
Signature of Author

Certified by

1

Synch ronizing Clocks in a
Distributed System

by

Jennifer Lundelius

B.A., The University of Texas at Austin
(1979)

Submitted to the
Department of Electrical Engineering

and Computer Science
in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

at the

MASSACHUSETTSINSTITUTEOF TECHNOLOGY

August, 1984

@ Massachusetts Institute of Technology, 1984

Department of Electrical Engineering and Computer Science
August 17, 1984

Nancy A. Lynch, Thesis Supervisor

Accepted by
Arthur C. Smith, Chairman, Departmental Committee on Graduate Students

--- --

2

Synch ronizing Clocks in a
Distributed System

by

JenniferLundelius

Submitted to the
Department of Electrical Engineering and Computer Science
on August 17,1984 in partial fulfillmentof the requirements

for the Degree of
Master of Science in Computer Science

Abstract

Keeping the local times of processes in a distributed system synchronized in the presence of
arbitrary faults is important in many applications and is an interesting theoretical problem in its
own right. In order to be practical, any algorithm to synchronize clocks must be able to deal with
process failures and repairs, clock drift, and varying message delivery times. but these conditions
complicate the design and analysis of algorithms. In this thesis, a general formal model to
describe a system of distributed processes, each of which has its own clock, is presented. The
processes communicate by sending messages to each other. and they can set timers to cause
themselves to take steps at some future times. It is proved that even if the clocks run at a perfect
rate and there are no failures, an uncertainty of £ in the known message delivery time makes it
impossible to synchronize the clocks of n processes any more closely than 2£(1- 1In). A simple
algorithm that achieves this bound is given to show that the lower bound is tight.

Two fault-tolerant algorithms are presented and analyzed, one to maintain synchronization
among processes whose clocks initially are close together, and another to establish
synchronization in the first place. Both handle drift in the clock rates. uncertainty in the message
delivery time. and arbitrary failure of just under one third of the processes. The maintenance
algorithm can be modified to allow a failed process that has been repaired to be reintegrated into
the system. A variant of the maintenance algorithm is used to establish the initial synchronization.
It was also necessary to design an interface between the two algorithms since we envision the
processes running the start-up algorithm until the desired degree of synchronization is obtained.
and then switching to the maintenance algorithm.

Keywords: synchronization, clocks, distributed systems, fault tolerance.

Thesis supervisor: Nancy A. Lynch
Title: Associate Professor of Computer Science and Engineering

----.-.----

3

Acknowledgments

I would like to thank my advisor, Nancy Lynch, for contributing so many of her ideas and so much
of her time to this thesis. Without her technical guidance and constant interest it would have
taken me infinitely longer to finish.

Brian Coan, Cynthia Dwork, Gene Stark, and Bill Weihl kindly read parts of this document and
provided valuable suggestions and criticisms.

I am grateful to many people for their friendship and moral support during the last two years,
especially Randy Forgaard for expeditions to Toscanini's, Ron Kownacki for his healthy
psychological equilibrium when we were TA's, Brian Oki for sound advice about the lab, Jim
Restivo for reciprocating complaints, Lori Sorayama for being a sympathetic listener, Kathy Yelick
for letting me bounce incoherent ideas off her, Joe Zachary for his unique brand of humor, and
the regular Friday-afternoon-at-the-Muddy crowd.

Most importantly, my mother and father were an unceasing source of encouragement, patience,
and love.

4

Table of Contents

Chapter One: Introduction

1.1 The Problem
1.2 Results of the Thesis

1.2.1 Model
1.2.2 Lower Bound
1.2.3 Maintaining Synchronization
1.2.4 Establishing Synchronization

1.3 Related Work

Chapter Two: Formal Model

2.1 Introduction
2.2 InformalDescription
2.3 Systems of Processes
2.4 Message System
2.5 f-tjstories
2.6 Chronicles
2.7 Shifting
2.8 Executions
2.9 Logical Clocks

Chapter Three: Lower Bound

3.1 Introduction
3.2 Problem Statement
3.3 Lower Bound
3.4 Upper Bound

3.4.1 Algorithm
3.4.2 PreliminaryLemmas
3.4.3 Agreement
3.4.4 Validity

Chapter Four: Maintenance Algorithm

4.1 Introduction
4.2 Problem Statement
4.3 Properties of Clocks
4.4 The Algorithm

4.4.1 General Description
4.4.2 Code for an ArbitraryProcess

4.5 Inductive Analysis
4.5.1 Bounds on the Parameters
4.5.2 Notation
4.5.3 Bounding the Adjustment
4.5.4 Timers AreSet in the Future
4.5.5 Bounding the Separation of Clocks
4.5.6 Bound on Message ArrivalTime 4

7

7
8
8
9
9

10
11

13

13
13
14
16
17
18
19
21
21

22

22
22
23
24
24
26
27
28

29

29
29
30
31
31
32
33
33
34
35
36
36
40

5

4.6 Some General Properties
4.7 Agreement and Validity Conditions

4.7.1 Agreement
4.7.2 Validity

4.8 Reintegrating a Repaired Process

Chapter Five: Establishing Synchronization

5.1 Introduction

5.2 The Algorithm
5.2.1 General Description
5.2.2 Code for an Arbitrary Process

5.3 Analysis
5.4 Determining the Number of Rounds
5.5 Switching to the Maintenance Algorithm
5.6 Using Only the Start.up Algorithm

Chapter Six: Conclusion

6.1 Summary
6.2 Open Questions

Appendix A: Multisets

References

40
42
42
45
46

52

52
52
52
53
55
61
62
66

68

68
69

70

73

6

Table of Figures

Figu re 3.1: Algorithm 3-1, Synchronizing to within the Lower Bound
Figu re 4.1: Algorithm 4-1, Maintaining Synchronization
Figure 4-2: Algorithm 4-2, Reintegrating a Repaired Process
Figu re 5.1: Algorithm 5-1, Establishing Synchronization

26
33
49
54

7

Chapter One

Introduction

1.1 The Problem

Keeping the local times of processes in a distributed system synchronized in the presence of

arbitrary faults is important in many applications and is an interesting problem in its own right. In

order to be practical, any algorithm to synchronize clocks must be able to deal with process

failures and repairs, clock drift, and varying message delivery times, but these conditions

complicate the design and analysis of algorithms.

In this thesis we describe a formal model for a system of distributed processes with clocks, and

demonstrate a lower bound on how closely the clocks can be synchronized, even when strong

assumptions are made about the behavior of the system. Then we describe and analyze

algorithms to establish and maintain synchroni~ation under more realistic assumptions.

We assume a collection of processes that communicate by sending messages over a reliable

medium. Each process has a physical clock, not under its control, that is incremented in some

relationship with real time. By adding the value of a local variable to the value of the physical

clock, the process obtains its local time.

The design of a clock synchronization algorithm must take into account the following factors.

1. The uncertainty in the message delivery time. Messages are assumed in this thesis to
be delivered a fixed amount of time after they are sent, plus or minus some
uncertainty.

2. Clock drift. Are the processes' clock rates fast or slow relative to real time? If the
clocks drift, then the synchronization procedure must be repeated periodically to
keep the clocks synchronized.

3. Are the clocks initially synchronized? If they are, then the problem of synchronizing
the clocks is already solved unless the clocks drift, since once nondrifting clocks are
synchronized, they stay synchronized.

4. Fault tolerance. What kinds of faults (if any) are tolerated? This thesis does not
consider communication link failures. A certain proportion of the processes,
however, may be faulty in the worst possible way, by sending arbitrary messages at
arbitrary times.

8

5. Digital signatures. Can a faulty process forge a message from another process? If
digital signatures are available, then process p can tell process q that it received a
message x from process r, only if such ..vasactually the case. This obviously reduces
the power of a faulty process to create havoc. Some of the other clock
synchronization algorithms in the literature [5, 7] need this capability, but ours do not.

6. Reintegration. In order to be practical, a synchronization algorithm must allow faulty
processes that have recovered to be reintegrated into the system.

7. Size of the adjustment. Particularly when the synchronization procedure is
performed periodically, the amount by which the clock is changed should not be too
big.

1.2 Results of the Thesis

1.2.1 Model

One of the contributions of this thesis is a precise formal model of a system of distributed

processes, each of which has its own clock. Within the model, lower bound proofs can be seen to

be rigorous, and the effects of algorithms, once they are stated in a language that maps to the

model, can be discerned unambiguously. The model is described in Chapter 2.

We model the situation in which each process has a physical clock that is not under its control.

By adding some value to the physical clock time a process obtains a local time. A process can set

a timer to go off at a specified time in the future. Formally, timers are treated similarly to

messages between processes. The system is interrupt-driven in that a process only takes a step

when a message arrives. The message may come from another process, or it may be a timer that

was set by the process itself. Thus, by using a timer, a process can ensure that an interrupt will

occur at a specified time in the future.

A process is modelled as an automaton, with states and a transition function. One of the

arguments to the transition function is a real number, representing the time on the process' clock.

Clocks are modelled as real-valued functions from real time to clock time. We assume that the

communication network is fully connected, so that every process can send a message directly to

every other process. Processes possess the capability of broadcasting a message to all the

processes at the same time. The message system is described as a buffer that holds messages

until they are delivered. All messages are delivered within a fixed amount of time plus or minus

some uncertainty. The delivery of a messageat a process is the only type of event we consider. A

system execution consists of sequences of "actions", each of which is a process event

9

surrounded by a description of the state of the system, one sequence for each real time of

interest. The sequences must satisfy certain natural consistency and correctness conditions.

1.2.2 lower Bound

Even if the simplifying assumptions are made that clocks run at a perfect rate and that there are

no failures, the presence of an uncertainty of € in the message delivery time alone prevents any

algorithm from exactly synchronizing clocks that initially have arbitrary values. We show in

Chapter 3 that 2€(1 - 1In) is a lower bound on how closely the clocks of n processes can be

synchronized in this case. Of course, in this case, any algorithm which synchronizes the clocks

once causes them to remain synchronized. However, since these are strong assumptions, this

lower bound also holds for the more realistic case in which clocks do drift and arbitrary faults

occur. Just to show that this bound is tight, we describe an algorithm that achieves this bound for

the simplified case.

1.2.3 Maintaining Synchronization

We describe a synchronization algorithm in Chapter 4 that handles clock drift, uncertainty in the

message delivery time and arbitrary process faults. The algorithm requires the clocks to be

initially close together and less than one third of the processes to be faulty.

Our algorithm runs in rounds, resynchronizing every so often to correct for the clocks drifting out

of synchrony, and using a fault-tolerant averaging function based on those in [1] to calculate an

adjustment. The size of the adjustment made to a clock at each round is independent of the

number of faulty processes. At each round, n2 messages are required, where n is the total

number of processes. The closeness of synchronization achieved depends only on the initial

closeness of synchronization, the message delivery time and its uncertainty, and the drift rate.

Since the closeness of synchronization depends on the initial closeness, this is, in the terminology

of [7], an interactive convergence algorithm. We give explicit bounds on how the difference

between the clock values and real time grows. The algorithm can be easily adapted to become a

reintegration procedure for repaired processes.

At the beginning of each round, every nonfaulty process broadcasts its clock value and then waits

a bounded amount of time, measured on its logical clock, long enough to ensure that clock values

are received from all nonfaulty processes. After waiting, the process averages the arrival times of

all the messages received, using a particular fault.tolerant averaging function. The resulting

average is used to calculate an adjustment to the process' clock.

10

The fault-tolerant averaging function is derived from those used in [1] for reaching approximate

agreement. The function is designed to be immune to some fixed maximum number, f, of faults. It

first throws out the f highest and f lowest values, and then applies some ordinary averaging

function to the remaining values. We choose the midpoint of the range of the remaining values, to

be specific. The properties of the fault-tolerant averaging function allow the distance between the

clocks to be halved, in a rough sense, at each round. Consequentfy, the averaging function can

be considered the heart of the algorithm.

This algorithm can maintain a closeness of synchronization of approximately 4£, where £ is the

uncertainty in the messagedelivery time.

1.2.4 Establishing Synchronization

The problem solved by the algorithm in Chapter 4 is only that of maintaining synchronization of

local times once it has been established. There is, of course, the separate problem of establishing

such synchronization in the first place among processes whose clocks have arbitrary values. A

variant of the maintenance algorithm can be used to establish the initial synchronization as well

and is described in Chapter 5. The algorithm handles arbitrary failures of the processes,

uncertainty in the message delivery time, and clock drift. It was also necessary to design an

interface between the two algorithms since we envision the processes running this algorithm until

the desired degree of synchronization is obtained, and then switching to the maintenance

algorithm.

The structure of the algorithm is similar to that of the algorithm which maintains synchronization.

It runs in rounds. During each round, the processes exchange clock values and use the same

fault-tolerant averaging function as before to calculate the corrections to their clocks. However,

each round contains an additional phase, in which the processes exchange messages to decide

that they are ready to begin the next round.

This algorithm also synchronizes the clocks to within about 4£. Again, the fault-tolerant averaging

function used in the algorithm causes the difference in the clocks to be cut in half at each round.

11

1.3 Related WorK

The problem of synchronizing clocks has been a topic of interest recently. A seminal paper was

Lamport's work [6], defining logical clocks and describing an algorithm to synchronize them.

Several algorithms to synchronize real time clocks have appeared in the literature [5, 6, 7, 9].

Those of Lamport [6] and Marzullo [9] have the processes updating their clocks whenever they

receive an appropriate message; these messages are assumed to arrive every so many real

seconds, or more often. In contrast, the algorithms in Halpern, Simons and Strong [5], Lamport

and Melliar-Smith [7], and this thesis run in rounds. During a round, a process updates its clock

once. The rounds are determined by the times at which different processes' local clocks reach

the same times. There is an impossibility result due to Dolev, Halpern and Strong [2], showing

that it is impossible to synchronize clocks without digital signatures if one third or more of the

processes are subject to Byzantine failures. Dolev, Halpern and Strong's paper [2] also contains

a lower bound similar to ours (proved independently), but characterizing the closeness of

synchronization obtainable along the real time axis, that is, a lower bound on how closely in real

time two processes' clocks can read the same value.

The three algorithms of Lamport and Melliar-Smith [7], as well as our maintenance algorithm,

require a reliable, completely connected communication network, and handle arbitrary process

faults. The first algorithm works by having each process at every round read all the other

processes' clocks and set its clock to the average of those values that aren't too different from its

own. The size of the adjustment is no more than the amount by which the clocks differ plus the

uncertainty in obtaining the other processes' clock values. However, the closeness of the

synchronization achieved depends on the total number of processes, n. The message complexity

is n2at each round, if getting another process' clock value is equated with sending a message.

In the other two algorithms in [7], each process sets its clock to the median of the values obtained

by receiving messages from the other processes. To make sure each nonfaulty process has the

same set of values, the processes execute a Byzantine Agreement protocol on the values. The

two algorithms use different Byzantine Agreement protocols. One of the protocols doesn't

require digital signatures, whereas the other one does. As a result, the clock synchronization

algorithm derived from the latter will work even if almost one half of the processes are faulty, while

the other two algorithms in [7] can only handle less than one third faulty processes. For both of

the Byzantine clock synchronization algorithms, the closeness of synchronization and the size of

the adjustment depend on the number of faulty processes, and the number of messages per

round is exponential in the number of faults.

12

The algorithm of Halpern, Simons and Strong [5] works in the presence of any number of process

and link failures as long as the nonfaulty processes can still communicate. It requires digital

signatures. When a process' clock reaches a certain value (decided on in advance), it broadcasts

that time. If it receives a message containing the value not too long before it reaches the value, it

updates its clock to the value and relays the message. The closeness of synchronization depends

only on the drift rate, the round length, the message delivery time, and the diameter of the

communication graph after the faulty elements are removed. The message complexity per round

is n2. However, the size of the adjustment depends on the number of faulty processes.

The framework and error model used by Marzullo in [9] make a direct comparison of his results

with ours difficult. He considers intervals of time and analyzes the error probabilistically.

The problem addressed in these papers is only that of maintaining synchronization of local times

once it has been established. None of them explicitly discusses any sort of validity condition,

quantifying how clock time increases in relation to real time. Only [5] includes a reintegration

procedure for repaired processes.

13

Chapter Two

Formal Model

2.1 Introduction

We present a formal model for describing a system of distributed processes, each of which has its

own clock. The processes communicate by sending messages to each other, and they can set

timers to cause themselves to take steps at some specified future times. The model is designed to

handle arbitrary clock rates, Byzantine process failures, and a variety of assumptions about the

behavior of the messagesystem.

The advantages of a formal model are that lower bound proofs can be seen to be rigorous, and

the effects of an algorithm, once it is stated in a language that maps to the model, can be

discerned unambiguously.

This model will be used in subsequent chapters to describe our particular versions of the clock

synchronization problem.

2.2 Informal Description

We model a distributed system consisting of a set of processes that communicate by sending

messagesto each other. Each process has a physical clock that is not under its control.

A typical message consists of text and the sending process' name. There are also two special

messages, 8TART, which comes from an external source and indicates that the recipient should

begin the algorithm, and TIMER, which a process receives when its physical clock has reached a

designated time.

A process is modelled as an automaton with a set of states and a transition function. The

transition function describes the new state the process enters, the messages it sends out, and the

timers it sets for itself, all as a function of the process' current state, received message and

physical clock time. An application of the transition function constitutes a process step, the only

kind of event in our model.

14

The system is interrupt-driven in that a process only takes a step when a message arrives. The

message may come from another process, or it may be a TIMER message that was sent by the

process itself. Thus, by using a TIMER message, a process can ensure that an interrupt will occur

at a specified time in the future. We neglect local processing time by assuming that the

processing of an arriving message is instantaneous.

We assume that the communication network is fully connected, so that every process can send a

message directly to every other process. Processes possess the capability of broadcasting a

message to all the processes at one step. The message system is described as a buffer that holds

messages until they are delivered.

System histories consist of sequences of "actions", each of which is a process event surrounded

by a description of the state of the system, one sequence for each real time of interest. The

sequences must satisfy certain natural consistency and correctness conditions. We introduce the

notion of "shifting" the real times at which a particular process' steps occur in a history and note

the resulting changes to the message delivery times. Finally, we define an execution to be a

history in which the message system behaves as desired.

2.3 Systems of Processes

Let P be a fixed set of process names. Let X be a fixed set of message values. Then M, the set of

messages, is {START, TIMER} U (X x P). A process receives a START message as an external

indication of the beginning of an algorithm. A process receives a TIMER message when a

specified time has been reached on its physical clock. All other messages consist of a message

value and a process name, indicating the sender of the message.

Let ~(S) denote the finite subsets of the set S.

A process p is modelled as an automaton. It has a set Q of states, with a distinguished subset I of

initial states, and a distinguished subset F of final states. It has a transition function, 1',where 1':Q

x IR x M -+ Q x g(X x P) x ~(IR). The transition function maps p's state, a real number indicating its

physical clock time, and an incoming message, all to a new state for p, a finite set of (message

value. destination) pairs, and a finite set of times at which to set timers. For any r in IR,m in M, Y in

~(X x P), and Z in ~(IR),if q is in F and if T(q,r,m) = (q',Y,Z), we require that q' also be in F. That is,

once a process is in a final state, it can never change to non-final state.

15

We assume that, in the absence of non-TIMER messages, a process does not set an infinite

sequence of timers for itself within a finite amount of time. To state this condition formally, we

chooseanytimer1andstateq1for p,andconsiderthe followingsequenceof applicationsof Tp:

T (q.,r.,TlMER) = (q. 1,Y. 1,Z. 1), where r. = min{r E U. 2
.Z.: r) r. 1}p I I I + 1+ 1+ I J= ..I J 1-

Then as i approaches 00, it must be that r. approaches 00.I

We define a step of p to be a tuple (q,r,m,q',Y,Z) such that T(q,r,m) = (q' ,Y,Z).

A clock is a monotonically increasing, everywhere differentiable function from IR(real time) to IR

(clock time): We will employ the convention that clock names are capitalized and that the inverse

of a clock has the same name but is not capitalized. Also, real times are denoted by small letters

and clock times by capital letters.

Asystem of processes, denoted (P,N,S),consists of a set of processes, one for each name in P, a

nonempty subset N of P called the nonfaulty processes. and a nonempty subset S of P called the

self-starting processes. (We will use P to denote both the set of names and the set of pr:ocesses,

relying on context to distinguish the two.) The nonfaulty processes represent those processes

that are required to follow the algorithm. The self-starting processes are intended to model those

that will begin executing the algorithm on their own, without first receiving a message. A system

of processes with clocks, denoted (P,N,S,PH),is a system of processes (P,N,S) together with a set

of clocks PH = {Ph }, one for each pin P. Clock Ph is called p's physical clock. The transitionp p
function for p is denoted by T . Throughout this thesis we assume IPI = n.p

16

2.4 Message System

We assume that every process can communicate directly with every process, (including itself, for

uniformity) at each step. The message system is modelled by a message buffer, which stores

each message, together with the real times at which it is sent and delivered. For technical

convenience, we do not require that messages be sent before being received. This correctness

condition is imposed later.

A state of the message buffer consists of a multiset of tuples, each of the form (p,x,q) or

(TIMER,T,p) or (START,p), with associated real times of sending and delivery. The message (x,p)

with recipient q is represented by (p,x,q). (TIMER,T,p) indicates a timer set for time T on p's

physical clock. (START,p) represents a START messagewith p as the recipient.

An initial state of the message buffer is a state consisting of some set of START messages. The

sending and delivery times are all initialized as 00,

The behavior of the message buffer is captured as a set of sequences of SEND and RECEIVE

operations, each operation with its associated real time. Each operation involves a message

tuple. The result of performing each operation is described below.

SEND(u,t): the tuple u is placed in the message buffer with sending time t and delivery time 00 as

long as there is no u entry already in the message buffer with sending time 00. If there is, then t is

made the new sending time of the u entry with the earliest delivery time and sending time 00,

RECEIVE(u,t): the tuple u is placed in the message buffer with delivery time t and sending time

00, as long as there is no u entry already in the message buffer with delivery time 00. If there is,

then t is made the new delivery time of the u entry with the earliest sending time and delivery time
00.

The message delay of a non-START message is the delivery time minus the sending time. A

positive message delay means the message was sent before it was delivered. A negative message

delay means the message was delivered before it was sent. A message delay of + 00 means the

message was sent but never delivered, and a message delay of -00 means the message was

delivered, but never sent. (The message delay is not defined for START messages that are never

delivered.)

17

2.5 Histories

In this section we define a history, a construct that models a computation in which nonfaulty

processes follow their state-transition functions. Constraints to ensure that the message system

behaves correctly will be added in Section 2.8.

Fix a system of processes and clocks :f = (P,N,S,PH).

An event for P is of the form receive(m,p), the receipt of message m by process p, where p is in

P. A schedule for P is a mapping from m(real times) to finite sequences of events for P such that

only a finite number of events occur before any finite time, and for each real time t and process p,

all TIMER events for p are ordered after all non.TIMER events for p. The first condition rules out a

process taking an infinite number of steps in a finite amount of time, and the second condition

allows messagesthat arrive at the same time as a timer goes off to get in "just under the wire".

In order to discuss how an event affects the system as a whole, we define a configuration for P to

consist of a state for each process in P and a state for the message buffer. An initial configuration

for (P,N,S)consists of an initial state for each process and an initial state for the message buffer.

An action for P is a triple (F,e,F'), consisting of an event for P and two configurations F and F' for

P. F is the preceding and F' the succeeding configuration for the action.

A history for :f is a mapping from real times to sequences of actions for (P,N,S)with the following

properties:

. the projection onto the events is a schedule;

. if the sequence of actions is nonempty, then the preceding configuration of the first
action is an initial configuration, and the succeeding configuration of each action is
the same as the preceding configuration of the following action;

. if an action (F,receive(m,p),F') occurs at real time t, then F = F' except for p's state

and the state of the message buffer; moreover, there exist Y in ~(X x P) and Z in ~(m)
such that the buffer in F' is obtained from the buffer in F by executing the following
operations:

o if m = START, then RECEIVE((START,p),t);
if m = TIMER, then RECEIVE((TIMER,Ph (t),p),t);
if m = (x,p') for some p', then RECEIVE((~',x,p),t);

o SEND((p,x,p'),t) for all messagesof the form (x,p') in Y;

o SEND((TIMER,T,p),t) for all Tin Z such that T > r (that is, as long as the timer is
set for a futuretime);if T ~ r, then nooperationis performed.

18

Furthermare, if P is in N, then (q.r,m,q',Y,Z) is a step af P,where q is p'Sstate in F, r =
Ph (t), and q' is p's state in F'.p

The first canditian merely ensures that anly a finite number af accurrences take place by any

finite time. The secand canditian states that the canfiguratians match up carrectly. The final

canditian causes the canfiguratians to.change accarding to.the pracess' transitian functian, if it is

nanfaulty. Since a faulty pracess need nat abey its transitian functian, it can send any messages

and set any timers.

Given 1, an initial canfiguratian F, and a schedule s, a histary can be canstructed inductively by

starting with F and applying the transitian functians as specified by the events in s to.determine

the next canfiguratian. We will denate the histary so.derived by hist(s,F,1J.

Define, far each pracess p and histary h, first-step(h,p) = min{t: h(t) cantains an event far p}.

This is the earliest time at which a step is taken by p in h. If P never takes a step, then first-

step(h,p) is 00. Let first-step(h) = minpEp{first-step(h,p)}. This is the earliest time at which any

pracess takes a step in h. Similarly, define, far each histary hand nanfaulty pracess p,

last-step(h,p) = min{t: h(t) cantains a canfiguratian in which p is in a final state}. This is the

earliest time at which p is a final state. Define last-step(h) = maxpEp{Iast-step(h,p)}. This is the
earliest time in h after which all nanfaulty pracesses are in final ,states. If same p in N never enters

a final state in h, then last-step(h,p) and last-step(h) are 00,

2.6 Ch ronicles

In arder to.isalate the steps af an individual pracess in a histary fram the real times at which they

accur, we define a chranicle.

The chronicle af nanfaulty pracess p in histary h is the sequence af tuples af the farm

(q.,r.,m.,q.',Y.,Z.)which is derived as fallaws: if the j-th actian far p occurs in h(t), then m. is theI I I I I I I

message received in that actian, q. is the state af p in the preceding canfiguratian af the actian, r.I I

is p's physical clack reading at real time t, q.' is the state af p in the succeeding canfiguratian, Y. isI I

the callectian af messages to. be sent to. the message buffer, and Z. is the callectian af timers to.beI

set. We knaw that each tuple is a step af p.

Two.histaries, h far 1 = (P.N,S.PH)and h' far l' = (P,N,S,PH'), are equivalent if, far each pracess

p in N, the chranicle af p in h is the same as the chranicle af p in h',

- - .- _.-

19

2.7 Shifting

Given a schedule s, nonfaulty process p, and real number ~, define a new schedule s' =

shift(s,pJ) to be the same as s except that an event for p appears in s'(t) if and only if the same

event appears in s(t + n. and the order of events for p is preserved. The result s' can easily be

seen to be a schedule also. All events involving p are shifted earlier by ~ if ~ is positive, and

shifted later by .~if ~is negative.

A set of clocks PH = {Phq}qEp can also be shifted. Let PH' = shift(PH,p,n for p in N be the set of

clocks defined by PH' = {Ph '} Ep where Ph '(t) = Ph (t) if q :;Cp, and Ph '(t) = Ph (t) + r.q q q q p p

Process p's clock has been shifted forward by ~,but no other clocks are altered.

Lemma 2.1 states that if a schedule and a set of clocks are shifted by the same amount relative to

the same process, then the histories derived from those schedules and sets of clocks starting

from the same initial configuration are equivalent.

Lemma 2-1: Let f = (P,N,S,PH)and f' = (P,N,S,PH'),where PH' = shift(PH,p,n for
some process p and real number ~.Let s be a schedule for P and s' = shift(s,p,n. Let
F be an initial configuration for f and f'. Then the history hist(s,F,1) = h is equivalent
to the history hist(s',F,f') = h'.

Proof: Let q be an arbitrary process in N. It suffices to show that the chronicle of q in h
is the same as the chronicle of q in h'.

Case 1: q:;c p. We proceed by induction on the elements of the chronicles. Let q's
chronicle in h be (m.,qc.,Ph (t.),qn.,Y.,Z.) and in h' be (m.',qc.',Ph '(t.'),qn.',Y.',Z.'). (qc

I I Q' I I I I I q I I I I
stands for current state, qn for next state.)

Basis: i = 1. Then t1 = first.step(h,q)and t1' = first.step(h',q). By construction of h',
these real times are the same. Therefore, m1 = m1', Since F is the initial configuration
in both hand h', qC1 = qc1', Ph (t1) = Ph '(t1') since Ph = Ph ' by construction.

Finally,qn1 = qn1', Y1 = Y1',andZ1 = z1'sij,ce'TqiSdeter~inisticqandtheinputsare
the same.

Induction: Assume the elements are the same up to i - 1, and show that the i.th
elements are the same. Again, m. = m.' by construction of h'; qc. = qc.' by theI I I I

induction hypothesis since qc. = qn. 1 = qn. l ' = qc.'; Ph (1.) = Ph '(t.') as before;
. ,,' \. ". I .q.' . q I .

finallyqn. = qn. , Y. = Y., andZ. = Z. because'T ISdeterministiC.
I I I I I I q

Case 2: q = p. Again we proceed by induction on the elements of the chronicles. Let
p's chronicle in h be (m.,qc.,Ph (t.),qn.,Y.,Z.) and in h' be (m.',qc.',Ph '(t.'),qn.',Y.',Z.'),

I I p I I I I I I P I I I I

First we note that by construction, 1. = t.' + ~for all i.I I

Basis: i = 1. By construction, m1 = m1'. Since F is the initial configuration in both h
and h', qC1 = qc1'. Ph (t1) = Ph '(t1') since Ph (t1) = Ph '(t(n = Ph '(t1'+t-n.
Finally, qn1 = qn1', Y1 =Py1" and; = Z1' since 'T~is delerm'inistic and th~ inputs are

20

the same.

Induction: assume the elements are the same up to i - 1, and show that the i-th
elements are the same. m. = m.' by construction of h'; qc. = qc.' by the inductionI I I I

hypothesis;Ph (1.)= Ph '(t.')by thesameargumentas in thebasiscase;andagainqn.' y Y P I d Z
P

ZI, . . d t
..

t
. I

I

= qn., . = ., an . = . since 7' IS e ermlnlS IC.
I I I I I P

The next lemma quantifies the changes to the message delays in a history when its schedule and

set of clocks are shifted by the same amount relative to the same process.

Lemma 2.2: Let:r = (P,N,S,PH)and :r' = (P,N,S,PH'), where PH' = shift(PH,p,n for
some p in P and real number r Let s be a schedule for P and s' = shift(s,p,n. Let F
be an initial configuration for :r and :r '. Then there is a one-to-one correspondence
between the tuples in the message buffer in h = hist(s,F,f) and h' = hist(s',F,:r '), and
the message delays for corresponding elements will be the same in the two histories (if
defined) except for two cases:

1. if the delay for any tuple of the form (p,x,q) is J.Lin h for any process q :i; P and
message value x, then the delay for the corresponding element in h' will be J.L+
r;and

2. if the delay for any tuple of the form (q,x,p) is J.Lin h for any process q * p and
message value x, then the delay for the corresponding element in h' will be J.L-
r

Proof: By Lemma 2-1, hand h' are equivalent. Therefore, the chronicles of all the
processes are the same. The same messages are sent and received at the same
physical clock times in h' and h. Also, the message buffers have the same START
elements since the initial configuration is the same for both. Therefore, each element
of the message buffer in h has a corresponding one in h' and vice versa.

START messages are still either received at some finite time or not, thus START
elements have the same delays in the two histories. Since only p's clock is shifted, the
clocks of the other processes will bear the same relationship to real time in h' as in h,
causing the delays for messages between processes other than p and the delays of
timers for processes other than p to be the same in the two histories. The delays of
timers for p will be the same as well, since they are both set and received r earlierin h'
thaninh.

Choose q :i; p.

1. Suppose (p,x,q) is sent at t and received at t' in h. The relationship between S
and s' implies that (p,x,q) is sent at t - r and received at t' in h'. Thus the

message delay in h' is t' - (t - n = p. + r.

2. Suppose (q,x,p) is sent at t and received at t' in h. The relationship between s
and s' implies that (q,x,p) is sent at t and received at t' - r in h'. Thus the
message delay in h' is t' - r - t = J.L- r

I

21

2.8 Executions

Now we require correct behavior of the message system. Accordingly, we define an execution to

be a history with the necessary properties.

We fix for the remainder of the thesis two nonnegative constants 8 and Ewith 8) E.

An execution for :l'is a history for :I'with four additional properties:

. the initial state of the message buffer consists exactly of a 5TART message for each
process in 5 U (P - N), that is, for each self-starting process and each faulty process;

. all 5TART messages for nontaulty processes are received at some finite time;

. the message delay of any non-TIMER and non-5TART message is between 8 - E and
8 + E inclusive; and

. any (TIMER,T,p) element of the message buffer, for any T and p, has finite message
delay and is delivered at Ph -1(T).p

The intent of the first condition is to model the self-starting processes as those processes that

begin the algorithm on their own, and to allow the faulty processes to begin their bad behavior at

arbitrary times. The second condition states that nonfaulty self-starting processes all receive their

5TART messages. The third condition guarantees that all interprocess messages arrive at their

destinations within 8 of being sent, subject to an uncertainty of E. The fourth condition ensures

that a timer goes off if and only if it was previously set and that it goes off at the right time.

2.9 Logical Clocks

Each process p has as part of its state a local variable CORR, which provides a correction to its

physical clock to yield the local time. During an execution, p's local variable CORR takes on

different values. Thus, for a particular execution, it makes sense to define a function CORR (t),p
giving the value of p's variable CORR at time t. For a particular execution, we define the local

time for p to be the function L ,which is given by Ph + CORR .p p p

A logical clock of p is Ph plus the value of CORR at some time. Let CO denote the initial logicalp p p

clock of p, given by Ph plus the value of CORR in p's initial state. Each time p adjusts its CORRp p

variable, it is, in effect, changing to a new logical clock Ci for some i. The local time can bep

thought of as a piecewise continuous function, each of whose pieces is part of a logical clock.

22

Chapter Three

Lower Bound

3.1 Int roduction

In this chapter, we show a lower bound on how closely clocks can be synchronized, even if the

clocks don't drift and no processes are faulty. Since these are strong assumptions, this lower

bound also holds for the more realistic case in which clocks do drift and arbitrary faults occur.

Just to show that the bound is tight, we present a simple algorithm that synchronizes the clocks

as closely as the lower bound.

3.2 Problem Statement

For this chapter alone we make the following assumptions:

1. clocks don't drift, Le. dC (t)/dt = 1 for all p and t;p

2. all processes are nonfaulty, i.e. N = P. Therefore, we will omit "N" from the notation.

Since the processes have physical clocks which are progressing at the same rate as real time, the

only part of the clock synchronization problem which is of interest is the problem of bringing the

clocks into synchronization -. once this has been done, synchronization is maintained

automatically.

A clock synchronization algorithm (P,S) is y,a-correct if every execution h for (P,S,PH),for any set

of clocks PH, satisfies the following three conditions:

1. Termination: All processes eventually enter final states. Thus, last-step(h) is defined.

2.Agreement: ILp(t)- Lq(t)1~ y for any processes p and q and time t ;::: last-step(h).
Wesayh synchronizesto withiny.

3. Validity: For any process p there exist processes q and r such that CO(t) - a ~ L (t)

~ COr(t) + a for all times t > last-step(h). This ensures that p's ne~ logical cl8ck
isn't too much greater (or smaller) than the largest (or smallest) old logical clock
would have been at this time. We say h bounds the adjustment within a.

We will show that no algorithmcan be y,a-correct for y < 2£(1 - 1/n) and any a, where £ is the

23

uncertainty in the message delivery time and n is the number of processes. Then we exhibit a

simple algorithm that is 2£(1 - 1/n),£.correct.

3.3 Lower Bound

In this section we show that no algorithm can synchronize n processes' clocks any closer than

2£(1 - 1/n).

Theorem 3.1: No clock synchronization algorithm can synchronize a system of n
processes to within y, for any y <2£(1 -1/n).

Proof: Fix a system of processes (P,S) that synchronizes to within y. We will show that
y ~ 2£(1-1/n).

Let P consist of processes P1 through Pn' Consider the system 11 = (P,S,PH1).
Consider an execution h1 = hist(s1,F,11), for some schedule S1 and initial
configuration F, of any clock synchronization algorithm in which all messages from p.

to Pkhave delay 8 - £ if k >i, havedelay8 + £ if k < i, andhavedelay8 if k = i. J

Considern - 1 additional histories, h2 for system 12through hn for 1n' The systems are
constructed inductively by letting PH. = shift(PH 1'P. 1,2£) and 1. = (P,S,PH). TheI 1- 1- 1 I

histories are constructed inductively by letting s. = shift(s. 1'P. 1,2£) and h. =1 1- 1- I

hist(s/ ,ii)' Stated informally, the i.th history is obtained from the (i-1).st history ~y
shifting the schedule and set of clocks by 2£ relative to the (i-1)-st process. Let Phi
be p's physical clock in PH. P1

By Lemma 2.1, all the h. are equivalent.I

Next we show by induction on i that h. is an execution for 1.,and further, that the delaysI I

in hi for messages from Pj to Pk are 8 + £ if i < i and k ~ i, 8 - £ if i ~ i and k < i,
otherwise as in h1.

Basis: h1 is an execution and the messagedelays are as required by hypothesis.

Induction: Assume h. is an execution with the required messagedelays, and show that1
h. 1 is also an execution with the required messagedelays.1+

. The initial state of the message buffer is the same in h. 1 as in h., since both1+ I

use initial configuration F. Thus the initial state is as required.

. The START messages are all received in h. 1 as they are in h..1+ I

. By Lemma 2-2, a message in h. 1 from p. to p ,m > i, will have delay 8 - £ + 2£. 1+ I m
= 8 + £; one from p. to p . m< i, will havedelay8 - £ + 2£ = 8 + £; one fromI m

p to p., m > i, will have delay 8 + £ - 2£ = 8 - £;andone fromp to p..m< i,m 1 m ..

will have delay 8 + £ - 2£ = 8 - £. The others stay the same. Thus the delays
arewithinthecorrect range.

. Now we need to show that timers are handled properly in h. 1. Lemma 2-21+

24

implies that the message delays are the same in h. 1 as in h., thus they are1+ I

finite. For all processes except p., the timers arrive at the same real times andI

the same clock times in h. 1 as in h., and thus they arrive at the proper times in1+ I .
h. 1. Consider a timer set by p. for T that arrives at T = Phi (t) in h.. In h. 1 it

1+ I. 1 . R. I 1+
arrives at t + 2£. However, since Phi+ (t + 2£) = Phi (t) = T, the timer
arrives at the proper time in h. 1. Pi Pi1+

Therefore, h. is an execution for :t..I 1

Since h1 was correct, it terminated; therefore, hi also terminates. Let tf =
maxi= l..n{last.step(hj)}. In execution h1,the algorithm synchronizes all the processes'
clocks to values v1through vn at time tf, and all the values are within y. In particular,

Since h. is equivalent to h. l ' the correction variable for any process p will be the same1 ~

in both executions at time tf' The value of Pj.1's logical clock at t, will be vj.1 + 2£ and
the value of p.'s logical clock at tf will be v. by the way PH. is defined. Since theseI I I

values are within y, we have

v' 1 <v. + 'Y-2£.I- - I

Putting together this chain of inequalities, we have

vn:S;v1 + y:S;... :s;vj + (i-1)(y-2£) + y:S;... :S;vn + (n-1)(y-2£) + y.

Therefore, vn :S;vn + (n - 1)(y - 2£) + y, and so 0 :S;(n -1)'(- (n - 1)2£ + 'Y. In order
for this inequality to hold, it must be the case that y ~ 2£(1 - 1In). I

3.4 Upper Bound

In this section we show that the 2£(1 - 1In) lower bound is tight, by exhibiting a simple algorithm

whichsynchronizestheclocksto withinthis amount.

3.4.1 Algorithm

There is an extremely simple algorithm that achieves the closest possible synchronization. As

soon as each process p receives a message, it sends its local time in a message to the remaining

processes and waits to receive a similar message from every other process. Immediately upon

receiving such a message, say from q, p estimates q's current local time by adding ~ to the value

received. Then p computes the difference between its estimate of q's local time and its own

current local time. After receiving local times from all the other processes, p takes the average of

the estimated differences (including 0 for the difference between p and itself) and adds this

average to its correction variable. Note that in contrast to many other agreement algorithms, in

25

this one each process treats itself non-uniformly with the others.

Since it is obviously impractical to write algorithms in terms of transition functions, we have

employed a clean, simple notation for describing interrupt-driven algorithms. To translate this

notation into the basic model, we first assume that the state of a process consists of values for all

the local variables, together with a location counter which indicates the next beginstep statement

to be executed. The initial state of a process consists of the indicated initial values for all the local

variables, and the location counter positioned at the first beginstep statement of the program.

The transition function takes as inputs a state of the process, a message, and a physical time, and

must return a new state and a collection of messages to send and timers to set. This is done as

follows. The beginstep statement is extracted from the given state. The local variables are

initialized at the values given in the state. The parameter u is set equal to the message. The

variable NOW is initialized at the given physical time + CORR. The program is then run from the

given beginstep statement, just until it reaches an endstep statement. (If it never reaches an

endstep statement, the transition function takes on a default value.) The next beginstep after that

endstep, together with the new values for all the local variables resulting from running the

program, comprise the new state. The messages sent are all those which are sent during the

running of the program, and similarly for the timers.

There is a set-timer statement, which takes an argument U representing a logical time. The

corresponding physical time, U - CORR, is the physical time described by the transition function.

(This statement is not used in this algorithm but will be used later in the thesis.)

We will use the shorthand NOW to stand for the current logical clock time and ME for the id of the

process running the code.

For this algorithm, initial states are those in which the location counter is at the beginning of the

code, local variables CORR and V have arbitrary values, and local variables SUM and

RESPONSEShave value O. Final states are those in which the location counter is at the end of

the code.

The code is in Figure 3.1.

We will show that any execution h of Algorithm 3.1 is "y,a-correct, where"y = 2E(1 - 1In) and a =

E. Thus, Algorithm 3-1 synchronizes the clocks to within 2e(1 ...;. 1In), showing that the lower

bound is tight. The upper bound isn't as unintuitive as it might look at first glance; it can be

26

beginstep(u)
send(NOW) to all q ~ ME

do forever
if u = (v,q) for some message value v and process q then

V := v + 8 - NOW

SUM := SUM + V
RESPONSES:= RESPONSES+ 1
end if

if RESPONSES= n - 1 then exit endif
endstep
beginstep(u)
enddo

CORR := CORR + SUM/n

endstep

Figure 3.1 :Algorithm 3.1, Synchronizing to within the Lower Bound

rewritten as (2£ + (n - 2)2£)/n, the average of the'discrepancies in the estimated differences.

The estimated differences of two processes for each other can differ by at most £ apiece (giving

the 2£ term), and their estimated differences for the other n - 2 processes can differ by up to 2£

apiece (giving the (n - 2)2£ term). Then the estimated differences are averaged, so the sum is

divided by n. A more careful analysis is given below.

3.4.2 Preliminary Lemmas

The next two results follow easily from the assumption that clocks don't drift.

Lemma 3-2: For any p and i ~ 0, cip(t') - cip(t) = t' - t.
Proof: Immediate since the slope of Ci is 1. Ip

Lemma 3-3: Foranyp andq, i > 0, andtimest and1',ci (t') - ci (t') = ci (t) - Ci (t).- p q p q

Proof: Ci (t') - Ci (t) = t' - t = Ci (t') - ci (t) by two applicationsof Lemma3-2. Thep p q q
result follows. I

Now we can define the initial difference between two processes' clocks in execution h. Define

ll. to be CO(t) - CO(t). That is, ll. is the difference in local times before either of the processes
pq p q pq

has changed its correction variable. Since there is no drift in the clock rates, any time will give the

same value.

Lemma 3-4: For any execution h, and processes p and q, ll.pq= -ll.qp'
Proof: Immediate from the definition of ll..I

Lemma 3-5:For any execution h, and processes p, q, and r, ll. = ll. + ll. .pq pr rq
Proof: Immediate from the definition of ll.. I

27

3.4.3 Agreement

For q :;; p, let V be the value of variable V in the code when q's message is being handled by p.qp

V = L (t) + 8 - L (t'), where local time L (t) was sent by q at real time t and received by p at real.qp q p q

time t', Let V = O. We will denote SUM/n, p's addition to its correction variable, by A .
pp P

First we relate the estimate V to the actual value Il .
qp qp

Lemma3.6: IV - Il I < e.qp qp-
Proof: Suppose at real time t, q sent the value L (t), which was received by p at real
timet'. Then q

IV - Il I = IL (t) + 8 - L (t') - Il I = ICO (t) + 8 - CO (t') - Il Iqp qp q P qp q P qp

= ICO (t) + Il + 8 - CO (t') - Il I. by definition of IlP qp P qp qp

= ICo (t) - CO(t') + 81
p P

= It - t' + 81,by Lemma3-2

= 18- (I' - t)1

~ 18 - (8 - e)I, since 8 - e is the smallest message delay

= e. I

Here is the main result.

Theorem 3.7: (Agreement) Algorithm 3-1 guarantees clock synchronization to within
2e(1- 1In),

Proof: We must show that for any execution h, any two processes p and q, and all
times t after last-step(h),

Without loss of generality, assume p = P1and q = P2'so that the remaining processes
are P3through Pn' By the way the algorithm works,

IL (t)- L (t)1 = I(Co (t) + A)- (Co (t) + A)1= III + A - A I.P q P P q q pq p q

We know by definition of A and A thatp q

A = (1/n)(V + V + L. 3 V) and
p pp qp 1= ..n PiP

Aq = (1/n)(V + V + L. 3 V q),
pq qq I = oon Pi

Substituting these values and noting that V = V = 0, we get. pp qq

28

= (1In)ln~ + V +~. V - V -~. v I
pq qp 1=3..n PiP pq 1=3..n Pjq

= (1In)I(~ + V) + (~ - V) + ~. 3 (~ + V - V)1pq qp pq pq 1= ..n pq PjP Pjq

~ (1/n)(I/1pq + Vqpl + I~pq- Vpql + Ij =3..nl/1pq + V p.p - VP.ql)I 1

< (1/n)(£ + £ + I. 3 1/1 + V - V I), by Lemmas 3-6 and 3-4- 1= ..n pq PjP Pjq

= (1/n)(2£ + I. 3 1/1 + /1 + V - V I), by Lemma3-51= ..n PPj Pjq PjP Pjq

= (1/n)(2£ + I. 3 I(V - /1) - (V - /1)1),by Lemma 3.4I=..n PjP PjP Pjq Pjq

~ (1/n)(2£ + Ii =3..n1Vp.p- /1p.pl + Ii =3..nl-(Vp.q- /1p.q)l)I I I I

~ (1/n)(2e + Ii=3..n£ + Ij=3..n£)' by Lemma 3-6

~ (1/n)(2£ + (n - 2)2£)

= 2£(1-1/n). I

3.4.4 Validity

The validity result states that each new logical clock is within £ of what one of the initial logical

clocks would have been.

Theorem 3.8: (Validity) Algorithm 3.1 bounds the adjustment within £.

Proof: By definition, the amount to be added to CORR is A = (1In) I EpV . Then
min EpV < A < maxEpV . Let q be the process ~ith t~e minimumqv .qtet r beq qp - P - r rp qp
the process with the maximum V .Then,rp

V <A <V .
qp - P - rp

By applying Lemma 3.6 to each end of this inequality, we get

/1 - £ < V < A < V < ~ + £.qp - qp- P- rp- rp

Addingp's initialclockvalueCOp(t)for t ~ tf, we get

CO (t) + /1 - £ < CO(t) + A < CO(t) + /1 + £I
P qp - P P - P rp

which together with the definition of /1 implies

29

Chapter Four

Maintenance Algorithm

4.1 Int roduction

This chapter consists of an algorithm to keep synchronized clocks that are close together initially,

and an analysis of its performance concerning how closely the clocks are synchronized and how

close the clocks stay to real time. The algorithm handles clock drift and arbitrary process faults.

The algorithm requires the clocks to be initially close together and less than one third of the

processes to be faulty. (Dolev, Halpern and Strong [2] show that it is impossible without

authentication to synchronize clocks unless more than two thirds of the processes are nonfaulty.)

This algorithm runs in rounds, resynchronizing periodically to correct for clock drift, and using a

fault-tolerant averaging function based on those in [1] to calculate an adjustment. The size of the

adjustment is ir.dependent of the number of faulty proGesses. At each round, n2 messages are

required, where n is the total number of processes. The closeness of synchronization achieved

depends only on the initial closeness of synchronization, the message delivery time and its

uncertainty, and the drift rate. We give explicit bounds on how the difference between the clock

values and real time grows as time proceeds. The algorithm can be easily adapted to include

reintegration of repaired processes as described in Section 4.8.

4.2 Problem Statement

We are now considering the situation in which clocks can drift slightly and some proportion of the

processes can be faulty. Therefore, the statement of the problem differs from that in Chapter 3.

For a very small constant p >0, we define a clock C to be p-bounded provided that for all t

1-p ~ 1/(1 + p) ~ dC(t)/dt ~ 1 + p ~ 1/(1-p).

We make the following assumptions:

1. All clocks are p-bounded, including those of faulty processes. i.e., the amount by
which a clock's rate is faster of slower than real time is at most p. (Since faulty
processes are permitted to take arbitrary steps, faulty clocks would not increase their

30

power to affect the behavior of nonfaulty processes.)

2. There are at most f faulty processes, for a fixed constant f, and the total number of
processes in the system, n, is at least 3f + 1.

3. A START message arrives at each process p at time TOon its initial logical clock CO,
and to is the real time when this occurs. Furthermore, the initial logical clocks are

closel: synchronized, Le., Icop(TO)- cOq(T°)l =:;13,for some fixed 13and all nonfaulty p
andq.

We let tmaxo = max f It {to } and analogously for tmino.p non au y p

The object is to design an algorithm for which every execution in which the assumptions above

hold satisfies the following two properties.

1. y-Agreement: ILp(t)- Lq(t)1=:;y, for all t ~ tmino and all nonfaulty p, q.

2. (cx1,cx2,cx3)-Validity: a1(t - tmaxO)+ TO- cx3=:;Lp(t) =:;ait - tminO) + TO+ cx3,for all t
~ tOpand all nonfaulty p.

The Agreement property means that all the nonfaulty processes are synchronized to within y. The

Validity property means that the local time of a nonfau!ty process increases in some relation to

real time. We would, of course, like to minimize cx1,cx2,a3, and y.

4.3 Properties of Clocks

We give several straightforward lemmas about the behavior of (p- bounded) clocks.
Lemma 4.1: Let C be any clock.

(a) If t1 ~ t2, then

(1 - p)(t2 - t1) ~ (t2- t1)/(1 + p) =:;C(t2) - C(t1) ~ (1 + p)(t2- t1) ~ (t2- t1)/(1 - p).

(b) If T1 =:;T2' then

(1-p)(T 2- T1) ~ (T2 - T1)/(1 + p) ~ c(T 2) - c(T1) =:; (1 + p)(T 2 - T1) ~ (T 2 - T1)/(1-p).
Proof: Straightforward. I
Lemma 4-2: Let C and D be clocks.

(a) If dC(t)/ dt = 1 and T1 =:; T2' then

(b) If T1 ~ T2' then

31

(c) IfdC(t)/dt = 1 and t1 ~ t2, then

1(C(t2) - D(t2)) - (C(t1) - D(t1))1 = 1(C(t2) - C(t1)) - (D(t2) - D(t1))1 ~ 2p(t2 - t1).
Proof: Straightforward using Lemma 4-1. I

Lemma 4-3: Let C and Dbe clocks, T1 ~ T2' Assume Ic(T)- d(T)1~ a for all Tt T1 ~
T~T2. Lett1 = min{c(T1),d(T1)}andt2 = max{c(T2),d(T2)}.

Then IC(t)- D(t)1~ (1 + p)a for all t, t1 ~ t ~ t2,
Proof: There are four cases, which can easily be shown to be exhaustive.

Case 1: c(T 1) ~ t ~ c(T2)'

Let T3 = C(t), so that T1 ~ T3 ~ T2. Byhypothesis,Ic(T3)- d(T3)1~ a. ThenIT3-
D(t)1~(1 + p)a, by Lemma 4.1,

Case 2: d(T 1) ~ t ~ d(Tl This case is analogous to the first.

Case 3: c(T2) < t < d(T1)'

Then c(T1) < t < d(T1). So C(t) > D(t), and thus

IC(t) - D(t)1 = C(t) - D(t) = (C(t) - T 1) + (T 1 - D(t))

~ (1 + p)(t - c(T 1)) + (1 + p)(d(T 1) - t), by Lemma 4.1,

= (1 + p)(d(T1)-c(T1)) ~ (1 + p)a.

Case 4: d(T2)< t <c(T1). This case is analogous to the third. I

4.4 The Algorithm

4.4.1 General Description

The algorithmexecutes ina series of rounds, the i.th round fora process triggeredby its logical

clock reaching some value Ti. (Itwillbe shown that the logical clocks reach this value within real

time {J of each other.) When any process p's logical clock reaches Ti, p broadcasts a Ti message.

Meanwhile, p collects Ti messagesfrom as many processes as it can, within a particular bounded

amount of time, measured on its logical clock. The bounded amount of time is of length (1 + p)({1

32

+ 8 + e), and is chosen to be just I'argeenough to ensure that Ti messages are received from all

nonfaulty processes. After waiting this amount of time, p averages the arrival times of all the Ti

messages received, using a particular fault-tolerant averaging function. The resulting average is

used to calculate an adjustment to p's correction variable, thereby switching p to a new logical

clock.

The process p then waits until its new clock reaches time Ti+1 = Ti + P, and repeats the

procedure. P, then, is the length of a round in local time.

The fault-tolerant averaging function is derived from those used in [1) for reaching approximate

agreement. The function is designed to be immune to some fixed maximum number, f, of faults. It

first throws out the f highest and f lowest values, and then applies some ordinary averaging

function to the remaining values. In this paper, we choose the midpoint of the range of the

remaining values, to be specific.

4.4.2 Code for an Arbitrary Process

Global constants: p, p, 8, e, and P, as defined above.

Local variables:

. CaRR, initially arbitrary; correction variable which corrects physical time to logical
time.

. ARR[q), initially arbitrary; array containing the arrival times of the most recent
messages, one entry for each process q.

. T, initially undefined; local time at which the process next intends to send a message.

Conventions:

. NOW stands for the current logical clock time (Le., the physical clock reading +
CaRR). NOW is assumed to be set at the beginning of a step, and cannot be
assigned to.

. REDUCE, applied to an array, returns the multiset consisting of the elements of the
array, with the f highest and f lowest elements removed.

. MID, applied to a multiset of reals numbers, returns the midpoint of the set of values
in the multiset.

The code is in Figure 4-1.

33

beginstep(u)
do forever

/* in case Ti messages are received before this process reaches Ti */

while u = (m,q) for some message m and process q do
ARR[q] := NOW
endstep
beginstep(u)
endwhile

/* fallout of the loop when u = STARTor TIMER; begin round */

T := NOW

broadcast(T)
set-timer(T + (1 + p)(p + 8 + e»

while u = (m,q) for some message m and process q do
ARR[q] := NOW
endstep
beginstep(u)
endwhile

/* fallout of the loop when u = TIMER; end round */

AV := mid(reduce(ARR»
ADJ := T + 8 - AV
CORR := CORR + ADJ

set -time r (T + P)
endstep
beginstep(u)
enddo

Figu re 4.1 :Algorithm4-', MaintainingSynchronization

4.5 Inductive Analysis

Although the algorithm is fairlysimple, its analysis is surprisingly complicated and requires a long

series of lemmas.

4.5.1 Bounds on the Parameters

We assume that the parameters p, 8, and e are fixed, but that we have some freedom in our

choice of P and p, subject to the reasonableness of our assumption that the clocks are initially

synchronized to within p. We would like p to be as small as possible, to keep the clocks as

closely synchronized as we can. However, the smaller p is, the smaller P must be (Le., the more

frequentlywemustsynchronize).

34

There is also a lower bound on P. In order for the algorithm to work correctly, we need to have P

sufficiently large to ensure the following.

(1) After a nonfaulty process p resets its clock, the local time at which p schedules its next

broadcast is greater than the local time on the new clock, at the moment of reset.

(2) A message sent by a nonfaulty process q for a round arrives at a nonfaulty process p after p

has already set its clock for that round.

Sufficient bounds on P turn out to be:

P> 2(1 + p)(fJ + £) + (1 + p)max{8, fJ + £) + p8, and

P ~fJ/4p-£/p-p(fJ + 8 + £)-2fJ-8-2£.

A required lower bound on fJis fJ~ 4£ + 4p(3fJ + 8 + 3£) + 8p2(fJ + 8 + E).

Any combination of P and fJ which satisfies these inequalities will work in our algorithm. If P is
\

regarded as fixed, then fJ, the closeness of synchronization along the real time axis, is roughly 4£

+ 4pP. This value is obtained by solving the upper bound on P for fJ and neglecting terms of

order p.

4.5.2 Notation

LetTi = TO+ iPand Ui = Ti + (1 + p)(fJ+ 8 + £),for all i ~ O.

For each i, every process p broadcasts Ti at its logical clock time Ti (real time ti) and sets a timerp
to go off when its logical clock reaches Ui. When the logical clock reaches Ui (at real time ui), thep
process resets its CORR variable, thereby switching to a new logical clock, denoted Ci+1 . Alsop
at real time ui , the process sets a timer for the time on its physical clock when the new logicalp

clock ci +1 reaches Ti+1. It is at least theoretically possible that this new timer might be set for ap

time on the physical clock which has already passed. If the timer is never set in the past, the

process moves through an infinite sequence of clocks CO , C1 ,etc, where CO is in force in the
p p p

interval of real time (-OO,uO), and each ci ,i > 1, is in force in the interval of real time [Ui.1 ,ui).P P - P p

If, however. the timer is set in the past at some ui ,then no further timers arrive after that real time,p
and no further resynchronizations occur. That is, ci +1 stays in force forever, and ui and ti are

p p p

undefinedfor j ~ i + 1.

35

Let tmini denote min f Ity{ti}, and analogously for tmaxi, umini and umaxi.p non au p

For p and q nonfaulty, let ARRi (q) denote the time of arrival of a Ti message from q to p, sent atp

q's clock time Ti, where the arrival time is measured on p's local clock ci . (We will prove that Cip p
has actually been set by the time this message arrives.) Let AVi denote the value of AVp
calculated by p using the ARRi values, and let ADJi denote the corresponding value of ADJp p
calculated by p. Thus, Ci+1 = Ci + ADJi .p P P

This section is devoted to proving the following three statements for all i ~ 0:

(1) The real time ti is defined for all nonfaulty p. (That is, timers are set in the future.)p

(2) Itip - tiql ~ p, for all nonfaulty p and q. (That is, the separation of clocks is bounded by p.)

(3) tip + 6 - E >ui\, for all nonfaulty p and q, and i ~ 1. (That is, messagesarriveafter the
appropriate clocks have been set.)

The proof is by induction. For i = 0, (1) and (2) are true by assumption and (3) is vacuously true.

Throughout the rest of this section, we assume (1), (2), and (3) hold for i. We show (1), (2), and (3)

for i + 1 after bounding the size of the adjustment at each round.

4.5.3 Bounding the Adjustment

In this subsection, we prove several lemmas leading up to a bound on the amount of adjustment

made by a nonfaulty process to its clock, at each time of resynchronization.

Lemma 4.4: Let p and q be nonfaulty.

(a) ARRip(q)~ Ti + (1 + p)(P + 8 + E).

(b) If 6 -:-E ~ p, then ARRip(q) ~ Ti + (1 - p)(8 - E - P).

(c)If6- E ~ p, then ARRip(q) ~ Ti - (1 + p)(P - 8 + E).
Proof: Straightforward using Lemma 4.1. I

Lemma 4-5: Let p be nonfaulty. Then there exist nonfaulty q and r with

ARRip(q) :5;AVip :5;ARRip(r).
Proof: By throwing out the f highest and f lowest values, the process ensures that the
remaining values are in the range of the nonfaulty processes' values. I

We are now able to bound the adjustment.

36

Lemma 4.6: Let p be nonfaulty. Then IADJipl~ (1 + p)(j3 + e) + p~.
Proof: ADJi = Ti + ~ _ AVi .

P p

Thus, for some nonfaulty q and r. Lemma 4.5 implies that

Then Lemma 4.4 implies that:

(a)ADJip~Ti + ~_(Ti + (1 + p)(p + ~ + £)) = -(1 + p)(j3 + £)-p~.

(b) If ~ - e ~ p. then ADJip~ Ti + ~ - (Ti + (1 - p)(~ - £- 13))= (1 - p)(p + e) + p~.

(c) If ~ - £ ~ 13,then ADJip ~ Ti + ~ - (Ti - (1 + p)(p - ~ + £)) = (1 + p)(p + £) - p~.

The conclusion is immediate. I

4.5.4 Timers Are Set in the Future

Earlier. we gave a lower bound on P and described two conditions which that bound was

supposed to guarantee (that timers are set in the future and that messages arrive after the

appropriate clocks have been set). In this subsection. we show that the given bound on P is

sufficient to guarantee that the first of these two conditions holds.

Lemma 4.7: Let p be nonfaulty. Then Ui + ADJi <Ti + 1.p

Proof: Ui + ADJip ~ Ui + (1 + p)(p + £) + P~. by Lemma 4.6

= Ui + (2(1 + p)(p + e) + (1 + p)~ + p~) - (1 + p)(p + ~ + e)

< Ui + P- (1 + p)(j3 + ~ + £).by the assumed lower bound on P

This lemma implies that timers are set in the future and that ti +1 is defined. the first of the threep
inductive properties which we mus\ verify.

4.5.5 Bounding the Separation of Clocks

Next, we prove several lemmas which lead to bounds on the distance between the new clocks of

nonfaulty processes. The first lemma gives an upper bound on the error in a process' estimate of

the difference in real time between its own clock and another nonfaulty process' clock reaching

Ti.

Lemma 4.8: Let p, q and r be nonfaulty. Then

-- - - --

37

I(ARRip(q)- (Ti + 8)) - (Ciq(Ti) - Cip(Ti»1$; E + p(fJ + 8 + E).
Proof: Let a be the real time of arrival of q's message at process p. Then a is at most
ci (Ti) + 8 + E. Define a new auxiliary clock, D, with rate exactly equal to 1, and suchq . .
that D('a) = Cl (a). Thus, ARR' (q) = D(a). So the expression we want to bound is atp p
most equal to:

First we demonstrate that the first of these two terms is at most E.

ID(a)- (Ti + 8) - ci (Ti) + d(Ti)1q

= la - d(Ti + 8) - ci (Ti) + d(Ti)l, since D has rate 1q

= la - ci (Ti) + Ti - (Ti + 8)1q

$; Iciq(Ti) + 8 + E- Ciq(Ti) - 81

= E.

Next we show that the second term, Ici (Ti) - d(Ti)j, is at most p(fJ + 8 + e).p

Case 1:Cip(Ti)$; a. So preaches Ti before q's message arrives.

Let y = a - cip(Ti). Then y ~ fJ + 8 + e.

Subcase 1a:d(Ti) ~ cip(Ti). So Cphas rate slower than real time.

Then d(Ti) - ci (Ti) is largest when C goes at the slowest possible rate, 1/(1 + p). In

this case, d(Tif - ci (Ti) = Y - (a - d{ri)), where a - d(Ti) = y/(1 + p). Thus, d(Ti) -. . P
c'p(T')= y(1 -1/(1 + p)) = yp/(1 + p) $; yp $; p({J+ 8 + e).

Subcase 1b:d(Ti) $; cip(Ti). So Cp has rate faster than real time.

Then ci (Ti) - d(Ti) is largest when C goes at the fastest possible rate, 1 + p. Then. . p . P
c'p(T') - d(T') = y(1 + p) - y = yp $; p(fJ + 8 + e).

Case2: Cip(Ti)~ a. SopreachesTiafterq's messagearrives.

Let y = Cip(Ti) - a. Then y ~ fJ- 8 + e.

Subcase 2a: d(Ti) > ci (Ti). So C has rate faster than real time.- p p

An argument similar to that for case 1b shows that d(Ti) - Cip(Ti) ~ yp $;p(fJ- 8 + e),
which suffices.

Subcase 2b: d(Ti) ~ cip(Ti). So Cphas rate slower than real time.

An argument similar to that for case 1a shows that Cip(Ti)- d(Ti)$;yp ~ p({J- 8 + e),

38

which suffices. .

In order to prove the next lemma, we use some results about multisets, which are presented in the

Appendix. This is a key lemma because the distance between the clocks is reduced from p to

PI2, roughly. The halving is due to the properties of the fault-tolerant averaging function used in

the algorithm. Consequently, the averaging function can be considered the heart of the

algorithm.

Lemma 4.9: Let p and q be nonfaulty. Then

I(ci (Ti) - ci (Ti)) - (ADJi - ADJi)1 <P/2 + 2£ + 2p(P + 8 + E).P q P q-
Proof: We define multisets U, V, and W, and show they satisfy the hypotheses of
Lemma A.4. Let

U = Cip(Ti)- (Ti + 8) + ARRip'

V = ci (Ti) - (Ti + 8) + ARRi ,andq q

W = {ci (Ti): r is nonfaulty}.r

U and V have size nand W has size n - f.

Letx = £ + p(p + 8 + E).

Definean injectionfromWto Uasfollows. Mapeachelementci (Ti)inWto ci (Ti)_ (Ti. . r. p . .
+ 8) + ARR' (r) in U. Since Lemma 4.8 implies that I(ARR' (r) - (T' + 8)) - (cl (T') -
Cip(Ti))1~ £ .:p(P + 8 + £) for all the elements of W, dx(w,B) = O. Similarly, djw,V)
= O.

Since any two nonfaulty processes reach Ti within P real time of each other, diam(W)
= p.

By Lemma A.4, Imid(reduce(U)) - mid(reduce(V))1~ pl2 + 2£ + 2p(p + 8 + e).

Since mid(reduce(U)) = mid(reduce(ci (Ti) - (Ti + 8) + ARRi)) = ci (Ti) - ADJi ,and
similarly mid(reduce(V)) = ci (Ti) - ADJ I the result follows. .p p pqq.

The next lemma is analogous to the previous one, except that it involves Ui instead of Ti.

Lemma 4.10: Let p and q be nonfaulty. Then

I(ci (Ui)- ci (Ui))- (ADJi - ADi)1< pl2 + 2£ + 2p(2 + p)(P + 8 + E).P q P q-
Proof: Thegivenexpressionis

~ pl2 + 2£ + 2p(p + 8 + £) + 2p(1 + p)(P + 8 + E),byLemmas4-9 and 4-2.

--

39

This reduces to the claimed expression. I

Next we bound the distance in real time between two nonfaulty processes switching to their new
" .

clocks. It is crucial that the distance between the new clocks reaching U' be less than f3in order

to accommodate their relative drift during the interval between Ui and Ti+1.

Lemma 4.11: Let p, q be nonfaulty. Then

Ici+1p(ui) _ ci +\(Ui)1 ~ {J/2 + 2E+ 2p(3{J+ 2l) + 3£) + 4p2(fJ+ l) + E).
Proof: We define idealized clocks, D and D , as follows. Both have rate exactly 1.
Also, D (ui) = ci +1 (ui) = Ui + AD! , and similarly for q. Thenp p p p p .

Ici + 1 (ui) _ ci + 1 (Ui)1< Ici + 1 (Ui) _ d (Ui)1 + Id (Ui) _ d (Ui)1 + Id (Ui) _ ci +1 (Ui)l.p q - p p p q q q

We bound each of these three terms separately.

First, consider Ici + 1p(ui) _ dp(Ui)l. Now, Ui + ADJip = Dp(uip) = Ci + 1p(Ui/ So

Ici + 1 (Ui) _ d (Ui)1 < I(ci +1 (Ui) _ d (Ui)) _ (ci + 1 (Ui + ADi) _ d (Ui + ADJi))1p p - p p p p p p

~ piADJipl, by Lemma 4-2

< p«1 + p)({J+ E)+ pl)),by Lemma4.6.

The same bound holds for the third term.

Finally, consider the middle term, Id (Ui) - d (Ui)l. We know that d (Ui) = d (Ui +. . . . p. q p P
ADJ') - ADJ' = ul - ADJ' ,and similarlyfor q.p p p p

~ {J/2 + 2E+ 2p(2 + p)(fJ + l) + E),by Lemma 4.10.

Combining these three bounds, we get the required bound. I

Finally, we can show the second of our inductive properties, bounding the distance between

times when clocks reach Ti+1.

Lemma 4.12: LetP,q benonfaulty. ThenIti+1p_ti+\1 ~ {J.
Proof: Iti+1 _ti+1 Ip q

= Ici+1 (Ti+1)_Ci+1 (Ti+1)1p q

<1(ci+1 (Ti+1)_Ci+1 (Ti+1))_(Ci+1 (Ui)_Ci+1 (Ui))! + Ici+1 (Ui)_Ci+1 (Ui)1- p q p q p q

~ 2p(P - (1 + p)(f3 + l) + E)) + {J/2 + 2E + 2p(3{J + 2.5 + 3£) + 4p2(fJ + l) + E), by
Lemmas 4.2 and 4-11.

40

The assumed upper bound on P implies that this expression is at most /3. I

4.5.6 Bound on Message Arrival Time

In this subsection, we show that the third and final inductive assumption holds. That is, we show

that messages arrive after the appropriate clocks have been set.

Lemma 4.13: Letp andq be nonfaulty. Thenti+1 + 8 - e>ui .q p
Proof: Since ti +1 + 8 - e> ti + 1 - IJ + 8- e, it suffices to show thatq _ p t'

ti+1 _ui >/3-8 + e.p p

Now, ti+1 - ui ~ (P - (1 + p)(/3 + 8 + e) - ADJi)/(1 + p) since the numerator
representgthe ~mallestpossibledifferencein the valJesof the clock Ci+1 at the two.

I
. p

givenrea times.

But the lower bound on P implies that P > 3(1 + p)(f3 + e) + p8. Also, the bound on

the adjustment shows that ADJip :s;(1 + p)(/3 + e) + p8. Therefore,

ti+1 _ui >(3(1 + p)(/3 + e) + p8-(1 + p)(/3 + 8 + e)-(1 + p)(/3 + e)-p8)/(1 +
p) p p

= /3-8 + e, as needed. I

Thus, we have shown that the three inductive hypotheses hold. Therefore, the claims made in this

section for a particular i, in fact hold for all i.

4.6 Some General Properties

In this section, we state several consequences of the results proved in the preceding section.

First, we state a bound on the closeness with which the various clocks reach corresponding

values.

Lemma 4.14: Let p, q be nonfaulty, i > O. Assume that T is chosen so that Ui.1 :s; T
:s;Ui, if i > 1, or so that r<>:s;T :s;Uo,if i = O.

Then Icip(T)- ciq(T>I:s; /3 + 2p(1 + p)(/3 + 8 + e).

Proof: Basis: i = O. Then TO:S;T ~ UO.

IcO (T) - CO(T)I < I(co (T) - cO (T» - (CO (r<» - cO (TO»! + IcO (TO) _ CO (TO)Ip q - p q p q p q

:s;2p(T - r<» + /3,by Lemma 4.2 and assumption 3

-5: {J+ 2p(1+ p)({J+ {)+ e).

-- -

41

Induction: i ~ O. Choose T with Ui.1 ~ T ~ Ui.

Ici (T) - ci (T}I < I(ci (T) _ ci (T)) _ (ci (Ui'1) _ ci (Ui'1))1 + Ici (Ui.1) _ ci (Ui.1)1p q - p q p q p q

~ 2pP + {3/2 + 2£ + 2p(3{3 + 2~ + 3£) + 4l({3 + 0 + E),by Lemmas 4.2 and 4-11.

The upper bound on P implies the result. I

Next, we prove a bound for a nonfaulty process' (i + 1)-st clock, in terms of nonfaulty processes'

j.th clocks.

Lemma 4-15: Let p be nonfaulty, i ~ O. Then there exist nonfaulty processes, q and
r, suchthat for ui < t < umaxi,p- -

Ciq(t)- a ~ ci + 1pet) ~ cir(t) + a,

where a = £ + p(4{3 + ~ + 5£) + 4p2({3+ ~ + £) + 2p3({3+ 0 + E).

Proof: Ci+1 (t) = Ci (t) + Ti + 0 - AVi . Therefore, by Lemma 4.5 there are nonfaulty
processes, cfand r, f8r which p

Cip(t) + Ti + ~ _ ARRip(q)~ Ci + 1pet) ~ cip(t) + Ti + 0 - ARRip(r).

We show the right-hand inequality first. Let a = ci (ARRi (r)), the real time at which

the message arrives at p from r. Thus, Cip(a) = ARRip(r). ~ote that circa) ~ Ti + (1 -
p)(~- E).

ci + 1 (t) < ci + Ti + ~ - ARRi (r), from abovep - p p

< ci (t) + Ci (a)- Ci (a) + Ti + 0 - ARRi (r) + (ci (t) - Ci (t)) - (Ci (a)- Ci (a))-r p r p p r p r

< Ci (t) + Ci (a) - Ci (a) + Ti + 0 - ARRi (r) + 2p(t - a), by Lemma 4.2 since t >a- r p r p

~ Cir(t) + ARRip(r) - Ti - (1 - pHo - £) + Ti + ~ - ARRip(r) + 2p(t - a)

= Cir(t) + £ + po - p£ + 2p(t - a).

It remains to bound t - a. The worst case occurs when t = umaxi. The longest
possible elapsed real time between a particular nonfaulty process reaching Ti and Ui
on the same clock is (1 + p)2({3 + ~ + E). Thus,umaxi- tmini ~ {3 + (1 + p)2({3 + 0
+ E). But a ~ tmini + ~ - £. Therefore, t - a ~ {3 + (1 + p)2({3 + 0 + £) - 0 + £

Thus,Ci+1p(t)~Cir(t) + £ + p~-p£ + 2p({3 + (1 + p)2({3 + 0 + £)-0 + £)

= Cir(t) + £ + p(4{3 + 0 + 3£) + 4p2({3 + 0 + £) + 2p3({3+ 0 + £)

<Ci (t) + a.r

For the left-hand inequality, we see that Ci (t) - £ - p~- p£ - 2p(t - a) ~ Ci +1 (t), where. . q p
a = d (ARR' (q)). The factor t - a is bounded exactly as before, so that we obtain:p p

--

42

4.7 Agreement and Validity Conditions

We are now ready to show that the agreement and validity properties hold. The main effort is in

restating bounds proved earlier concerning the closeness in real times when clocks reach the

same value, in terms of the closeness of clock values at the same real time.

4.7.1 Agreement

The first lemma implies that the local times of two nonfaulty processes are close in those intervals

where both use a clock with the same index.

Lemma 4.16: Let p, q be nonfaulty. Then

ICip(t) - Ciq(t)1~ (1 + p)(p + 2p(1 + p)(P + 8 + e»

for max{ui.1 ,ui.1 } < t < max{ ui ,Ui } , if i > 1,p q-- pq -

and for min{tOp,tOq} :::;t :::;max{uop'uOq}' if i = O.
Proof: Basis: i = O. Lemma 4.14 implies that

Icip(T)- ciq(T)1~ p + 2p(1 + p)(p + 8 + e)

for all T, Ui.1< T :::;Ui if i ;::: 1 and for all T, TO:::;T ~ UOif i = O. ThenLemma4-3
immediately implies the needed result for i = O.

Induction: i;:::1. Lemma 4.3 implies the result for all t with

It remains to show the bound for t with

max{ui'1 p,ui.\} ~ t < min{cip(Ui.1),Ciq(Ui.1)}.

Without loss of generality, assume that ci (Ui'1) ~ ci (Ui'1), so that the minimum is, ' 1 P q
equal to d (ul-).P

Ici (t) - ci (t)l < /(Ci(t)_ ci (t» _ (Ci (ci (Ui.1»_ ci (ci (Ui'1m/p q - p q pp qp

+ Ici (ci (Ui.1»_ ci (ci (Ui'1»1p p q p

T~e first .term,.by Lemma 4-2, is at most 2p(cip(Ui.1)- t). Since t ;::: max{ui'1p' ui.\} ;:::
UI.1 > d.1 (U1.1) we have

p - p ,

43

Since Ci-1p(Ui-1) = cip(T) for some T with IT - Ui.11~ IADJipl,this quantity is

~ 2plcip(Ui.1) _ cip(T)1

~ 2p(1 + P)IUi-1 - TI, by Lemma 4.1

~ 2p(1 + p)IADJipl

~ 2p(1 + p)((1 + p)(fJ + E) + p~), by Lemma 4-6.

To bound the second term we note that Lemma 4-11 implies that

Icip(Ui-1)- Ciq(Ui-1)1~ fJ/2 + 2£ + 2p(3fJ + 21)+ 3£) + 4p2{p + ~ + E) = a,

and so Lemma 4-3, with T1 = T2 = Ui.1,implies that

ICi (ci (Ui.1))_d (ci (Ui-1))1< (1 + p)a.p p q p -

The assumed lower bound on fJgives the result that

2p(1 + p)((1 + p)(fJ + E) + p~) + (1 + p)a ~ (1 + p)(fJ + 2p(1 + p){P + ~ + E)) I

Here is the main result, bounding the error in the synchronization at any time.

Theorem 4.17: The algorithm guarantees 'Y-agreement,

where'Y = fJ + E + p(7fJ + 31)+ 7E) + 8p2(fJ + 1)+ £) + 4p3{p + ~ + E).

Proof: The result for intervals in which the processes use clocks with the same indices
has been covered in the preceding lemma. The expression in the statement of that

lemma simplifies to

which is less than 'Y.

Next, we must consider the case where one of the processes has changed to a new
clock, while the other still retains the old clock. Consider lei +1 Ct)- Ci Ct)1for some t
with ui < t < ui . Lemma 4-15 implies that there exist nonfa~lty Prodesses rand sp - - q
such tflat

Cir(t) - a ~ Ci + 1pCt) ~ Cis(t) + a,

where a = £ + p(4fJ + ~ + 5£) + 4p2(fJ + ~ + E) + 2p3(fJ + ~ + E).

Ici+ 1 (t) - ci (t)1< a + max{ld (t) - ci (t)I,Ici (t)- ci (t)!)p q - r q s q

~ a + (1 + p) (p + 2p(1 + p)(fJ + ~ + E)),by the preceding lemma

= fJ + £ + p(7fJ+ 3~ + 7E)+ 8p2{p+ ~ + E)+ 4p3{p + ~ + E),asneeded.I

I

44 ,
In some applications, it may never be the case that clocks with different indices are compared,

perhaps because use of the clocks for processing ceases during the interval in which confusion is

possible. In that case, the closeness of synchronization achieved by Algorithm 4.1 is given by

Lemma 4.16, and is approximately /3 + p(3/3+ 2~ + 2e). This value is more than £ less than the

bound obtained when clocks with different indices must be compared.

Now we can sketch why it is reasonable for /3 to be approximately 4£ + 4pP, as mentioned at the

end of Section 4.5.1. Assume P is fixed. The j-th clocks reach Ti within /3of eachother. Afterthe

processes reset their clocks, the new clocks reach Ui within /3/2 + 2£ (ignoring p terms). By the

end of the round, the clocks reach Ti+1within about /3/2 + 2£ + 2pP of each other, because of

drift. Thisquantitymustbe at most/3. Theinequality/3/2 + 2£ + 2pP :::;/3yields/3~ 4£ + 4pP.

Suppose we alter the algorithm so that during each round, the processes exchange clock values

k times instead of just once. Then we get /3/2k + (4 - 22-k)£ + 2pP :::;/3,whichsimplifiesto /3>

4£ + 2pP(2k/(2k.1)). It appears that /3~ 4£ + 2pP is approachable.

If the number of processes, n, increases while f, the number of faulty processes remained fixed, a

greater closen~ss of synchronization can be. achieved by modifying Algorithm 4.1 so that it

computes the mean instead of the midpoint of the range of values.

As in [1], we show that the convergence rate of algorithms that use the mean instead of the

midpoint is roughly f/(n-2f).

The result is based on the following lemma concerning multisets.

Lemma 4.18: Let U, V, and W be multisets such that IUI = IVI = n ~ 3f + 1 and IWI
= n - f. If d (W,U) = d (W,V) = A,thenx x

Imean(reduce(U)) - mean(reduce(V))1:::; diam(W)f/(n-2f) + 2x.

The analysis of the modified Algorithm 4.1 parallels that just presented. However, the upper

bound on P becomes

P :::;/3(n-3f)/(n-2f)2p - £/ P - pcp + ~ + £)- 2/3- ~- 2£.

This bound implies /3 ~ 2(n-2f)(£ + pP)/(n-3f), which approaches/3 ~ 2£ + 2pP as n

approachesinfinity.

We now demonstrate that this bound is reasonable. After updating the clock and then waiting

until theclocks reachthe nextTi, theclocksmuststill bewithinp, giving fp/(n-2f) + 2£ + 2pP ~

- ---- --

45

p, which implies p > (2£ + 2pP)(n-2f)/(n-3f), which approaches 2£ + 2pP as n approaches

infinity.

4.7.2 Validity

Next,we show the validitycondition. The first lemma bounds the values of the zero-index clocks.

Lemma 4.19: TO+ (1- P)(t - to) < CO(t) < rD + (1 + p)(t - to) fort > to .p- p - p - p
Proof: ByLemma 4-1. I

The next lemma is the main one.

Lemma 4.20: Let p be nonfaulty, i ~ O. Then

(1- p)(t- tmaxO)+ TO- i£~ cip(t) ~ (1 + p)(t -tminO) + rD + i£

for all t > Ui.1 if i> 1, and for all t > to if i = O.- p - - p
Proof: We proceed by induction on i. When proving the result for i + 1, we will
assume the result for i, for all executions of the algorithm (rather than just the
execution in question).

Basis: i = O. This case follows immediately by Lemma 4.19.

Induction: Assume the result has been shown for i and show it for i + 1.

We argue the right-hand inequality first. The left-hand inequality is entirely analogous.

Assume in contradiction that we have a particular execution in which Ci+ 1 (t» (1 +
p)(t - tminO) + TO + (i+ 1)£ for some t > ui. Then by the limitations cfn rates of

clocks,it isclear thatci+1p(UipP (1 + p)(~ -fminO)+ TO+ (i+ 1)e.

Recall that p resets its clock at real time ui ,by adding Ti + ~ - AVi . Inthiscase, the
inductive hypothesis implies that the adjust':nent must be an increme':,t.

. By Lemma 4-5, this increment is ~ Ti + ~ -ARRip(q)for some nonfaulty q. Therefore,

Ci (ui) + Ti + ~_ ARRi (q» (1 + p)(ui - tminO)+ TO+ (i+ 1)e.p p p p

Next,we claim that ifp had done the adjustment just when the message arrived from q
rather than waiting tillreal time ui ,the bound would still have been exceeded. That is,
ARRi (q) + Ti + ~ - ARRi (q) p) (1 + p)(t' - tminO)+ TO+ (i+1)£, where t' =
ci (At?mi(q». (Thisagain folrowsby the limitson the rates of clocks.) Thus,p p

Ti + ~>(1 + p)(t' -tmino) + TO + (i+ 1)£.

Now consider an alternative execution of the algorithm in which everything is exactly
like the one we have been describing, except that immediatelyafter q sends out clock
reading Ti, q's clock Ci begins to move at rate 1. This change cannot affect p's
(i+ 1)-st clock because ~ doesn't send any more messages until ti+1 , and theseq

46

messages aren't received until after the time when p sets its (i + 1)-st clock.

By the lower bound on messagedelays, q's message to p took at least ~ - e time. Then

at real time t' (defined above), we have Ciq(t') ~ Ti + ~ - e.Butthenciq(t') >(1 + p)(t'
- tmino) + rD + ie.

But then the inductive hypothesis is violated, since t', the time when p receives q's Ti
message, is greater than or equal to Ui-1 ,the time when q sets its round i clock. Iq

Now, we can state the validity condition. Let cp = (P - (1 + p)(fJ + E) - p~) / (1 + p). This is the

size of the shortest round in real time since the amount of clock time elapsed during a round is at

least P minus the maximum adjustment.

Theorem 4.21: The algorithm preserves (a1,a2,a3)-validity,

wherea1 = 1-p-e/cp,a2 = 1 + P + e/cp,anda3 = e.

Proof: We must show for all t ~ tOpand all nonfaulty p that

a1 (t - tmaxo) + TO- a3 < Lp(t)~ a2(t- tminO) + rD + a3.

We know from the preceding lemma that for i ~ 0, t > Ui-1P (or tOp)' and non faulty p

(1 - p)(t - tmaxO) + TO- ie ~ Cip(t) ~ (1 + p)(t - tminO) + rD + ie.

Since L (t) is equal to Ci (t) for some i, we just need to convert i into an expression in
terms oft, etc. An upperbound on i is 1 + (t - tmaxO)/cp. Then

(1 + p)(t - tminO) + TO+ ie ~ (1 + p)(t - tminO) + TO + (1 + (t - tmaxO)/cp)e

~ (1 + P + e/cp)(t-tminO) + rD + e,since tminO~ tmaxO,

and that

(1 - p)(t - tmaxo) + rD- ie ~ (1- p)(t - tmaxO) + TO- (1 + (t - tmaxO)/cp)e

~ (1 - P - e/cp)(t - tmaxO) + TO- e.

The result follows. I

4.8 Reintegrating a Repaired Process

Our algorithm can be modified to allow a faulty process which has been repaired to synchronize

its clock with the other nonfaulty processes. Let p be the process to be reintegrated into the

system. During some round i. p will gather messages from the other processes and perform the

same averaging procedure described previously to obtain a value for its correction variable such

47

that its clock becomes synchronized. Since p'S clock is now synchronized, it will reach Ti+1

within p of every other nonfaulty process. At that point, p is no longer faulty and rejoins the main

algorithm, sending out Ti+1messages.

We assume that p can awaken at an arbitrary time during an execution, perhaps during the middle

of a round. It is necessary that p identify an appropriate round i at which it can obtain all the Ti

messages from nonfaulty processes. Since p might awaken during the middle of a round, p will

orient itself by observing the arriving messages. More specifically, p seeks an i such that f Ti.1

messages arrive within an interval of length at most (1 + p)(P + 2£) as measured on its clock.

There will always be such an i because all messages from nonfaulty processes for each round

arrive within p + 2£ real time of each other, and thus within (1 + p)(P + 2£) clock time. At the

same time as p is orienting itself, it is collecting Ti messages, for all j.

Assuming that p itself is still counted as one of the faulty processes, at least one of the f arriving

messages must be from a nonfaulty process. Thus, p knows that round i - 1 is in progress or has

just ended, and that it should use Ti messages to update its clock.

Nowp collectsonlyTi messages.It mustwait (1 + p)(fJ + 2£ + (1 + p)(P + (1 + pHP + £) +

po), as measured on its clock, after receiving the f.th Ti.1 message in order to guarantee that it

has received Ti messagesfrom all nonfaulty processes. The maximum amount of real time p must

wait, (P + 2£ + (1 + p)(P + (1 + p)(P + 2£) + po), elapses if the f.th Ti.1 message is from a

nonfaulty process q and it took 0 - £ time to arrive, if q's round i - 1 lasts a long as possible, (1 +

p)(P + (1 +p){P + £) + po) (because its clock is slow and it adds the maximum amount to its

clock), and if there is a nonfaulty process r that is Pbehind q in reaching Ti and its Ti message to

p takes 0 + £. The process waits trns maximum amount of time multiplied by (1 + p) to account

for a fast clock.

(Some extra bookkeeping in the algorithm is necessitated by the fact that Ti messages from

nonfaulty processes can arrive at p before p has received the f.th Ti.1 message. This scenario

shows why: Suppose p receives the first Ti.1message at real time a, it is from a nonfaulty process

q, and its delay is 0 + £, and that the f.th Ti.1 message is received P + 2£ after the first one. Also

suppose that q's round i - 1 is as short as possible in real time, P - (1 + p)(P + £) - po) / (1 + p),

that there is a nonfaulty process r that begins round iPbefore q does, and that r's Ti messageto p

arrives at real time b and has delay 0 - E.

We show that b < a + P + 2£, implying that the Ti message is received before the f.th Ti.1

---I

48

message.

b=ti+6-er

= ti.1 + (P- (1 + p)(fJ + e) - p8) / (1 + p) - fJ + 8 -eq

>ti.1 + «1 + p)(3fJ + 3e) + p8 - (1 + p)(fJ + e). p8) / (1 + p) - fJ + 8 - e, by lowerbound on Pq

= ti-1 + fJ + 8 + eq

= a - 8 - e + fJ + 8 + e.

Thus, b > a + fJ. However, if P is very close to the lower bound, then b is approximately a + fJ,

which is less than a + fJ + 2e.)

Immediatelyafter p determines it has waited long enough" it carries out the averaging procedure

and determines a value for its correction variable.

We claim that preaches Ti+1 on its new clock within fJ of every other nonfaulty process. First,

observe that it does not matter that p's clock begins initially unsynchronized with all the other

clocks; the arbitrary clock will be compensated for in the subtraction of the average arrival time.

Second, observe that it does not matter that p is not sending out a Ti message; p is being counted

as one of the faulty processes, which could always fail to send a message. (Processes do not

treat themselves specially in our algorithm, so it does not matter that p fails to receive a message

from itself.) Finally, observe that it does not matter that p adjusts its correction variable whenever

it is ready (rather than at the time specified for correct processes in the ordinary algorithm). The

adjustment is only the addition of a constant, so the (additive) effect of the change is the same in

either case.

We want to ensure that when a process that is reintegrating itself into the system firiishes

collecting Ti messages and updates its clock, this new clock hasn't already passed Ti+1. The

reason for ensuring this is that the process is supposed to be nonfaulty by Ti+1and send out its

clock value at that time.

The code is in Figure 4.2.

INFOis an array, each entry of which is a set of (process name, clock time) pairs. When a ri

49

beginstep(u)
do forever

if u = (Ti,q) and (q,T) ~ INFO[i] for any T then
INFO[i] := INFO[i] U {(q,NOW)}
if 1{(q,T) E INFO[i]: q is any process and

T ~ NOW- (1 + p) (f3 + 2£)} I = f
then ex it end if

endif
endstep
beginstep(u)
enddo

/* P knows it should use round i values */

do for each (q,T) E INFO[i]
ARR[q] := T
enddo .

set-timer(NOW + (1 + p)(f3 + 2£ + (1 + p)(P + (1 + p)(f3 + £) + p8»)
endstep

beginstep(u).
while u = (T',q) for the chosen i do

ARR[q] := NOW
endstep
beginstep(u)
endwhile

/* fallout of loop when timer goes off */

AV := mi9(reduce(ARR»
ADJ := T' + 8 - AV
CORR := CORR + ADJ
set-timer(Ti + P)
endstep

/* switch to Algorithm 4-1 */

Figure 4-2:Algorithm 4-2, Reintegrating a Repaired Process

message arrives from process q, p checks that q hasn't already sent it a Ti message. If not, then

q's name and the receiving time are added to the set of senders of Ti, INFO[i]. If f distinct Ti

messages have been received within the last (1 + p)(f3 + 2£) time, then p knows that it should

use Ti messages to update its clock.

The current lower bound on P, the round length, is not large enough to ensure that when the

reintegrating process finishes collecting Ti messages and updates its clock, this new clock hasn't

already passed Ti +1.

There are two ways to solve this problem:

50

1. make the minimum P approximately three times as large as it currently must be;

2. have the process send out its clock value at Ti+2. It can be collecting Ti+1messages
all along, but now it knows a tighter bound on when to stop collecting them (since its
(i + 1).st clock is synchronized with the other nonfaulty processes' clocks). This will
work as long as the time at which it stops collecting Ti messages isn't after the
process' (i + 2).nd clock has reached Ti+2.

Now we show that P must be about three times as large as the previous lower bound in order to

prevent the reintegrating process from waiting too long before updating its clock. The actual

criterion we use is that the processmust updateits clock at least13 beforeany other nonfaulty

process' (i + 1).st clock reaches Ti+1. (Since the process' new clock is synchronized with those

of the nonfaultyprocesses,it will not reachTi+1 more than 13before any other nonfaulty clock

does.)

Let p be a process being reintegrated during round i and let t be the real time when p stops

collecting Ti messages

Lemma 4.22: If t ~ ci + \(Ti + 1) - 13 for any nonfaulty process q, then

P> (613+ I) + 9£ + p(8f3 + 31) + 16£) + p2(6f3 + I) + 14£) + p3(4f3 + 31) + 8£)
+ p4(f3 + I) + 2£)) / (1 - 5p _ 3p2 _ p3).

Proof: The worst case occurs if p waits as long as possible to finish collecting Ti
messages and another nonfaulty process q reaches Ti +1as soon as possible.

Suppose p receives the first Ti.1 message at real time 1',and the f.th Ti-1message at t'
+ (1 + p)2(f3 + 2£) (because its clock is slow). According to the reintegration
algorithm, p will then wait (1 + p)(f3 + 2£ + (1 + p)(P + (1 + p)(f3 + 2£) + pI))) on its
clock, which means it will wait (1 + p) times as long in real time.

Thus,t = t' + (1 + p)2(2f3+ 4£ + (1 + p)(P + (1 + p)(f3 + 2£) + pl)).

Now assume that the first Ti-1message received by p was from a nonfaulty process q
and that it took I) + £ time to arrive. Thus Ci-1 (Ti.1) = t' - I) - £. If round i - 1 and

round i both take the shortest amount of real tic:ne,(1 - p)(P - (1 + p)(f3 + £) - pl),
then

Ci+1 (Ti+1) = Ci.1 (Ti'1) + 2(1-p)(P-(1 + p)(f3 + E)-pl).q q

We want to ensure that ci + \(Ti + 1)- t ~ 13,i.e.,

1'-1)-£ + 2(1-p)(P-(1 + p)(f3 + E)-pI)
- l' - (1 + p)2(2f3+ 4£ + (1 + p)(P + (1 + p)(f3 + 2E) + pl))) ~ 13.

This inequality simplifies to the stated bound. I

51

This new lower bound on P is about three times the sizeof the previous one, which was

P >2{3 + ~ + 2£ + 2p(f3 + ~ + e).

If increasing the lower bound on P is unacceptable, the second solution can be employed. Its

drawback is that now it will take longer for a process to be reintegrated. A similar argument to the

above shows that in order to guarantee that p finishes collecting Ti messages at least {3 before

any nonfaulty process reaches Ti+2, we must have

P ~ (S{J+ ~ + 10£ + 2p(5{J+ 2~ + 9£» / (2. 4p), ignoring p2 terms.

This lower bound is fairly close to the original one. For absolute certainty that the original lower

bound will suffice, the process can wait until Ti+3.

52
1

Chapter Five

Establishing Synch ronization

5.1 Int roduction

In this chapter we present an algorithm to synchronize clocks in a distributed system of

processes, assuming the clocks initially have arbitrary values. The algorithm handles arbitrary

failures of the processes and clQck drift. We envision the processes running this algorithm until

the desired degree of synchronization is obtained, and then switching to the maintenance

algorithm described in the previous chapter.

5.2 The Algorithm

5.2.1 General Description

The structure of the start.up algorithm is similar to that of the algorithm which maintains

synchronization. It runs in rounds. During each round, the processes exchange clock values and

use the same fault.tolerant averaging function as before to calculate the corrections to their

clocks. However, each round contains an additional phase, in which the processes exchange

messages to decide that they are ready to begin the next round. This method of beginning rounds

stands in contrast to that used by the maintenance algorithm, in which rounds begin when local

clocks reach particular values. A more detailed description follows.

Nonfaulty processes will begin each round within real time ~ + 3£ of each other. Each nonfaulty

process begins the algorithm, and its round 0, as soon as it first receives a message. (It will be

shown that this must be within ~ + 3£.) At the beginning of each round, each nonfaulty process p

broadcasts its local time. Then p waits a certain length of time guaranteed to be long enough for

it to receive a similar message from each nonfaulty process. At the end of this waiting interval, p

calculates the adjustment it will make to its clock at the current round, but does not make the

adjustment yet.

Then p waits a second interval of time before sending out additional messages, to make sure that

these new messages are not received before the other nonfaulty processes havereachedtheend

I

53

of their first waiting intervals. At the end of its second waiting interval, p broadcasts a READY

message indicating that it is ready to begin the next round. However, if p receives f + 1 READY

messages during its second waiting interval, it terminates its second interval early, and goes

ahead and broadcasts READY. As soon as p receives n - f READY messages, it updates the

clock according to the adjustment calculated earlier, and begins its next round by broadcasting

its new clock value. (This algorithm uses some ideas from [3].)

A process need only keep clock differences for one round at a time. The waiting intervals are

designed so that during round i a nonfaulty process p will not receive a READY message from

another nonfaulty process until p has finished collecting round i clock values. Round i + 1 clock

values are not broadcast until after READY is broadcast, so p will certainly not receive round i + 1

clock values until after it has finished collecting round i clock values. However, round i + 1 clock

values might arrive during the second waiting interval and while the process is collecting READY

messages. As a result, the adjustment is calculated at the end of the first waiting interval and the

difference for any round i + 1 clock value received during round i is decremented by the amount

of the adjustment.

5.2.2 Code for an Arbitrary Process

Global constants: ~, £, p, n, f: as usual.

Local variables (all initially arbitrary):

. T: clock time at which current round began.

. U: clock time at which the first waiting period is to end.

· V: clock time at which the second waiting period is to end.

· DIFF: array of clock differences between other processes and this one for current
round.

· SENT.READY: set of processes from whom READY messages have been received in
current round.

. CORR: correction variable.

. A: adjustment to clock.

The code is in Figure 5.1.

54

beginstep(w)
do forever Ie each iteration is a round el

T := NOW
broadcast(T)
U := T + (1 + p)(2~ + 4£)
set-timer(U)

Ie first waiting interval: collect clock values el

while -(w = TIMER & NOW = U) do
if w = (m,q) then DIFF[q]
endstep
beginstep(w)
endwhile

m + ~ - NOW endif

Ie end of first waiting interval el

A := mid(reduce(DIFF»
V := U + (1 + p)(4£ + 4p(~ + 2£) + 2p2(~ + 2£»
set-timer(V)
SENT - READY : = {lJ

Ie second waiting interval: collect READYmessages and clock values
for next round -I

while -(w = TIMER & NOW = V) do
if w = (READY,q) then

SENT-READY := SENT-READY U {q}
if ISENT-READYI= f + 1 then exit endif

elseif w = (m,q) then DIFF[q] := m + ~ - NOW endif
endstep
beginstep(w)
endwh il e

I- end of second waiting interval due to timer or f + 1 READYmessages -/

broadcast(READY)
endstep
beginstep(w)

Ie collect n - f READY messages and next round clock values -I

while true do
if w = (READY,q) then

SENT-READY:= SENT-READYU {q}
if ISENT-READYI= n - f then exit endif

elseif w = (m,q) then DIFF[q] := m + ~ - NOW endif
endstep
beginstep(w)
endwhile

Ie update clock and begin next round el

DIFF := DIFF - A
CORR :: CORR + A
endstep
beginstep(w)
enddo

Figu re 5.1 :Algorithm 5.1, Establishing Synchronization

55

5.3 Analysis

We will use the following notation in addition to that introduced already.

. VALi (q) is the value of q's round i messageto p.p

. DIFFi (q) = VALi (q) + ~ - ARRi (q), p's estimate of the difference between p's and
p p p

q's clocks.

. DIFFipis the multiset of DIFFip(q)values.

. ti is the real time when p begins round i.p

. ui is the real time when p begins the second waiting interval during round i.p

. vi is the real time when p sends READY during round i (and thus ends the second
w~iting interval).

. arri (q) is the real time when p first receives a round i clock value from q.p

. rdyi (q) is the real time when p first receives READYfrom Qduring round i.p

. tmaxi = max{ti } for p nonfaulty, the latest real time when a nonfaulty process begins
d

. p
roun I.

. Si = max{lci (tmaxi) - Ci (tmaxi)l) for p and q nonfaulty, the maximum differencep q .
between nonfaulty clock values at tmax'.

Note that tmaxi has a slightly different meaning from that in Chapter 4.

From now on, terms of order p2 and higher will be ignored. Since 10.6seconds is an often quoted

reasonable value for p [5, 7,9], terms of order p2 are negligible. The second. order terms in the

assignment to V in line 13 of the code are needed for strict correctness, but will not appear in the

analysis.

Lemma 5.2 proves together inductively that the time between two nonfaulty processes beginning

a round is bounded, and that when a nonfaulty process q receives READY from another nonfaulty

process, q has already finished the first waiting period. First we show a preliminary lemma

needed by Lemma 5.2.

Lemma 5.1: Let i ~ 0, p and q be any nonfaulty processes, and r be the first
nonfaultyprocesstosendREADYat roundi. Then

rdyi (p)> ui - (ti - ~) + 8 + 3e.q - q q r
Proof: Since r is the first nonfaulty process to send READY, it doesn't send until its full
second waiting interval has elapsed. Then

56

rdyiq(P) ~ Vip + 6 - e

> vi + 6 - e- r

~ tir + (26 + 4e) + (4e + 4p(6 + 2e» + 6- e, by definition of vir and the upper
boundon thedrift rate

= ti + 36 + 7e + 4p6 + ape,r

and

ui < ti + (ti _ ti) + (ui _ ti)q - r q r q q

< ti + (ti _ ti) + (1 + p)2(26 + 4e), by definition of ui and the lower bound on the- r q r q
drift rate

= ti + (ti - ti) + 26 + 4e + 4p6 + ape.r q r

Thus, tir ~ uiq - (tiq - ti~ - 26 - 4e - 4p/) - ape, implying

rdyi (p»ui _(ti -ti)-26-4e-4p/)-ape + 36 + 7e + 4p6 + apeq - q q r

= ui _ (ti - ~) + 6 + 3e. I
q q r

Lemma 5-2: For any nonfaulty processes p and q and any i ~ 0,

(a) Itip - ~ql < 6 + 3e, and

(b) rdyiq(p) ~ uiq.
Proof: We proceed by induction on i.

Basis: i = O.

(a) ItO - to I ~ /) + e, because as soon as p wakes up, it sends its round 0 messageto
all ot~er p~ocesses. The receipt of this message, which occurs at most 6 + e later,
causes q to begin round 0, if it hasn't already done so.

(b) Let r be the first nonfaulty process to send READY at round 0. By Lemma 5.1,

rdyOq(p)~UOq-(tOq-tO~ + 6 + 3e

~ uOq- (6 + e) + /) + 3e, by part (a)

>uOq.

Induction: Assume for i - 1 and show for i.

(a) Let s be the first nonfaulty process to begin round i. Then s receives n - f READY
messages during 'its round i - 1.(after Ui.1). At least n - 2f of them are from nonfaultys
processes by part (b) of the induction hypothesis. These n - 2f nonfaulty processes

57

also send READY messages to all the other processes. By ti + 2£, every nonfaultys
process receives at least n - 2f ~ f + 1 READY messages and broadcasts READY.
Thus q receives n - f READY messages by ti + 2£ + l) + £. Thus,s

ti < ti + 6 + 3£q - s

~ tip + 6 + 3£, by choice of s,

which implies ti - ti < 6 + 3£.q p-

By reversing the roles of p and q in the above argument, we obtain ti - ti < 8 + 3£.p q-

(b) Let r be the first nonfaulty process to send READY at round i. By Lemma 5.1,

rdyiq(p) ~ uiq - (tiq - tir) + 8 + 3£

> ui - (8 + 3£) + 8 + 3£, by part (a)- q

= ui . I
q

Next we show that a process waits a sufficient length of time to receive clock values from all

nonfaulty processes before beginning the second waiting interval in a round.

Lemma 5.3: Letp andq be nonfaulty,andi ~ o. Then arrip(q) < uip'

Proof: By the lower bound on the drift rate, ui > ti + 28 + 4£. Lemma 5-2 implies. p - p . .that q sends its round i clock value by f + 8 + 3£. Thusarrl (q) < tl + 28 + 4£ <. p p - p -
ul I

p'

The next two lemmas bound how long a round can last for one process. First we bound how long

a process must wait after sending READY to receive n - f READY messages.

Lemma 5.4: Forp nonfaultyand i ~ 0,ti +1P- vip ~ 26 + 4£ + 4p(8 + 4£).
Proof: The worst case occurs if p is as far ahead of the other nonfaulty processes as
possible, its clock is fast, the other clocks are slow, and the slow processes' READY
messages take as long as possible to arrive. However, as soon as they arrive, p begins
the next round. Let q be one of the slow nonfaulty processes.

~+ 1 _ vi = (ti+1 _ vi) + (vi _ ui) + (ui _ ti) + (ti _ ti) _ (vi _ u') _ (ui _ ~)p p p q q q q q q p p p p p

< (8 + £) + (1 + p)2(4£+ 4p(8 + 2£» + (1 + p)2(26+ 4£) + (6 + 3£)
- (4£ + 4p(6 + 2£» - (26 + 4£)

= 28 + 4£ + 4p(8 + 4£), ignoring p2 terms. I

Lemma 5.5: For any nonfaulty process p and any i > 0,

~+1p_tip~48 + 12£ + 4p(36 + 10£).

Proof:~+1 _ti = (ti+1 -vi) + (vi _ui) + Cui _ti)pp P P P P pp

58

< 28 + 4e + 4p(8 + 4£) + (vi - Ui) + (Ui - ti), by Lemma 5.4- p p p p

< 28 + 4e + 4p(8 + 4£) + (1 + p)2(4e + 4p(8 + 2e)) + (1 + p)2(28 + 4e)

=48 + 12e + 4p(38 + 10e). I

Nowwe give an upper bound on how far apart tmaxiand tmaxi+1can be.

Lemma 5.6: For any i 2: o.

tmaxi+ 1 _ tmaxi ~ 48 + 12e + 4p(38 + 10e).

Proof: Letp be the nonfaultyprocess such that ti+1 = tmaxi + 1. Thenp

< 48 + 12e + 4p(38 + 10e), by Lemma 5.5. I

Lemma 5.7 bounds the amount of real time between the time a nonfaulty process receives a

round i message from another nonfaulty process and the time the last nonfaulty process begins

round i + 1.

Lemma 5.7: For any i 2: 0 and nonfaulty processes p and q,

tmaxi+1-arrip(q) ~58 + 1ge + 4p(38 + 10e).

proof.tmaxi+1-arri (q) = (tmaxi+1_ti+1) + (ti+1 _ti) + (ti _ti)-(ar~ (q)_ti). p p pp pq p q

~ (8 + 3e) + (48 + 12e + 4p(38 + 10e)) + (8 + 3e) - (8 - e), by Lemmas 5.2 and
5.5 and the lower bound on the messagedelay

= 58 + 19£ + 4p(38 + 10£). I

The next lemma bounds the error in a nonfaulty process' estimate of another nonfaulty process'

local time at a particular real time.

Lemma 5.8: Let p and r be nonfaulty. Then

IDIFFip(r) + Cip(tmaxi + 1)_ Cir(tmaxi + 1)1< £ + p(118 + 39£).

Proof'IDIFFi (r) + Ci (tmaxi + 1)_ Ci (tmaxi + 1)1. P P r

= IVALi (r) + 8 - ARRi (r) + Ci (tmaxi + 1) _ Ci (tmaxi + 1)1.p p p r

If the quantity in the absolute value signs is negative. then this expression is equal to

ci (tmaxi + 1) _ Ci (tmaxi + 1) + Ci (arri (r)) - 8 - VALi (r)r p p p p

< Ci (tmaxi+ 1) _ Ci (tmaxi + 1) + Ci (ar~ (r)) - 8 - Ci (ar~ (r)-8-£), since the delay is at-r p p p r p
most 8 + £

59

< ei (tmaxi+ 1)_ ei (tmaxi+1) + ei (arri (r)) - 8 - ei (arri (r)) + (1 + p)(8 + £),since-r p p p r p
the clock drift is at most 1 + P

::S;2p(tmaxi+1-ar~p(r)) + £ + p8 + p£,byLemma4-2

< 2p(58 + 19£) + £ + p8 + p£, by Lemma 5-7

= £ + p(118 + 39£).

If the quantity in the absolute value signs is positive, a similar argument shows that

IDIFFip(r) + eip(tmaxi+1)-eir(tmaxi+1)1::S; £ + p(118 + 37£). I

The next lemma bounds how far apart two processes' i-th clocks are at the time when the last

process begins round i + 1. The bound is in terms of how far apart the Clocks are when the last

process begins round i.

Lemma 5-9: For any nonfaulty p and q, and any i,

leip(tmaxi + 1) _ eiq(tmaxi + 1)1::S;Bi + Sp(8 + 3£).
Proof: lei (tmaxi+ 1)_ ei (tmaxi + 1)1p q

< lei (tmaxi)- ei (tmaxi)1 + I(e; (tmaxi + 1) - ei (tmaxi + 1)) - (ei (tmaxi) _ ei (tmaxi))l-p q q q p q

::S;Bi + 2p(tmaxi + 1- tmaxi), by definition of Bi and Lemma 4.2

::S;Bi + 2p(48 + 12£), by Lemma 5-6 and ignoring p2 terms

= Bi + Sp(8 + 3£). I

Now we can state the main result, bounding Bi + 1 in terms of Bi.

Theorem 5-10: Bi + 1 < thSi + 2£ + 2p(118 + 39£).

Proof: Bi + 1 = max{lei + 1p(tmaxi + 1) _ e! + 1q(tmaxi +1m for nonfaulty p and q.

Let x = £ + p(118 + 39£).

We now define three multisets U, V, and W that satisfy the hypotheses of Lemma A.4.
Let

U = DIFFi + ei (tmaXi + 1)p P I

V = DIF~ + ei (tmaxi+1) and
q q I

W = {ei (tmaxi+ 1): r is nonfaulty}.r

U and V have size n; W has size n - f.

60

Define an injection from W to U as follows. Map each element d in W to DIFFi (r) +
Ci (tmaxi +1) in U. Since Lemma 5-8 implies that r pp

IDIFFip(r) + dp(tmaxi +1)_ cir(tmaxi +1)1< x

for all the n - f nonfaulty processes, d (W,U) = O. Similarly, d (W,V) = O.x x

Sy Lemma 5-9, diam(W) ~ Si + 8p{cS+ 3£). Thus, Lemma A-4 implies

Imid{reduce{U» - mid{reduce{V»I ~ Ihdiam{W) + 2x

= thSi + 2£ + 2p{11cS+ 39£).

Since mid(reduce{U» = mid{reduce(DIFFi + Ci (tmaxi+1)))P P

= mid(reduce(DIFFi » + Ci (tmaxi+1)P P

= ADJi + d (tmaxi+1)p p

= Ci+1 (tmaxi+1)p

and similarly mid{reduce(V» = Ci + 1 (tmaxi + \ the result follows. Iq

We obtain an approximate bound on how closely this algorithm will synchronize the clocks by

considering the limit of Si as the round number increases without bound.

Theorem 5.11: Thisalgorithmcansynchronizeclocksto within4£ + 4p(11cS+ 39£).

Proof: Iimi-+ooSi

= 4£ + 4p(11cS + 39£), since the limit of the geometric series is 2. I

As was the case for Algorithm 4-1, if the number of processes, n, increases while f, the number of

faulty processes remained fixed, a greater closeness of synchronization can be achieved by

modifying Algorithm 5.1 so that it computes the mean instead of the midpoint of the range of

values. which approaches 2£ + 2pP as n approaches infinity.

After modifying Algorithm 5.1,we get

Si < Si-1f/{n-2f) + 2£ + 2p{11o + 39£).

This is the same as

Si < SOf/{n-2f) + (1- (f/{n-2f»i)/{1 - f/{n-2f»{2£ + 2p{110 + 39£),

61

which approaches 2£ + 2p(11~ + 39£)asn approachesinfinity.

5.4 Determining the Number of Rounds

The nonfaulty processes must determine how many rounds of this algorithm must be run to

establish the desired degree of synchronization before switching to the maintenance algorithm.

The basic idea is for each nonfaulty process p to estimate SO,and then calculate a sufficient

number of rounds, NROUNDS , using the known rate of convergence. SOis estimated by havingp

p calculate an overestimate and an underestimate for CO(tmaxo) for each q, and letting theQ
estimated SO be the difference between the maximum overestimate and the minimum

underestimate.

Let p's overestimate for CO(tmaxo) be OVER (q) and p's underestimate for CO(tmaxo) beQ p Q

UNDERp(q).

For the overestimate, we assume that q's clock is fast, and that the maximum amount of time

elapses between to (when q sent the message) and tmaxo. That maximum is ~ + £ since everyQ

nonfaulty process begins round a as soon as it receives a message. Thus,

OVER (q) = VAL° (q) + (1 + p)(~ + e).p p

Similarly, we can derive the underestimate. We assume that q is the last nonfaulty process to

begin round O. Thus,

UNDER (q) = VAL0 (q).p p

Process p computes its estimate of SO,

SO = max {OVERp(q)} - min {UNDER (q)}.P Q q P

Now p estimates how many rounds are needed until the spread is close enough. There is a

predetermined y ~ 4£ + 4p(11~ + 39£), which is the desired closeness of synchronization for

the start-up algorithm. Atter j rounds,

Process p sets the right hand side equal to y and solves for j to obtain its estimate of the required

number of rounds, NROUNDSp'

62

Now each process executes a Byzantine Agreement protocol on the vector of NROUNDSvalues,

one value for each process. The processes are guaranteed to have the same vector at the end of

the Byzantine Agreement protocol. Each process chooses the (f + 1).st smallest element of the

resulting vector as the required number of rounds. The smallest number of rounds computed by a

nonfaulty process will suffice to achieve the desired closeness of synchronization. Variations in

the number of rounds computed by different nonfaulty processes are due to spurious values

introduced by faulty processes and to different message delays. However, the range computed

by any nonfaulty process is guaranteed to include the actual values of all nonfaulty processes at

tmaxo, so the range determined by the process that computes the smallest number of rounds also

includes all the actual values. In order to guarantee that each process chooses a number of

rounds that is at least as large as the smallest one computed by a nonfaulty process, it chooses

the (f + 1).st smallest element of the vector of values.

Any Byzantine Agreement protocol requires at least f + 1 rounds. The processes can execute

this algorithm in parallel with the clock synchronization algorithm, beginning at round O. The

clock synchronization algorithm imposes a round structure on the processes' communications.

The Byzantine Agreement algorithm can be executed using this round structure. Each BA

message can also include information needed for the clock synchronization algorithm (namely,

the current clock value). However, the processes will always need to do at least f + 2 rounds, one

to obtain the estimated number of rounds and f + 1 for the Byzantine Agreement algorithm.

5.5 Switching to the Maintenance Algorithm

After the processes have done the required number of rounds (denoted by r throughout this

section) of the start.up algorithm, they cease executing it. The processes should begin the

maintenance algorithm as soon as possible after ending the start.up algorithm in order to

minimize the inaccuracy introduced by the clock drift.

In the maintenance algorithm each process broadcasts its clock value when its clock reaches Ti,

for i = A, 1, where Ti+1 = Ti + P. Let TObe a multiple of P. It is shown below in Lemma 5.13

that the first multiple of P reached by nonfaulty p's clock after finishing the required r rounds

differs by at most one from the first multiple reached by nonfaulty q's clock after the r rounds.

When a process reaches the first multiple of P after it has ended the start.up algorithm, it

broadcasts its clock value as in the maintenance algorithm, but doesn't update its clock. At the

next multiple of P, the process begins the full maintenance algorithm by broadcasting its clock

63

value and updating its clock. (It will receive clock values from all nonfaulty processes.)

The analysis introduces a new quantity, fJ1, representing an upper bound on the closeness of the

nonfaulty processes' clocks at tmaxr, That is, for any nonfaulty processes p and q, ICr (tmaxr) -p

Crq(tmaxr)1~ fJ1, We show that if the following five inequalities are satisfied by the parameters,
then the switch from the start-up algorithm to the maintenance algorithm (with parameter fJ) can

be accomplished.

(1) fJ1> 4£ + 4p(118 + 39£)

(2)fJ~(fJ1 + 2£ + p(6P-fJ1 + 28 + 12£))/(1-8p)

(3) P >2(1 + p)(fJ + £) + (1 + p)max{8, fJ + £} + p8

(4)P~fJ/4p-£/p-p(j3 + 8 + £)-2fJ-8-2£

(5) fJ ~ 4£ + 4p(3fJ + 8 + 3£) + 8p2(j3 + 8 + £)

The first inequality is imposed by the limitation on how closely the start-up algorithm can

synchronize. The second inequality reflects the inaccuracy introduced during the switch. The

last three are simply repeated from Section 4.5.1.

First we show that fJ1can be attained by the start-up algorithm.

Lemma 5.12: There exists an integer i such that Si < fJl'

Proof: Since fJ1 must be larger than 4£ + 4p(118 + 39£), the result follows from
Theorem 5-11, which states that the closeness of synchronization approaches 4£ +
4p(118 + 39£) as the round number, i, increases. I

Note that the number of rounds, r, that the processes agree on is ~ i, and that the worst-case Sf is

no more than the worst.case Si, which is at most Pr

Lemma 5.13 shows that the first multiple of P reached by a nonfaulty process after finishing the

start.up algorithm differs by at most one from that reached by another nonfaulty process.

Lemma 5.13: Let p and q be nonfaulty processes, Then

Icf (f) - Cf (tf)1< P.qq pp-
ProofolCf (f) - Cr (tf)1< ICf (tf) + (1 + p)(tf _ tf) _ Cf (tf \1° qq pp- qp q p PP'

< ICf (tf) - Cf (tf)1 + (1 + p)(8 + 3£), by Lemma5.2- q p p p

64

+ (1 + p)(8 + 3e)

< 2p(tmaxr- trp) + /3, + (1 + p)(8 + 3£),by Lemma4.2anddefinitionofP,

~ 2p(8+ 3e)+ /3, + (1 + p)(8 + 3£),byLemma5-2

= /3, + (1 + 3p)(8+ 3e).

Supposein contradictionthat P<P, + (1 + 3p)(8 + 3£). Bysolvinginequality(2)for
/3" weget

/3, ~ (/3- 2£- p(8/3+ 28 + 12£+ 6P))/ (1- p),

which implies that

P< (j3- 2£- p(8/3+ 28 + 12£+ 6P)) i (1- p) + (1 + 3p)(8 + 3£).

Thissimplifiesto P< (j3 + 8 + e- 8p/3 + p8 - 3p£) / (1 + 5p).

Combining this with inequality (3) yields

2(1 + p)(j3 + e) + (1 + p)8 + p8 <P< (j3 + 8 + £-.8p/3 + p8 - 3p£)/ (1 + 5p).

Solvingfor /3gives/3<-(e + 6p8 + 15pe)/ (1 + 20p).whichisa contradiction. I

The rest of the section is devoted to showing that the difference in real times when nonfaulty

processes' clocks reach the first multiple of P at which they will all perform the maintenance

algorithm is less than or equal to /3. Consequently, this /3 can be preserved by the maintenance

algorithm.

Define kP to be the first multiple of P reached by any nonfaulty process' r-th clock. The first

multiple of P reached by any other nonfaulty process is either kP or (k + 1)P. by Lemma 5.13. At

(k + 1)P some of the nonfaulty processes will actually update their clocks. and at (k + 2)P all of

them will update their clocks.

Recall that (k+ 1)P = Tk+1 and Uk+1 = Tk+1 + (1 + p)(/3 + 8 + e). Let Uk+1 = cr (Uk+1) andp p

similarlyfor q.

Let sand t be two nonfaulty processes. Here is a description of the worst case:

. s has the smallest clock value at tmaxr, barely above (k-1)P, and its clock is slow.

. t's clock is fastand is/31aheadofs's at tmaxr.

. s updatesits clockat Uk+ 1,bydecrementingit asmuchaspossible.

65

. t updates its clock at Uk+ 1, by incrementing it as much as possible.

First we must bound how far apart in real time nonfaulty processes' r.th clocks reach Uk+1.

Lemma 5.14: Let p and q be nonfaulty processes. Then

ICfp(Uk+1)_Cfq(Uk+1)1 ~ (1-p){31 + 2p(2P + {3 + 8 + E).

Proof: Without loss of generality, suppose cfp(Uk+1) ;;:: Cfq(Uk + \ Then

Icf (Uk+1)_Cf (Uk+1)1 = cf (Uk+1)_Cf (Uk+1)p q p q

==(cf (Uk+1)_tmaxf)_(cf (Uk+1)_tmaxf)p q

«Cf (Uk+1)_Cf (tmaxf»)(1 + p)_(Cf (Uk+1)_Cf (tmaxf))(1-p),bytheboundson- p. p p q q q
the drift rate

~ (2P + (1 + p)({3 + 8 + E))(1 + p)-(2P + (1 + p)(f3 + 8 + E)-{31)(1-p)

= (1-p){31 + 2p(2P + {3 + 8 + E). I

Next, we bound the additional spread introduced by the resetting of the clocks.

Lemma 5.15: Let sand t be the nonfaulty processes described above. Then

(a)cf+1S(Uk+1)_CfS(Uk+1)~(1 + p)(E + p(4{3+ 8 + 5E),and

(b)cft(Uk+1)_cf+\(Uk+1)~(1 + p)(E+ p(4{3+ 8 + 5E).
Proof: (a)ByLemma4.15,weknowthats's newclock isat mosta = E + p(4{3 + 8 +
5E) less than the "smallest" of the previous nonfaulty clocks at cf (Uk+1) = uk+1
Since s had the smallest clock before, Cf+ 1 (Uk+ 1) > Cf (uk+ 1) ~a. By the low:rs s - s s
bound on the drift rate,

(b) Lemma 4-15 also states that 1's new clock is at most a more than the "largest" of

the previous nonfaulty clocks at Uk+1t' which was 1'sclock. The argument is similar to
(a). I

Finally, we can bound the maximum difference in real time between two nonfaulty processes"

clocks reaching Tk+2. Let i be the index of p's logical clock that is in effect when Tk+2 isp
reached.

Thea rem 5.16: Let p and q be nonfaulty processes and i = ipand j = iq' Then

Icip(Tk + 2) _ d~(Tk + 2)1 ~ p.

Proof: Without loss of generality, suppose cip(Tk+1)> dq(Tk+2). Then

Ici (Tk+1)_d (Tk+2)1= ci (Tk+1)_d (Tk+2)p q p q

66

for nonfaulty processes sand t that behave as described above.

We know from Lemma 4-2 that

~ 2p(P - (1 + p)(fJ + 8 + e)).

~ 2p(P-(1 + p)(fJ + 8 + e)) + cr+\(Uk+1)_cr+\(Uk+1)

= 2p(P-(1 + p)(fJ + 8 + e)) + cr+1s(Uk+1)_crs(Uk+1) + Crt(Uk+1)_cr+\(Uk+1)

~ 2p(P - (1 + p)(fJ + 8 + e)) + 2(1 + p)(e + p(4fJ + 8 + 5e))

~ 2p(P- (1 + p)(fJ + 8 + e)) + 2(1 + p)(e + p(4fJ + 8 + 5e))

+ (1 - p)fJ1 + 2p(2P + fJ + 8 + e),by Lemma 5-14

~ fJ, by inequality (2). I

This fJ is approximately 6£, which is slightly larger than the smallest one maintainable, 4e. To

shrink it back down, P can be made slightly smaller than required by the maintenance algorithm,

as long as the lower bound of inequality (3) isn't violated. Since the synchronization procedure is

performed more often, the clocks don't drift apart as much, and consequently, they can be more

closely synchronized. Once the desired fJ is reached, P can be increased again. (The

computational costs associated with performing the synchronization procedure and the possible

degradation of validity may make it advisable to resychronize more infrequently.)

5.6 Using Only the Start-up Algorithm

A natural idea is to use Algorithm 5-1 solely, and never switch to the mainenance algorithm. Both

algorithms can synchronize clocks to within approximately 4e, so such a policy would sacrifice

very little in accuracy. Using just the one algorithm is conceptually simpler and avoids

introducing the additional error during the switch-over. However, if the system does no work

during -the period of time when processeshaveclocks with different indices, it is importantto

67

minimize this interval. Algorithm 5.1 has such an interval ot, length 0 + 3£; for Algorithm 4.1, it is

approximately fJ + 2p(fJ + 0 + E). Depending on the choice of values for the parameters,

Algorithm 4.1 may be superior in this regard.

68

Chapter Six

Conclusion

6.1 Summary

In conclusion, we have presented a precise formal model to describe a system of distributed

processes, each of which has its own clock. Within this model we proved a lower bound on how

closely clocks can be synchronized even under strong simplifying assumptions.

The major part of the thesis was the description and analysis of an algorithm to synchronize the

clocks of a completely connected network in the presence of clock drift, uncertainty in the

message delivery time, and Byzantine process faults. Since it does not use digital signatures, the

algorithm requires that more than two thirds of the processes be nonfaulty. Our algorithm is an

improvement over those in [7] based on Byzantine Agreement protocols in that the number of

messages per round is n2 instead of exponential, and that the size of the adjustment made at each

round is a small amount independent of the number of faults.

The algorithm in [5] works for a more general communication network, and, since it uses digital

signatures, only requires that more than half the processes be nonfaulty. However, the size of the

adjustment depends on the number of faulty processes.

The issue of which algorithm synchronizes the the most closely is difficult to resolve because of

differing assumptions about the underlying model. For instance, Algorithm 4.1 of this thesis can

achieve a closeness of synchronization of approximately 4£ in O'-lrnotation. However, we assume

that local processing time is negligible; otherwise Lamport [8] claims that actually there is an

implicit factor of n in the £, in which case the closeness of synchronization achieved by our

algorithm depends on the number of processes as do those in [7].

We also modified Algorithm 4.1 to produce an algorithm to establish synchronization initially

among clocks with arbitrary values. This algorithm also handles clock drift, uncertainty in the

message delivery time, and Byzantine proces~ faults. This problem, as far as we know, had not

been addressed previously for real.time clocks.

69

6.2 Open Questions

It would be interesting to know more lower bounds on the closeness of synchronization

achievable. For example, a question posed by J. Halpern is to determine a lower bound when the

communication network has an arbitrary configuration and the uncertainty in the message

delivery time is different for each link.

There are also no known lower bounds for the case of clock drift and faulty processes.

The validity of algorithm 5-1 has not been computed. If this algorithm were used solely, knowing

how the processes' clocks increase in relation to real time would be of interest. Lower bounds in

general for the validity conditions are not known.

It seems reasonable that there is a tradeoff between the closeness of synchronization and the

validity, since the synchronization procedure must be performed more often in order to

synchronize more closely, but each resychronization event potentially worsens the validity. This

tradeoff has not been quantified.

M. Fischer [4] has suggested an "asynchronous" version of Algorithm 5-1 to establish

synchronization. In his version, a nonfaulty process wakes up at an arbitrary time with arbitrary

values for its correction variable and array of differences. Every P as measured on its physical

(not logical) clock, the process performs the fault-tolerant averaging function and updates its

clock. It seems that the clock values should converge, but at what rate?

What kind of algorithms that use the fault.tolerant averaging function can be used in more general

communication graphs?

Another avenue of investigation is using the fault-tolerant averaging function together with the

capability for authentication to see if algorithms with higher fault-tolerance than those of this

thesis and better accuracy than those in [5] can be designed.

I

70

Appendix A

Multisets

This Appendix consists of definitions and lemmas concerning multisets needed for the proofs of

Lemmas 4.9 and 5.10. These definitions and lemmas are analogous to some in [1].

A multiset U is a finite collection of real numbers in which the same number may appear more

than once. The largest value in U is denoted max(U), and the smallest value in U is denoted

min(U). The diameter of U, diam,(U) is max(U) - min(U). Let s(U) be the multiset obtained by

deleting one occurrence of min(U), and /(U) be the multiset obtained by deleting one occurrence

of max(U). If IUI ~ 2f + 1, we define reduce(U) to be Ifsf(U), the result of removing the f largest

and f smallest elements of U.

Given two multisets U and V with IUI :s; lVI, consider an injection c mapping U to V. For any

nonnegative real number x, define S/cJ to be {uEU: lu - c(u)1>x}. We define the x-distance

between U and V to be d (U,V) = mine{IS (c)/). We say c witnesses d (U,V)if IS (c)I = d (U,V).x x x x x

The x-distance between U and V is the number of elements of U that cannot be matched up with

an element of V which is the same to within x. If lu - c(u)1~ x, then we say u and c(u) are x-paired

by c. The midpoint of U, mid(U), is lh[max(U) + min(U)].

For any multiset U and real number r, define U + r to be the multiset obtained by adding r to every

element of U; that is, U + r = {u + r: u E U}. It is obvious that mid and reduce are invariant

under this operation.

The next lemma bounds the diameter of a reduced multiset.

Lemma A-1: Let U and W be multisets such that IUI = n, IWI = n - f, and d (W,U) =x
0,wheren ~ 2f + 1. Then

max(reduce(U» ~ max(W) + x and min(reduce(U» ~ min(W)- x.
Proof: We show the result for max; a ~imilar argument holds for min. Let c witness
d (W,U). Suppose none of the f elements deleted from the high end of U are x-pairedx
with elements of W by c. Since d (W,U) = 0, the remaining n - f elements of U arex
x-paired with elements of W by c, and thus every element of reduce(U) is x-paired with
an element of W. Suppose max(reduce(U» is x-paired with w in W by c. Then
max(reduce(U» <w + x ~ max(W)+ x.

Nowsupposeone of the elementsdeleted from the high end of U is x-pairedwith an

71

element of W by c. Let u be the largest such, and suppose it was paired with w in
W. Then max(reduce(U)) ~ u ~ w + x ~ max(W)+ x. I

We show that the x.distance between two multisets is not increased by removing the largest (or

smallest) element from each.
Lemma A.2: Let U and V be multisets. each with at least one element. Then

dx(I(U),I(V))~ dx(U.V)and dx(s(U),s(V)) ~ dx(U,V).
Proof: We give the proof in detail for I; a symmetric argument holds for s. Let M = I(U)
and N = I(V). Let c witness d (U,V). We construct an injection c' from M to Nandx

show that /Sx(c')j ~ /Sx(c)l. Since dx(M,N) ~ ISx(c')1and ISx(c)/ = dx(U,V), it follows
that dx(M,N) ~ dx(U,V).

Suppose u = max(U)and v = max(V). (These are the deleted elements.)

Case 1: c(u) = v. Define c'(m) = c(m) for all m in M. Obviously c' is an injection.
IS (c')1< IS (c)1since either S (c') = S (c) or S (c') = S (c) - {u}.x -x x x x x

Case 2: c(u) ~ v and there is no u' in U such that c(u') = v. This is the same as Case
1.

Case 3: c(u) ~ v, and there is u' in U such that c(u') = v. Suppose c(u) = v'. Define
c'(u') = v' and c'(m) = c(m) for all m in M besides v'. Obviously c' is an injection. Now

we show that ISx(c')1 ~ rSx(c)l.

If u or u' or both are in S (c) then whether or not u' is in S (c') the inequality holds. Thex x
only trouble arises if u and u' are both not in S (c) but u' is in S (c'). Suppose that isx x
the case. Then lu' - c'(u')1 = lu' - v'l >x. There are two possibilities:

(i) u' > Vi + x. Since u is not in Sx(c), lu - c(u)1 = lu - v'l ~ x. So v' ~ u - x. Hence u' >
v' + x > u - x + x, which implies that u' > u. But this contradicts u being the largest
element of U.

(ii) v' > u' + x. Since u' is.not in Sx(c), lu' - c(u')/ = lu' - vi ~ x. So u' ~ v-x. Hence
v' > u' + x ~ v - x + x, which impliesthat v' > v. But this contradicts v being the
largestelementof V.

I

The next lemma shows that the results of reducing two multisets, each of whose x.distance from a

third multiset is A,can't contain values that are too far apart.

Lemma A.3: Let U, V, and W be multisets such that IUI = !VI = nand IWI = n -',
where n >3f. If d (W,U) = a and d (W,V) = 0, thenx x

min(reduce(U» - max(reduce(V» ~ 2x.

Proof: First we show that d2x(U,V) ~ f. Let Cu witness dx(W'U)and Cv witness
dx(W,V). Define an injection c from U to Vas follows: if there is w in W such that cu(w)
;; U,then letc(u) ;; Cy(w);otherwise,let c(u)be anyunusedelementof V. Foreachof

72

the n - f elements w in W, there is u in U such that u = cu(w). Thus lu - c(u)1~ lu - wi
+ Iw - c(u)1 = Icu(w) - wi + Iw - cv(w)1~ x + x = 2x. Thus S2x(c)~ f, so d2x(U,V)~
f.

Then by applying Lemma A-2 f times, we know that d2x(reduce(U),reduce(V)) ~ f.
Since Ireduce(U)1 = Ireduce(V)1 = n - 2f > f, there are u in reduce(U) and v in
reduce(V) such that lu - vi ~ 2x. Thus min(reduce(U)) - max(reduce(V)) ~ u - v ~ 2x.
I

Lemma A.4 is the main multiset result. It bounds the difference between the midpoints of two-

reduced multisets in terms of a particular third multiset.

Lemma A.4: Let U, V, and W be multisets such that IUI = IVI = nand IWI = n - f,
where n >3f. If d (W,U) = a and d (W,V) = 0, thenx x

Imid(reduce(U)) - mid(reduce(V))1 ~ 1f2diam(W)+ 2x.

Proof: Imid(reduce(U)) - mid(reduce(V))1

= lhlmax(reduce(U)) + min(reduce(U)) - max(reduce(V)) - min(reduce(V))I

= ihlmax(reduce(U)) - min(reduce(V)) + min(reduce(U)) - max(reduce(V))1

If the quantity inside the absolute value signs is nonnegative, this expression is equal
to

1f2[max(reduce(U))- min(reduce(V)) + min(reduce(U)) - max(reduce(V))]

~ ih(max(W)+ x- (min(W)- x) + min(reduce(U)).- max(reduce(V))), by applying
Lemma A.1 twice

= lh(diam(W) + 2x + min(reduce(U)) - max(reduce(V»)

~ lh(diam(W) + 2x + 2x), by Lemma A.3

= lhdiam(W) + 2x.

If the quantity inside the absolute value is nonpositive, then symmetric reasoning gives
the result. I

73

Refe rences

[1] D. Dolev, N. Lynch, S. Pinter, E. Stark and W. Weihl.
Reaching Approximate Agreement in the Presence of Faults.
In Proceedings of the 3rd Annual IEEESymposium on Distributed Software and Database

Systems. 1983.

[2] D. Dolev, J. Halpern and R. Strong.
On the Possibility and Impossibility of Achieving Clock Synchronization.
In Proceedings of the 16thAnnual ACM Symposium on Theory of Computing. 1984.

[3] C. Dwork, N. Lynch and L. Stockmeyer.
Consensus in the Presence of Partial Synchrony.
In Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed

Computing. 1984.

[4] M. Fischer.
Personal communication.

[5] J. Halpern, 8. Simons and R. Strong.
Fault-Tolerant Clock Synchronization.
In ProcAedings of the 3rd Annual ACM Symposium on Principles of Distributed

Computing. 1984.

[6] L. Lamport.
Time, clocks. and the ordering of events in a distributed system.
Communications of the ACM 21(7), July, 1978.

[7] L. Lamport and P.M. Melliar.Smith.
Synchronizing clocks in the presence of faults.
Research Report, SRllnterna~ional, March, 1982.

[8] L. Lamport.
Personal communication.

[9] K. Marzullo.
Loosely-CoupledDistributedServices:a DistributedTimeService.
PhDthesis,StanfordUniversity,1983.

