28

(1/n)|nApcI + qu + Zi=3_'anlp*qu— zi:&.nvpiq'

(/mIBgy + Vgp) + (Bpg =Vog) + Zi_g B + Vo=V ol

< “mnmpa & qul + |qu—qu| 2.3 nm pip_qun

i

<(/n)(e + €+ 2

o nlf_\.pq + Vpip - Vpiql). by Lemmas 3-6 and 3-4

= (1/n)2e + Z,_, n| + Apiq + Vpip—Vpiql),by Lemma 3-5

= (1/n)(2e + Z V. - Apip) - (Vpiq - Apiq)l}, by Lemma 3-4

i=3. nl(p,p

Aol 2.2 oV =R)

< (1/n)(2e + ZI 3. n|Vpip— pp i=3.0l"(Vpq ~Apg

< (1/n)(2e + 2i=3..n£ + E.=3"n£), by Lemma 3-6

< (1/n)(2e + (n-2)2¢)

= 2¢(1-1/n). 1

3.4.4 Validity
The validity result states that each new logical clock is within € of what one of the initial logical

clocks would have been.
Theorem 3-8: (Validity) Algorithm 3-1 bounds the adjustment within e.

Proof: By definition, the amount to be added to CORR is A (1/n) 2 Then
min_¢,V, < A < max .V . Letq be the process Wlth tﬁe minimum V ?.et r be
the process with the maximum V . Then,

qu = Ap = Vrp'
By applying Lemma 3-6 to each end of this inequality, we get
qu-e<v <A <Vrp$A
Adding p’'s initial clock value Cup(t) fort > t,, we get
0 _ 0 0
C |3('t) + qu e<C p(t} + ApSCp(t) + ﬁm +

which together with the definition of A implies

Coq(t) —e<L < COtt) + e 8

29
Chapter Four

Maintenance Algorithm

4.1 Introduction

This chapter consists of an algorithm to keep synchronized clocks that are close together initially,
and an analysis of its performance concerning how closely the clocks are synchronized and how
close the clocks stay to real time. The algorithm handles clock drift and arbitrary process faults.
The algorithm requires the clocks to be initially close together and less than one third of the
processes to be faulty. (Dolev, Halpern and Strong[2] show that it is impossible without

authentication to synchronize clocks unless more than two thirds of the processes are nonfaulty.)

This algorithm runs in rounds, resynchronizing periodically to correct for clock drift, and using a
fault-tolerant averaging function based on those in [1] to calculate an adjustment. The size of the
adjustment is independent of the number of faulty processas. At each round, n? messages aie
required, where n is the total number of processes. The closeness of synchronization achieved
depends only on the initial closeness of synchronization, the message delivery time and its
uncertainty, and the drift rate. We give explicit bounds on how the difference between the clock
values anc real time grows as time proceeds. The algorithm can be easily adapted to include

reintegration of repaired processes as described in Section 4.8.

4.2 Problem Statement

We are now considering the situation in which clocks can drift slightly and some proportion of the

processes can be faulty. Therefore, the statement of the problem differs from that in Chapter 3.
For a very small constant p > 0, we define a clock C to be p-bounded provided that for all t
1-p L 1/(1 + p) LdC({t)/dt <1 + p < 1/(1-p).

We make the following assumptions:

1. All clocks are p-bounded, including those of faulty processes, i.e., the amount by
which a clock’s rate is faster of slower than real time is at most p. (Since faulty
processes are permitted to take arbitrary steps, faulty clocks would not increase their

30

power to affect the behavior of nonfaulty processes.)

2. There are at most f faulty processes, for a fixed constant f, and the total number of
processes in the system, n, is at least 3f + 1.

3. A START message arrives at each process p at time T° on its initial logical clock C°_,
and t° is the real time when this occurs. Furthermore, the initial logical clocks are
closely synchronized, i.e., Icop(TO} - coq(TO)l < B, for some fixed B and all nonfaulty p
and g.

We let tmax® = max {top} and analogously for tmin®.

p nonfaulty

The object is to design an algorithm for which every execution in which the assumptions above

hold satisfies the following two properties.

1. y-Agreement: in(t) - Lq(t)l <y, forallt> tmin® and all nonfaulty p, q.

2. (o, 0pa,)-Validity: a,(t-tmax®) + T0-ay <L () < ayft-tmin®) + T° + ay forallt
= top and all nonfaulty p.

The Agreement property means that all the nonfaulty processes are synchronized to within y. The
Validity property means that the local time of a nonfaulty process increases in some relaticn to

real time. We would, of course, like to minimize ay, @y, o, and vy.

4.3 Properties of Clocks

We give several straightforward lemmas about the behavior of (p- bounded) clocks.
Lemma 4-1: Let C be any clock.

(a) If t1 < t2, then
(b) If T, < T, then

Proof: Straightforward. i
Lemma 4-2: Let C and D be clocks.

(a) IfdC(t)/dt = 1 and hE T2, then
](c(T2) -d(T,)) - (C(T1} - d(T1))l = |(G(T2) -c(T) - (d(T,) - d(T1))| <p(T,-T.).

(b) If T’ < T2. then

31

(e(T,) - d(T,)) = (c(T) = (T DI = I(e(T,) = c(T,) = (A(T,) - (T NI < 2p(T,~T,).
(c) IFAC(t)/dt = 1andt, < t,, then

I(Cit,) - D(t,) - (Cit,) - DI = I(Cit,) - Cit,)) - (D(t,) - Dit)| < pit,~t,).
(d)Ift, <t,, then

I(C(t,) - Dlt) - (Clt) - Dit,)l = I(Cit) - Cit,) - (O(t,) - Dt)l < 2p(t, - t,).
Proof: Straightforward using Lemma 4-1. 1

Lemma 4-3: Let C and D be clocks, T, < T,. Assume [¢(T) -d(T)| < a forall T, =
T< T, Lett, = min{e(T,),d(T,)} and t, = max{c(T,),d(T,)}.

Then |C(t) -D(t)] < (1 + p)aforallt, tost< t,
Proof: There are four cases, which can easily be shown to be exhaustive.

Case 1: ¢(T,) St < c(Ty).

Let T, = C(t), so that T, < T, < T, By hypothesis, Ic(Ta} - d(TS)] < a. Then |T3 -
D) < (1 + p)a, by Lemma 4-1.

Case2:d(T,) <t< d(T,). This case is analogous to the first.
Case 3: ¢(T,) <t<d(T,).

Then ¢(T,) <t<d(T,). SoC(t) > D(t), and thus

IC(t) - D()] = C(t)-D(t) = (C()-T,) + (T, -D(t)

<+ p)t-c(T)) + (1 + p)d(T,)-1), by Lemma 4-1,

= (1 + p)A(T)-c(T) L (1 + pa.

Case 4: d(T2) {t< c(T1). This case is analogous to the third. 1

4.4 The Algorithm

4.4.1 General Description

The algorithm executes in a series of rounds, the i-th round for a process triggered by its logical
clock reaching some value T (It will be shown that the logical clocks reach this value within real
time B of each other.) When any process p's logical clock reaches Ti, p broadcasts a T message.
Meanwhile, p collects T messages from as many processes as it can, within a particular bounded

amount of time, measured on its logical clock. The bounded amount of time is of length (1 + p)(8

32

+ 6 + €), and is chosen to be just large enough to ensure that i messages are received from all
nonfaulty processes. After waiting this amount of time, p averages the arrival times of all the T
messages received, using a particular fault-tolerant averaging function. The resulting average is
used to calculate an adjustment to p's correction variable, thereby switching p to a new logical

clock.

The process p then waits until its new clock reaches time T'*' = T' + P, and repeats the

procedure. P, then, is the length of a round in local time.

The fault-tolerant averaging function is derived from those used in [1] for reaching approximate
agreement. The function is designed to be immune to some fixed maximum number, f, of faults. It
first throws out the f highest and f lowest values, and then applies some ordinary averaging
function to the remaining values. In this paper, we choose the midpoint of the range of the

remaining values, to be specific.

4.4.2 Code for an Arbitrary Process

Global constants: p, 8, 8, €, and P, as defined above.

Local variables:

e CORR, initially arbitrary; correction variable which corrects physical time to logical
time.

¢ ARR[q], initially arbitrary; array containing the arrival times of the most recent
messages, one entry for each process q.

e T, initially undefined; local time at which the process next intends to send a message.

Conventions:

e NOW stands for the current logical clock time (i.e., the physical clock reading +
CORR). NOW is assumed to be set at the beginning of a step, and cannot be
assigned to.

¢ REDUCE, applied to an array, returns the multiset consisting of the elements of the
array, with the f highest and f lowest elements removed.

e MID, applied to a multiset of reals numbers, returns the midpaoint of the set of values
in the multiset.

The code is in Figure 4-1.

beginstep(u)
do forever

/* in case T' messages are received before this process reaches T' */

while u = (m,q) for some message m and process q do

ARR[gq] := NOW
endstep
beginstep(u)
endwhile

/* fall out of the loop when u = START or TIMER; begin round */

T := NOW
broadcast(T)
set-timer(T + (1 + p)(B + 8 + ¢))

while u = (m,q) for some message m and process q do
ARR[q] := NOW
endstep
beginstep(u)
endwhile

/* fall out of the loop when u = TIMER; end round */

AV := mid(reduce(ARR))
ADJ := T + 6 - AV

CORR := CORR + ADJ
set-timer(T + P)
endstep

beginstep(u)

enddo

Figure 4-1:Algorithm 4-1, Maintaining Synchronization

4.5 Inductive Analysis

Although the algorithm is fairly simple, its analysis is surprisingly complicated and requires a long

series of lemmas.

4.5.1 Bounds on the Parameters

We assuime that the parameters p, 8, and ¢ are fixed, but that we have some freedom in our
choice of P and S8, subject to the reasonableness of our assumption that the clocks are initially
synchronized to within 8. We would like B to be as small as possible, to keep the clocks és
closely synchronized as we can. However, the smaller 8 is, the smaller P must be (i.e., the more

frequently we must synchronize).

34

There is also a lower bound on P. In order for the algorithm to work correctly, we need to have P

sufficiently large to ensure the following.

(1) After a nonfaulty process p resets its clock, the local time at which p schedules its next

broadcast is greater than the local time on the new clock, at the moment of reset.

(2) A message sent by a nonfaulty process q for a round arrives at a nonfaulty process p after p

has already set its clock for that round.

Sufficient bounds on P turn out to be:

P>2(1 + p)(B + €) + (1 + p)max{s,B + €} + pé, and
P<B/4p-e/p-p(B + 8 + €)-28-08-2¢.

A required lower bound on B is 8 > 4¢ + 4p(38 + & + 3¢) + 8p2(B + 08 +¢).

Any combination of P and 8 which satisfies these inequalities will work in our algorithm. If P is
regarded as fixed, then B, the closeness of synchronization along the real time axis, is roughly 4

+ 4pP. This value is obtained by solving the upper bound on P for 8 and neglecting terms of

order p.

4.5.2 Notation

LetT = TO+ iPandU' = T + (1 + p)(B + & + ¢), foralli > 0.

For each i, every process p broadcasts T at its logical clock time T! (real time tip) and sets a timer
to go off when its logical clock reaches U'. When the logical clock reaches U' (at real time u'p), the
process resets its CORR variable, thereby switching to a new logical clock, denoted e+ 1p. Also
at real time u‘p, the process sets a timer for the time on its physical clock when the new logical
clock C'* 1p reaches T'* ', Itis at least theoretically possible that this new timer might be set for a
time on the physical clock which has already passed. If the timer is never set in the past, the
process moves through an infinite sequence of clocks Cop, C‘p, etc, where COp is in force in the
interval of real time (-Oo,uop), and each Cip, i > 1, isin force in the interval of real time [u”p, uip).
If, however, the timer is set in the past at some u'p‘ then no further timers arrive after that real time,
and no further resynchronizations occur. That is, ok 'D stays in force forever, and uip and t‘i;J are

undefined forj > i + 1.

Let tmin' denote min p}, and analogously for tmax', umin' and umax'.

i
p n::)nt:aulty{t

For p and g nonfaulty, let AFtFtip(q) denote the time of arrival of a T' message from q to p, sent at
q’s clock time T', where the arrival time is measured on p's local clock C'p. (We will prove that C'p
has actually been set by the time this message arrives.) Let Av'p denote the value of AV
calculated by p using the ARR‘p values, and let ADJ'p denote the corresponding value of ADJ

calculated by p. Thus, C'* ’p = C"p + ADJip.

This section is devoted to proving the following three statements for alli > 0:

(1) The real time tip is defined for all nonfaulty p. (That is, timers are set in the future.)

(2 |ti'J - tiql < B, for all nonfaulty p and g. (That s, the separation of clocks is bounded by 8.)

(3) tip + 6-¢> u”q, for all nonfaulty p and q, and i > 1. (That is, messages arrive after the

appropriate clocks have been set.)
The proof is by induction. Fori = 0, (1) and (2) are true by assumption and (3) is vacuously true.

Throughout the rest of this section, we assume (1), (2), and (3) hold fori. We show (1), (2), and (3)

fori + 1 after bounding the size of the adjustment at each round.

4.5.3 Bounding the Adjustment
In this subsection, we prove several lemmas leading up to a bound on the amount of adjustment

made by a nonfaulty process to its clock, at each time of resynchronization.
Lemma 4-4: Let p and q be nonfaulty.

(a) Ann*p{q) ST +(1+p)B+8+e)
(b)If & - € > B, then ARRip(q) ST + (1-p)(b-e-p).

(c)If8-¢ < B, then ARRip(q) >T-(1+p)B-5+).
Proof: Straightforward using Lemma 4-1. 1
Lemma 4-5: Let p be nonfaulty. Then there exist nonfaulty q and r with

i i i
ARR' (a) < AV < ARR' (1)

Proof: By throwing out the f highest and f lowest values, the process ensures that the
remaining values are in the range of the nonfaulty processes’ values. 1l

We are now able to bound the adjustment.

