midpoint of the range of values.

As in [1], we show that the convergence rate of algorithms that use the mean instead of the

midpoint is roughly f/(n-2f).

The result is based on the following lemma concerning multisets.

Lemma 4.18: Let U, V, and W be multisets such that IUI = IVI = n ~ 3f + 1 and IWI
= n - f. If d (W,U) = d (W,V) = A,thenx x

Imean(reduce(U)) - mean(reduce(V))1:::; diam(W)f/(n-2f) + 2x.

The analysis of the modified Algorithm 4.1 parallels that just presented. However, the upper

bound on P becomes

P :::;/3(n-3f)/(n-2f)2p - £/ P - pcp + ~ + £)- 2/3- ~- 2£.

This bound implies /3 ~ 2(n-2f)(£ + pP)/(n-3f), which approaches/3 ~ 2£ + 2pP as n

approachesinfinity.

We now demonstrate that this bound is reasonable. After updating the clock and then waiting

until theclocks reachthe nextTi, theclocksmuststill bewithinp, giving fp/(n-2f) + 2£ + 2pP ~

- ---- --
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p, which implies p > (2£ + 2pP)(n-2f)/(n-3f), which approaches 2£ + 2pP as n approaches

infinity.

4.7.2 Validity

Next,we show the validitycondition. The first lemma bounds the values of the zero-index clocks.

Lemma 4.19: TO+ (1- P)(t - to ) < CO(t) < rD + (1 + p)(t - to ) fort > to .p- p - p - p
Proof: ByLemma 4-1. I

The next lemma is the main one.

Lemma 4.20: Let p be nonfaulty, i ~ O. Then

(1- p)(t- tmaxO)+ TO- i£~ cip(t) ~ (1 + p)(t -tminO) + rD + i£

for all t > Ui.1 if i> 1, and for all t > to if i = O.- p - - p
Proof: We proceed by induction on i. When proving the result for i + 1, we will
assume the result for i, for all executions of the algorithm (rather than just the
execution in question).

Basis: i = O. This case follows immediately by Lemma 4.19.

Induction: Assume the result has been shown for i and show it for i + 1.

We argue the right-hand inequality first. The left-hand inequality is entirely analogous.

Assume in contradiction that we have a particular execution in which Ci+ 1 (t» (1 +
p)(t - tminO) + TO + (i+ 1)£ for some t > ui. Then by the limitations cfn rates of

clocks,it isclear thatci+1p(UipP (1 + p)(~ -fminO)+ TO+ (i+ 1)e.

Recall that p resets its clock at real time ui ,by adding Ti + ~ - AVi . Inthiscase, the
inductive hypothesis implies that the adjust':nent must be an increme':,t.

. By Lemma 4-5, this increment is ~ Ti + ~ -ARRip(q)for some nonfaulty q. Therefore,

Ci (ui ) + Ti + ~_ ARRi (q» (1 + p)(ui - tminO)+ TO+ (i+ 1)e.p p p p

Next,we claim that ifp had done the adjustment just when the message arrived from q
rather than waiting tillreal time ui ,the bound would still have been exceeded. That is,
ARRi (q) + Ti + ~ - ARRi (q) p) (1 + p)(t' - tminO)+ TO+ (i+1)£, where t' =
ci (At?mi(q». (Thisagain folrowsby the limitson the rates of clocks.) Thus,p p

Ti + ~>(1 + p)(t' -tmino) + TO + (i+ 1)£.

Now consider an alternative execution of the algorithm in which everything is exactly
like the one we have been describing, except that immediatelyafter q sends out clock
reading Ti, q's clock Ci begins to move at rate 1. This change cannot affect p's
(i+ 1)-st clock because ~ doesn't send any more messages until ti+1 , and theseq




