
28

= (1In)ln~ + V +~. V - V -~. v I
pq qp 1=3..n PiP pq 1=3..n Pjq

= (1In)I(~ + V ) + (~ - V ) + ~. 3 (~ + V - V )1pq qp pq pq 1= ..n pq PjP Pjq

~ (1/n)(I/1pq + Vqpl + I~pq- Vpql + Ij =3..nl/1pq + V p.p - VP.ql)I 1

< (1/n)(£ + £ + I. 3 1/1 + V - V I), by Lemmas 3-6 and 3-4- 1= ..n pq PjP Pjq

= (1/n)(2£ + I. 3 1/1 + /1 + V - V I), by Lemma3-51= ..n PPj Pjq PjP Pjq

= (1/n)(2£ + I. 3 I(V - /1 ) - (V - /1 )1),by Lemma 3.4I=..n PjP PjP Pjq Pjq

~ (1/n)(2£ + Ii =3..n1Vp.p- /1p.pl + Ii =3..nl-(Vp.q- /1p.q)l)I I I I

~ (1/n)(2e + Ii=3..n£ + Ij=3..n£)' by Lemma 3-6

~ (1/n)(2£ + (n - 2)2£)

= 2£(1-1/n). I

3.4.4 Validity

The validity result states that each new logical clock is within £ of what one of the initial logical

clocks would have been.

Theorem 3.8: (Validity) Algorithm 3.1 bounds the adjustment within £.

Proof: By definition, the amount to be added to CORR is A = (1In) I EpV . Then
min EpV < A < maxEpV . Let q be the process ~ith t~e minimumqv .qtet r beq qp - P - r rp qp
the process with the maximum V .Then,rp

V <A <V .
qp - P - rp

By applying Lemma 3.6 to each end of this inequality, we get

/1 - £ < V < A < V < ~ + £.qp - qp- P- rp- rp

Addingp's initialclockvalueCOp(t)for t ~ tf, we get

CO (t) + /1 - £ < CO(t) + A < CO(t) + /1 + £I
P qp - P P - P rp

which together with the definition of /1 implies



29

Chapter Four

Maintenance Algorithm

4.1 Int roduction

This chapter consists of an algorithm to keep synchronized clocks that are close together initially,

and an analysis of its performance concerning how closely the clocks are synchronized and how

close the clocks stay to real time. The algorithm handles clock drift and arbitrary process faults.

The algorithm requires the clocks to be initially close together and less than one third of the

processes to be faulty. (Dolev, Halpern and Strong [2] show that it is impossible without

authentication to synchronize clocks unless more than two thirds of the processes are nonfaulty.)

This algorithm runs in rounds, resynchronizing periodically to correct for clock drift, and using a

fault-tolerant averaging function based on those in [1] to calculate an adjustment. The size of the

adjustment is ir.dependent of the number of faulty proGesses. At each round, n2 messages are

required, where n is the total number of processes. The closeness of synchronization achieved

depends only on the initial closeness of synchronization, the message delivery time and its

uncertainty, and the drift rate. We give explicit bounds on how the difference between the clock

values and real time grows as time proceeds. The algorithm can be easily adapted to include

reintegration of repaired processes as described in Section 4.8.

4.2 Problem Statement

We are now considering the situation in which clocks can drift slightly and some proportion of the

processes can be faulty. Therefore, the statement of the problem differs from that in Chapter 3.

For a very small constant p >0, we define a clock C to be p-bounded provided that for all t

1-p ~ 1/(1 + p) ~ dC(t)/dt ~ 1 + p ~ 1/(1-p).

We make the following assumptions:

1. All clocks are p-bounded, including those of faulty processes. i.e., the amount by
which a clock's rate is faster of slower than real time is at most p. (Since faulty
processes are permitted to take arbitrary steps, faulty clocks would not increase their



30

power to affect the behavior of nonfaulty processes.)

2. There are at most f faulty processes, for a fixed constant f, and the total number of
processes in the system, n, is at least 3f + 1.

3. A START message arrives at each process p at time TOon its initial logical clock CO,
and to is the real time when this occurs. Furthermore, the initial logical clocks are

closel: synchronized, Le., Icop(TO)- cOq(T°)l =:;13,for some fixed 13and all nonfaulty p
andq.

We let tmaxo = max f It {to } and analogously for tmino.p non au y p

The object is to design an algorithm for which every execution in which the assumptions above

hold satisfies the following two properties.

1. y-Agreement: ILp(t)- Lq(t)1=:;y, for all t ~ tmino and all nonfaulty p, q.

2. (cx1,cx2,cx3)-Validity: a1(t - tmaxO)+ TO- cx3=:;Lp(t) =:;ait - tminO) + TO+ cx3,for all t
~ tOpand all nonfaulty p.

The Agreement property means that all the nonfaulty processes are synchronized to within y. The

Validity property means that the local time of a nonfau!ty process increases in some relation to

real time. We would, of course, like to minimize cx1,cx2,a3, and y.

4.3 Properties of Clocks

We give several straightforward lemmas about the behavior of (p- bounded) clocks.
Lemma 4.1: Let C be any clock.

(a) If t1 ~ t2, then

(1 - p)(t2 - t1) ~ (t2- t1)/(1 + p) =:;C(t2) - C(t1) ~ (1 + p)(t2- t1) ~ (t2- t1)/(1 - p).

(b) If T1 =:;T2' then

(1-p)(T 2- T1) ~ (T2 - T1)/(1 + p) ~ c(T 2) - c(T1) =:; (1 + p)(T 2 - T1) ~ (T 2 - T1)/(1-p).
Proof: Straightforward. I
Lemma 4-2: Let C and D be clocks.

(a) If dC(t)/ dt = 1 and T1 =:; T2' then

(b) If T1 ~ T2' then



31

(c) IfdC(t)/dt = 1 and t1 ~ t2, then

1(C(t2) - D(t2)) - (C(t1) - D(t1))1 = 1(C(t2) - C(t1)) - (D(t2) - D(t1))1 ~ 2p(t2 - t1).
Proof: Straightforward using Lemma 4-1. I

Lemma 4-3: Let C and Dbe clocks, T1 ~ T2' Assume Ic(T)- d(T)1~ a for all Tt T1 ~
T~T2. Lett1 = min{c(T1),d(T1)}andt2 = max{c(T2),d(T2)}.

Then IC(t)- D(t)1~ (1 + p)a for all t, t1 ~ t ~ t2,
Proof: There are four cases, which can easily be shown to be exhaustive.

Case 1: c(T 1) ~ t ~ c(T2)'

Let T3 = C(t), so that T1 ~ T3 ~ T2. Byhypothesis,Ic(T3)- d(T3)1~ a. ThenIT3-
D(t)1~(1 + p)a, by Lemma 4.1,

Case 2: d(T 1) ~ t ~ d(Tl This case is analogous to the first.

Case 3: c(T2) < t < d(T1)'

Then c(T1) < t < d(T1). So C(t) > D(t), and thus

IC(t) - D(t)1 = C(t) - D(t) = (C(t) - T 1) + (T 1 - D(t))

~ (1 + p)(t - c(T 1)) + (1 + p)(d(T 1) - t), by Lemma 4.1,

= (1 + p)(d(T1)-c(T1)) ~ (1 + p)a.

Case 4: d(T2)< t <c(T1). This case is analogous to the third. I

4.4 The Algorithm

4.4.1 General Description

The algorithmexecutes ina series of rounds, the i.th round fora process triggeredby its logical

clock reaching some value Ti. (Itwillbe shown that the logical clocks reach this value within real

time {J of each other.) When any process p's logical clock reaches Ti, p broadcasts a Ti message.

Meanwhile, p collects Ti messagesfrom as many processes as it can, within a particular bounded

amount of time, measured on its logical clock. The bounded amount of time is of length (1 + p)({1



32

+ 8 + e), and is chosen to be just I'argeenough to ensure that Ti messages are received from all

nonfaulty processes. After waiting this amount of time, p averages the arrival times of all the Ti

messages received, using a particular fault-tolerant averaging function. The resulting average is

used to calculate an adjustment to p's correction variable, thereby switching p to a new logical

clock.

The process p then waits until its new clock reaches time Ti+1 = Ti + P, and repeats the

procedure. P, then, is the length of a round in local time.

The fault-tolerant averaging function is derived from those used in [1) for reaching approximate

agreement. The function is designed to be immune to some fixed maximum number, f, of faults. It

first throws out the f highest and f lowest values, and then applies some ordinary averaging

function to the remaining values. In this paper, we choose the midpoint of the range of the

remaining values, to be specific.

4.4.2 Code for an Arbitrary Process

Global constants: p, p, 8, e, and P, as defined above.

Local variables:

. CaRR, initially arbitrary; correction variable which corrects physical time to logical
time.

. ARR[q), initially arbitrary; array containing the arrival times of the most recent
messages, one entry for each process q.

. T, initially undefined; local time at which the process next intends to send a message.

Conventions:

. NOW stands for the current logical clock time (Le., the physical clock reading +
CaRR). NOW is assumed to be set at the beginning of a step, and cannot be
assigned to.

. REDUCE, applied to an array, returns the multiset consisting of the elements of the
array, with the f highest and f lowest elements removed.

. MID, applied to a multiset of reals numbers, returns the midpoint of the set of values
in the multiset.

The code is in Figure 4-1.



33

beginstep(u)
do forever

/* in case Ti messages are received before this process reaches Ti */

while u = (m,q) for some message m and process q do
ARR[q] := NOW
endstep
beginstep(u)
endwhile

/* fallout of the loop when u = STARTor TIMER; begin round */

T := NOW

broadcast(T)
set-timer(T + (1 + p)(p + 8 + e»

while u = (m,q) for some message m and process q do
ARR[q] := NOW
endstep
beginstep(u)
endwhile

/* fallout of the loop when u = TIMER; end round */

AV := mid(reduce(ARR»
ADJ := T + 8 - AV
CORR := CORR + ADJ

set -time r (T + P)
endstep
beginstep(u)
enddo

Figu re 4.1 :Algorithm4-', MaintainingSynchronization

4.5 Inductive Analysis

Although the algorithm is fairlysimple, its analysis is surprisingly complicated and requires a long

series of lemmas.

4.5.1 Bounds on the Parameters

We assume that the parameters p, 8, and e are fixed, but that we have some freedom in our

choice of P and p, subject to the reasonableness of our assumption that the clocks are initially

synchronized to within p. We would like p to be as small as possible, to keep the clocks as

closely synchronized as we can. However, the smaller p is, the smaller P must be (Le., the more

frequentlywemustsynchronize).



34

There is also a lower bound on P. In order for the algorithm to work correctly, we need to have P

sufficiently large to ensure the following.

(1) After a nonfaulty process p resets its clock, the local time at which p schedules its next

broadcast is greater than the local time on the new clock, at the moment of reset.

(2) A message sent by a nonfaulty process q for a round arrives at a nonfaulty process p after p

has already set its clock for that round.

Sufficient bounds on P turn out to be:

P> 2(1 + p)(fJ + £) + (1 + p)max{8, fJ + £) + p8, and

P ~fJ/4p-£/p-p(fJ + 8 + £)-2fJ-8-2£.

A required lower bound on fJis fJ~ 4£ + 4p(3fJ + 8 + 3£) + 8p2(fJ + 8 + E).

Any combination of P and fJ which satisfies these inequalities will work in our algorithm. If P is
\

regarded as fixed, then fJ, the closeness of synchronization along the real time axis, is roughly 4£

+ 4pP. This value is obtained by solving the upper bound on P for fJ and neglecting terms of

order p.

4.5.2 Notation

LetTi = TO+ iPand Ui = Ti + (1 + p)(fJ+ 8 + £),for all i ~ O.

For each i, every process p broadcasts Ti at its logical clock time Ti (real time ti ) and sets a timerp
to go off when its logical clock reaches Ui. When the logical clock reaches Ui (at real time ui ), thep
process resets its CORR variable, thereby switching to a new logical clock, denoted Ci+1 . Alsop
at real time ui , the process sets a timer for the time on its physical clock when the new logicalp

clock ci +1 reaches Ti+1. It is at least theoretically possible that this new timer might be set for ap

time on the physical clock which has already passed. If the timer is never set in the past, the

process moves through an infinite sequence of clocks CO , C1 ,etc, where CO is in force in the
p p p

interval of real time (-OO,uO), and each ci ,i > 1, is in force in the interval of real time [Ui.1 ,ui ).P P - P p

If, however. the timer is set in the past at some ui ,then no further timers arrive after that real time,p
and no further resynchronizations occur. That is, ci +1 stays in force forever, and ui and ti are

p p p

undefinedfor j ~ i + 1.



35

Let tmini denote min f Ity{ti}, and analogously for tmaxi, umini and umaxi.p non au p

For p and q nonfaulty, let ARRi (q) denote the time of arrival of a Ti message from q to p, sent atp

q's clock time Ti, where the arrival time is measured on p's local clock ci . (We will prove that Cip p
has actually been set by the time this message arrives.) Let AVi denote the value of AVp
calculated by p using the ARRi values, and let ADJi denote the corresponding value of ADJp p
calculated by p. Thus, Ci+1 = Ci + ADJi .p P P

This section is devoted to proving the following three statements for all i ~ 0:

(1) The real time ti is defined for all nonfaulty p. (That is, timers are set in the future.)p

(2) Itip - tiql ~ p, for all nonfaulty p and q. (That is, the separation of clocks is bounded by p.)

(3) tip + 6 - E >ui\, for all nonfaulty p and q, and i ~ 1. (That is, messagesarriveafter the
appropriate clocks have been set.)

The proof is by induction. For i = 0, (1) and (2) are true by assumption and (3) is vacuously true.

Throughout the rest of this section, we assume (1), (2), and (3) hold for i. We show (1), (2), and (3)

for i + 1 after bounding the size of the adjustment at each round.

4.5.3 Bounding the Adjustment

In this subsection, we prove several lemmas leading up to a bound on the amount of adjustment

made by a nonfaulty process to its clock, at each time of resynchronization.

Lemma 4.4: Let p and q be nonfaulty.

(a) ARRip(q)~ Ti + (1 + p)(P + 8 + E).

(b) If 6 -:-E ~ p, then ARRip(q) ~ Ti + (1 - p)(8 - E - P).

(c)If6- E ~ p, then ARRip(q) ~ Ti - (1 + p)(P - 8 + E).
Proof: Straightforward using Lemma 4.1. I

Lemma 4-5: Let p be nonfaulty. Then there exist nonfaulty q and r with

ARRip(q) :5;AVip :5;ARRip(r).
Proof: By throwing out the f highest and f lowest values, the process ensures that the
remaining values are in the range of the nonfaulty processes' values. I

We are now able to bound the adjustment.




