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Lemma 4-6: Let p be nonfaulty. Then IADJipl <1+ p)B +¢) + pd.
Proof: ADJ = s a—Av‘p.

Thus, for some nonfaulty g and r, Lemma 4-5 implies that

T+ B —AHRip(q) < ADJip £ ud -ARR‘p(r).

Then Lemma 4-4 implies that:

(a}ADJ‘pZT" +8-(T + (1 +p)B+8+¢)=-(1+p)B +¢e)-pd.

(b) If § — & > B, then ADJip_g T +8-(T +(1-p)(8-c-B)) = (1-p)B + €) + pd.
() 1f6-¢ gﬁ,then ADJ‘pgT‘ +8-(T=(1 + p)(B-8 +¢) =(1+p)B + ¢)-pd.

The conclusion is immediate. i

4.5.4 Timers Are Set in the Future
Earlier, we gave a lower bound on P and described two conditions which that bound was
supposed to guarantee (that timers are set in the future and that messages arrive after the
approgpriate ciocks have been set). In this subsection, we show that the given bound on P is
sufficient to guarantee that the first of these two conditions holds.

Lemma 4-7: Let p be nonfaulty. Then U' + AD.J"ﬂ "

Proof: U' + AD.J‘p <U' + (1 +p)B + &) + pd, by Lemma 4-6

=U+ (1 +p)B+e) +(1+p)8+p8-(1+p)B+38+e¢)
KU + P=(1+ p)(B + 8 + ¢), by the assumed lower bound on P
= Tj+1. I

This lemma implies that timers are set in the future and that G 1;, is defined, the first of the three

inductive properties which we must verify.

4.5.5 Bounding the Separation of Clocks

Next, we prove several lemmas which lead to bounds on the distance between the new clocks of

nonfaulty processes. The first lemma gives an upper bound on the error in a process’ estimate of

the difference in real time between its own clock and another nonfaulty process’ clock reaching
Lemma 4-8: Let p, g and r be nonfaulty. Then
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(ARR' (@)= (T' + 8) - (' (T) -c' (TN K& + p(B + & + ).

Proof: Let a be the real time of arrival of g's message at process p. Then a is at most
e (T) + 8 + €. Define a new auxiliary clock, D, with rate exactly equal to 1, and such
that D(a) = C' (a). Thus, ARR'p(q) = D(a). So the expression we want to bound is at

most equal to:

@)= (T' + 8) - (€ (T) =T + Ie'(T) - AT,

First we demonstrate that the first of these two terms is at most e.

ID(a) - (T' + 8) - ¢! (T) + d(T)

= la-d(T' + 8) ~ciq(Ti) + d(T"), since D has rate 1

= la-ciy(T) + T (T' + &)

<lel(T) + 8 + e-c\ ()-8l

= .

Next we show that the second term, Icip(Ti) - d(T*)[, isat most p(B + & + &).

Case 1: ¢' rJ(Ti) < a. Sop reaches T' before g's message arrives.

Lety = a-c‘p(Ti). Theny<B + & + &.

Subcase 1a: d(T‘) = cip(Ti). So Cp has rate slower than real time.

Then d(Ti) sl (T") is largest when C_ goes at the slowest possible rate, 1/(1 + p). In
this case, d(Tf - ¢ (T) = y - (@~ d{T"), where a - d(T) = y/(1 + p). Thus, d(T) -
(M) = y(1=1/(1+ p)) = yp/(1 + p) Syp S p(B + 8 + ¢).

Subcase 1b: d(Ti} < cip(Ti). So Cp has rate faster than real time.

Then c (Ti)_ - d(Tj) is largest when C_ goes at the fastest possible rate, 1 + p. Then
C’p(T')*d(T') =y(1+p)-y=yp < p(B + 8 + ¢).

Case 2: cip(Ti) > a. Sopreaches T after g's message arrives.
Lety = cip(Ti)-a. Theny<B-68 + ¢
Subcase 2a: d(T') > cip(T‘}. So C, has rate faster than real time.

An argument similar to that for case 1b shows that d(T') - cip(Ti) <vp <p(B-8 +¢),
which suffices.

Subcase 2b: d(T') < cip(Ti), So C_ has rate slower than real time.

An argument similar to that for case 1a shows that cip{Ti) - d(T") <yp<pB-6+e)



which suffices. 1

In order to prove the next lemma, we use some results about multisets, which are presented in the
Appendix. This is a key lemma because the distance between the clocks is reduced from 8 to
B7/2, roughly. The halving is due to the properties of the fault-tolerant averaging function used in

the algorithm. Consequently, the averaging function can be considered the heart of the

algorithm.
Lemma 4-9: Let p and g be nonfaulty. Then

(e, (T) = ¢ (T) -~ (ADJ - ADJ )| S B/2 + 2¢ + 2p(B + & + ¢).
Proof: We define multisets U, V, and W, and show they satisfy the hypotheses of
Lemma A-4. Let

U=¢ p(T‘) =8 » ARRip,

v

¢ ((T)-(T" + 8) + ARR' , and

W = {¢'(T): ris nonfaulty}.

U and V have size n and W has size n - f.

Letx = ¢ + p(B + & + ¢).

Define an injection from W to U as follows. Map each element c r(T) inWto ¢ (T) (T

+ 8) + ARF{‘p(r) in U. Since Lemma 4-8 implies that [(ARR' (r) - (T' + §)) - (¢ (T)-
o (T N <e+ p(B + 8 + ¢ for all the elements of W, d [(W,U) = 0. Similarly,d_ (W V)

-0

Since any two nonfaulty processes reach T! within B real time of each other, diam(W)

= B
By Lemma A-4, |mid(reduce(U)) - mid(reduce(V))| < /2 + 2¢ + 2p(B + § + ¢).

Since mid(reduce(U)) = mid(reduce(c (F=(T + 8) + ARR'D)) = ¢ (T) ADJ' and
similarly mid(reduce(V)) = c'_(T") - ADJ! , the resut follows. §

The next lemma is analogous to the previous one, except that it involves U' instead of T'.
Lemma 4-10: Let p and g be nonfaulty. Then

|(c‘p(u*)-ciq(u"))- (ADJ"p-ADJ‘q}l <PB/2+ 2 +2p(2 + p)(B + & + e).
Proof: The given expression is

< I(e'(T) = €\ (T)) - (ADJ - ADJ )] + (€' (U) - ¢l (U) - (] (T) - ¢! (T

<PB/2 + 2 +2p(B+ 8+ ¢€)+2p(1 + p)(B + 8 + ¢€),byLemmas 4-9 and 4-2.
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This reduces to the claimed expression. 1

Next we bound the distance in real time between two nonfaulty processes switching to their new
clocks. Itis crucial that the distance between the new clocks reaching U' be less than B in order

to accommodate their relative drift during the interval between U'and T'* ',
Lemma 4-11: Let p, q be nonfaulty. Then

' (UY -c'* T (U S B/2 + 26 + 2p(3B + 28 + 3e) + 4p%(B + & + e).
Proof We def:ne idealized clocks, D_ and D as follows. Both have rate exactly 1.
Also, D (u o) = g (u o) = i+ ADJ? and sumtarlyforq Then
i+1 i i+1 i i+1 hic s i By i iy el i
e W) - U < I T W) - d U]+ 1d (U - d (U] + Id (U - (UL
We bound each of these three terms separately.
i ; i+1 gy i i s iy i e
First, consider |c p(U)—dp(U)l. Now, U' + ADJD = Dp(u p) =C p(u p). So
i+1 gy i o e i i+1 g i i i
le'* 1 (U) - Ul < le'* T U) - d U - (€' (U + ADJY) -d (U' + ADJ))I
< piADJipl, by Lemma 4-2
<pl1 + P)(ﬁ + €) + pb), by Lemma 4-6.

The same bound holds for the third term.

Finally, consider the middle term, |d (U) d (U )i We know that dp(Ui) = dp(Ui +
ADJ! ) ADJ' = u -—ADJ’ and similarly forq

Idp(U')-dq(U'}l I(u - (ADJ' - ADJ' )I
<B/2 +2¢+ 2p(2 + p)(B + 8 + ¢), byLemma 4-10.
Combining these three bounds, we get the required bound. 1

Finally, we can show the second of our inductive properties, bounding the distance between

times when clocks reach T'* 7.
Lemma 4-12: Let p, q be nonfaulty. Then |t'* 1p —ti”ql <B.

TR LS
Proof: |t Mo ql
ol i+1y i+l i+1
= o ety gt gy
i+1 i+l i+1 i+ i+1 i i+1 i i+1 i i+1 i
G L B L B G T B (1)) ) A T R (1)

<2p(P-(1+p)B + 8+ €) + B/2+ 26+ 2p(3B + 28 + 3e) + 4p%(B + & + ¢), by
Lemmas 4-2 and 4-11.
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The assumed upper bound on P implies that this expression is at most 8.

4.5.6 Bound on Message Arrival Time
In this subsection, we show that the third and final inductive assumption holds. That is, we show
that messages arrive after the appropriate clocks have been set.

Lemma 4-13: Let p and q be nonfaulty. Thent'* ’q #8-8> uip.

Proof: Since t' * 1q +8-¢e2> g 1p - B + &8 - ¢, it suffices to show that

i+1 i
t p—-up>ﬁ—8 + E.

Now, t*1 —u' > (P-(1 + p)B + & + ¢) - ADJ' )/(1 + p) since the numerator
represents the smallest possible difference in the values of the clock C'”p at the two
given real times.

But the lower bound on P implies that P > 3(1 + p)(8 + €) + pé. Also, the bound on
the adjustment shows that ADJ'p < (1 + p)B + &) + p8. Therefore,

ti+1p_uip>{3(1 +p)B+e)+pd-(1+p)B+6+6e)-(1+p)B+e)-p8) /(1 +
o)

= -8 + ¢ as needed. 1

Thus, we have shown that the three inductive hypotheses hold. Therefore, the claims made in this

section for a particular i, in fact hold for all i.

4.6 Some General Properties

In this section, we state several consequences of the results proved in the preceding section.

First, we state a bound on the closeness with which the various clocks reach corresponding

values.

Lemma 4-14: Let p, q be nonfaulty, i > 0. Assume that T is chosen so that gy < T
<U.,ifi>1,0orsothatT°< T <O ifi = 0.

Then Icip(T)—ciq(T)[ <B +20(1+p)B + 8 +e)
Proof: Basis: i = 0. ThenTO < T < O

0 0 0 0 0 0 0 B oy U oyl
€% = %M < 1€ () - €M) = (2 (1% - &, (1O + [ (1) - &2, (TO)
< 2p(T-T9 + B, by Lemma 4-2 and assumption 3

SB+2p(1 4 p)(B+0d+e)
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Induction: i > 0. Choose T with U1 < T < UL,
Ty ] i PR NP ity it
le (M = ¢y (MK NS, T -y (M) = (¢ (U™ - (U] + Jc, () - (U]
< 2pP + B/2 + 26 + 2p(3B + 25 + 3¢) + 4p>(B + & + ¢), by Lemmas 4-2 and 4-11.
The upper bound on P implies the result. |

Next, we prove a bound for a nonfaulty process’ (i + 1)-st clock, in terms of nonfaulty processes’

i-th clocks.
Lemma 4-15: Let p be nonfaulty, i > 0. Then there exist nonfaulty processes, q and
r, such that for u'p <t < umax',

c‘q(t) e v ’p{t) <CM)+a

wherea=e+p(4B+8+5£)+4p2(B+8+s)+2p3(,8+6+£).

Proof: C'*' o) = ol P N AV* Therefore, by Lemma 4-5 there are nonfaulty
processes, q and r, for which

Cip(t} i 1w B Annfp(q) £ C”1D(t) £ c‘p(t) + T + §-ARR! (0.

We show the right-hand inequality first. Leta = c (ARH' (r)), the real time at which
the message arrives at p from r. Thus, C' o(@) = ARR' oP). Rlote that C' (a) > T =

p)S ~e).

Ci”p(t) < Cip + Tl —ARRip(r}, from above

<C\) + C @-C\(a) + T' + §-ARR' (1) + (C_ (1)~ C\ (1) - (C' (@) - C' (@)

<c )+ C o(@) ~Cl@) + T+ 8- ARRip{r) + 2p(t-a), by Lemma 4-2sincet>a

<Ci{t) + ARR ()-T'=(1-p)(8-e) + T + §- ARR (1) + 2o(t-a)

= Cir(t) + ¢+ pd-pe + 2p(t-a).

It remains to bound t - a. The worst case occurs when t = umax'. The longest

possible elapsed real time between a particular nonfaulty process reaching T and U'

on the same clock is (1 + p)%(8 + & + ¢€). Thus, umax' -tmin' < B + (1 + p)%B + &
+¢). Buta>tmin' + 8§ —¢. Therefore,t-a<B + (1 +p)(B+ 8 +¢€)-8 +¢

Thus, Ci”p(t) < Cir(t) +e+pd-pe+20B+(1+p)%B+8+¢6)-8+e)

=Cl(t)+e+p@aB+8+3c)+4p%B +8+¢€)+20°B+8+e)

<c') + a

For the left-hand inequality, we see that C'q(t} e-pd-pe-2p(t-a)<C'*! (), where
& e (ARR' (g)). The factor t - ais bounded exactly as before, so that we oblaln
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[ i+1
Cq(t)—a <C o). 1

4.7 Agreement and Validity Conditions

We are now ready to show that the agreement and validity properties hold. The main effort is in
restating bounds proved earlier concerning the closeness in real times when clocks reach the

same value, in terms of the closeness of clock values at the same real time.

4.7.1 Agreement
The first lemma implies that the local times of two nonfaulty processes are close in those intervals

where both use a clock with the same index.
Lemma 4-16: Let p, g be nonfaulty. Then

IC ) - C' I S (1 + p)(B + 20(1 + p)B + & + ¢))
for max{ui'1p,ui'1q} <t max{uip,uiq}, if i > 1,

and for min{:“p.t"q} <t< max{uop,uoq}‘ ifi =
Proof: Basis: i = 0. Lemma 4-14 implies that

'y M=cyMI<B +20(1 + p)B + 8 + )

forall T, U <T<Uifi>1andforall T, T°<T<U%ifi = 0. Then Lemma 4-3
immediately implies the needed result fori = 0.

Induction: i > 1. Lemma 4-3 implies the result for all t with
R IR 6 O P & i

min{c p{U ), cq{U )} <t < max{u - uq}.

It remains to show the bound for t with

mr:tx{uri'1 ot o St min{ci (U“),ci (u"}.

Without loss of generality, assume that c (U' 1) << c (U' 1), so that the minimum is
equal to ¢' (U' ).

i i i i iga i-1 2 i-1
IC', ) - C 0] S IC ) - C' ) - (S (€ W) - C' (e U M)
+ [ (e (U") - C' (e WU )l

The first term, by Lemma 4-2, is at most 2p(c’ (U' ) -1). Since t> max{u"' , u"' } >
i-1 i-1 i-1 e p qQ' =
u > c (U ), we have

2p(c'P(U"1) -9 < 2p(c (U™ - " (UM)).
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Since c"‘p(ui'*) = cip(T) for some T with [T - U] < |ADJip|, this quantity is
< 2plel, (U™ - ¢ M)

< 2p(1 + p)lU"" = T|, by Lemma 4-1

< 2p(1 + p)lADJ' |

<2p(1 + p)((1 + p)(B + €) + pb), by Lemma 4-6.

To bound the second term we note that Lemma 4-11 implies that
I%w”yewfmgﬁm+zs+@wﬁ+m+aa+43w+a+a=a,
and so Lemma 4-3, with T, = T, = U"", implies that

ICp(cy U -C WM LA + pla.

The assumed lower bound on 8 gives the result that

201 +p)(1 +p)B+e)+p8)+(1+pa<(1+p)B+20(1+p)B+8+6)l

Here is the main result, bounding the error in the synchronization at any time.
Theorem 4-17: The algorithm guarantees y-agreement,

wherey = B + e+ p(7B + 385 + 7¢) + 8p%(B + 8 + €) + 4p°(B + & + &).
Proof: The result for intervals in which the processes use clocks with the same indices

has been covered in the preceding lemma. The expression in the statement of that
lemma simplifies to

B+ p3B +25+26) +4p%(B + 6 +¢€) +20°B + 8 +¢),
which is less than y.
Next, we must consider the case where one of the processes has changed to a new
clock, while the other still retains the old clock. Consider IC'*1 (t) - C' (1)| for some t
with ' <t < u' . Lemma 4-15 implies that there exist nonfaulty processes r and s
such that
C'(-a<C* ‘p(t) <C )+ a,
wherea = ¢ + p(4B8 + & + 5¢) + 4p2(ﬂ +8+68)4+ 293(5 +8 +8)
i+1 i i i i i
IC p(t)—Cq(t)l < a + max{|C ,('()-Cq(lll. IC S(f)-Cq(t)l}
<a+(1+p) (B +2p(1+p)B + 8 + ¢)), by the preceding lemma

=B+e+p{?ﬁ+38+7£)+8p2(ﬂ+6+e)+4p3(ﬁ+5+e),asneeded.I



In some applications, it may never be the case that clocks with different indices are compared,
perhaps because use of the clocks for processing ceases during the interval in which confusion is
possible. In that case, the closeness of synchronization achieved by Algorithm 4-1 is given by
Lemma 4-16, and is approximately 8 + p(38 + 28 + 2¢). This value is more than e less than the

bound obtained when clocks with different indices must be compared.

Now we can sketch why it is reasonable for 8 to be approximately 4e + 4pP, as mentioned at the
end of Section 4.5.1. Assume P is fixed. The i-th clocks reach T' within B of each other. After the
processes reset their clocks, the new clocks reach U' within B/2 + 2e (ignoring p terms). By the
end of the round, the clocks reach T'* ! within about B/2 + 2e + 2pP of each other, because of

drift. This quantity must be at most 8. The inequality 8/2 + 2¢ + 2pP < Byields B > 4¢ + 4pP.

Suppose we alter the algorithm so that during each round, the processes exchange clock values
k times instead of just once. Then we get ;3/2k + B~ 2pP < B, which simplifies to 8 >
4e + 2pP(2%/(2-1)). It appears that B > 4¢ + 2pP is approachable.

If the number of processes, n, increases while f, the number of faulty processes remained fixed, a
greater closeness of synchronization can be achieved by modifying Algerithm 4-1 so that it

computes the mean instead of the midpoint of the range of values.

As in [1], we show that the convergence rate of algorithms that use the mean instead of the
midpoint is roughly f/(n-2f).
The result is based on the following lemma concerning multisets.

Lemma 4-18: Let U, V, and W be multisets such that |U] = |V|] = n > 3f + 1 and |W|

= n-f. Ifd (WU) = d (W,V) = 0, then

|mean(reduce(U)) - mean(reduce(V))| < diam(W)f/(n-2f) + 2x.

The analysis of the modified Algorithm 4-1 parallels that just presented. However, the upper

bound on P becomes
P < B(n-3f)/(n-2f)2p-e/p-p(B + & + €)-2-6-2e.

This bound implies B > 2(n-2f)(e + pP)/(n-3f), which approaches 8 > 2¢ + 2pP as n

approaches infinity.

We now demonstrate that this bound is reasonable. After updating the clock and then waiting

until the clocks reach the next T', the clocks must still be within B, giving fB/(n-2f) + 2¢ + 2pP <

=
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B, which implies B > (2¢ + 2pP)(n-2f)/(n-3f), which approaches 2¢ + 2pP as n approaches
infinity.

4.7.2 Validity

Next, we show the validity condition. The first lemma bounds the values of the zero-index clocks.
Lemma 4-19: T% + (1 —p)(t—top) gcop(t) <10+ (3 4 p)(t—top) fort2:°p.
Proof: By Lemma 4-1. 1

The next lemma is the main one.
Lemma 4-20: Let p be nonfaulty, i > 0. Then

(1-p)t-tmax®) + TO-ie <C () < (1 + p)(t—tmin®) + TO + ie

forallt> u“pi{iz 1, and forall t > topifi = 0.

Proof: We proceed by induction on i. When proving the result for i + 1, we will
assume the result for i, for all executions of the algorithm (rather than just the
execution in question).

Basis: i = 0. This case follows immediately by Lemma 4-19.

Induction: Assume the result has been shown for i and show it fori + 1.

We argue the right-hand inequality first. The left-hand inequality is entirely analogous.
Assume in contradiction that we have a particular execution in which C'*1 () > (1 +
o)t - tminD) T % (i+1)e for some t > u' . Then by the limitations on rates of

clocks, it is clear that c“‘p(u‘ppﬁ + p)(U'p—tpminO) + TP & Gee

Recall that p resets its clock at real time u' , by adding P da Avip. In this case, the
inductive hypothesis implies that the adjustment must be an increment.

By Lemma 4-5, this increment is < T' + § - ARRip(q) for some nonfaulty q. Therefore,
Cl ') + T+ 8-ARR| (@) > (1 + p)(u' ~tmin®) + TO + (i+Ne.

Next, we claim that if p had done the adjustment just when the message arrived from q
rather than waiting till real time u'p, the bound would still have been exceeded. That is,
ARR' (@) + T' + 8 - ARR' (@) > (1 + p)(t' - tmin®) + T% + (i+1)e, where t =
c'p{AEIF{'p(q)}. (This again folfows by the limits on the rates of clocks.) Thus,

T+ 8501 + p)(t' -tmin®) + TO + (i+ 1)e.

Now consider an alternative execution of the algorithm in which everything is exactly
like the one we have been describing, except that immediately after q sends out clock
reading T', g's clock C' begins to move at rate 1. This change cannot affect p's
(i+1)-st clock because g doesn't send any more messages until t*”q, and these





