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Abstract

Oja’s rule [Oja, Journal of mathematical biology 1982] is a well-known biologically-plausible algorithm
using a Hebbian-type synaptic update rule to solve streaming principal component analysis (PCA).
Computational neuroscientists have known that this biological version of Oja’s rule converges to the top
eigenvector of the covariance matrix of the input in the limit. However, prior to this work, it was open
to prove any convergence rate guarantee.

In this work, we give the first convergence rate analysis for the biological version of Oja’s rule in solving
streaming PCA. Moreover, our convergence rate matches the information theoretical lower bound up to
logarithmic factors and outperforms the state-of-the-art upper bound for streaming PCA. Furthermore,
we develop a novel framework inspired by ordinary differential equations (ODE) to analyze general
stochastic dynamics. The framework abandons the traditional step-by-step analysis and instead analyzes
a stochastic dynamic in one-shot by giving a closed-form solution to the entire dynamic. The one-shot
framework allows us to apply stopping time and martingale techniques to have a flexible and precise
control on the dynamic. We believe that this general framework is powerful and should lead to effective
yet simple analysis for a large class of problems with stochastic dynamics.

1 Introduction

Human brains process an astronomical amount of visual data constantly. In our eyes, 100 millions pho-
toreceptors in the retina receive gigabytes of information per second [A95, WBD77]. To reduce the curse
of dimensionality, as a first step, the brain compresses the activities of 100 million photoreceptors into one
million retina ganglion cells in optical nerves [GS12]. Neuroscientists have extensively studied the dimension-
ality reduction in the retina-optical nerve pathway. In particular, Haft and Hemmen [HV98] demonstrated
that Principal Component Analysis (PCA) is a likely candidate for the dimensionality reduction in the
retina-optical nerve pathway by showing the consistency between theoretical predictions and experiments in
the receptive fields of retina ganglion cells. However, their work only proposed PCA as an potential solution
to the pathway and did not provide a dynamic to explain the learning process of PCA.

On the other hand, in the seminal work of Oja [Oja82], he proposed a mathematical model for the bio-
logical neural network that solves streaming PCA with several biologically-plausible properties: the network
not only updates its synaptic weights locally but also normalizes the strength of synapses. This rule, now
known as the biological version of Oja’s rule (biological Oja’s rule1 in abbreviation), has been the subject of
extensive theoretical [Oja82, OK85, San89, HKP91, Oja92, Plu95, DK96, Zuf02, YYLT05, Duf13, ACS13]
and experimental [CL94, KDT94, HP94, Kar96, CKS96, SLY06, SA06, LTYH09, ACS13] studies aimed at
understanding its performance. Despite its popularity, the theoretical understanding of the biological Oja’s
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rule cannot account for the biologically-realistic time scale in the retina-optical nerve pathway because the
state-of-the-art theoretical analysis only provides a guarantee on convergence in the limit [Duf13].

In practice, the time scale of the streaming PCA in the retina-optical nerve pathway is on the order of
seconds. For example, when a person is walking from a dark room to a bright room, it only takes a few
seconds for the eyes to adapt to the new environment. This suggests that a plausible dynamic for explaining
the retina-optical nerve pathway should have little or no dependency on the dimension, i.e., the number of
neurons, which in this case is on the order of 100 million. Meanwhile, researchers have observed that the
biological Oja’s rule (and its variants) has fast convergence rates [HP94, Kar96, SLY06, SA06, LTYH09] in
simulations. Thus, to further our understanding in the retina-optical nerve pathway, it is important to give
a theoretical analysis to show that the biological Oja’s rule solves streaming PCA in a biologically-realistic
time scale. This is nevertheless a challenging task and has remained elusive for almost 40 years [Oja82].

In this work, we provide the first convergence rate analysis for the biological Oja’s rule in solving streaming
PCA.

Theorem 1.1 (informal). The biological Oja’s rule efficiently solves streaming PCA with (nearly) optimal
convergence rate. Specifically, the convergence rate we obtain matches the information theoretical lower bound
up to logarithmic factors.

Furthermore, the convergence rate has no dependency on the dimension when the initial weight vector
is close to the top eigenvector or has a logarithmic dependency on the dimension when the initial vector is
random. Therefore, the biological Oja’s rule solves streaming PCA in a biologically-realistic time scale.

To show the (nearly) optimal convergence rate of biological Oja’s rule in solving streaming PCA, we
develop an ODE-inspired framework to analyze stochastic dynamics. Concretely, instead of the traditional
step-by-step analysis, our framework analyzes a dynamical system in one-shot by giving a closed-form so-
lution for the entire dynamic. The framework borrows ideas from ordinary differential equations (ODE)
and stochastic differential equations (SDE) to obtain a closed-form characterization of the dynamic and uses
stopping time and martingale techniques to precisely control the dynamic. This framework provides a more
elegant and more general analysis compared with the previous step-by-step approaches. We believe that this
novel framework can provide simple and effective analysis on other problems with stochastic dynamics.

We organize the rest of the introduction as follows. We first formally define biological Oja’s rule and
streaming PCA in Section 1.1 and state the main results and their biological relevance in Section 1.2.
In Section 1.3, we provide a technical overview on the proof and the analysis framework. Finally, we
conclude the introduction with a survey and comparison of related works in Section 1.4.

1.1 Biological Oja’s rule and streaming PCA

In a biological neural network, two neurons primarily interact with each other via action potentials or
instantaneous signals, a.k.a., ”spikes”, through synapses between them. The strength of a synapse might
vary from time to time and is called the synaptic weight. The ability of a synaptic weight to strengthen or
weaken over time is considered as a source for learning and long term memory in our brains. While generally
the update of a synaptic weight could depend on the spiking patterns of the end neurons, it is common for
neuroscientists to focus on the averaging behaviors of a spiking dynamic. Namely, they simplify the model
by only considering the firing rate, which is defined as the average number of spikes. This is known as the
rate-based model [WC72, WC73] and since the biological Oja’s rule was defined on a rate-based model, this
setting is going to be the focus of this work.

To understand how the biological Oja’s rule works, consider the following baby example with two neurons
x and y. Let xt, yt ∈ R be the firing rates of neurons x, y at time t ∈ N and let wt ∈ R be the synaptic
weight from x to y at time t. In a biological neural network, wt could change over time and the dynamic is
defined locally on the previous synaptic weight as well as the firing rates of the end neurons. Namely, the
synaptic weight from the neuron x to y has the following dynamic

wt = wt−1 + ηtFt(wt−1, xt, yt)
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where Ft is an update function and ηt is the plasticity coefficient, a.k.a., the learning rate. Biologically, the
update function should further follow the Hebb postulate,“cells that fire together wire together” [Heb49].
One naive way to implement Hebbian learning is to set the update function as Ft(wt−1, xt, yt) = xtyt.
However, the values of wt can grow unboundedly. The biological Oja’s rule is a self-normalizing Hebbian
rule with the following synaptic updates.

wt = wt−1 + ηtyt (xt − ytwt−1) .

Using the above synaptic update rule, Oja [Oja82] configured a network that solves streaming PCA while
keeping the norm of the weights stable. Before introducing the network, let us formally define the streaming
PCA problem.

Streaming PCA Principal component analysis (PCA) [Pea01, Hot33] is a problem to find the top eigen-
vector of a covariance matrix of a dataset. Let n be the dimension of the data. In the offline setting, one can
compute the covariance matrix in O(n2) space and use the power method to approximate the top eigenvector.
As for its variant, the streaming PCA (a.k.a. the stochastic online PCA, see [CG90] for a survey on the
literature), the input data arrives in a stream and the algorithm/dynamic only has limited amount of space,
e.g., O(n) space. Streaming PCA is important for biological system because the information inherently
arrives in a stream in a living system. On the other hand, it is also much more challenging than offline PCA
(see for example [AZL17]). In the following, we formally define the streaming PCA problem. 2

Problem 1.2 (Streaming PCA). Let n, T ∈ N and D be a distribution over the unit sphere of Rn. Suppose

the input data x1,x2, . . . ,xT
i.i.d.∼ D are given one by one in a stream. Let A = Ex∼D[xx>] be the covariance

matrix and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of A. Assume λ1 > λ2 and let v1 be the top
eigenvector of A of unit length. Then the goal of the streaming PCA problem is to output w ∈ Rn such that
〈w,v1〉2
‖w‖22

≥ 1− ε.

Since the inputs arrive in a stream, usually a streaming PCA algorithm/dynamic would maintain a
solution wt ∈ Rn at each time t ∈ N. Thus, the goal for a streaming PCA algorithm/dynamic would be

achieving Pr
[
〈wT ,v1〉2
‖w‖22

≥ 1− ε
]
≥ 1− δ with small T .

Biological Oja’s rule in solving streaming PCA Oja [Oja82] proposed a streaming PCA algorithm
using n input neurons and one output neuron. The firing rates of the input neurons at time t are denoted
by a vector xt ∈ Rn and the firing rate of the output neuron is denoted by a scalar yt ∈ R. The synaptic
weights at time t from the input neurons to the output neuron are denoted by a vector wt ∈ Rn. Note that
the weight vector will be the output and ideally it will converge to the top eigenvector v1.

The input stream x1,x2, . . . ,xT arrives in the form of firing rates of the input neurons. The firing rate of
the output neuron is simply the inner product of the synaptic weight vector and the firing rate vector of the
input neurons, i.e., yt = x>t wt−1. Now, from the biological Oja’s rule, the dynamic of the synaptic weight
vector is described by the following equation.

Definition 1.3 (Biological Oja’s rule). For any initial vector w0 ∈ Rn such that ‖w0‖2 = 1, the dynamic
of the biological Oja’s rule is the following. For any t ∈ N, define

wt = wt−1 + ηtyt (xt − ytwt−1) (1.4)

where yt = x>t wt−1 and xt is the input at time t. See also in Figure 1 for a pictorial definition of biological
Oja’s rule in solving streaming PCA.

Follow from the definition, the biological Oja’s rule is automatically biologically-plausible in the following
sense. First, the synaptic update rule is local. Namely, each synapse only depends on the previous synaptic

2In related works, some (e.g., [AZL17]) measure the error using 1 − 〈w,v1〉2, some (e.g., [Sha16]) use 1 − w>Aw/‖A‖,
and some (e.g., [JJK+16]) use sin2(w,v1). We remark that all of these error measures (including ours) are the same up to a
constant multiplicative factor.

Also, some works emphasize other convergence notions such as the gap-free convergence [Sha16]. Though we do not explicitly
study the convergence of biological Oja’s rule under these notions, we believe that our results could be easily extended to other
convergence notions with comparable convergence rate and leave this for future work.
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Figure 1: A neural network that uses biological Oja’s rule to solve streaming PCA. The firing rate vector xt
is the input and the weight vector wt is the output at time t.

weight and the firing rates of the two end neurons. Second, with some simple calculations (e.g., Lemma 5.1),
biological Oja’s rule achieves the synaptic scaling guarantee [AN00], i.e., wt,i being bounded for all t ∈ N
and i ∈ [n]. Thus, one can then interpret the convergence results of this work as showing further biological-
plausibilities of the biological Oja’s rule in the retina-optical nerve pathway. See Section 1.2 for more
discussions.

Oja’s derivation for the biological Oja’s rule Before going into more technical contents, it would be
helpful to take a look at the original derivation for the biological Oja’s rule. Initially, Oja wanted to use the
following update rule with normalization3 to solve the streaming PCA problem.

wt =

(
I + ηtxtx

>
t

)
wt−1

‖
(
I + ηtxtx>t

)
wt−1‖2

. (1.5)

However, the normalization term ‖
(
I + ηtx

>
t xt

)
wt−1‖−1

2 is global4 and does not seem to have a biologically-
plausible implementation. To bypass this issue, Oja applied Taylor’s expansion on the normalization term
and truncated the second order terms of ηt. This exactly results in the biological Oja’s rule (i.e., Equa-
tion 1.4). See Appendix A for more details on the derivation.

Also, to see why intuitively biological Oja’s rule could solve streaming PCA, one can check that any
eigenvector v of A of unit length with eigenvalue λ is a fixed point of the biological Oja’s rule in expectation.
Specifically, the expectation of the update term yt(xt − ytwt−1) with wt−1 = v is the following.

E
[
x>t vxt − (x>t v)2v

]
= Av − v>Avv = λv − λ‖v‖22v = 0 .

The first equality follows from for all i, j ∈ [n], E[xt,ixt,j ] = λi · 1i=j , and the second equality follows from
Av = λv. By checking the Hessian at the top eigenvector v1, one can even see that v1 is a stable fixed point.

Previous works: Convergence in the limit results There were many previous works on analyzing the
convergence of biological Oja’s rule in solving streaming PCA [Oja82, OK85, San89, HKP91, Oja92, Plu95,
DK96, Zuf02, YYLT05, Duf13]. However, their works only proved guarantee on convergence in the limit.
For example, Duflo [Duf13] showed that wt converges to the top eigenvector of A in the limit under some
constraints on the learning rates.

Theorem 1.6 ([Duf13], informal). Let w0 be a random unit vector in Rn. If ηt ≤ 1
2 for all t ∈ N,∑∞

t=0 ηt =∞, and
∑∞
t=0 η

2
t <∞, then limt→∞〈wt,v1〉2 = 1 almost surely.

The proofs of these previous analyses are usually based on tools from dynamical system such as the
Kushner-Clark method or Lyapunov theory. Note that these proof techniques are not sufficient for providing
convergence rate guarantee.

3This update rule is doing a variant of power method with normalization. It is widely used in the machine learning community
to solve streaming PCA. See Section 1.4 for more discussion.

4It is global because computing the `2 norm requires the information from every neurons.
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Prior to this work, there had been no efficiency guarantee for the biological Oja’s rule. The main technical
barrier is due to the non-linear terms in the update rule which introduces correlations in the traditional step-
by-step analysis and thus naive analysis would not work. We explain the difficulty further in Section 1.3
and Appendix C. Given this situation, natural questions on the frontier would then be:

Question: What is the convergence rate of biological Oja’s rule in solving streaming PCA? Is
the convergence rate biologically-realistic?

1.2 Our results

In this paper, we answer the above questions by giving the first convergence rate guarantee for the biological
Oja’s rule in solving streaming PCA. Furthermore, the convergence rate matches the information-theoretic
lower bound for streaming PCA up to logarithmic factors. In terms of the techniques, we develop an ODE-
inspired framework to analyze stochastic dynamics. We believe this general framework of using tools and
insights from ODE and SDE in analyzing stochastic dynamics is elegant and powerful. We provide more
details and intuitions on the ODE-inspired framework in the section on the technical overview (see Sec-
tion 1.3). Also, as a byproduct, our convergence rate guarantee for biological Oja’s rule outperforms the
state-of-the-art upper bound for streaming PCA (using other variants of Oja’s rule).

There are two common convergence notions in the streaming PCA literature. The global convergence
requires the algorithm/dynamic to start from a random initial vector while the local convergence allows the
algorithm/dynamic to start from an initial vector that is highly correlated to the top eigenvector of the
covariance matrix. Now, we are ready to state our main theorem as follows.

Theorem 1.7 (Global and local convergence). With the setting in Problem 1.2 and dynamic in Defini-
tion 1.3, let gap := λ1 − λ2 > 0. For any ε, δ ∈ (0, 1), we have the following results.

• (Global convergence) Suppose w0 is uniformly sampled from the unit sphere in Rn. For any T ∈ N and

T0 = Θ

(
λ1

(ε ∧ δ2) · gap2
· log3

(
T, n,

1

gap
,

1

ε
,

1

δ

))
,

there exists η = Õ
(

(ε∧δ2)·gap
λ1

)
such that if for all t ∈ N, we let ηt = η, then we have

Pr

[
∀t ∈ [T0, T0 + T ],

〈wt,v1〉2

‖wt‖22
≥ 1− ε

]
≥ 1− δ .

• (Local convergence) Suppose 〈w0,v1〉2 = Ω(1). For any T ∈ N and

T0 = Θ

(
λ1

ε · gap2
· log2

(
T,

1

ε
,

1

δ

))
,

there exists η = Õ
(

ε·gap
λ1·log T

)
such that if for all t ∈ N, we let ηt = η, then we have

Pr

[
∀t ∈ [T0, T0 + T ],

〈wt,v1〉2

‖wt‖22
≥ 1− ε

]
≥ 1− δ .

The notation a ∧ b stands for min{a, b} and Õ hides poly-logarithmic factors in n, gap−1, ε−1, and δ−1.

Biological perspectives Our results provide further theoretical evidences for the biological plausibility of
biological Oja’s rule to be a likely candidate of the dimensionality reduction in the retina-optical nerve path-
way. Specifically, we show that “biological Oja’s rule is a local Hebbian learning rule with bounded synaptic
weights that functions in a biologically-realistic time scale.” In particular, in this work we demonstrate that
biological Oja’s rule does not have any dependency on the dimension (i.e., n, the number of neurons) in
the local convergence setting while the dependency is logarithmic in the global convergence setting. More-
over, in the local convergence setting, the dependency of the convergence rate on the failure probability δ is
inverse-logarithmic in stead of O(1/δ).
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Furthermore, we prove the for-all-time guarantee of the biological Oja’s rule as an corollary of the
techniques used in the proof for the main theorems. By for-all-time guarantee we refer to the behavior of
a dynamic that always stays around the optimal solution after convergence. Especially, the dynamic would
not temporarily leave the neighborhood of the optimal solution. The for-all-time guarantee is of biological
importance because a biological system constantly adapts and functions, and it is not enough for a mechanism
to hold for only a brief moment. We state the theorem for the for-all-time guarantee as follows.

Theorem 1.8 (For-all-time guarantee with slowly diminishing rate). With the setting in Problem 1.2 and

dynamic in Definition 1.3, let gap := λ1 − λ2 > 0. For any ε, δ ∈ (0, 1), suppose 〈w0,v1〉2
‖w0‖22

≥ 1− ε/2. For any

t ∈ N, let ηt = O
(

ε·gap
λ1 log(t/δ)

)
, then

Pr

[
∀t ∈ N,

〈wt,v1〉2

‖wt‖22
≥ 1− ε

]
≥ 1− δ .

We should further notice that the learning rate is slowly-diminishing, i.e., ηt = Θ(1/ log t) instead of the
commonly used ηt = O(1/t), in the for-all-time guarantee (i.e., Theorem 1.8). This suggests the capability
of continual adaptation, which is crucial in the biological scenario. For example, if a person walks into a new
environment, the retina cells need to quickly adapt to the new environment and this cannot be achieved if
the learning rate already diminished too fast in the previous environment.

We remark that prior to this work, the for-all-time guarantee with slowly diminishing learning rates was
even unknown to any streaming PCA algorithms. The convergence in the limit result for biological Oja’s
rule requires ηt = o(1/

√
t) [Duf13] and the convergence rate analysis for non-biologically-plausible variants

of Oja’s rule requires ηt = Õ(1/t) [JJK+16, AZL17, LWLZ18] or ηt = O(1/
√
t) [Sha16]. In particular, all

previous works satisfy
∑
t η

2
t < ∞ while in this work we can achieve for-all-time convergence with much

weaker assumptions ηt = Θ(1/ log t) (hence
∑
t η

2
t =∞) for the biological Oja’s rule.

1.3 Technical overview

In this work, we give the first efficiency guarantee for the biological Oja’s rule in solving streaming PCA
with an (nearly) optimal convergence rate. In this subsection, we highlight three technical insights of our
analysis which lead us to a clean understanding in how the biological Oja’s rule solves streaming PCA. In
short, our high-level strategy is to first consider the continuous version of the Oja’s rule where the learning
rate η is set to be infinitesimal. In the continuous setting, the dynamic can be fully understood by tools
from the theory of ordinary differential equations (ODE) or stochastic differential equations (SDE). With
the inspiration from the continuous analysis, we are able to identify the right tools (e.g., linearization at two
different centers, etc.) to tackle the discrete dynamic.

Before we start, let us recall the problem setting and the goal. For simplicity, here we consider the
diagonal case where the covariance matrix A is a diagonal matrix, i.e., A = diag(λ1 . . . , λn) with λ1 > λ2 ≥
λ3 ≥ · · · ≥ λn ≥ 0. Thus the top eigenvector of A is e1, i.e., the indicator vector for the first coordinate, and
the goal becomes showing that w2

t,1 efficiently converges to 1 when t → ∞. A reduction from the general
case to the diagonal case is provided in Section 5.1.

Insight 1: Inspiration from the continuous dynamics The first insight is to analyze the biological
Oja’s rule in a way inspired by its continuous analog. The advantage to consider the continuous dynamics
is that not only it captures the inherent dynamics but also we can apply the theory of ODE and SDE to
obtain closed-form solutions. Thus, the continuous dynamic would serve as a hint on how to derive a tight
and closed-form analysis for the discrete dynamic.

Interestingly, the continuous SDE of the biological Oja’s rule degenerates into a simple deterministic
ODE almost surely (see Section 3 for a derivation). Specifically, for any t ≥ 0, we have

dwt,1

dt
≥ (λ1 − λ2)wt,1(1−w2

t,1) and ‖wt‖2 = 1 (1.9)

almost surely. Furthermore, observe that the continuous Oja’s rule is non-decreasing and has three fixed
points 0 and ±1 for wt,1 while the first is unstable and the later two are stable. Namely, in the continuous
dynamic, wt will eventually converge to ±e1, i.e., the top eigenvector of A.

6



Note that in a discrete stochastic dynamic, there are two sources of the noises: (i) the intrinsic stochas-
ticity from its continuous analog and (ii) the noise due to discretization. Thus, Equation 1.9 suggests that
the noise in the biological Oja’s rule only comes from discretization since the continuous Oja’s rule is deter-
ministic.

In addition to the limiting behavior, one can also read out finer structures of the continuous dynamic
from Equation 1.9 by solving the differential equation using standard tools from dynamical system. The
right hand side (RHS) of the inequality in Equation 1.9 is non-linear which usually does not have a clean
solution. A natural idea from dynamical system would then be linearizing the differential equation around
fixed points and applying the exact solution for a linear ordinary differential equation. Moreover, as there
are three fixed points in Equation 1.9, one can linearize the differential equation with center being either 0
or ±1. For simplicity, we focus on the two fixed points 0 and 1 while −1 can be analyzed similarly due to
symmetry.

For example, we can linearize at 0 by lower bounding the RHS of Equation 1.9 by ε(λ1 − λ2)wt,1 for
any wt,1 ∈ [0,

√
1− ε] (see Figure 2a). Similarly, we can linearize at 1 by using w0,1(λ1 − λ2)(1 −wt,1) for

any wt,1 ∈ [w0,1, 1] (see Figure 2b). Another choice would be linearizing at both 0 and 1. Concretely, we
linearize at 0 for wt,1 ∈ [0, 2/3] and linearize at 1 for wt,1 ∈ [2/3, 1] (see Figure 2c).

(a) Linearization only at 0. (b) Linearization only at 1. (c) Linearization at both 0 and 1.

Figure 2: In (a), we only linearize at 0 and use ε ·gap ·wt,1 to lower bound Equation 1.9 for wt,1 ∈ [0,
√

1− ε].
In (b), we only linearize at 1 and use (w0,1 ·gap · (1−wt,1)) for wt,1 ∈ [w0,1, 1]. On the other hand, in (c), we
linearize at both 0 and 1. For wt,1 ∈ [0, 2

3 ], we use 5
9gap ·wt,1 while for wt,1 ∈ [ 2

3 , 1] we use 10
9 gap · (1−wt,1).

One can see that the lower bounds in (c) are much tighter than that in (a) and (b) in the sense that the
slopes are of order Ω(gap) instead of O(ε · gap) or O(w0,1 · gap).

The main difference between linearizing only at a single fixed point and linearizing at two fixed points
is the slope in the linearization. Note that the slopes of the linearizations in Figure 2a and Figure 2b are
ε(λ1−λ2) and w0,1(λ1−λ2) respectively while the slope is of the order Ω(λ1−λ2) in Figure 2c. As the slope
corresponds to the speed of the convergence, the extra ε or w0,1 in the slope of linearization at a single fixed
point would result in an extra ε−1 or w−1

0,1 in the convergence rate. See Figure 2 for a pictorial explanation.

Another key inspiration from the continuous dynamic is the ODE trick which provides a close form
characterization of the dynamic in terms of the drifting term captured by the continuous dynamic and the
noise term originated from the linearization and discretization. The ODE trick is inspired by the solution to
a linear ordinary differential equation (linear ODE). Consider the following simple linear ODE

dy(t)

dt
= ay(t) + b(t)

for some constant a and function b(t). To put into the context, one can think of a as the drifting term and
b(t) as the noise term in the continuous Oja’s rule due to the linearization5. By the standard tool for solving
linear ODE, the solution of y(t) at t = T is

y(T ) = eaT ·

(
y(0) +

∫ T

0

e−atb(t)dt

)
. (1.10)

5In the biological Oja’s rule, the discretization also contributes in the noise term.
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From the above equation, one can see that the solution of a linear ODE extracts the drifting term into a

multiplier eaT and decouples the initial condition y(0) with the noise term
∫ T

0
e−atb(t)dt. As a consequence,

once we can show that the noise term is much smaller than the initial value, then y(T ) is dominated by the
drifting term eaT y(0) and thus we are able to analyze the progress of y(T ).

To sum up, the continuous dynamic informs us to linearize the biological Oja’s rule at different centers
in different phases of the analysis. Further, the ODE trick provides us a closed-form approximation to the
dynamic. We are then able to analyze the biological Oja’s rule in one-shot rather than doing the traditional
step-by-step analysis.

Insight 2: One-shot analysis instead of step-by-step analysis The second insight of this work is
performing an one-shot analysis instead of the traditional step-by-step analysis (e.g., [AZL17]).

Traditional step-by-step analysis To see the difference, let us illustrate how would the step-by-step
analysis on the biological Oja’s rule work as follows. Denote the natural filtration as {Ft} where Ft is the
σ-algebra generated by x1,x2, . . . ,xt. For any t ∈ N, we have

E [wt,1] = E
[
E
[
wt−1,1 + ηt(x

>
t wt−1)xt,1 − ηt(x>t wt−1)2wt−1,1 | Ft−1

]]
= E

[
wt−1,1 + ηtλ1wt−1,1 − ηt

(
n∑
i=1

λiw
2
t−1,i

)
wt−1,1

]

where the second equation is due to the fact that for any i, j ∈ [n], E[xt,ixt,j | Ft−1] = Aij = λi · 1i=j and
for any i ∈ [n], E[wt−1,i | Ft−1] = wt−1,i. In a step-by-step analysis, one then argues that the expectation
E[wt,1] would be improved from E[wt−1,1] by a certain factor. Then, an induction on each step followed by
showing concentration would give some convergence rate guarantee. However, there are two difficulties in
getting optimal convergence rate (these difficulties usually also appear in the step-by-step analysis for other
problems).

• First, there are some non-linear terms of wt−1,1 in the update noise. This usually requires some hacks
tailored to the specific problem to enable the analysis.

• Second, the improvement factor at each step can depend on wt−1 and at worst case, the dynamic can
show no improvement or even deteriorate. Taking expectation loses precise controls of the values of
wt−1. This makes naive martingale analysis difficult to work and probably requires more ad hoc tricks.

For instance, the first difficulty is exactly what [AZL17] encountered in their analysis for a variant of the
biological Oja’s rule. They resolved the first difficulty by decomposing the non-linear term in the dynamic
into a multi-dimensional chain and carefully bounding the chain with strong assumptions on learning rates
to enable martingale analysis. They used extremely delicate and complicated techniques tailored to the
dynamic to achieve optimal convergence rate. The biological Oja’s rule, in addition to having the first
difficulty, also has the second difficulty (see Appendix C for more discussions). Therefore, applying the
traditional step-by-step analysis on the biological Oja’s rule will encounter great obstacles.

Our one-shot analysis In this work, we use an one-shot analysis to avoid the complication of a step-
by-step analysis. Namely, instead of looking at the process iteratively, we study the entire dynamic at once.
Two key ingredients are needed to implement such an one-shot analysis: (i) a closed-form characterization
of the dynamic and (ii) stopping time techniques. As discussed in the previous discussion, the continuous
dynamic of the biological Oja’s rule inspires us to get a closed-form lower bound for wt,1 by the ODE trick.
Concretely, as a simplified example6, we have

wT,1 = HT ·

(
w0,1 +

T∑
t=1

Nt
Ht

)
(1.11)

6In general, the multiplier term also varies with respect to time t.
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where H > 1 is the multiplier term and {Nt} is the noise term which forms a martingale on the natural
filtration. See Corollary 6.4 and Corollary 7.3 for a precise formulation of H and {Nt} in our analysis.
Intuitively, one should think of HTw0,1 as the drifting term and the other part as the noise term. The goal
of the ODE trick in the discrete dynamic is to show that the drifting term dominates the noise term.

To show that the noise in Equation 1.11 is small, Azuma’s inequality (see Lemma 2.4) would be a natural
tool to start with. However, the bounded difference condition in Azuma’s inequality would immediately cause
an issue: the noise at time t is correlated with wt−1,1 and thus one cannot get a small bounded difference
almost surely. For example, suppose the bounded difference of {Nt} at time t is at most w2

t−1,1. Since we do
not yet know the behavior of wt−1,1, we can only upper bound the bounded difference of {Nt} in the worst
case7 by 1 + o(1). In the meantime, both w2

t,1 and the noise are expected to be very small in the early stage
of the dynamic with high probability.

To circumvent this obstacle, we consider the stopped process of the original martingale in which the
bounded difference is under control. For example, consider the above situation where the noise term {Nt}
is a martingale and a stopping time τ for the event {w2

τ,1 ≥ 0.1}. The stopped process, denoted by
{Nt∧τ} where t ∧ τ = min{t, τ}, is a process that simulates {Nt} and stops at the first time t∗ such that
w2
t∗,1 ≥ 0.1. It is known that a stopped process of a martingale is also a martingale. Furthermore, the

bounded difference of the stopped process {Nt∧τ} would be 0.1 almost surely by the choice of τ . It turns
out that this improvement in the bounded difference condition drastically increases the quality of Azuma’s
inequality and gives the desiring concentration for the stopped process.

There is one last missing step before showing the dominance of w0,1 in Equation 1.11: we have to show
that the concentration for the stopped process {Nt∧τ} can be extended to the original process {Nt}. We
achieve this task by developing a pull-out lemma which is able to utilize the structure of the martingale and
pull out the stopping time from a concentration inequality.

Insight 3: Maximal martingale inequality and pull-out lemma In general, there is no hope to pull
out the stopping time from a concentration inequality for the stopped process without blowing up the failure
probability. The naive union bound would give a blow-up of factor T in the failure probability and it is
undesirable.

Let Mt =
∑t
t′=1H

−t′Nt′ be the noise term in the ODE trick (i.e., Equation 1.11) and τ be a stopping
time that ensures good bounded difference condition. Note that as {Nt} is a martingale, we know that
{Mt∧τ} is also a martingale. There are two key ingredients to pull out the stopping time from {Mt∧τ}, i.e.,
the stopped process of the noise term.

First, we use the maximal concentration inequality (e.g., Lemma 2.5) which gives the following stronger
guarantee than the traditional Azuma’s inequality.

Pr

[
sup

1≤t≤T
|Mt∧τ −M0| ≥ a

]
< δ (1.12)

for some a > 0, T ∈ N, and δ ∈ (0, 1). Note that the maximal concentration inequality gives concentration
for any 1 ≤ t ≤ T without paying an union bound.

Second, we identify a chain structure on the martingale and the stopping time τ we are working with.
Concretely, we are able to show that for all t ∈ [T ],

Pr

[
τ ≥ t+ 1

∣∣∣ sup
1≤t′≤t

|Mt′ −M0| < a

]
= 1 . (1.13)

Namely, if the bad event has not happened, then the martingale would not stop immediately. Intu-
itively, Equation 1.13 holds due to the ODE trick because {sup1≤t′≤t |Mt′ −M0| < a} implies the noise
term to be small and thus the drifting term dominates. As τ is properly chosen such that the martingale
would not stop if the process wt followed the drifting term, we know that τ ≥ t+ 1.

Combining the above two ingredients (i.e., Equation 1.12 and Equation 1.13), we are able to show in the
pull-out lemma that

Pr

[
sup

1≤t≤T
|Mt −M0| ≥ a

]
< δ ,

7This is because we are able to upper bound wt−1,1 by 1 + o(1) almost surely. See Section 5.2. Note that there are ways to
get better bounded difference condition in the worst case but this is still not sufficient.
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i.e., the stopping time has been pulled out.

Let us end this subsection with a high-level sketch on the proof for the pull-out lemma. The key idea is
to consider another stopping time τ ′ for the event {|Mτ ′ −M0| ≥ a} and partition the probability space of
the error event {sup1≤t≤T |Mt −M0| ≥ a} in to two parts P1 and P2 with the following properties. In P1,
we can show that

Pr

[
sup

1≤t≤T
|Mt −M0| ≥ a, P1

]
= Pr

[
sup

1≤t≤T
|Mt∧τ −M0| ≥ a, P1

]
.

As for P2, we use the chain condition in Equation 1.13 to show that the probability of error event is 0 based
on a diagonal argument. Thus, we have

Pr

[
sup

1≤t≤T
|Mt −M0| ≥ a

]
= Pr

[
sup

1≤t≤T
|Mt −M0| ≥ a, P1

]
+ Pr

[
sup

1≤t≤T
|Mt −M0| ≥ a, P2

]
= Pr

[
sup

1≤t≤T
|Mt∧τ −M0| ≥ a, P1

]
+ 0

≤ Pr

[
sup

1≤t≤T
|Mt∧τ −M0| ≥ a

]
< δ .

See Section 7.4 and Figure 3 for more details on the chain condition for biological Oja’s rule and how to
partition the probability space of the error event.

1.4 Related works

Biological Oja’s variants and other Hebbian learning rules Computational neuroscientists have pro-
posed several variants of the biological Oja’s rule that solve different computational problems. For example,
least square learning [OBL00], streaming PCA with `1 constraint [Apa12], and subspace learning [PHC15].
However, similar to the situation in the biological Oja’s rule, people only showed guarantees on the conver-
gence in the limit and did not provide a convergence rate analysis. Some works also attempted to obtain more
than one principal component using variants of Oja’s rule, but these dynamics are less biologically-plausible
because they are either not local [San89] [Oja92] or store complicated local variables [PHC15]. Other forms
of Hebbian learning rules has also been developed for applications other than PCA. For example, BCM
rule [BCM82] and covariance rule [Sej77] are two well-known Hebbian learning rules which were successfully
applied to explain the input selectivity in the development of the visual field. A recent work by Lynch and
Mallmann-Trenn [LMT19] used Oja’s rule to learn hierarchically structured concepts. They provided theo-
retical guarantee for the efficiency in a special case where the input is deterministic or nearly deterministic
while we can handle arbitrary inputs.

Oja’s rule in machine learning Unlike the situation in the biological Oja’s rule, a line of recent exciting
results [HP14, DSOR15, BDWY16, Sha16, JJK+16, AZL17] showed convergence rate analysis for variants
of Oja’s rule in the machine learning community. Since the update rules of these works are not biologically-
plausible, we call them ML Oja’s rules to distinguish from the biological Oja’s rule.

To see the difference between the biological Oja’s rule and the ML Oja’s rule, let us take the update
rule from [Sha16, JJK+16, AZL17] as an example. Note that the other variants of ML Oja’s rule also have
the similar fundamental difference to the biological Oja’s rule as illustrated by the following example. Let
wt ∈ Rn be the output vector at time t = 0, 1, . . . , T , the update rule is

wt =

t∏
t′=1

(
1 + ηt′xt′x

>
t′
)
w0

and the output is wT /‖wT ‖2. Note that the above update rule is equivalent to Equation 1.5, i.e., applying
Taylor’s expansion on the ML Oja’s rule and truncating the higher-order terms would result in biological
Oja’s rule.
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A natural idea would be trying to couple the biological Oja’s rule with the ML Oja’s rule by showing
that for all t ∈ N, the weight vectors from the two dynamics would be close to each other. However, this
seems to be more difficult than direct analysis and we leave it as an interesting open problem to investigate
whether this is the case. Moreover, the corresponding continuous dynamics suggest an intrinsic difference
between the two: the continuous version of the ML Oja’s rule can be tightly characterized by a single linear
ODE while that of the biological Oja’s rule requires two linear ODEs in different regimes for tight analysis.
See Section 3 and Appendix C for more details.

To sum up, the biological Oja’s rule and the ML Oja’s rule are similar but the analysis of the later cannot
be directly applied to the former. While following the proof idea for the ML Oja’s rule might give some
hints on how to analyze the biological Oja’s rule, in this work we develop a completely different framework
(as briefly discussed in Section 1.3). This framework not only gives the first and nearly optimal convergence
rate guarantee for the biological Oja’s rule, but also could improve the convergence rate of the ML Oja’s
rule with better logarithmic dependencies and we leave it as a future work.

Comparing with other streaming PCA algorithms Streaming PCA is a well-studied and challenging
computational problem. Many works [DSOR15, Sha16, LWLZ18, JJK+16, AZL17] provided theoretical
guarantees for streaming PCA algorithms. Interestingly, all of the streaming PCA algorithms in these works
are some variants of the biological Oja’s rule.

Recall that there are two standard convergence notions: the global convergence where w0 is an uniformly
random unit vector and the local convergence where w0 is constantly correlated with the top eigenvector.
There are 5 parameters of interest: the dimension n ∈ N, the eigenvalue gap gap := λ1 − λ2 ∈ (0, 1), the
top eigenvalue λ1 ∈ (0, 1), the error parameter ε ∈ (0, 1), and the failure probability δ ∈ (0, 1). Ideally, the
goal is to achieve the information-theoretic lower bound Ω(λ1gap

−2ε−1 log(δ−1)) given by [AZL17]. Prior
to this work, the state-of-the-art for both global and local convergences are achieved by [AZL17] using ML
Oja’s rule (see the second to last row of Table 1). In this work, as a byproduct, the convergence rate we get
for the biological Oja’s rule outperforms [AZL17] by a logarithmic factor in both settings. See Table 1 for a
summary.

Algorithm Reference Any
Input

Global Convergence Local Convergence

Convergence
Rate

Degree in

Log Terms
∗ Convergence

Rate

Degree in

Log Terms
∗

Biological
Oja’s Rule This Work Y Õ

(
λ1

gap2 ·
1

ε∧δ2

)
3 Õ

(
λ1

gap2 ·
1
ε

)
2

ML
Oja’s Rule

[DSOR15] N Õ
(

n
gap2 ·

1
ε

)
† - ‡ Õ

(
n

gap2 ·
1
ε

)
† - ‡

[Sha16] Y Õ
(

n
gap2 ·

1
ε

)
† - ‡ Õ

(
n

gap2 ·
1
ε

)
† - ‡

[LWLZ18] N Õ
(
λ1n
gap2 ·

1
εδ6

)
- ‡ Õ

(
λ1n
gap2 ·

1
εδ4

)
- ‡

[JJK+16] Y Õ
(
λ1

gap2 ·
1
εδ3

)
2 Õ

(
λ1

gap2 ·
1
εδ3

)
2

[AZL17] Y Õ
(
λ1

gap2 ·
1

ε∧δ2

)
≥ 4 Õ

(
λ1

gap2 ·
1
ε

)
≥ 3

Any
Algorithm [AZL17] Ω

(
λ1

gap2 ·
log 1

δ

ε

)
§

Table 1: Convergence rate for biological Oja’s rule and ML Oja’s rule in solving streaming PCA. The
“Any Input” column indicates that whether the analysis has higher moment conditions on the unknown
distribution D. Note that having higher moment conditions would drastically simplify the problem because
the non-linear terms in the update rule can then be non-trivially replaced with the first order term.
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Algorithms inspired by biological neural networks In recent years, the study of the algorithmic
aspect of mathematical models for biological neural networks is an emerging field in theoretical CS. For
example, the efficiency of spiking neural networks in solving the winner-take-all (WTA) problem [LMP17a,
LMP17b, LMP17c, LM18, SCL19], the efficiency of spiking neural networks in storing temporal informa-
tion [WL19, HP19], assemblies [LMPV18, PV18], and spiking neural networks in solving optimization prob-
lems [CCL19, Peh19]. Under this context, this work provides an algorithmic insight in a plasticity learning
rule that solves streaming PCA.

2 Preliminaries

2.1 Notations

We use N = {1, 2, . . . } and N≥0 = {0, 1, . . . }. For each n ∈ N, denote [n] = {1, 2, . . . , n} and [n]≥0 =

{0, 1, . . . , n}. For a vector indexed by time t, e.g., wt, its ith coordinate is denoted by wt,i. The notation Õ

(similarly, Ω̃ and Θ̃) is the same as the big-O notation by ignoring extra poly-logarithmic term. 1E stands
for the indicator function for a probability event E. We sometimes abuse the big O notation by y = O(x)
meaning |y| = O(x) and this will be clear in the context. Throughout the paper, λ is used to denote the
vector (λ1, λ2, . . . , λn) where λ1 > λ2 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of the covariance matrix A. diag(λ)
denotes the diagonal matrix with λ on the diagonal.

2.2 Probability toolbox

2.2.1 Random unit vector

The following lemma shows that with random initialization, the inner product between w0 and the top
eigenvector of the covariance matrix is of order Ω(1/

√
n) with high probability.

Lemma 2.1. For any δ ∈ (0, 1) and unit vector v0 ∈ Rn, let v be a random unit vector in Rn. Then

Pr

[∣∣∣v>0 v
∣∣∣2 ≤ 10δ2

n

]
< δ .

2.2.2 Random process and concentration inequality

Random process is a central tool in this paper. Let us start with the most general definition on adapted
random process.

Definition 2.2 (Adapted random process). Let {Xt}t∈N≥0
be a sequence of random variables and {Ft}t∈N≥0

be a filtration. We say {Xt}t∈N≥0
is an adapted random process with respect to {Ft}t∈N≥0

if for each t ∈ N≥0,
the σ-algebra generated by X0, X1, . . . , Xt is contained in Ft.

In most of the situation, we use Ft to denote the natural filtration of {Xt}t∈N≥0
, namely, Ft is defined as

the σ-algebra generated by X0, X1, . . . , Xt. One of the most common adapted processes is the martingale.

Definition 2.3 (Martingale). Let {Mt}t∈N≥0
be a sequence of random variables and let {Ft}N be its natural

filtration. We say {Mt}t∈N≥0
is a martingale if for each t ∈ N, E[Mt+1 | Ft] = Mt.

Note that for any adapted random process {Xt}t∈N≥0
, one can always turn it into a martingale by defining

M0 = X0 and for any t ∈ N, let Mt = Xt−E[Xt | Ft−1]. When the difference of a martingale can be bounded
almost surely, the Azuma’s inequality provides an useful concentration inequality with exponential tail.

∗Let f(logn, log(1/ε), log(1/δ), log(1/gap)) be the polynomial of the logarithmic dependencies in the convergence rate. We
compare the maximum degree of f among different analyses. Note that this measure makes sense when n, 1/ε, 1/δ, 1/gap are
polynomially related.
†Both [DSOR15] and [Sha16] cannot handle arbitrary failure probability so we ignore their δ dependency on the table.
‡In [DSOR15, Sha16, LWLZ18], their convergence rates are far from the information-theoretic lower bound. So we do not

trace down their logarithmic dependencies.
§In [AZL17], they only stated Ω( λ1

gap
· 1
ε
) lower bound. We observe that their lower bound can be improved by a log(1/δ)

factor using the fact that distinguishing a fair coin from a biased coin with probability at least δ requires Ω(log(1/δ)) samples.
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Lemma 2.4 (Azuma’s inequality [Azu67]). Let {Mt}t∈N≥0
be a martingale. Let T ∈ N and a, c ≥ 0 be some

constants. Suppose for each t = 1, 2, . . . , T , |Mt −Mt−1| ≤ c almost surely, then we have

Pr [|MT −M0| ≥ a] < exp

(
−Ω

(
a2

c2T

))
.

The following maximal Azuma’s inequality shows that one can even get union bound for free with the
help of Doob’s inequality.

Lemma 2.5 (Maximal Azuma’s inequality [HMRAR13, Section 3]). Let {Mt}t∈N≥0
be a martingale. Let

T ∈ N and a, c ≥ 0 be some constants. Suppose for each t = 1, 2, . . . , T , |Mt−Mt−1| ≤ c almost surely, then
we have

Pr

[
sup

0≤t≤T
|Mt −M0| ≥ a

]
< exp

(
−Ω

(
a2

c2T

))
.

The Azuma’s inequality can be strengthen by considering the conditional variance. This is known as the
Freedman’s inequality.

Lemma 2.6 (Freedman’s inequality [Fre75]). Let {Mt}t∈N≥0
be a martingale. Let T ∈ N and a, c, σt ≥ 0

be some constants for all t ∈ [T ]. Suppose for each t = 1, 2, . . . , T , |Mt −Mt−1| ≤ c almost surely and
Var[Mt | Ft−1] ≤ σ2

t , then we have

Pr

[
sup

0≤t≤T
|Mt −M0| ≥ a

]
< exp

(
−Ω

(
a2∑T

t=1 σ
2
t + ca

))
.

Finally, we state a corollary of Freedman’s inequality for adapted random process with small conditional
expectation.

Corollary 2.7. Let {Mt}t∈N≥0
be a random process. Let T ∈ N and a, c, σt, µt ≥ 0 be some constants for

all t ∈ [T ]. Suppose for each t = 1, 2, . . . , T , |Mt −Mt−1| ≤ c almost surely, Var[Mt | Ft−1] ≤ σ2
t , and

|E[Mt −Mt−1 | Ft−1]| ≤ µt, then we have

Pr

[
sup

0≤t≤T
|Mt −M0| ≥ a+ max

1≤t≤T

T∑
t=1

µt

]
< exp

(
−Ω

(
a2∑T

t=1 σ
2
t + ca

))
.

2.2.3 Stopping time

One powerful technique for studying martingale is the notion of stopping time defined as follows.

Definition 2.8 (Stopping time). Let {Xt}t∈N≥0
be an adapted random process associated with filtration

{Ft}t∈N≥0
. An integer-valued random variable τ is a stopping time for {Xt}t∈N≥0

if for all t ∈ N, {τ = t} ∈
Ft.

Let {Mt}t∈N≥0
be a martingale, the most common stopping time for {Mt}t∈N≥0

is of the following form.
For any a ∈ R, let

τ := min
Mt≥a

t .

Namely, τ is the first time when the martingale becomes at least a. For convenience, in the rest of the paper,
we would define stopping time of this form by saying “τ is the stopping time for the event {Mτ ≥ a}”.

Given a martingale {Mt}t∈N≥0
and a stopping time τ , it is then natural to consider the corresponding

stopped process {Mt∧τ}t∈N≥0
where t∧ τ = min{t, τ} is also a random variable. An useful and powerful fact

here is that the stopped process of a martingale is also a martingale. See [Wil91, Theorem 10.9] for a proof
for this classic result. In the rest of this paper, we sometimes write {Mt0+t∧τ} to denote martingale starts
with time t0 and τ is used as the stopping time after t0 (instead of starting from time 0).
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2.2.4 Brownian motion

In Section 3, we consider a continuous version of biological Oja’s rule by modeling the input stream as a
Brownian motion. Here, we provide background that is sufficient for the readers to understand the discussion
there.

First, we introduce the 1-dimensional Brownian motion using the following operational definition. In the
following, we use N(µ, σ2) to denote the Gaussian distribution with mean µ and variance σ2.

Definition 2.9 (1-dimensional Brownian motion). Let {βt}t≥0 be a real-valued random process. We say
{βt}t≥0 is a 1-dimensional Brownian motion if the following holds.

• For any 0 ≤ t1 < t2, βt2 − βt1 ∼ N(0, t2 − t1).

• For any 0 = t0 ≤ t1 < · · · < t`, for each i ∈ [`], βti − βti−1
are independent.

With the above definition, it is then natural to consider some variants such as putting n independent
copies of 1-dimensional Brownian motion into a vector, i.e., the n-dimensional Brownian motion, or applying
linear operations on an n-dimensional Brownian motion, or considering the calculus on Brownian motion by
looking at dβt = lim∆→0 βt+∆−βt. The role of Brownian motion in the study of continuous random process
is similar to Gaussian random variance in discrete random process and many properties in the discrete world
directly extend to the continuous world. One property of Brownian motion though obviously does not hold
in the discrete setting and might be counter-intuitive for people who see this in the first time. This is the
quadratic variation of Brownian motion as stated below.

Lemma 2.10 (Quadratic variation of Brownian motion). Let {βt}t≥0 and {β′t}t≥0 be two independent 1-
dimensional Brownian motions. The following holds almost surely.

dβ2
t = dt and dβtdβ

′
t = 0 .

We omit the proof of Lemma 2.10 here and refer the interested readers to standard textbook such
as [LG16] for more details on Brownian motion.

2.3 ODE toolbox

Lemma 2.11 (ODE trick for scalar). Let {Xt}t≥N≥0
, {At}t∈N, and {Ht}t∈N be sequences of random variables

with the following dynamic
Xt = HtXt−1 +At (2.12)

for all t ∈ N. Then for all t0, t ∈ N≥0 such that t0 < t, we have

Xt =

t∏
i=t0+1

Hi ·

(
Xt0 +

t∑
i=t0+1

Ai∏i
j=t0+1Hj

)
.

Proof of Lemma 2.11. For each t0 < i ≤ t, dividing Equation 2.12 with
∏i
j=t0+1Hj on both sides, we have

Xi∏i
j=t0+1Hj

=
Xi−1∏i−1
j=t0+1Hj

+
Ai∏i

j=t0+1Hj

.

By telescoping the above equation from t = t0 + 1 to t, we get the desiring expression.

Lemma 2.13 (ODE trick for vector). Let m ∈ N and {Xt}t≥N≥0
, {At}t∈N be sequences of m-dimensional

random variables and {Ht}t∈N be a sequence of random m×m matrices with the following dynamic

Xt = HtXt−1 +At (2.14)

for all t ∈ N. Then for all t0, t ∈ N≥0 such that t0 < t, we have

Xt =

t∏
i=t0+1

HiXt0 +

t∑
i=t0+1

t∏
j=i+1

HjAi .

Proof of Lemma 2.13. The proof is a direct induction.
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2.4 Approximation toolbox

Here we state some useful inequalities. Since some are quite standard, the proofs are omitted.

Lemma 2.15. For any x ∈ (−0.5, 1),

1 + x ≤ ex ≤ 1 + x+ x2 ≤ 1 + 2x .

In fact for all x ≥ 0, the first inequality holds.

Lemma 2.16. For any x ∈ (0, 0.5) and t ∈ N,

1 +
xt

2
≤ e xt2 ≤ (1 + x)t ≤ ext .

Lemma 2.17. For any ε ∈ (0, 0.2), we have ( ε
8

)1− 1

log 1
ε ≤ ε.

Proof. Rewrite the expression as the follows.

( ε
8

)1− 1

log 1
ε = ε ·

(
8

ε

) 1

log 1
ε · 1

8
.

It suffices to show that the product of the last two terms is smaller than 1. Consider the logarithm of them,
we have

log

((
8

ε

) 1

log 1
ε · 1

8

)
=

1

log 1
ε

(
3 + log

1

ε

)
− 3 = 3

(
1

log 1
ε

− 1

)
+ 1.

When ε < 0.2, we have log(1/ε) > 2 and the equation becomes

≤
(

1

2
− 1

)
3 + 1 < 0

as desired.

3 Analyzing the Continuous Version of Oja’s Rule

In this section, we introduce the continuous version of Oja’s rule and analyze its convergence rate. The
analysis here serves as an inspiration for attacking the discrete dynamic. To model the continuous dynamics,
we use Brownian motion to capture the continuous stream of inputs. Surprisingly, it turns out that this
continuous version of Oja’s rule is deterministic. Thus, we are able to use the tools from ODE to easily give
an exact characterization of how it converges to the top eigenvector of the covariance matrix. As a disclaimer,
since the analysis for continuous Oja’s rule is mainly for intuition, we would omit some mathematical details
and point the interested readers to the corresponding resources.

3.1 Continuous Oja’s rule is deterministic

In the rest of the section we are going to focus on the diagonal case where the covariance matrix A = diag(λ)
and the goal is showing that wt,1 goes to 1. This is sufficient since there is a reduction from the general case
to the diagonal case as explained in Section 5.1.

Intuitively, the continuous dynamic is the limiting process of biological Oja’s rule with learning rate η

going to 0. Formally, for each i ∈ [n], let (β
(i)
t )t≥0 be an independent 1-dimensional Brownian motion and

let (Bt)t≥0 be an n-dimensional random process with the ith entry being Bt,i =
√
λiβ

(i)
t for each t ≥ 0. Now,

the difference of Bt should then be thought of as ηxt.
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Concretely, to see why (Bt)t≥0 captures the input behavior of streaming PCA in the continuous setting,
let us first discretize (Bt)t≥0 using constant step size ∆ > 0. Now, observe that for each t ≥ 0, Bt+∆ − Bt
is an isotropic Gaussian vector with the variance of the ith entry being λi ·∆. Namely,

1

∆
E
[
(Bt+∆ −Bt) (Bt+∆ −Bt)>

]
= diag(λ) . (3.1)

Thus, by discretizing Bt into intervals of length ∆ > 0,
{

1√
∆

(
Bj·∆ −B(j−1)·∆

)}
j∈N

naturally forms a stream

of i.i.d. input8 with covariance matrix being A. To put this into the context of biological Oja’s rule, one
should think of η = ∆, xj = 1√

∆
∆Bj , and yj = x>j wj−1 for each j ∈ N where ∆Bj =

(
Bj·∆ −B(j−1)·∆

)
9.

Then, we get the following dynamic.

wj = wj−1 + η · yj (xj − yjwj−1)

= wj−1 + ∆B>j wj−1∆Bj −
[
∆B>j wj−1

]2
wj−1 .

The above dynamics becomes continuous once we let ∆→ 0. Formally, we replace10 Bt+∆−Bt with dBt
and index the weight vector by t ≥ 0, i.e., (wt)≥0. The above dynamic becomes the following SDE.

dwt = dB>t wtdBt −
(
dB>t wt

)2
wt . (3.2)

It might look absurd at first glance (for those who have not seen stochastic calculus before) that there
is a quadratic term of dBt in Equation 3.2. Nevertheless, it is in fact mathematically well-defined and
we recommend standard resource such as [LG16] for more details. Intuitively, the quadratic term (which
is formally called the quadratic variation) of a Brownian motion should be thought of as a deterministic
quantity. Concretely, let (βt)≥0 be a Brownian motion, we have dβ2

t = dt almost surely (see Lemma 2.10).
Thus, for the (Bt)t≥0 defined here, we would have

dBt,idBt,j =

{
λidt , i = j
0 , i 6= j

for each i, j ∈ [n]. As a consequence, the continuous Oja’s rule defined in Equation 3.2 can be rewritten as
the following deterministic process almost surely.

dwt =
[
diag(λ)wt −w>t diag(λ)wtwt

]
dt . (3.3)

With the continuous Oja’s rule being deterministic as in Equation 3.3, it is then not difficult to have a tight
analysis on its convergence using tools from ODE as explained in the next subsection.

3.2 One-sided versus two-sided linearization

In this subsection, we analyze Equation 3.3 by linearizing the dynamic at 0 and 1 respectively and get two
incomparable convergence rates (Theorem 3.4 and Theorem 3.5).

Theorem 3.4 (Linearization at 0). Suppose w0,1 > 0. For any ε ∈ (0, 1), when t ≥ Ω
(

log(1/w2
0,1)

ε(λ1−λ2)

)
, we have

w2
t,1 > 1− ε.

Theorem 3.5 (Linearization at 1). Suppose w0,1 > 0. For any ε ∈ (0, 1), when t ≥ Ω
(

log(1/ε)
w0,1(λ1−λ2)

)
, we

have w2
t,1 > 1− ε.

8Though here is a caveat that the length of the input vector might not be 1. Nevertheless, the point of continuous dynamic
is not to exactly characterize the limiting behavior of discrete Oja’s rule. Instead, the goal here is to capture the intrinsic
properties of the biological Oja’s rule.

9Here we abuse the notation of ∆. When we write ∆Bj , the ∆ is regarded as an operator instead of the interval length.
10This replacement might look weird for those who have not seen Brownian motion before. But this is standard and can be

found in textbook such as [LG16].
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The proofs for Theorem 3.4 and Theorem 3.5 are based on applying Taylor’s expansion on Equation 3.3
with center either being 0 or 1. Then, we approximate the dynamics with linear differential equations and use
tools from ODE to get an tight analysis. See Appendix B for the details on the linearizations of continuous
Oja’s rule.

When starting with a random vector, i.e., w0,1 = Ω(1/
√
n) with high probability, the above convergence

rates become O
(

logn
ε(λ1−λ2)

)
and O

(√
n log(1/ε)
λ1−λ2

)
respectively. This indicates that linearizing only on one side

(either at 0 or at 1) would not give tight analysis. Nevertheless, if we invoke Theorem 3.4 with the error

parameter being 0.5, then for some t1 = O
(

logn
λ1−λ2

)
, we have wt1,1 > 0.5. Next, we invoke Theorem 3.5

starting from wt1 and with the error parameter being ε, then for some t2 = O
(

log(1/ε)
λ1−λ2

)
, we have wt1+t2,1 >

1− ε. Putting these together, we have the following theorem combining the linearizations on both sides.

Theorem 3.6 (Linearization at both 0 and 1). Suppose w0,1 > 0. For any ε ∈ (0, 1), when

t ≥ Ω

 log 1
w2

0,1
+ log 1

ε

λ1 − λ2

 ,

we have w2
t,1 > 1− ε.

The above theorem for the convergence rate of the continuous Oja’s rule gives three key insights. First,
it suggests that one should linearize at 0 in the beginning of the process and switch to linearizing at 1 when
wt,1 becomes Ω(1). Second, after the linearization, using linear ODE to give exact characterization of the
dynamic would give tight analysis. Finally, the continuous dynamic is deterministic and will stay around the
optimal region for all time after certain point. This suggests that the for-all-time guarantee could potentially
happen in the original discrete setting.

4 Main Result

Now, let us state the formal version of the main theorem for the biological Oja’s rule. In the following, all
of the theorems and lemmas are stated with respect to the setting of Problem 1.2 and Definition 1.3. Thus,
for simplicity, we would not repeat the setup in their statements.

In Theorem 4.1, we show that it would not take too much time for the biological Oja’s rule to achieve
both constant error and arbitrary small error. Next, in Theorem 4.2 we show that once wt becomes ε-close to
the top eigenvector v1, it will stay in the neighborhood of v1 for a long time. Thus, combining Theorem 4.1
and Theorem 4.2, we can get the standard convergence notions as stated in Theorem 1.7 and Theorem 1.8.

Theorem 4.1. For any ε, δ ∈ (0, 1), we have the following results.

• (Phase 1: Toward constant error) Suppose w0 is uniformly sampled from the unit sphere of Rn. Let τ to

be the stopping time for the event { 〈wτ ,v1〉2
‖wτ‖22

≥ 2/3} and let ηt = η = O

(
δ2(λ1−λ2)

λ1 log2 n
δ(λ1−λ2)

)
, then there exists

t1 = O
(

log(n/δ)
η(λ1−λ2)

)
such that Pr [τ ≤ t1] ≥ 1− δ. Specifically, we have

t1 = O

(
λ1 log n

δ log2 n
δ(λ1−λ2)

δ2(λ1 − λ2)2

)
.

• (Phase 2: Toward arbitrarily small error) Suppose 〈w0,v1〉2
‖w0‖22

= Ω(1). For any t ∈ N, let ηt = η =

O

(
ε(λ1−λ2)

λ1 log
log log 1

ε
δ

)
, then there exists t2 = O

(
log(1/ε)
η(λ1−λ2)

)
such that Pr

[
〈wt2 ,v1〉2

‖wt2‖
2
2
≥ 1− ε

]
≥ 1− δ. Specifically,

we have

t2 = O

(
λ1 log 1

ε log
log log 1

ε

δ

ε(λ1 − λ2)2

)
.
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Proof structure of Theorem 4.1 To prove Theorem 4.1, we first reduce the general setting where the
covariance matrix A being PSD to the special case where A = diag(λ) in Section 5.1. Next, an important
property of biological Oja’s rule showing the boundedness of ‖wt‖22 is provided in Section 5.2. The rest of the
proof proceeds in two phases: In Phase 1 (see Section 6), we analyze the speed of biological Oja’s rule getting
constant error using linearization at 0. This is summarized in Theorem 6.1. In Phase 2 (see Section 7), we
analyze how fast does biological Oja’s rule go from constant error regime to the ε error regime. This is
summarized in Theorem 7.1.

Theorem 4.2. For any ε, δ ∈ (0, 1), suppose 〈w0,v1〉2
‖w0‖22

≥ 1− ε/2, we have the following results.

• (Fixed learning rate) For any T, t ∈ N, let ηt = η = O
(
ε(λ1−λ2)

λ1 log T
δ

)
, then

Pr

[
∀t ≤ T, 〈wt,v1〉2

‖wt‖22
≥ 1− ε

]
≥ 1− δ .

• (Slowly diminishing learning rate) For any t ∈ N, let ηt = O
(
ε(λ1−λ2)
λ1 log t

δ

)
, then

Pr

[
∀t ∈ N,

〈wt,v1〉2

‖wt‖22
≥ 1− ε

]
≥ 1− δ .

Proof structure of Theorem 4.2 The proof of Theorem 4.2 is a direct application of Lemma 7.4 from
Phase 2. Since there is no new technique involves except properly setting the parameters, we postpone the
whole proof to Appendix F.

5 Preprocessing

Before the main analysis of biological Oja’s rule, we provide two useful observations on the dynamic in
this section. Specifically, we show in Section 5.1 that considering the covariance matrix being diagonal is
sufficient for the analysis and in Section 5.2 that ‖wt‖22 = 1±O(η) almost surely for all t ∈ N.

5.1 A reduction to the diagonal case

In this subsection, we show that it suffices to analyze the case where the covariance matrix A is a diagonal
matrix D. Recall that A is defined as the expectation of xx> and thus it is positive semidefinite. Namely,
there exists an orthonormal matrix U and a diagonal matrix D such that A = UDU>. Especially, the
eigenvalues of A, i.e., 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, are the entries of D from top left to bottom right on the
diagonal. Thus, by a change of basis, we can focus on the case where A = D without loss of generality.

To see this, consider w̃t = Uwt and x̃t = Uxt. As U>U = UU> = I, we have x̃>t w̃ = x>t w and
E[x̃x̃>] = D. Let v1 be the top eigenvector of A (i.e., the first row of U), we also have

‖wt − v1‖2 = ‖Uwt − Uv1‖2 = ‖w̃t − e1‖2

where e1 is the indicator vector for the first coordinate. Namely, it suffices to analyze how fast does w̃t

converge to e1. Thus, in the rest of this paper, we without loss of generality consider the diagonal case where
the goal would then be showing that w2

t,1 ≥ 1− ε.

5.2 Bounded conditions of Oja’s rule

In this subsection, we show that the `2 norm of the weight vector is always close to 1 almost surely.

Lemma 5.1. For any η ∈ (0, 0.1), if for all t ∈ N, ηt ≤ η, then for all t ∈ N≥0, 1− 10η ≤ ‖wt‖22 ≤ 1 + 10η
almost surely.
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Proof. Here we only prove the upper bound while the lower bound can be proved using the same argument.
The proof is based on induction. For the base case where t = 0, we have ‖w0‖22 = 1 from the problem
setting. For the induction step, consider any t ∈ N such that wt−1 satisfies the bounds, we have

‖wt‖22 = ‖wt−1‖22 + 2ηt ·w>t−1

[
x>t wt−1xt − (x>t wt−1)2wt−1

]
+ η2

t · ‖x>t wt−1xt − (x>t wt−1)2wt−1‖2

= ‖wt−1‖22 − 2ηt(x
>
t wt−1)2 · (‖wt−1‖22 − 1) + 2η2

t (x>t wt−1)2 ·max{‖xt‖22, (x>t wt−1)2‖wt−1‖22} .

Consider two cases: (i) ‖wt−1‖22 ≤ 1 + 8η and (ii) 1 + 8η < ‖wt−1‖22 ≤ 1 + 10η. Note that ‖wt‖22 ≤ 1 + 10η
in both cases. This completes the induction and the proof.

6 Phase 1: Toward Constant Error

In this section, we study the stopping time τ for the event {w2
t,1 ≥ 4

9}. We show that for any failure

probability δ ∈ (0, 1), we have Pr[τ > t1] < δ for some t1 = Õ(λ1δ
−2gap−2). The following is the formal

theorem statement.

Theorem 6.1. For any n ∈ N, δ ∈ (0, 1), w0 a random unit vector in Rn, and

η = O

(
δ2(λ1 − λ2)

λ1 log2 n
δ(λ1−λ2)

)

there exists

t1 = O

(
log n

δ

η(λ1 − λ2)

)
such that if for all t ∈ N, ηt = η, then

Pr[τ > t1] < δ .

Specifically, the stopping time τ is of order O

(
λ1 log n

δ log2 n
δ(λ1−λ2)

δ2(λ1−λ2)2

)
with probability at least 1− δ.

The proof of Theorem 6.1 contains three steps. First, we linearize the biological Oja’s rule and apply
the ODE trick to get a closed-form expression for the updates in Section 6.1. Next, in Section 6.2 we use
the corollary of Freedman’s inequality (i.e., Corollary 2.7) to show that the the stopped process of the noise
term in this closed-form expression is small and thus the updates will be dominated by the drifting term.
Finally, we wrap up the proof in Section 6.3 using stopping time arguments.

Dictionary for parameters in Phase 1 Since the analysis is recursive, some of the parameters, e.g.,
the failure probability δ, are scaled by δ/ log(n/δ) in some of the lemmas. Also, we use T instead of t1 in
most of the lemmas because some parameters depend on T so in the end we will fix T = t1 and show that
all the conditions hold. In Table 2, we provide a dictionary of parameters for the reader to recall from time
to time during the reading.

Failure probability Time length Stopping time Goal

The whole analysis δ t1 and T τ and ξ w2
t,1 from δ2

n to 4
9

An interval analysis δ′ = δ
10 log(n/δ) t′1 = t1

10 log(n/δ) τ ′ and τi w2
t,1 from a to 4a

Table 2: Some potentially confusing parameters in Phase 1.
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6.1 Linearization and ODE trick centered at 0

In this subsection, we describe the linearization of biological Oja’s rule and ODE trick with center at 0.
The point here is to get a closed-form expression in Equation 6.5 where the initial point wt0,1 is decoupled
with the noise terms. Specifically, the noise terms are martingales (or submaritingales) with well-controlled
bounded difference and conditional variance.

Lemma 6.2 (Linearization in Phase 1). For any t ∈ N and η ∈ (0, 0.1), we have

wt,1 = Ht ·wt−1,1 + ηDt + ηFt + η2Qt

almost surely where Ht, Dt, Ft, Qt are some random processes depend on wt−1 and xt. Specifically,

Dt =

n∑
i=2

xt,1xt,iwt−1,i and Ht = exp
(
η(λ1 − λ2)(1−w2

t−1,1) + ηEt
)
.

Furthermore, the following hold.

• (Bounded difference) For any t ∈ N, Et ≥ 0, |Ft| = O(wt−1,1), and |Qt| = O(wt−1,1) almost surely.

• (Conditional expectation) For any t ∈ N, E[Ft | Ft−1] = 0 and |E[Qt | Ft−1]| = O(λ1wt−1,1).

• (Conditional variance) For any t ∈ N, Var [Ft | Ft−1] = O
(
λ1w

2
t−1,1

)
and Var [Qt | Ft−1] = O(λ1w

2
t−1,1).

Proof of Lemma 6.2. The proof is based on Taylor’s expansion and Cauchy-Schwarz inequality. See Ap-
pendix E for the full proof.

It turns out that the cross term, i.e., Dt, is the most annoying term and we need the following extra lemma
to control its bounded difference as well as its conditional variance. The way we handle Dt is introducing
another stopping time ξ and a time parameter T such that (i) the bounded difference and the conditional
variance of the stopped process Dt∧ξ is under control and (ii) ξ ≥ T with high probability. Intuitively, ξ is
the stopping time for some “bad events” and we want the probability of the “bad events” happending before
T to be small.

Throughout the proof, the reader should think of T as t1. We decide not to directly state the lemma in
terms of t1 because there are some recursive dependencies between T and other parameters (e.g., η). In the
end of the proof of Theorem 6.1, we will fix T to be t1 and show that every conditions hold.

Lemma 6.3 (Bounds for Dt). Let w0 be a random unit vector in Rn. For any T ∈ N, δ ∈ (0, 1), if

η = O
(
δ2(λ1−λ2)

λ1 log2 nT
δ

)
, then there exists a stopping time ξ such that the following hold.

1.
Pr[ξ ≥ T ] ≥ 1− δ .

2. (Bounded difference)

Pr

[
|Dt∧ξ| = O

(
w(t∧ξ)−1,1

δ

√
log

nT

δ

)]
= 1 , ∀t ∈ [T ] .

3. (Conditional variance)

Var [Dt∧ξ | Ft−1] = O

(
λ1w

2
(t∧ξ)−1,1

δ2
log

nT

δ

)
, ∀t ∈ [T ] .

Proof of Lemma 6.3. The proof of Lemma 6.3 improves on the Markov-type inequality on a multi-dimensional
chain of [AZL17] by considering a different multi-dimensional chain and using a vector form of ODE trick to
gain a tight exponential bound in one-shot. Since the basic strategy is similar to the techniques in phase 2,
we postpone the proof to Appendix D.
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Finally, apply the ODE trick (i.e., Lemma 2.11) on Lemma 6.2, we get the following corollary.

Corollary 6.4 (ODE trick in Phase 1). For any t0 ∈ N≥0, t ∈ N, and η ∈ (0, 0.1), we have

wt0+t,1 =

(
t0+t∏
i=t0+1

Hi

)
·

(
wt0,1 +

t0+t∑
i=t0+1

ηDi + ηFi + η2Qi∏i
j=t0+1Hj

)
. (6.5)

6.2 Concentration of the noise terms

After using the ODE trick to rewrite the dynamic of biological Oja’s rule, we would like to show that the
second parenthesis of Equation 6.5 is dominated by w0,1. In that case, it is then not difficult to argue that
wt,1 grows as fast as one can expect. Let us start with the following lemma analyzing the concentration of
the noise terms (i.e., the Di, Fi, and Qi term in the second parenthesis). Note that since we do not have
good control on the bounded difference and conditional variance on the noise terms, we are going to consider
the stopped processes of them.

Lemma 6.6 (Concentration of noise in an interval). Let w0 be a random unit vector in Rn. For any T ∈ N,

δ ∈ (0, 0.5), choose η, δ′ ∈ (0, 0.5) such that δ′ = Ω(δ/nT ) and η = O
(
δ2(λ1−λ2)

λ1 log2 nT
δ

)
. Let ξ be the stopping

time from Lemma 6.3 with the corresponding parameters (T, η, δ).
For any a ∈ (0, 1/9], and t0 ∈ N such that w2

t0,1 ∈ [a, 4a), let τ ′ be the stopping time for the event
{w2

t0+τ ′,1 ≥ 4a}. For all t ∈ N such that t0 + t ≤ T , we have

1.

Pr

∣∣∣∣∣∣
t0+(t∧τ ′)∑
i=t0+1

η2Qi∏i
j=t0+1Hj

∣∣∣∣∣∣ ≥ Ω

 ηλ1
√
a

λ1 − λ2
+ η

√
ηaλ1 log 1

δ′

λ1 − λ2

 < δ′ ,

2.

Pr

∣∣∣∣∣∣
t0+(t∧τ ′)∑
i=t0+1

ηFi∏i
j=t0+1Hj

∣∣∣∣∣∣ ≥ Ω

√ηλ1a log 1
δ′

λ1 − λ2

 < δ′ , and

3.

Pr

∣∣∣∣∣∣
(t0+(t∧τ ′))∧ξ∑

i=t0+1

ηDi∏i
j=t0+1Hj

∣∣∣∣∣∣ ≥ Ω

1

δ

√
ηλ1a log 1

δ′ log nT
δ

λ1 − λ2

 < δ′ .

We state Lemma 6.6 in a very general form because we are going to apply it for several times in the later
interval analysis. Concretely, the final analysis will start from setting a1 = w2

0,1 and look at the stopping
time for the event {w2

τ1,1 ≥ 4a1}. We show that the concentration lemma (i.e., Lemma 6.6) and the ODE
trick (i.e., Corollary 6.4) imply τ1 being small with high probability. Then, we are going to set a2 = 4a1 and
repeat the same argument until some a` reaches 1/9. From Lemma 2.1, such ` could be O(log(n/δ)) with
high probability. We will pick δ′ = Θ(δ/ log(n/δ)) in the end and apply union bound.

To see why Lemma 6.6 would be helpful, the following lemma plugs in the parameters we are going to
use later and show that the deviations in the concentration inequalities are small.

Lemma 6.7 (Parameters for Phase 1). For any n ∈ N and δ ∈ (0, 1), let η and t1 be the parameters chosen
in Theorem 6.1. For any δ′ = Ω(δ/nt1), there exists C > 0 such that for any t ≥ C

η(λ1−λ2) the following

holds.

• (Drifting term)

exp

(
5

9
η(λ1 − λ2)t

)
≥ 16 .
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• (Deviation terms) For any a > 0

O

√ηλ1a log 1
δ′

λ1 − λ2

 , O

 ηλ1
√
a

λ1 − λ2
+ η

√
ηλ1a log 1

δ′

λ1 − λ2

 , O

1

δ

√
ηλ1a log 1

δ′ log nt1
δ

λ1 − λ2

 ≤ √a
10

,

where all the O terms are from the concentration inequalities in Lemma 6.6.

Proof of Lemma 6.7. Both statements immediately follow from checking the parameters.

From Lemma 6.7, one can see that the deviations in the concentration inequalities for the noise terms are
quite small (≤

√
a/10) comparing with |wt0,1| (≥

√
a). The rest of this subsection is devoted to the proof of

the concentration lemma. Reader should feel comfortable to skip it during the first reading.

Proof of the concentration lemma

Proof of Lemma 6.6. Recall that the definition of Hj is Hj = exp
(
η(λ1 − λ2)(1−w2

j−1,1) + ηEj
)

and τ ′ is

the stopping time for the event {w2
t0+τ ′,1 ≥ 4a}.

Let us start with the following observation on the multiplier term Hj . When j ≤ t0 + τ ′, we have
Hj ≥ exp(η(λ1 − λ2)/2). The reason is that (i) if j ≤ t0 + τ ′, then w2

j−1,,1 ≤ 4a ≤ 4/9 and (ii) Ej ≥ 0
almost surely for all j ∈ N by Lemma E.5. By analyzing the geometric sum, we have

t0+(t∧τ ′)∑
i=t0+1

∣∣∣∣∣ 1∏i
j=1Hj

∣∣∣∣∣
2

≤ O
(

1− exp (−η(λ1 − λ2)t/2)

1− exp (−η(λ1 − λ2)/2)

)
(∵ Lemma 2.16) = O

(
1− exp (−η(λ1 − λ2)t/2)

η(λ1 − λ2)

)
= O

(
1

η(λ1 − λ2)

)
(6.8)

almost surely.

1. Now, for the Qi term, define the following random process with M0 = 0 and

Mt =

t0+t∑
i=t0+1

η2Qi∏i
j=t0+1Hj

, ∀t ≥ 1 .

Note that {Mt} is an adapted random process and so is its stopped process Mt∧τ ′ . Since the process
stops when w2

t0+(t∧τ ′),1 ≥ 4a, by Lemma 6.2 and Equation 6.8, we can upper bound the bounded differ-

ence of {Mt∧τ ′} by O(η2
√
a), upper bound the summation of the conditional expectation of bounded

difference by O
(
η2λ1

√
a

η(λ1−λ2)

)
and upper bound the sum of the conditional variance by O

(
η4λ1a

η(λ1−λ2)

)
.

Now by the corollary of Freedman’s inequality (i.e., Corollary 2.7), we have

Pr

∣∣∣∣∣∣
t∧τ ′∑
i=1

η2Qi∏i
j=1Hj

∣∣∣∣∣∣ ≥ Ω

 ηλ1
√
a

λ1 − λ2
+ η

√
ηλ1a log 1

δ′

λ1 − λ2

 < exp

−Ω

 η3λ1a log 1
δ′

λ1−λ2

η4λ1a
η(λ1−λ2) + η2a

√
η3λ1a log 1

δ′
λ1−λ2


 < δ′ .

Note that the ηλ1
√
a

λ1−λ2
term in the deviation is due to the sum of conditional expectation and η

√
ηλ1a log(1/δ′)

λ1−λ2

is due to the bounded difference and conditional variance.

2. Similarly, for the Fi term, define M0 = 0 and

Mt =

t0+t∑
i=t0+1

ηFi∏i
j=t0+1Hj

, ∀t ≥ 1 .
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Note that {Mt} is a martingale and so is its stopped process {Mt∧τ ′}. Since the process stops when
w2
t0+(t∧τ ′),1 ≥ 4a, we can upper bound the difference of {Mt∧τ ′} by O(η

√
a) almost surely and by Equa-

tion 6.8 upper bound the sum of the conditional variance by O
(

η2λ1a
η(λ1−λ2)

)
. By Freedman’s inequality

(see Lemma 2.6), we have

Pr

∣∣∣∣∣∣
t∧τ ′∑
i=1

ηFi∏i
j=1Hj

∣∣∣∣∣∣ ≥ Ω

√ηλ1a log 1
δ′

λ1 − λ2

 < exp

−Ω

 ηλ1a log 1
δ′

λ1−λ2

η2λ1a
η(λ1−λ2) + η

√
a

√
ηλ1a log 1

δ′
λ1−λ2


 < δ′ .

3. Similarly, for the Di term, define M0 = 0 and

Mt =

t0+t∑
i=t0+1

ηDi∏i
j=t0+1Hj

, ∀t s.t. 1 ≤ t ≤ T − t0 .

Note that {Mt} is a martingale and so is its stopped process {Mt∧τ ′∧(ξ−t0)}. By Lemma 6.3, Equa-

tion 6.8, and the definition of τ ′, we can upper bound the difference of {Mt∧τ ′∧(ξ−t0)} byO

(
η

√
a log(nT/δ)

δ

)
almost surely and upper bound the sum of the conditional variance by O

(
η2λ1a log(nT/δ)
δ2η(λ1−λ2)

)
. By Freed-

man’s inequality (see Lemma 2.6), we have

Pr

∣∣∣∣∣∣
(t0+(t∧τ ′))∧ξ∑

i=t0+1

ηDi∏i
j=t0+1Hj

∣∣∣∣∣∣ ≥ Ω

1

δ

√
ηλ1a log 1

δ′ log nT
δ

λ1 − λ2



< exp


ηλ1a log 1

δ′ log nT
δ

δ2(λ1−λ2)

η2λ1a log(nT/δ)
δ2η(λ1−λ2) +

η
√
a log(nT/δ)

δ

√
ηλ1a log 1

δ′ log nT
δ

δ2(λ1−λ2)

 < δ′ .

6.3 Wrap up

To prove Theorem 6.1, we do an interval analysis by looking at the stopping time of the form {w2
t0+τ ≥ 4a}

with a geometrically growing from w2
0,1 to 4/9. The following lemma summarizes how the analysis works in

a single interval. We will prove Theorem 6.1 after stating this lemma and provide the proof for the lemma
in the rest of the section.

Lemma 6.9 (Interval analysis in Phase 1). For any n, T ∈ N and δ ∈ (0, 0.5), choose any δ′ ∈ (0, 0.5) such
that δ′ = Ω(δ/nT ). For any

η = O

(
δ2(λ1 − λ2)

λ1 log2 nT
δ

)
there exists

t′1 = Θ

(
1

η(λ1 − λ2)

)
such that the following holds. For any a ∈ (0, 1/9] and t0 + t′1 ≤ T such that w2

t0,1 ∈ [a, 4a), let τ ′ be the
stopping time for the event {w2

t0+τ ′ ≥ 4a}. Then, we have

Pr [τ ′ > t′1] < δ′ .
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Proof of the main theorem in Phase 1

Proof of Theorem 6.1. Now, the proof of Theorem 6.1 follows from recursively invoking Lemma 6.9 for
O(log n

δ ) times. First, we need to set the parameter T . Let T = t1 = 10 log n
δ t
′
1. Then for

η = O

(
δ2(λ1 − λ2)

λ1 log2 n
δ(λ1−λ2)

)
,

it satisfies the condition of Lemma 6.9.
Recall that τ is the stopping time for the event {w2

τ,1 ≥ 4/9}. Let us first invoke Lemma 6.9 with

a1 = w2
0,1 and failure probability δ′ = δ

10 log(n/δ) . Let τ1 be the stopping time for {w2
τ1,1 ≥ 4a1}, this gives

Pr [τ1 > t′1] <
δ

10 log n
δ

.

Next, for each i ∈ N, let ai+1 = 4ai if 4ai < 1/9 and let ai+1 = 1/9 otherwise. Also, define τi+1 inductively
to be the stopping time for the event {w2

τ1+···+τi+τi+1,1 ≥ 4ai+1}. By invoking Lemma 6.9 with ai+1, τi+1,

and failure probability δ′ = δ
10 log(n/δ) , we have

Pr [τi+1 > t′1] <
δ

10 log n
δ

.

Now, by Lemma 2.1, we have a1 = w2
0,1 = δ2/100n with probability at least 1− δ/10. Let ` be the index

such that a` = 1
9 , we have ` ≤ 9 log(n/δ) with probability at least 1 − δ/10. Finally, by union bound, we

have

Pr [τ > t1] ≤ Pr
[
τ > 9 log

n

δ
t′1

]
≤ Pr

[
` > 9 log

n

δ

∨ ∑̀
i=1

τi > ` · t′1

]

= Pr
[
` > 9 log

n

δ

]
+ Pr

[
` ≤ 9 log

n

δ

∧ ∑̀
i=1

τi > ` · t′1

]

<
δ

10
+ 9 log

n

δ
· δ

10 log n
δ

= δ .

This completes the proof of Theorem 6.1.

Proof of the interval analysis

Proof of Lemma 6.9. Denote the failure event {τ ′ > t′1} as BAD, the goal is to show that Pr[BAD] < δ′. The
high-level strategy here is to use the concentration of (the stopped process of) the noise terms and ODE
trick to guarantee wt,1 is going to follow the drifting term with high probability. To formalize this idea, we
have to get rid of the stopping time in Lemma 6.6. Nevertheless, it turns out that in Phase 1 we do not need
pull-out lemma to achieve this.

First,denote the good event where the noise terms in the ODE trick are small as follows.

GOOD :=


∣∣∣∣∣∣
t0+(t′1∧τ

′)∑
i=t0+1

ηFi∏i
j=t0+1Hj

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
t0+(t′1∧τ

′)∑
i=t0+1

η2Qi∏i
j=t0+1Hj

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
(t0+(t′1∧τ

′))∧ξ∑
i=t0+1

ηDi∏i
j=t0+1Hj

∣∣∣∣∣∣ ≤
√
a

10

 .

Note that with the parameter settings, from Lemma 6.7, the good events are exactly the events from the
concentration inequalities in Lemma 6.6. Thus, we have Pr[GOOD] ≥ 1− δ/2. Also, by Lemma 6.3, we have
Pr[{ξ ≥ T}] ≥ 1− δ/2. The following claim shows that the events GOOD, BAD, and {ξ ≥ T} cannot happen
simultaneously due to ODE trick.

Claim 6.10. Pr[GOOD ∧ BAD ∧ {ξ ≥ T}] = 0. Namely, Pr[BAD] ≤ 1− Pr[GOOD ∧ {ξ ≥ T}].
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Proof of Claim 6.10. For the sake of contradiction, assume GOOD, BAD, and {ξ ≥ T} happen simultane-
ously. Note that t′1 ∧ τ ′ = t′1 and (t0 + (t′1 ∧ τ ′)) ∧ ξ = t′1 under this assumption. Intuitively, the stopping
times were pulled out in this situation.

Now, by the ODE trick (i.e., Corollary 6.4), we have

wt0+t′1,1
=

 t0+t′1∏
i=t0+1

Hi

 ·
wt0,1 +

t0+t′1∑
i=t0+1

ηDi + ηFi + η2Qt∏i
j=t0+1Hj

 .

Also, because i ≤ τ ′ for all i ∈ [t′1], we have w2
t0+i,1 < 4a ≤ 4/9 and thus Hi ≥ exp

(
5
9η(λ1 − λ2)

)
. By the

choice of parameters (i.e., Lemma 6.7), we have

t0+t′1∏
i=t0+1

Hi ≥ exp

(
5

9
η(λ1 − λ2)t′1

)
≥ 16 .

Further, the events GOOD implies ∣∣∣∣∣∣
t0+t′1∑
i=t0+1

ηDi + ηFi + η2Qi∏i
j=t0+1Hj

∣∣∣∣∣∣ ≤
√
a

2
.

Combine the above three, we have

w2
t0+t′1,1

≥

 t0+t′1∏
i=t0+1

Hi

2

·
(

wt0,1 −
√
a

2

)2

≥ 16 · a
4
≥ 4a

which implies τ ′ ≤ t′1 and contradicts to the happening of BAD. Thus, we conclude that the events GOOD,
BAD, and {ξ ≥ T} cannot happen simultaneously and this completes the proof for the claim.

Finally, Lemma 6.6 immediately follows from Claim 6.10. Concretely,

Pr[τ ′ > t′1] = Pr[BAD] ≤ 1− Pr[GOOD ∧ {ξ ≥ T}]

≤ Pr[¬GOOD] + Pr[¬{ξ ≥ T}] < δ

2
+
δ

2
= δ .

This completes the proof of Lemma 6.6.

7 Phase 2: Toward Arbitrarily Small Error

Suppose wt0,1 ≥ 2/3 for some t0 ∈ N. For any ε ∈ (0, 1), the goal of this section is to show that 1−w2
t0+t,1 ≤ ε

for some t = O
(
λ1 log(1/ε)(log log log(1/ε)+log(1/δ))

ε(λ1−λ2)2

)
. Note that analogous result that starts from wt0,1 ≤ −2/3

is an immediate corollary. Thus, combining with the previous section we would be able to complete the
analysis of biological Oja’s rule. Let us first state the main theorem in this section as follows.

Theorem 7.1. For some t0 ∈ N, suppose wt0,1 ≥ 2/3. For any n ∈ N, ε, δ ∈ (0, 1), there exists

η = O

(
ε(λ1 − λ2)

λ1 log
log log 1

ε

δ

)
, t2 = O

(
log 1

ε

η(λ1 − λ2)

)
such that

Pr [wt0+t2,1 < 1− ε] < δ .

Namely, the convergence rate is of order t0 +O

(
λ1 log 1

ε (log log log 1
ε+log 1

δ )
ε(λ1−λ2)2

)
with probability at least 1− δ.
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The proof structure of Theorem 7.1 is the same as that of the main theorem in Phase 1. However,
each step requires some non-trivial modifications. First, we derive a different linearization and ODE trick
in Section 7.1 using center at 1 instead of 0. Next, in Section 7.2 we state the lemma showing that the noise
terms in the ODE trick are small and further use the lemma to wrap up the proof for the main theorem
in Section 7.3. Nevertheless, it turns out that the noise terms in Phase 2 are more difficult to handle. We
develop a pull-out lemma to get rid of the stopping time in the concentration inequality. The details of how
we handle the noise is provided in Section 7.4.

Dictionary for parameters in Phase 2 Similarly, the analysis in Phase 2 is recursive and thus some
of the parameters, e.g., the failure probability δ, are scaled by δ/ log log(1/ε) in some of the lemmas. We
provide a dictionary of parameters for the reader to recall from time to time during the reading.

Failure probability Time length Error Goal

The whole analysis δ t2 =
∑`
k=1 t2,k ε wt,1 from 2

3 to 1− ε

An interval analysis δ′ = δ
` t2,k ε′ = ε

8
wt,1 from 1−(ε′)1−2−(k−1)

to 1−(ε′)1−2−k

Table 3: Some potentially confusing parameters in Phase 2. The parameter ` = dlog log(1/ε)e is the number
of intervals we are going to use in the whole analysis.

7.1 Linearization and ODE trick centered at 1

In the analysis of Phase 2, we use a different linearization for the biological Oja’s rule. The main difference
from the linearization in Phase 1 is that here we do Taylor expansion with center at 1 instead of 0. The idea
is inspired from the analysis of the continuous dynamics as explained in Section 3.

To ease the notation, we define w′t,1 = wt,1 − 1 and the goal becomes showing that w′t0+t2,1 > −ε with
probability at least 1− δ. The following lemma states the linearization for w′t,1.

Lemma 7.2 (Linearization in Phase 2). For any t ∈ N and η ∈ (0, 0.1), we have

w′t,1 = H ·w′t−1,1 + ηFt + ηPt + η2Qt

almost surely, where the multiplier is

H = exp

(
−3

4
η(λ1 − λ2)

)
.

Moreover, Ft, Pt, Qt satisfy the following properties.

• (Bounded difference) For any t ∈ N, |Ft| = O(
√

w′t−1 + η), and |Qt| = O(1) almost surely. If wt−1,1 ≥
0.5, then Pt ≥ −O(ηλ1) almost surely.

• (Conditional expectation) For any t ∈ N, E[Ft | Ft−1] = 0 and |E[Qt | Ft−1]| = O(λ1).

• (Conditional variance) For any t ∈ N, Var [Ft | Ft−1] = O
(
λ1(w′t−1 + η)

)
and Var [Qt | Ft−1] =

O(λ1).

Proof of Lemma 7.2. The proof is based on Taylor’s expansion and Cauchy-Schwarz inequality. See Ap-
pendix E for the full proof.

Similarly, we apply the ODE trick (see Lemma 2.11) on Lemma 7.2 and get the corollary as follows.
Note that one major difference between the ODE trick in the two phases is that here the multiplier H is a
constant and does not depend on wt.

Corollary 7.3 (ODE trick in Phase 2). For any t0 ∈ N≥0, t ∈ N, and η ∈ (0, 0.1), we have

w′t0+t,1 = Ht ·

(
w′t0,1 +

t0+t∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

)
.

26



7.2 Concentration of noise

The following key lemma shows the concentration of noise in Phase 2. Similarly, since we are doing an
interval analysis so the lemma is stated in a gneral form.

Lemma 7.4 (Concentration of noise in an interval). For any ε′, δ′, η ∈ (0, 0.5) and k ∈ N≥0 such that

η = O
(
ε′(λ1−λ2)

λ1 log 1
δ′

)
, let t2,k ∈ N be

t2,k =
4

3
·

2−k log 1
ε′

η(λ1 − λ2)
+ Θ

(
2−k

η(λ1 − λ2)

)
.

Suppose there exists some t0 ∈ N and γ ∈ (0, 0.5) where γ = Ω((ε′)1−2−k) such that wt0,1 ≥ 1− γ
2 . Then,

Ht2,k = exp

(
−3

4
η(λ1 − λ2)t2,k

)
≤ (ε′)2−k

10

and

Pr

[
min

1≤t≤t2,k

t0+t∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

< −γ
2

]
< δ′ .

The proof of Lemma 7.4 involves stopping time analysis and maximal martingale inequality and is pro-
vided in Section 7.4. Let us first take a look at how to use Lemma 7.4 to prove the main theorem in Phase
2.

7.3 Wrap up

Now we are ready to prove the main theorem of this section.

Proof of Theorem 7.1. Recall that we have wτ,1 ≥ 2/3 and the goal is to show that wτ+t2,1 ≥ 1 − ε with

probability at least 1− δ for some t2 = O
(

log(1/ε)
η(λ1−λ2)

)
.

We use an interval analysis to achieve the goal. Specifically, there are going to be ` = dlog log(1/ε)e stages
of the analysis. Let ε′ = ε/8 and δ′ = δ/` be the error and failure probability parameters in each stage. For

each k ∈ [`], in the kth stage, we are going to show that wt,1 improve from 1− (ε′)1−2−(k−1)

to 1− (ε′)1−2−k

in t2,k steps with probability at least 1− δ′. The following is the formal statement of the guarantee we want
to get for each stage in the interval analysis.

Lemma 7.5 (Interval analysis in Phase 2). Let n, ε, δ, η be the parameters from Theorem 7.1 and ε′, δ′ be

the parameters as defined above. For each k ∈ [`], let t2,k = 4
3 ·

2−k log 1
ε′

η(λ1−λ2) + Θ
(

2−k

η(λ1−λ2)

)
. Then we have

Pr
[
wτ+

∑k
j=1 t2,j ,1

< 1− (ε′)1−2−k
]
< k · δ′ .

With the lemma for each interval, we are ready to prove Theorem 7.1. Recall that ε′ = ε/8 and thus
by Lemma 2.17, we have

(ε′)1−2−` ≤
( ε

8

)1− 1
log(1/ε) ≤ ε .

Pick t2 =
∑`
j=1 t2,j , we have

t2 =
∑̀
j=1

4

3
·

2−j log 1
ε′

η(λ1 − λ2)
+ Θ

(
2−j

η(λ1 − λ2)

)
= O

(
log 1

ε

η(λ1 − λ2)

)
as desired. Finally, recall that δ′ = δ/` and thus Lemma 7.5 gives

Pr [wτ+t2,1 > 1− ε] ≤ Pr
[
wτ+t2,1 > 1− (ε′)1−2−`

]
< ` · δ′ = δ .

This completes the proof of Theorem 7.1. The rest of this subsection is devoted to the proof of Lemma 7.5
on the interval analysis.
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Proof of the interval analysis

Proof of Lemma 7.5. The proof is based on induction on k ∈ [`]≥0. For the base case where k = 0, we have
wτ,1 ≥ 2/3 by the definition of τ .

For the induction step, for any k ∈ [`], let GOODk denote the event
{

wτ+
∑k−1
j=1 t2,j ,1

≥ 1− (ε′)1−2−(k−1)
}

.

The induction hypothesis gives
Pr [¬GOODk] ≤ (k − 1) · δ′ .

Now, invoke Lemma 7.4 with t0 = τ +
∑k−1
j=1 t2,j , γ = 2(ε′)1−2−(k−1)

, and ε′, δ′ as chosen before. We have

Pr

 min
1≤t′≤t2,k

t0+t′∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

< − γ

10

∣∣∣∣ GOODk
 < δ′

and

Pr

[
Ht2,k ≤ (ε′)2−k

10

∣∣∣∣ GOODk
]

= 1 .

Thus, by the ODE trick (i.e., Corollary 7.3), we have

w′t0+t2,k,1
= Ht2,k ·

(
w′t0,1 +

t0+t2,k∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

)
.

Condition on the event GOODk, we have

≥ (ε′)2−k

10
·
(
−γ

2
− γ

10

)
≥ −(ε′)2−k · (ε′)1−2−(k−1)

≥ −(ε′)1−2−k

happens with probability at least 1− δ′. Namely,

Pr
[
wτ+

∑i
j=1 t2,k,1

< 1− (ε′)1−2−k
]

= Pr
[
w′
τ+

∑i
j=1 t2,k,1

< −(ε′)1−2−k
]

≤ Pr

[
w′
τ+

∑i
j=1 t2,k,1

< −(ε′)1−2−k
∣∣∣∣ GOODk]+ Pr[¬GOODk]

< δ′ + (k − 1) · δ′ = k · δ′ .

This completes the induction and the proof for the interval analysis.

7.4 Proof of Lemma 7.4

Now, the only missing part in this section is the proof of Lemma 7.4. Recall that the goal is to show that
the noise term in the ODE trick (Corollary 7.3) is small with high probability.

High-level idea on the proof of Lemma 7.4 The most natural way to prove such statement is using
martingale concentration inequality as the noise term is a martingale by construction. However, the difficulty
here is that wt,1 might go back to the small region (e.g., wt,1 < 1/2) and thus the bounded difference might
be large and ruin the condition of Freedman’s inequality. Note that this “going back phenomenon” is the
major difference between Phase 1 and Phase 2 and thus the simple proof of the former cannot be applied to
the later. Nevertheless, the continuous dynamic (see Section 3) suggests that this situation should happen
with small probability. To enforce the analysis, we consider a stopped process where the dynamic stops once
wt,1 < 1/2. Concretely, let t0 be the time when we enter Phase 2, i.e., wt0,1 ≥ 2/3, and let τ be the stopping
time for the event {wt0+τ,1 < 1/2}. Denote the noise term in Corollary 7.3 as {Mt0+t′}t′∈N, which is a
martingale by construction. Consider its stopped process {Mt0+(t′∧τ)}t′∈N, which is also a martingale due to
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the property of stopping time. Moreover, the stopped process satisfies good bounded difference condition by
its construction and thus Freedman’s inequality works well. See Lemma 7.6 for a formal and more general
statement on the above intuition.

After obtaining a good control on the noise term in the stopped process, we would like to remove the
stopping time and get back to the original non-stopped process in order to prove Lemma 7.4. This can be
done by Lemma 7.9 which pulls out the stopping time from the concentration inequality for the stopped
process. In general, pulling out the stopping time is impossible, however, there are some structures in the
martingale we are looking at. Intuitively, suppose τ ≥ t for some t, then this would imply that all the noise
terms before time t0 + t are small with high probability (using maximal martingale inequality). Next, the
noise being small at time t0 + t would further imply that τ ≥ t + 1 (using ODE trick). This would form a
chain of implications as pictured in Figure 3.

τ ≥ t noises before time
t0+t are small τ ≥ t+ 1 noises before time

t0+t+1 are small
Definition

Maximal
martingale

inequality +
ODE trick Definition

Figure 3: Intuition on why it is possible to pull out stopping time in Phase 2.

With the above chain structure in the noise terms, we are then able to pull out the stopping time
in Lemma 7.6 by introducing another stopping time to help us properly partition the probability space. The
rest of this subsection is devoted to formalize the above intuition and complete the proof for Lemma 7.4.

Noise concentration for the stopped process The first step towards proving Lemma 7.4 is showing
the concentration of the noise terms in the stopped process.

Lemma 7.6 (Bounds for the noise terms in the stopped process in Phase 2). For any t ∈ N, η, ε, δ ∈ (0, 1),

t0 ∈ N and γ ∈ (0, 0.5) such that η = O
(

λ1−λ2

λ1 log(1/δ)

)
, define stopping time τ to be the first time of the event

{wt0+τ,1 < 1− γ} .

Then, we have

1.

Pr

 min
1≤t′≤t

t0+(t′∧τ)∑
i=t0+1

ηPi
Hi−t0

≥ −O
(

exp

(
3

4
η(λ1 − λ2)t

)
ηλ1

λ1 − λ2

)  = 1 ,

2.

Pr

 max
1≤t′≤t

∣∣∣∣∣∣
t0+(t′∧τ)∑
i=t0+1

ηFi
Hi−t0

∣∣∣∣∣∣ ≥ Ω

exp

(
3

4
η(λ1 − λ2)t

)√
η(γ + η)λ1

λ1 − λ2
log

1

δ

 < δ , and

3.

Pr

 max
1≤t′≤t

∣∣∣∣∣∣
t0+(t′∧τ)∑
i=t0+1

η2Qi
Hi−t0

∣∣∣∣∣∣ ≥ Ω

exp

(
3

4
η(λ1 − λ2)t

)√ η3λ1

λ1 − λ2
log

1

δ
+

ηλ1

λ1 − λ2

 < δ .

To see why Lemma 7.6 would be helpful, the following lemma plugs in the parameters we are going to
use later and show that the deviations in the concentration inequalities are small.

29



Lemma 7.7. For any k ∈ N, let ε′, δ′, γ, η, t2,k be the parameters from Lemma 7.4. Then we have

1.

O

(
exp

(
3

4
η(λ1 − λ2)t2,k

)
ηλ1

λ1 − λ2

)
≤ γ

10
,

2.

O

exp

(
3

4
η(λ1 − λ2)t2,k

)√
η(γ + η)λ1

λ1 − λ2
log

1

δ

 ≤ γ

10
,

3.

O

exp

(
3

4
η(λ1 − λ2)t2,k

)√ η3λ1

λ1 − λ2
log

1

δ
+

ηλ1

λ1 − λ2

 ≤ γ

10
, and

4.

Ht2,k = exp

(
−3

4
η(λ1 − λ2)t2,k

)
≤ (ε′)2−k .

All the O terms are from the concentration inequalities of Lemma 7.4.

Proof of Lemma 7.7. These items directly follow from the choice of parameters ε′, δ′, γ, η, t2,k.

Proof of Lemma 7.6. The proof is based on using the properties of these martingales (see Lemma 7.2) and
maximal martingale concentration inequality (e.g., Freedman’s inequality as stated in Lemma 2.6). First,
notice that by η(λ1 − λ2) = O(1), for any 1 ≤ t′ ≤ t, we have

t0+t′∑
i=t0+1

1

Hi−t0
= O

(
exp( 3

4η(λ1 − λ2)t)− 1

exp( 3
4η(λ1 − λ2))− 1

)
∵ Lemma 2.15

= O

(
exp( 3

4η(λ1 − λ2)t)

η(λ1 − λ2)

)
. (7.8)

1. From Lemma 7.2, we know that Pt0+t′ ≥ −O(ηλ1) for all 1 ≤ t′ ≤ τ . Combine with Equation 7.8, for
any 1 ≤ t′ ≤ t, we have

t0+(t′∧τ)∑
i=t0+1

ηPi
Hi−t0

≥ −O
(
ηλ1 exp( 3

4η(λ1 − λ2)t)

λ1 − λ2

)
almost surely.

2. Let M0 = 0 and for each 1 ≤ t′ ≤ t, let Mt′ =
∑t0+t′

i=t0+1
ηFi
Hi−t0

. Note that both {Mt′} and {Mt′∧τ}
form martingales. Also, recall that H = exp(−3η(λ1 − λ2)/4). Moreover, by Lemma 7.2, the bounded
difference of {Mt′∧τ} is O(η

√
γ + η exp( 3

4η(λ1 − λ2)t)) and the sum of the conditional variance of

{Mt′∧τ} can be upper bounded by O
(
η2(γ+η)λ1 exp( 3

2η(λ1−λ2)t)

η(λ1−λ2)

)
. Now, by the Freedman’s inequality

(see Lemma 2.6), we have

Pr

 max
1≤t′≤t

∣∣∣∣∣∣
t0+(t′∧τ)∑
i=t0+1

ηFi
Hi−t0

∣∣∣∣∣∣ ≥ Ω

exp

(
3

4
η(λ1 − λ2)t

)√
η(γ + η)λ1

λ1 − λ2
log

1

δ



< exp

 η(γ+η)λ1 exp( 3
2η(λ1−λ2)t)

λ1−λ2
log 1

δ

η(γ+η)λ1 exp( 3
2η(λ1−λ2)t)

λ1−λ2
+ η
√
γ + η exp

(
3
4η(λ1 − λ2)t

)√η(γ+η)λ1 exp( 3
2η(λ1−λ2)t)

λ1−λ2
log 1

δ

 < δ .

The last inequality holds because η = O( λ1−λ2

λ1 log(1/δ) ) and thus the first term in the denominator domi-

nates the second term.
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3. Let M0 = 0 and for each 1 ≤ t′ ≤ t, let Mt′ =
∑t0+t′

i=t0+1
η2Qi
Hi−t0

. By Lemma 7.2, the bounded difference

of {Mt′∧τ} is O(η2 exp( 3
4η(λ1 − λ2)t)), the sum of the absolute value of the conditional expectation is

bounded by O
(
η2λ1 exp( 3

4η(λ1−λ2)t)

η(λ1−λ2)

)
and the sum of conditional variance of can be upper bounded by

O
(
η4λ1 exp( 3

2η(λ1−λ2)t)

η(λ1−λ2)

)
. Now, by the corollary of Freedman’s inequality (i.e., Corollary 2.7), we have

Pr

 max
1≤t′≤t

∣∣∣∣∣∣
t0+(t′∧τ)∑
i=t0+1

η2Qi
Hi−t0

∣∣∣∣∣∣ ≥ Ω

exp

(
3

4
η(λ1 − λ2)t

) ηλ1

λ1 − λ2
+

√
η3λ1

λ1 − λ2
log

1

δ



< exp

 η3λ1 exp( 3
2η(λ1−λ2)t)

λ1−λ2
log 1

δ

η4λ1 exp( 3
2η(λ1−λ2)t)

η(λ1−λ2) + η2 exp
(

3
4η(λ1 − λ2)t

)√η3λ1 exp( 3
2η(λ1−λ2)t)

λ1−λ2
log 1

δ

 < δ .

Similarly, the last inequality holds because η = O
(

λ1−λ2

λ1 log(1/δ)

)
and thus the first term in the denomi-

nator dominates the second term.

Pulling out the stopping time In the second step towards proving Lemma 7.4, we are going to pull
out the stopping time τ in Lemma 7.6. The following lemma shows that under certain chain condition, it is
possible to pull out the stopping time.

Lemma 7.9. Let {Mt}t∈N≥0
be an adapted stochastic process and τ be a stopping time. Let {M∗t }t∈N≥0

be
the maximal process of {Mt}t∈N≥0

where M∗t = max1≤t′≤tMt. For any t ∈ N, a ∈ R, and δ ∈ (0, 1), suppose

1. Pr[M∗t∧τ ≥ a] < δ and

2. Pr[τ ≥ t′ + 1 | M∗t′ < a] = 1 for any 1 ≤ t′ < t.

Then, we have
Pr[M∗t ≥ a] < δ .

Proof of Lemma 7.9. The key idea is to introduce another stopping time which helps us partition the prob-
ability space. Let τ ′ be the stopping time for the event {M∗t∧τ ≥ a}. The following claim shows that if τ
stopped before time t, then τ ′ should stop earlier than τ .

Claim 7.10. Let τ and τ ′ be stopping times as defined above. Suppose the conditions in Lemma 7.9 hold.
Then we have

Pr[τ < t, τ ′ > τ ] = 0 .

Proof of Claim 7.10. The claim can be proved by contradiction as follows. Suppose both τ < t and τ ′ > τ .
By the definition of τ ′, we know that M∗τ < a since τ < τ ′. However, by the second condition of the lemma,
we then have

Pr[τ ≥ τ + 1 | M∗τ < a] = 1

which is a contradiction.

Next, we would like to show that Pr[M∗t ≥ a] ≤ Pr[M∗t∧τ ≥ a]. The idea is partitioning the probability
space as follows.

Pr[M∗t ≥ a] = Pr[M∗t ≥ a, τ ≥ t] + Pr[M∗t ≥ a, τ < t, τ ′ ≤ τ ] + Pr[M∗t ≥ a, τ < t, τ ′ > τ ] . (7.11)

For the first term of Equation 7.11, when τ ≥ t, we have t = t ∧ τ and thus M∗t = M∗t∧τ . As for the second
term, when τ ′ ≤ τ < t, we have both M∗t ,M

∗
t∧τ ≥ a. Thus, Equation 7.11 becomes

= Pr[M∗t∧τ ≥ a, τ ≥ t] + Pr[M∗t∧τ ≥ a, τ < t, τ ′ ≤ τ ] + Pr[M∗t ≥ a, τ < t, τ ′ > τ ] .
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Combining the first two terms, we have

≤ Pr[M∗t∧τ ≥ a] + Pr[M∗t , τ < t, τ ′ > τ ] .

Finally, from Claim 7.10, we know that Pr[τ < t, τ ′ > τ ] = 0. Thus, we conclude that Pr[M∗t ≥ a] ≤
Pr[M∗t∧τ ≥ a] < δ as desired.

Wrap up the proof of Lemma 7.4 Finally, we are ready to prove Lemma 7.4 by using Lemma 7.6 which
bounds the the stopped process of the noise terms and Lemma 7.9 which pulls out the stopping time from
the concentration inequalities. Let us restate the lemma as follows for the completeness.

Lemma 7.4 (Concentration of noise in an interval). For any ε′, δ′, η ∈ (0, 0.5) and k ∈ N≥0 such that

η = O
(
ε′(λ1−λ2)

λ1 log 1
δ′

)
, let t2,k ∈ N be

t2,k =
4

3
·

2−k log 1
ε′

η(λ1 − λ2)
+ Θ

(
2−k

η(λ1 − λ2)

)
.

Suppose there exists some t0 ∈ N and γ ∈ (0, 0.5) where γ = Ω((ε′)1−2−k) such that wt0,1 ≥ 1− γ
2 . Then,

Ht2,k = exp

(
−3

4
η(λ1 − λ2)t2,k

)
≤ (ε′)2−k

10

and

Pr

[
min

1≤t≤t2,k

t0+t∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

< −γ
2

]
< δ′ .

Proof of Lemma 7.4. The first statement of the lemma directly follows from the forth item of Lemma 7.7.
For the second statement of the lemma, the proof is based on Lemma 7.9 which pulls out the stopping time.

Let τ be the stopping time for the event {wt0+τ,1 < 1− γ} as defined in Lemma 7.6. Also, define

Mt = −
t0+t∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

for any t ∈ N. Now by Lemma 7.6 and Lemma 7.7, we have

Pr

[
max

1≤t≤t2,k
Mt∧τ >

γ

2

]
< δ . (7.12)

Now in order to apply Lemma 7.9 to pull out the stopping time, we need to check the following.

Pr

[
τ ≥ j + 1

∣∣∣ max
1≤t≤j

Mt ≤
γ

2

]
= 1 (7.13)

for any 1 ≤ j < t2,k. By the ODE trick (i.e., Corollary 7.3) we have

w′t0+j,1 = Hj ·

(
w′t0,1 +

t0+j∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

)
.

By the condition in Equation 7.13 and w′t0,1 ≥ −
γ
2 , the ODE trick gives us

≥ Hj ·
(
−γ

2
− γ

2

)
≥ −γ .

Note that the above implies that wt0+j,1 ≥ 1 − γ which means that τ ≥ j + 1 as desired. This shows
that Equation 7.13 holds.

Finally, invoke the pull-out lemma (i.e., Lemma 7.9) with Equation 7.12 and Equation 7.13, we have the
desiring bound as follows.

Pr

[
min

1≤t≤t2,k

t0+t∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

< −γ
2

]
= Pr

[
max

1≤t≤t2,k
Mt >

γ

2

]
≤ Pr

[
max

1≤t≤t2,k
Mt∧τ >

γ

2

]
< δ .

This completes the proof of Lemma 7.4.
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8 Conclusions and Future Directions

In this work, our contributions are two-fold. First, we give the first convergence rate analysis for the biological
Oja’s rule in solving streaming PCA. In particular, the rate we show is nearly optimal. This provides
theoretical evidences for a biologically-plausible streaming PCA mechanism to converge in a biologically-
realistic time scale in the retina-optical nerve pathway. Second, we introduce a novel one-shot framework to
analyze stochastic dynamics. The framework is simple and captures the intrinsic behaviors of the dynamics.
Finally, as a byproduct, the convergence rate we get for the biological Oja’s rule outperforms the state-of-
the-art upper bound for streaming PCA (using ML Oja’s rule).

In this section, we discuss the biological and algorithmic significance of our results and point out potential
future directions.

8.1 Biological aspect

Spiking Oja’s Rule In this paper, we simplify the biological dynamic using a rate-based model. It would
be interesting to design a spiking version of the learning rule to solve streaming PCA. On the other hand, it
has been shown that Spike Timing Dependent Plasticity (STDP) has self-normalizing behaviors [AN00], so
the higher order terms in the biological Oja’s rule might not be needed for the normalization in the spiking
version.

Convergence rate analysis for other biological-plausible learning rules As mentioned in Sec-
tion 1.4, there are plenty of Hebbian-type learning rules that had been proposed to solve some computa-
tional problems [Sej77, BCM82, San89, XOS92, OBL00, Apa12, PHC15]. Nevertheless, most of them do
not have efficiency guarantee and we think it would be of interest to use our frameworks to systematically
analyze the convergence rates of these update rules. This is not only a natural theoretical question but also
could potentially provide insights on how these biologically-plausible algorithms are different from standard
algorithms.

Designing biologically-plausible learning rule for online k-PCA In this work, we focus on the
biological Oja’s rule in finding the top eigenvector of the covariance matrix. It is a natural question to ask:
whether there is a biologically-plausible algorithm for finding top k eigenvectors (a.k.a. the k-PCA problem)?
In the setting of ML Oja’s rule, this can be achieved by QR decomposition [AZL17] while it is unclear how
to implement such decomposition in a biologically-plausible way. Another standard way to solve k-PCA is
performing the Gram–Schmidt process after having a good enough approximation to the top eigenvectors.
Nevertheless, it is also unclear how to implement Gram–Schmidt using a simple plasticity update rule. Thus,
in our opinion, it would be very exciting to have a variant of biological Oja’s rule that solves the streaming
k-PCA problem.

8.2 Algorithmic aspect

Improving the guarantees for biological Oja’s rule In this paper, we mainly focus on the situation
when λ1 > λ2 while some of the previous works also considered the gap-free setting. We believe our
framework can be easily extended to the gap-free setting and leave it as a future work. Also, there are some
logarithmic terms (e.q. additive log log log(1/ε) in the local convergence) in the convergence rate and do not
seem to be inherent. It would be interesting to find out the optimal logarithmic dependency.

On the other hand, we suspect the log(1/ε) term in the convergence rate of biological Oja’s rule might
be necessary. Thus, showing a lower bound with log(1/ε) would be of great interest. Note that there exists
(non-streaming) algorithm which solves PCA using only O

(
λ1ε
−1gap−2

)
samples so the lower bound should

be tailored to the dynamic.

Tighter analysis for ML Oja’s rule Using the objective function from [AZL17], one can also easily
generalize our framework to ML Oja’s rule and tighten the bounds for both the local and global convergence
rates.
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Other Stochastic Dynamics There are many stochastic optimization problems in machine learning
where the optimal analysis still remains elusive, e.g., stochastic gradient dynamics of matrix completion,
low-rank approximation, nonnegative matrix factorization, etc. It is of great interest to apply our one-shot
framework to analyze other important stochastic dynamics.
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A Oja’s derivation for the biological Oja’s rule

Recall that Oja wanted to use the following normalized update rule to solve the streaming PCA problem.

wt =

(
I + ηtxtx

>
t

)
wt−1

‖
(
I + ηtxtx>t

)
wt−1‖2

. (A.1)

Oja applied Taylor’s expansion on the normalization term and truncated the higher-order term of ηt. Con-
cretely, we have

‖
(
I + ηtxtx

>
t

)
wt−1‖−1

2 =

(
n∑
i=1

(wt−1,i + ηtytxt,i)
2

)−1/2

=

(
n∑
i=1

w2
t−1,i + 2ηtytxt,iwt−1,i +O(η2

t )

)−1/2

.

As yt = x>t wt−1 and ‖wt−1‖2 is expected to be 1, the equation approximately becomes

=
(
1 + 2ηty

2
t +O(η2

t )
)−1/2

= 1− ηty2
t +O(η2

t ) . (A.2)

Replace the denominator of Equation A.1 with Equation A.2 and truncate the O(η2
t ) term, one gets ex-

actly Equation 1.4.

B Details of the Linearizations in Continuous Oja’s Rule

Recall that the dynamic of the continuous Oja’s rule is the following.

dwt

dt
= diag(λ)wt −w>t diag(λ)wtwt .

Before proving the two convergence theorems of continuous Oja’s rule using different linearizations, let us
first prove the following lemma on some basic properties.

Lemma B.1 (Properties of continuous Oja’s rule). Let w0 ∈ Rn such that ‖w0‖2 = 1 and w0,1 > 0. For
any t ≥ 0, we have

1. ‖wt‖2 = 1,

2.
dwt,1
dt ≥ (λ1 − λ2)wt,1(1−w2

t,1), and

3. wt,1 is non-decreasing

almost surely.
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Proof of Lemma B.1. In the following, everything holds almost surely so we would not mention this condition
every time. First, consider

d‖wt‖22
dt

= 2w>t
dwt

dt
= 2w>t

(
diag(λ)wt −w>t diag(λ)wtwt

)
= 2w>t diag(λ)wt ·

(
1− ‖wt‖22

)
.

As 1− ‖w0‖22 = 0, by induction, we have ‖wt‖2 = 1 for all t ≥ 0.
For the second item of the lemma, we have

dwt,1

dt
=

λ1 −

∑
i∈[n]

λiw
2
t,i

wt,1 ≥ (λ1 − λ2)wt,1(1−w2
t,1)

= λ1(wt,1 −w3
t,1)−

n∑
i=2

λiw
2
t,iwt,1 .

From the first item, we have
∑n
i=2 w2

t,i = 1−w2
t,1. Thus, we have

≥ λ1(wt,1 −w3
t,1)− λ2(1−w2

t,1)wt,1 = (λ1 − λ2)wt,1(1−w2
t,1) .

The last item of the lemma is then an immediate corollary of the first two items.

Now, we restate and prove Theorem 3.4 as follows.

Theorem 3.4 (Linearization at 0). Suppose w0,1 > 0. For any ε ∈ (0, 1), when t ≥ Ω
(

log(1/w2
0,1)

ε(λ1−λ2)

)
, we have

w2
t,1 > 1− ε.

Proof of Theorem 3.4. Observe that for any t ≥ 0 such that w2
t,1 ≤ 1− ε, by the second item of Lemma B.1,

we have
dwt,1

dt
≥ (λ1 − λ2)wt,1(1−w2

t,1) ≥ ε(λ1 − λ2)wt,1 .

Let τ =
10 log(1/w2

0,1)

ε(λ1−λ2) and assume w2
τ,1 ≤ 1 − ε for the sake of contradiction. From the above linearization

and wt,1 being non-decreasing (the third item of Lemma B.1), we have

wτ,1 ≥ eε(λ1−λ2)τ ·w0,1 > 1 ,

which is a contradiction to the first item of Lemma B.1. Thus, we conclude that for any t = Ω
(

log(1/w2
0,1)

ε(λ1−λ2)

)
,

w2
t,1 > 1− ε.

Now, we restate and prove Theorem 3.5 as follows.

Theorem 3.5 (Linearization at 1). Suppose w0,1 > 0. For any ε ∈ (0, 1), when t ≥ Ω
(

log(1/ε)
w0,1(λ1−λ2)

)
, we

have w2
t,1 > 1− ε.

Proof of Theorem 3.5. Observe that for any t ≥ 0, by the second item of Lemma B.1, we have

d(wt,1 − 1)

dt
≥ (λ1 − λ2)wt,1(1−w2

t,1)

= −(λ1 − λ2)(wt,1 − 1)(wt,1 + w2
t,1) .

As wt,1 is non-decreasing (the third item of Lemma B.1) and at most 1, we have

≥ −(λ1 − λ2)w0,1(wt,1 − 1) .

By solvign the linear ODE, we have

wt,1 − 1 ≥ (w0,1 − 1) · e−(λ1−λ2)w0,1t .

Thus, for any t ≥ Ω
(

log(1/ε)
w0,1(λ1−λ2)

)
, we have w2

t,1 > 1− ε.
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C Why the Analysis of ML Oja’s Rule Cannot be Applied to
Biological Oja’s Rule?

In this section, we would like to discuss what makes biological Oja’s rule much harder to analyze comparing
to the previous approaches for ML Oja’s rule. We study this problem through the lens of their corresponding
continuous dynamics. Observe that, to study ML Oja’s rule, it suffices to study the following dynamic

dwt

dt
= diag(λ)wt .

The dynamic of the objective function
∑n
i=2 w2

t,i/w
2
t,1 would be

d
∑n
i=2 w2

t,i

w2
t,1

dt
=
−2
∑n
i=2 w2

t,i

w3
t,1

λ1wt,1 +

n∑
i=2

2wt,i

w2
t,1

λiwt,i

≤ −2(λ1 − λ2)

∑n
i=2 w2

t,i

w2
t,1

.

Namely, the continuous dynamic is just a linear ODE with slope being independent to the value of wt. In
comparison, the dynamic of the biological Oja’s rule is the following.

dwt,1

dt
≥ (λ1 − λ2)wt,1(1−w2

t,1)

where you have to use at least two objective functions with different linearizations to get tight analysis.
Furthermore, for any linearization, there exist some values of wt that make the improvement extremely
small or even vanishing. It is also not obvious to choose which two objective functions to analyze unless you
are guided by the continuous dynamics.

We remark that the discussion here only suggests the difficulty of applying previous techniques of ML
Oja’s rule to biological Oja’s rule. It might still be the case that the two dynamics are coupled but we argue
here that even this is the case, previous techniques cannot show this.

D Proof of Lemma 6.3

Let us start with the definition of the central object of this section.

Definition D.1. For each j ∈ [n], t ∈ [T ], and w ∈ Rn, define

ft,j(w) =

∑j
i=2 xt,iwi

w1
.

The goal of this section is to prove the following lemma which implies Lemma 6.3.

Lemma D.2. Let w0 be a random unit vector in Rn. For any n, T ∈ N and δ ∈ (0, 1) and η = O
(
δ2(λ1−λ2)

λ1 log2 nT
δ

)
.

There exists a stopping time ξ such that the following hold.

1.
Pr[ξ ≥ T ] ≥ 1− δ ,

2.

Pr

[
ft∧ξ,n(wt∧ξ−1) = O

(
1

δ

√
log

nT

δ

)]
= 1

for t ∈ [T ].

Note that Lemma 6.3 would be an immediate corollary of Lemma D.2.
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Proof of Lemma 6.3. Pick exactly the same ξ as in Lemma D.2 and the first item holds directly. As for the
second item, we have

|Dt∧ξ| =

∣∣∣∣∣xt∧ξ,1
n∑
i=2

xt∧ξ,iwt∧ξ−1,i

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=2

xt∧ξ,iwt∧ξ−1,i

∣∣∣∣∣ = |ft∧ξ,n(wt∧ξ−1) ·wt∧ξ−1,1| .

By the second item in Lemma D.2, we have

= O

(
wt∧ξ−1,1

δ

√
log

nT

δ

)

almost surely. As for the third item, we have

Var [Dt∧ξ | Ft−1] ≤ E

x2
t∧ξ,1

(
n∑
i=2

xt∧ξ,iwt∧ξ−1,i

)2

| Ft−1


= E

[
x2
t∧ξ,1ft∧ξ,n(wt∧ξ−1)2 ·w2

t∧ξ−1,1 | Ft−1

]
.

By the second item in Lemma D.2, we have

≤ E
[
x2
t∧ξ,1w

2
t∧ξ−1,1 | Ft−1

]
·O
(

1

δ2
log

nT

δ

)
= O

(
λ1w

2
t∧ξ−1,1

δ2
log

nT

δ

)
.

Organization of this section The goal of the rest of this section is to prove Lemma D.2. In Section D.1,
we first use an initialization lemma from [AZL17] and design the stopping time ξ. Specifically, we show
in Lemma D.4 that proving Equation D.5 would be sufficient for the goal. Next, we introduce the linearization
and ODE trick for handling ft,j(ws) in Section D.2. In particular, we use a vector form of the ODE trick to
get tight characterization. Then, we are able to show the concentration of the stopped process in Section D.3
and wrap up the proof in Section D.4.

D.1 Initialization

Before describing the stopping time ξ we are going to use, let us first introduce an useful initialization
lemma (due to [AZL17]) which shows that some nice initial conditions hold with good probability (over the
randomness of w0). We then embed the nice initial conditions into the stopping time ξ to enable future
analysis.

Lemma D.3 (Initialization lemma in [AZL17, Lemma 5.1]). For any n, T ∈ N, and D a distribution over
unit vectors in Rn. Let w0 ∈ Rn be a random unit vector, then for any j ∈ [n] and p, δ′ ∈ (0, 1), we have∑n

i=2 w2
0,i

w2
0,1

≤ O
(
n

p2
log

n

p

)
and

Pr
x1,...,xT∼D

[
∃j ∈ [n], t ∈ [T ], |ft,j(w0)| > Ω

(
1

p

√
log

nT

δ′

)]
< δ′

with probability at least 1− p− δ′ where the randomness is over w0.
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Fixing parameters There are plenty of parameters here and might be confusing. So let us fix them before

moving on. Recall that n, T ∈ N, δ ∈ (0, 1), and η = O
(
δ2(λ1−λ2)

λ1 log2 nT
δ

)
are given and we are going to specify

the deviation Λ and another auxiliary failure probability δ′. First, take δ′ = δ
32n2T and p = δ/4 and let the

deviation inside the Lemma D.3 be Λ
10 = O

(
1
p

√
log nT

δ′

)
= O

(
1
δ

√
log nT

δ

)
.

The choice of stopping time Now, we are able to formally define the stopping time ξ as follows. First,
consider the initialization lemma (i.e., Lemma D.3) with p = δ/4 and δ′ � δ chosen later. If w0 does not
satisfy the conditions in Lemma D.3, then we define ξ = 0. Note that {ξ = 0} happens with probability
at most p + δ′ ≤ δ/2. Next, if w0 satisfies the conditions, then define ξ to be the first time t such that
|ft,n(wt−1)| > Λ. Observe that the event {ξ = 0} only depends on the randomness from w0 (not on that
from x1,x2, . . . ,xT ). Thus, ξ is well-defined with respect to the natural filtration.

Note that ξ satisfies the second item of Lemma D.2 immediately from its definition. To achieve the first
condition and complete the proof, the following lemma shows that it suffices to show the concentration for
a bunch of events described in Equation D.5.

Lemma D.4. For any n, T ∈ N and δ ∈ (0, 1). Suppose for any t ∈ [T ] and j ∈ [n], we have

Pr
[
|ft,j(w(t−1)∧ξ)| > Λ | ξ > 0

]
<

δ

4nT
. (D.5)

Then
Pr[ξ < T ] < δ .

Proof of Lemma D.4. The proof is based on induction on T . Our induction hypothesis is that for any t ∈ [T ]

Pr[ξ < t] <
δ

2
+

δt

2T
.

For the base case where t = 1, we have

Pr[ξ < 1] = Pr[ξ = 0] = Pr[w0 does not satisfy the conditions in Lemma D.3] <
δ

2
.

For the induction step, assume the induction hypothesis holds for t− 1 for some 1 < t ≤ T . Consider

Pr[ξ < t] = Pr[ξ < t− 1] + Pr[ξ = t− 1] .

By the induction hypothesis, the first term can be bounded by δ
2 + δ(t−1)

2T . The second term can also be
upper bounded from definition as follows.

<
δ

2
+
δ(t− 1)

2T
+ Pr [∃j ∈ [n], |ft,j(wt−1)| > Λ, ξ ≥ t− 1]

=
δ

2
+
δ(t− 1)

2T
+ Pr

[
∃j ∈ [n], |ft,j(w(t−1)∧ξ)| > Λ, ξ ≥ t− 1

]
.

Finally, from the assumption (i.e., Equation D.5) in the lemma statement, the second term can be union
bounded by n · 1

Pr[ξ>0] ·
δ

4nT . As Pr[ξ > 0] ≥ 0.5, the inequality becomes

≤ δ

2
+
δ(t− 1)

2T
+ n · 1

Pr[ξ > 0]
· δ

4nT
≤ δ

2
+

δt

2T
.

This completes the induction. Thus, Pr[ξ < T ] ≤ δ as desired.

To get Equation D.5, we need to show the concentration of ft,j(wt−1) and as before the linearization and
ODE trick would be our main tools. In the end, we prove Equation D.5 in Section D.4.
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D.2 Linearization and ODE trick

Let us start with the linearization and ODE trick for function ft,j in this subsection.

Lemma D.6 (Linearization). For any t ∈ [T ] and j ∈ [n]. For any s ∈ [t], write ws = ws−1 + ηzs where
zs = ys(xs − ysws−1). There exists ws−1 = ws−1 + cηzs for some c ∈ [0, 1] such that

ft,j(ws) = (1− η(λ1 − λj))ft,j(ws−1) + ηAt,s,j + ηBt,s,j + η2Ct,s,j

where

At,s,j =

j−1∑
i=2

(λi − λi+1)ft,i(ws−1) ,

Bt,s,j =

n∑
i=1

∂ft,j
∂wi

(ws−1) · (zs,i − E[zs,i | Fs−1]) , and

Ct,s,j =

n∑
i,i′=1

∂2ft,j
∂wi∂wi′

(ws−1) · zs,izs,i′ .

Vector form of linearization For any t ∈ [T ], let ft(w),Bt,s,Ct,s ∈ Rn−1 be (n−1)-dimensional vectors
where the ith coordinates of them are ft,i+1(w), Bt,s,i+1, Ct,s,i+1 respectively. The following is an immediate
corollary of Lemma D.6 by rewriting everything into a vector form.

Corollary D.7 (Linearization in vector form). For any t ∈ [T ] and s ∈ [t], we have

ft(ws) = Hft(ws−1) + ηBt,s + η2Ct,s

where

H =


1− η(λ1 − λ2) 0 0 · · · 0
η(λ2 − λ3) 1− η(λ1 − λ3) 0 · · · 0
η(λ2 − λ3) η(λ3 − λ4) 1− η(λ1 − λ4) · · · 0

...
...

...
. . .

...
η(λ2 − λ3) η(λ3 − λ4) η(λ4 − λ5) · · · 1− η(λ1 − λn)

 .

It turns out that the multiplier matrix H in Corollary D.7 is well-behaved: it is invertible and we can
explicitly write down its eigenvectors as follows. For each i ∈ [n − 1], the ith eigenvalue-eigenvector pair
(µi,vi) is

µi = 1− η(λ1 − λi+1) and vi = [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, . . . , 1︸ ︷︷ ︸
n−i

]> .

With the eigenvectors, we can easily diagonalize H as follows. Let V ∈ R(n−1)×(n−1) be the matrix with
the ith column being vi, we have H = V DV −1 where

D = diag(1− η(λ1 − λ2), 1− η(λ1 − λ3), . . . , 1− η(λ1 − λn)) .

Thus, the inverse of H is H−1 = V D−1V −1.
By the ODE trick for vector (see Lemma 2.13), we immediately have the following corollary for a closed-

form solution to ft(ws).

Corollary D.8 (ODE trick). For any t ∈ [T ], s ∈ [t− 1], and η > 0, we have

ft(ws) = Hsft(w0) +

s∑
s′=1

Hs−s′ (ηBt,s′ + η2Ct,s′
)
.
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D.3 Concentration of the noise terms

In this subsection, we prove Equation D.5. However, same as the situation before, we cannot get concen-
tration for the noise terms of the ODE trick (see Corollary D.8) directly. As a consequence, we have to
introduce a new stopping time τt to make sure the stopped processes are in a good shape for the martingale
concentration inequality.

D.3.1 Stopping time

For a fixed t ∈ [T ], we define a stopping time τt for the noise terms from s = 1, 2, . . . , t− 1 as follows. First,

we work on a slightly different filtration {F (t)
s }s∈[t−1] than the natural filtration {Fs}s∈[t−1]. The key idea

is that the stopping time can depend on xt since we only look at the noise term up to t − 1. Concretely,

for each s ∈ [t − 1], let F (t)
s be the σ-algebra generated by {x1,x2, . . . ,xs} ∪ {xt}. Note that {F (t)

s }s∈[t−1]

is well-defined and both {Bt,s,j}s∈[t−1] and {Ct,s,j}s∈[t−1] are adapted random processes with respect to

{F (t)
s }s∈[t−1], i.e., Bt,s,j and Ct,s,j lie in F (t)

s for all s ∈ [t− 1]. Also, note that E[zs | Fs−1] = E[zs | F (t)
s−1].

That is, the conditional expectation and conditional variance of z are the same with respect to {Fs} and

{F (t)
s }.
Now we define τt to be the stopping time for the event {‖ft(wτt)‖∞ > Λ}. Note that the stopped

process
{∑s

s′=1H
−(s′−s0)Bt,(s′−1)∧ξ∧τt

}
s∈[t−1]

is a martingale and
{∑s

s′=1H
−(s′−s0)Ct,(s′−1)∧ξ∧τt

}
s∈[t−1]

is an adapted stochastic process with respect to {F (t)
s }s∈[t−1]. Furthermore, both of them have small bounded

difference, conditional expectation, and conditional variance. Concretely, we have the following lemma.

Lemma D.9 (Structure of the stopped processes). Let T, η,Λ be the parameters and ξ, τt be the stopping
times as chosen before. For any t ∈ [T ], s ∈ [t − 1], and j ∈ [n], let MB

t,s,j and MC
t,s,j be the jth entry of∑s

s′=1H
s−s′Bt,s′∧ξ∧τt and

∑s
s′=1H

s−s′Ct,s′∧ξ∧τt respectively. The following hold.

• (Bounded difference) For any j ∈ [n], we have∣∣MB
t,s,j −MB

t,s−1,j

∣∣ = O(Λ2) and
∣∣MC

t,s,j −MC
t,s−1,j

∣∣ = O(Λ3) almost surely.

• (Conditional expectation) For any s ∈ [t− 1] and j ∈ [n], we have

E
[
MB
t,s,j −MB

t,s−1,j | F
(t)
s−1

]
= 0 and

s∑
s′=1

∣∣∣E [MC
t,s′,j −MC

t,s′−1,j | F
(t)
s′−1

]∣∣∣ = O

(
λ1Λ3

η(λ1 − λ2)

)
.

• (Conditional variance) For any s ∈ [t− 1] and j ∈ [n], we have

s∑
s′=1

Var
[
MB
t,s,j | F

(t)
s−1

]
= O

(
λ1Λ4

η(λ1 − λ2)

)
and

s∑
s′=1

Var
[
MC
t,s,j | F

(t)
s−1

]
= O

(
λ1Λ6

η(λ1 − λ2)

)
.

Proof of Lemma D.9. Before looking at MB
t,s,j and MC

t,s,j , which are weighted by some factor of H, let us
first understand the structure of the unweighted version in the following lemma.

Lemma D.10. Let T, η,Λ be the parameters and ξ, τt be the stopping times as chosen before. For any
t ∈ [T ], s ∈ [t− 1], and j ∈ [n], the following hold.

• (Bounded difference) We have

|Bt,s∧ξ∧τt,j | = O(Λ2) and |Ct,s∧ξ∧τt,j | = O(Λ3) almost surely.

• (Conditional expectation) We have

E[Bt,s∧ξ∧τt,j | F
(t)
s−1] = 0 and

∣∣∣E[Ct,s∧ξ∧τt,j | F
(t)
s−1]

∣∣∣ = O(λ1Λ3) .

• (Conditional variance) We have

Var[Bt,s∧ξ∧τt,j | F
(t)
s−1] = O(λ1Λ4) and Var[Ct,s∧ξ∧τt,j | F

(t)
s−1] = O(λ1Λ6) .
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Proof of Lemma D.10. The proof is based on properly expanding the noise terms and utilizes the stopping
time condition. We postpone the details to Section E.3.

To move the unweighted structure (i.e., Lemma D.10) to the desiring weighted structure (i.e., for MB
t,s,j

and MC
t,s,j), we need the following claim on translating the bounded difference and variance after being

multiplied by some power of H.

Claim D.11. Let H ∈ R(n−1)×(n−1) be the matrix from Corollary D.7. For any s ∈ N, c, µ, σ2 > 0, and
random vector u ∈ Rn−1 such that (i) ‖u‖∞ ≤ c almost surely, (ii) ‖E[u]‖∞ ≤ µ, and (ii) Var[ui] ≤ σ2 for
each i ∈ [n− 1]. The following hold.

• (Bounded difference) For any s ∈ N, ‖Hsu‖∞ ≤ (1− η(λ1 − λ2))s · c almost surely.

• (Expectation) ‖E [Hsu]‖∞ ≤ (1− η(λ1 − λ2))s · µ.

• (Variance) Var[(Hsu)i] ≤ (1− η(λ1 − λ2))2s · σ2 for each i ∈ [n− 1].

Proof of Claim D.11. Recall that H = V DV −1 is invertible where

V =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1

 and V −1 =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

Also, observe that for any diagonal matrix D′ = diag(d1, d2, . . . , dn−1), we have

V D′V −1 =


d1 0 0 · · · 0

d1 − d2 d2 0 · · · 0
d1 − d2 d2 − d3 d3 · · · 0

...
...

...
. . .

...
d1 − d2 d2 − d3 d3 − d4 · · · dn−1

 .

Note that if d1 ≥ d2 ≥ · · · ≥ dn−1, the `1 norm of each row of V D′V −1 is exactly d1 and the `2 norm is at
most d1. To see the bound for the `2 norm, for any i ∈ [n − 1], the square of the `2 norm of the ith row of
V D′V −1 is

i−1∑
j=1

(dj − dj+1)2 + d2
i ≤

i−1∑
j=1

(dj − dj+1) + di

2

= d2
1 .

The first inequality holds because dj − dj+1 ≥ 0 for all j ∈ [n− 2].
Now, let us go back to Hs = V DsV −1 and recall that the ith entries of D are (1− η(λ1−λi+1)) for each

i ∈ [n − 1]. Namely, the diagonal entries of Ds from top left to bottom right are non-increasing and the
corresponding d1 = (1− η(λ1 − λ2))s.

Finally, let u ∈ Rn−1 be a random vector with the properties as stated in the claim, for any i ∈ [n− 1],
we have

(Hsu)i =
(
V DsV −1u

)
i

= v>s,iu

where vs,i is the ith row of V DsV −1. By the above discussion, ‖vs,i‖1, ‖vs,i‖2 ≤ d1 = (1 − η(λ1 − λ2))s.
Thus, we have both

|(Hsu)i| = |v>s,iu| ≤ ‖vs,i‖1 · ‖u‖∞ and |(Hsu)i| = |v>s,iu| ≤ ‖vs,i‖2 · ‖u‖2

almost surely due to Hölder’s inequality. This gives |(Hsu)i| ≤ (1 − η(λ1 − λ2))s · c almost surely and
Var[(Hsu)i] ≤ (1− η(λ1 − λ2))2s · σ2. The expectation of (Hsu)i is handled by linearity as follows.

|E[(Hsu)i]| = |E[v>s,iu]| = |v>s,iE[u]| ≤ ‖vs,i‖1 · ‖E[u]‖∞ .

This completes the proof of the claim.
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Now, the structure for the vector form (i.e., Lemma D.9) immediately follows from the structure of the
individual noise term (i.e., Lemma D.10), Claim D.11, Cauchy-Schwarz inequality, and the following formula.

∞∑
s=0

(1− η(λ1 − λ2))s =
1

η(λ1 − λ2)
.

D.3.2 Concentration for the stopped processes

As a consequence of Lemma D.10, we are able to prove the following concentration for the stopped processes
of the noise terms.

Lemma D.12 (Concentration for the stopped process of the noise vectors). Let T, η,Λ be the parameters
and ξ, τt be the stopping times as chosen before. For any t ∈ [T ], s ∈ [t − 1], and i ∈ [n − 1], the following
hold.

1.

Pr

 sup
s′∈[s]

s′∑
s′′=1

η
(
Hs′−s′′Bt,s′′∧ξ∧τt

)
i
≥ Ω

Λ2

√
ηλ1 log 1

δ′

λ1 − λ2

 < δ′ .

2.

Pr

 sup
s′∈[s]

s′∑
s′′=1

η2
(
Hs′−s′′Ct,s′′∧ξ∧τt

)
i
≥ Ω

 η3λ1Λ3

λ1 − λ2
+ ηΛ3

√
ηλ1 log 1

δ′

(λ1 − λ2)

 < δ′ .

Proof of Lemma D.12. The proof is based on applying the corollary of Freedman’s inequality (see Corol-
lary 2.7) on each coordinate using Lemma D.9. Since the calculation is similar to that of Lemma 6.6
and Lemma 7.6, we omit the details here for simplicity.

The following lemma calculates the deviation in Lemma D.12 after fixing the parameters and weighting
the noise terms with η.

Lemma D.13. With the parameter settings in Section D.1, by direct verification we have

O

Λ2

√
ηλ1 log 1

δ′

λ1 − λ2

 , O

 η3λ1Λ3

λ1 − λ2
+ ηΛ3

√
ηλ1 log 1

δ′

(λ1 − λ2)

 <
Λ

10

where the O terms are from the concentration inequalities of Lemma D.12.

D.3.3 Pull-out lemma

Now that we have good concentration on the stopped process of the noise vector in the ODE trick, the last
step is pulling out the stopping time. Note that there are two differences between the setting here and the
setting in Phase 2: here we are working on a vector of random processes instead of a single one and there is
an initial condition (i.e., Lemma D.3) we have to condition on throughout the analysis. Thus, we have to
develop the following generalization of Lemma 7.9.

Lemma D.14. Let m ∈ N and {Ms,j}s∈N≥0
be m-dimensional random processes indexed by j ∈ [m]. Denote

its maximal process as {M∗s,j}s∈N≥0
where M∗s,j = sups′∈[s]Ms′,j for any s ∈ N and j ∈ [m].

For any s ∈ N, a ∈ R, δ ∈ (0, 1), stopping time τ , and an event E, suppose

1. Pr[∃j ∈ [n], M∗s∧τ,j ≥ a | E ] < δ and

2. Pr[τ ≥ s′ + 1 | ∀j ∈ [n], M∗s′,j < a, E ] = 1 for any 1 ≤ s′ < s.
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Then, we have
Pr[∃j ∈ [n], M∗s,j ≥ a] < δ .

Proof. Let stopping time τ ′ be the first time t such that ∃j ∈ [n],Mt∧τ,j ≥ a. Similarly, we first have the
following observation.

Claim D.15. For any s ∈ N, we have

Pr[τ < s, τ ′ > τ | E ] = 0 .

Proof of Claim D.15. Let us assume both τ < s and τ ′ > τ for the sake of contradiction. Since τ ′ > τ ,
we know that for any j ∈ [n] and s′′ ≤ τ , Ms′′,j < a. From the second condition of Lemma D.14, we
have τ ≥ τ + 1 almost surely, which is a contradiction. Thus, we conclude that the two events cannot
simultaneously happen.

Now, let us partition the probability space of the error event as follows.

Pr[∃j ∈ [n], M∗s,j ≥ a | E ] = Pr[∃j ∈ [n], M∗s,j ≥ a, τ ≥ s | E ] + Pr[∃j ∈ [n], M∗s,j ≥ a, τ < s, τ ′ ≤ τ | E ]

+ Pr[∃j ∈ [n], M∗s,j ≥ a, τ < s, τ ′ > τ | E ] .

Note that when τ ≥ s, we have s = s ∧ τ and thus M∗s,j = M∗s∧τ,j for all j ∈ [n]. Also, when τ ′ ≤ τ < s, we
know that there exists j ∈ [n] such that both M∗s,j ,M

∗
s∧τ,j ≥ a. Thus, the equation becomes

= Pr[∃j ∈ [n], M∗s∧τ,j ≥ a, τ ≥ s | E ] + Pr[∃j ∈ [n], M∗s∧τ,j ≥ a, τ < s, τ ′ ≤ τ | E ]

+ Pr[∃j ∈ [n], M∗s,j ≥ a, τ < s, τ ′ > τ | E ] .

Moreover, by Claim D.15, we know that the last term is 0. Finally, we have

≤ Pr[∃j ∈ [n], M∗s∧τ,j ≥ a | E ] < δ .

This completes the proof of the pull-out lemma.

D.4 Wrap up

Now, let us formally prove Equation D.5 and thus by Lemma D.4 and Lemma D.2 this would finish the proof
of Lemma 6.3 and fulfill the goal of this section.

Proof of Equation D.5. Recall that the goal is to show that

Pr
[
|ft,j(w(t−1)∧ξ)| > Λ

]
<

δ

4nT

for all t ∈ [T ] and j ∈ [n]. The high-level idea is first showing that the stopped process of the noise vectors
would concentrate (using Lemma D.12) and then using the pull-out lemma (i.e., Lemma D.14) to get the
concentration for the original noise vectors.

For the ease of notation, for any t ∈ [T ], let us define

BADt :=

∃s′ ∈ [t− 1], i ∈ [n− 1],

∣∣∣∣∣∣
s′∑

s′′=1

η
(
Hs′−s′′Bt,s′′∧ξ

)
i
+ η2

(
Hs′−s′′Ct,s′′∧ξ

)
i

∣∣∣∣∣∣ > Λ

5


and

BADt,τt :=

∃s′ ∈ [t− 1], i ∈ [n− 1],

∣∣∣∣∣∣
s′∑

s′′=1

η
(
Hs′−s′′Bt,s′′∧ξ∧τt

)
i
+ η2

(
Hs′−s′′Ct,s′′∧ξ∧τt

)
i

∣∣∣∣∣∣ > Λ

5

 .
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For any t ∈ [T ], by Lemma D.12, Lemma D.13, and union bound, we have

Pr [BADt,τt ] < 4nδ′ . (D.16)

To apply the pull-out lemma (i.e., Lemma D.14), we have to check the second condition as follows. For
any 1 ≤ s ≤ t− 1, assume for any i ∈ [n− 1] and s′ ∈ [s], we have

s′∑
s′′=1

η
(
Hs′−s′′Bt,s′′∧ξ

)
i
+ η2

(
Hs′−s′′Ct,s′′∧ξ

)
i
<

Λ

5
.

Now, we would like to bound each coordinate of f(ws∧ξ). Specifically, we only care about the case where
ξ > 0. By the ODE trick (i.e., Corollary D.8), for any i ∈ [n− 1], we have

ft(ws∧ξ)
ξ>0
= Hs∧ξft(w0) +

s∑
s′=1

H(s∧ξ)−s′ (ηBt,s′∧ξ + η2Ct,s′∧ξ
)
.

As ξ > 0 implies ‖ft(w0)‖∞ < Λ/2, combining with the above assumption, we have ‖ft(ws∧ξ)‖∞ < Λ and
thus τt ≥ s+ 1. Namely,

Pr

[
τt ≥ s+ 1

∣∣∣∣ ¬BADs, ξ > 0

]
= 1 , (D.17)

i.e., the second condition of the pull-out lemma holds. Finally, invoke the pull-out lemma (i.e., Lemma D.14)
with Equation D.17 and event E = {ξ > 0}, we have

Pr [BADt | ξ > 0] ≤ Pr [BADt,τt | ξ > 0] ≤ Pr[BADt,τt , ξ > 0]

Pr[ξ > 0]
< 8nδ′

where the last inequality is due to Pr[ξ > 0] ≥ 0.5 and Equation D.16. Finally, using the ODE trick, we have

Pr
[
∃j ∈ [n], |ft,j(w(t−1)∧ξ)| > Λ | ξ > 0

] (∵ ODE trick)

≤ Pr[BADt | ξ > 0]
(∵ Equation D.16)

< 8nδ′ ≤ δ

4nT
.

Recall that the last inequality holds because we piked δ′ = δ
32n2T in Section D.1, thus we get Equation D.5.

This completes the proof.

E Details of Linearizations in Biological Oja’s Rule

In this section, we provide the full proofs for the linearization lemmas for biological Oja’s rule. In Section E.1
we provide the proof of the linearization in Phase 1, in Section E.2 we provide the proof of the linearization
in Phase 2, and in Section E.3 we provide the proof of the linearization used in Appendix D for the proof
of Lemma 6.3.

We remark that all of these linearization lemmas are based on Taylor’s expansion and the proofs are
elementary. The key of the proofs is to identify the right way to rearrange the terms so that everything is
analyzable. The rule of thumb is separating the drifting terms and the noise terms where in most of the case
the later are either (i) martingales or (ii) something with small bounded difference and small conditional
expectation. Namely, martingale concentration inequality (e.g., Corollary 2.7) can show that the noise terms
are small with high probability and thus the dynamic is dominated by the drifting terms.

E.1 Linearization in Phase 1

In this subsection, we prove Lemma 6.2 using Lemma E.1 and Lemma E.3.

Lemma E.1 (Linearization in Phase 1). For any t ∈ N and η ∈ (0, 0.1), we have

wt,1 = Ht ·wt−1,1 + ηDt + ηFt + η2Qt
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almost surely, where

At = −
∑
i 6=j xt,ixt,jwt−1,iwt−1,j , Bt =

∑n
i=3

(
x2
t,2 − x2

t,i − (λ2 − λi)
)
w2
t−1,i,

Ct = (1−w2
t−1,1)

(
x2
t,1 − x2

t,2 − (λ1 − λ2)
)
, Dt =

∑n
i=2 xt,1xt,iwt−1,i ,

Et =
∑n
i=3(λ2 − λi)w2

t−1,i, Ft = wt−1,1(At +Bt + Ct) ,
Qt = O(x2

t,2wt−1,1 + λ1wt−1,1) Ht = exp
(
η(λ1 − λ2)(1−w2

i−1,1) + ηEi
)
.

Proof of Lemma E.1. Recall that from Equation 1.4, we have

wt,1 = wt−1,1 + η ·

 n∑
i=1

xt,iwt−1,ixt,1 −

(
n∑
i=1

xt,iwt−1,i

)2

wt−1,1


= wt−1,1 + η ·

[
x2
t,1wt−1,1 +Dt −

(
x2
t,1w

2
t−1,1 + x2

t,2w
2
t−1,2 +

n∑
i=3

x2
t,iw

2
t−1,i −At

)
wt−1,1

]
.

From Lemma 5.1, we can replace w2
t−1,2 with 1 − w2

t−1,1 −
∑n
i=3 w2

t−1,i + O(η). Let B′t =
∑n
i=3(x2

t,2 −
x2
t,i)w

2
t−1,i, we have

= wt−1,1 + η ·
[
(x2
t,1 − x2

t,2)wt−1,1(1−w2
t−1,1) + wt−1,1B

′
t + wt−1,1At +Dt

]
+O(η2x2

t,2wt−1,1) .

By adding and subtracting η(λ1 − λ2)wt−1,1(1−w2
t−1,1) and ηwt−1,1Et, we have

= wt−1,1 + η ·
[
(λ1 − λ2)wt−1,1(1−w2

t−1,1) + wt−1,1(At +Bt + Ct + Et) +Dt

]
+O(η2x2

t,2wt−1,1) .

(E.2)

Let Ft = wt−1,1(At +Bt + Ct) and Qt = O(x2
t,2wt−1,1 + λ1wt−1,1). By Lemma 2.16, we have

= wt−1,1 · exp
(
η(λ1 − λ2)(1−w2

t−1,1) + ηEt
)

+ ηDt + ηFt + η2Qt .

Finally, let Ht = exp
(
η(λ1 − λ2)(1−w2

i−1,1) + ηEi
)
, we have

= Ht ·wt−1,1 + ηDt + ηFt + η2Qt .

Lemma E.3 (Bounded difference and conditional variance in Phase 1). For each t ∈ N, we have the
following.

• (Bounded difference) For any t ∈ N, Et ≥ 0, |Ft| = O(wt−1,1), and |Qt| = O(wt−1,1) almost surely.

• (Conditional expectation) For any t ∈ N, E[Ft | Ft−1] = 0 and |E[Qt | Ft−1]| = O(λ1wt−1,1).

• (Conditional variance) For any t ∈ N, Var [Ft | Ft−1] = O
(
λ1w

2
t−1,1

)
and Var [Qt | Ft−1] = O(λ1w

2
t−1,1).

Proof of Lemma E.3.

• (Bounded difference) Let us start with bounding |Ft| = |wt−1,1(At + Bt + Ct)|. A straightforward
application of Cauchy-Schwarz inequality would give |Bt|, |Ct| = O(1) almost surely. The bound for
|At| is slightly trickier as follows.

|At| ≤
n∑
i=1

|xt,iwt−1,i| ·
∑
j 6=i

|xt,jwt−1,i|

(∵ Cauchy-Schwarz) = O (1)

almost surely.

As for the other two quantities, follow from their definitions we have Qt = O(wt−1,1) and Et ≥ 0
almost surely.
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• (Conditional expectation) Since E[xt,iwt,j | Ft−1] = λi · 1i=j for any i, j ∈ [n], we immediately have
E[Ft | Ft−1] = 0 and |E[Qt | Ft−1]| = O(λ1w

2
t−1,1).

• (Conditional variance) First rewrite

At = −2

n∑
i=2

xt,1xt,iwt−1,1wt−1,i −

(
n∑
i=2

xt,iwt−1,i

)2

+

n∑
i=2

x2
t,iw

2
t−1,i .

Consider the first term of At,

E

 n∑
i,j=2

x2
t,1xt,ixt,jw

2
t−1,1wt−1,iwt−1,j

∣∣∣∣∣ Ft−1

 = E

x2
t,1w

2
t−1,1 ·

(
n∑
i=2

xt,iwt−1,i

)2 ∣∣∣∣∣ Ft−1


(∵ Cauchy-Schwarz) ≤ E

[
x2
t,1w

2
t−1,1 ·

(
n∑
i=2

x2
t,i

n∑
i=2

w2
t−1,i

) ∣∣∣∣∣ Ft−1

]

≤ E

[
O
(
x2
t,1w

2
t−1,1

) ∣∣∣∣∣ Ft−1

]
≤ O(λ1w

2
t−1,1) .

The conditional variance of last two terms of At and the Bt, Ct terms can be bounded similarly by
noticing that E[x4

t,i] ≤ λ1. So Var [Ft | Ft−1] ≤ O
(
λ1w

2
t−1,1

]
. On the other hand, the conditional

variance of Qt is O(λ1w
2
t−1,1) by checking the definition.

E.2 Linearization in Phase 2

In this subsection, we prove Lemma 7.2 using Lemma E.4 and Lemma E.5.

Lemma E.4 (Linearization in Phase 2). For any t ∈ N, we have

w′t,1 = H ·w′t−1,1 + ηFt + ηPt + η2Qt

almost surely, where

At = −
∑
i6=j xt,ixt,jwt−1,iwt−1,j , Bt =

∑n
i=3

(
x2
t,2 − x2

t,i − (λ2 − λi)
)
w2
t−1,i ,

Ct = (1−w2
t−1,1)

(
x2
t,1 − x2

t,2 − (λ1 − λ2)
)
, Dt =

∑n
i=2 xt,1xt,iwt−1,i ,

Et =
∑n
i=3(λ2 − λi)w2

t−1,i , Ft = wt−1,1(At +Bt + Ct) +Dt ,
Gt = (λ1 − λ2)(1−wt−1,1)(w2

t−1,1 + wt−1,1 − 3
4 ) , Qt = O(x2

t,2 + λ1)
Pt = wt−1,1Et +Gt, and H = exp (−3η(λ1 − λ2)/4) .

Proof of Lemma E.4. For the simplicity of the proof, we do not derive the linearization from Taylor’s ex-
pansion here and only prove the correctness of the statement. See the continuous analysis in Section 3 for
more intuition.

From Equation E.2 in the linearization of Phase 1 (i.e., Lemma 6.2), we have

wt,1 = wt−1,1 + η ·
[
(λ1 − λ2)wt−1,1(1−w2

t−1,1) + wt−1,1(At +Bt + Ct + Et) +Dt

]
+ η2Qt .

Observe that wt−1,1(1−w2
t−1,1) = −(wt−1,1 − 1)(w2

t−1,1 + wt−1,1), we have

= wt−1,1 + η ·
[
−(λ1 − λ2)(wt−1,1 − 1)(w2

t−1,1 + wt−1,1) + wt−1,1(At +Bt + Ct + Et) +Dt

]
+ η2Qt .

Now, by adding and subtracting 3
4η(−(λ1 − λ2)(wt−1,1)), the equation becomes

= wt−1,1 + η ·
[
−3

4
(λ1 − λ2)(wt−1,1 − 1) + wt−1,1(At +Bt + Ct + Et) +Dt +Gt

]
+ η2Qt .

Finally, the lemma is concluded by replacing wt,1 and wt−1,1 with w′t,1 + 1 and w′t−1,1 respectively and
apply Lemma 2.16 as we did in the proof of Lemma 6.2.
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The following lemma shows the nice martingale structure of the noise terms.

Lemma E.5 (Bounded difference and conditional variance in Phase 2). For each t ∈ N, we have the
following.

• (Bounded difference) For any t ∈ N, |Ft| = O(
√

w′t−1 + η), Qt = O(1) almost surely. If wt−1,1 ≥ 0.5,
then Pt ≥ −O(ηλ1) almost surely.

• (Conditional expectation) For any t ∈ N, E[Ft | Ft−1] = 0 and |E[Qt | Ft−1]| = O(λ1).

• (Conditional variance) Var [Ft | Ft−1] ≤ O
(
λ1(w′t−1 + η)

)
and Var [Qt | Ft−1] ≤ O(λ1).

Proof of Lemma E.5. The proof is based on a careful manipulation of Cauchy-Schwarz inequality.

• (Bounded difference) Let us start with bounding |Ft| = |wt−1,1(At+Bt+Ct)+Dt|. A straightforward
application of Cauchy-Schwarz inequality and Lemma 5.1 would give |Bt|, |Ct|, |Dt| = O((‖wt−1‖22 −
w2
t−1,1)1/2) = O(

√
w′t−1,1 + η) almost surely. The bound for |At| is slightly trickier as follows. First

rewrite

At = −2

n∑
i=2

xt,1xt,iwt−1,1wt−1,i −

(
n∑
i=2

xt,iwt−1,i

)2

+

n∑
i=2

x2
t,iw

2
t−1,i . (E.6)

By Cauchy-Schwarz and Lemma 5.1, the last two terms can be bounded as follows.

O(‖wt−1‖22 −w2
t−1,1) = O(wt−1,1 + η) = O(

√
wt−1,1 + η) .

As for the first term, we have

n∑
i=2

xt,1xt,iwt−1,1wt−1,i ≤

 n∑
i=2

x2
t,1x

2
t,i

n∑
j=2

w2
t−1,1w

2
t−1,i

1/2

≤ O((‖wt−1‖22 −w2
t−1,1)1/2)

= O
(√

wt−1,1 + η
)

almost surely.

As for the Pt term, first observe that Et ≥ 0 trivially from the definition and

Gt = (λ1 − λ2)(1−wt−1,1)(w2
t−1,1 + wt−1,1 −

3

4
)

≥ −(λ1 − λ2)O(η)(w2
t−1,1 + wt−1,1 −

3

4
) = −O(ηλ1)

where the inequality is due to ‖wt‖2−1 = O(η) by Lemma 5.1 which implies that 1−wt−1,1 ≥ −O(η)
almost surely. As a result, we have

Pt = Gt + wt−1,1Et ≥ −O(ηλ1)

almost surely.

• (Conditional variance) It suffices to show that E[F 2
t | Ft−1] = O

(
λ1(w′t−1 + η)2

)
and E[Q2

t | Ft−1] =
O(λ1).

First, rewrite the At term as we did in Equation E.6. Consider the first term of At,

E

 n∑
i,j=2

x2
t,1xt,ixt,jw

2
t−1,1wt−1,iwt−1,j

∣∣∣∣∣ Ft−1

 = E

x2
t,1w

2
t−1,1 ·

(
n∑
i=2

xt,iwt−1,i

)2 ∣∣∣∣∣ Ft−1


(∵ Cauchy-Schwarz) ≤ E

[
x2
t,1w

2
t−1,1 ·

(
n∑
i=2

x2
t,i

n∑
i=2

w2
t−1,i

) ∣∣∣∣∣ Ft−1

]

≤ E

[
O
(
x2
t,1w

2
t−1,1(w′t−1 + η)

) ∣∣∣∣∣ Ft−1

]
≤ λ1

(
w′t−1,1 + η

)
.
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Similarly, the conditional variance of the last two terms and Bt, Ct, Dt are all O
(
w′t−1,1 + η

)
and thus

Var[Ft | Ft−1] = O
(
λ1(w′t−1,1 + η)

)
.

As for the Qt term, as E[x4
t,2 | Ft−1] ≤ λ1, we have Var[Qt | Ft−1] = O(λ1).

E.3 Linearization in Appendix D

In this subsection, we provide the full proof for Lemma D.6 on the linearization and Lemma D.10 on the
bounded difference, conditional expectation, and the conditional variance of the noise terms.

Proof of Lemma D.6

Proof of Lemma D.6. The proof is based on Taylor’s expansion. Concretely,

ft,j(ws) = ft,j(ws−1) + η

n∑
i=1

∂ft,j
∂wi

(ws−1) · zs,i + η2
n∑

i,i′=1

∂2ft,j
∂wi∂wi′

(ws−1) · zs,izs,i′ .

Note that
∂ft,j(w)
∂w1

= −ft,j(w)/w1 and
∂ft,j(w)
∂wi

= 1i≤j · xt,i/w1 for i = 2, . . . , n. Denote the η2 term as

η2Ct,s,j , we have

= ft,j(ws−1)− η ft,j(ws−1)

ws−1,1
· zs,1 + η

∑j
i=2 xs,izs,i
ws−1,1

+ η2Ct,s,j .

Next, recall that E[zs,i | Fs−1] = (λi − w>s−1diag(λ)ws−1) · ws−1,i. Denote Bt,s,j =
∑n
i=1 ∂wift,j(ws−1) ·

(zs,i − E[zs,i | Ft−1]). By adding and subtracting the expectations, the equation becomes

= ft,j(ws−1)− ηλ1ft,j(ws−1) + η

∑j
i=2 λixs,iws−1,i

ws−1,1

+ η
(
w>s−1diag(λ)ws−1

)
·

(
ft,j(ws−1)−

∑j
i=2 xs,iws−1,i

ws−1,1

)
+ ηBt,s,j + η2Ct,s,j

Observe that the two terms in the parenthesis becomes 0 after cancelling out with each other. Finally, by
adding and subtracting ηλift,i(ws−1) for each i = 2, 3, . . . , j, we have

= (1− η(λ1 − λj)) · ft,j(ws−1) + η

j−1∑
i=2

(λi − λi+1)ft,i(ws−1) + ηBt,s,j + η2Ct,s,j .

Finally, denote At,s,j =
∑j−1
i=2 (λi − λi+1)ft,i(ws−1), we have

= (1− η(λ1 − λj)) · ft,j(ws−1) + ηAt,s,j + ηBt,s,j + η2Ct,s,j .

Proof of Lemma D.10 It is not difficult to see that ft,j(ws) can be nicely bounded by O(Λ) as follows,
though the bound is not good enough.

Lemma E.7. For any t ∈ [T ], s ∈ [t], j ∈ [n], and c ∈ [0, 1], we have,

|ft,j(w(s∧τt)−1 + cηzs)| = O (Λ)

almost surely.
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The reason why we consider cηzs is that it shows up later in Ct,s,j due to the mean value theorem used
in the linearization. Note that ideally we want |ft,j(ws)| ≤ Λ. To get the bound, we need to apply the ODE
trick which requires the concentration of Bt,s,j , and Ct,s,j . Recall that this is exactly what we have done
in Section D.3.

First, we expand the differential terms in Bt,s,j , Ct,s,j and rewrite them as follows.

Lemma E.8 (Rewrite Bt,s,j and Ct,s,j). For any t ∈ [T ], s ∈ [t− 1], and j ∈ [n], we have

Bt,s,j = ft,j(ws−1) ·
(
−x2

s,1 − fs,n(ws−1)xs,1 + λ1

)
+

j∑
i=2

fs,n(ws−1)xt,ixs,i +

j∑
i=2

(λi − λi+1)ft,i(ws−1)

and

Ct,s,j =
2ft,j(ws−1 + cηzs)z

2
s,1 −

∑j
i=2 xt,izs,izs,1

w2
s−1,1 [1 + cη(xs,1 + fs,n(ws−1))(xs,1 − ysws−1,1)]

2 . (E.9)

Now, the bounded difference, conditional expectation, and the conditional variance of Bt,s,j and Ct,s,j
can be easily proved with the help of Lemma E.8.

Proof of Lemma D.10. The bounded difference immediately follows from Lemma E.8 while the conditional
expectation and the conditional variance require some small extra cares.

• (Bounded difference) For the Bt,s∧ξ∧τt,j term, from Lemma E.7, we have

|ft,j(w(s∧τt)−1)|, |fs,n(w(s∧τt)−1)| = O(Λ)

almost surely. Thus, by Lemma E.8, we have

|Bt,s∧ξ∧τt,j | ≤ (Λ2) + Λ ·O

(
j∑
i=2

xt,ixs,i +

j∑
i=2

(λi − λi+1)

)
.

By Cauchy-Schwarz inequality and telescoping sum, the parenthesis can be bounded by O(1) and thus
we have |Bt,s∧ξ∧τt,j | = O(Λ2) almost surely.

As for Ct,s,j , from Lemma E.7 and Cauchy-Schwarz inequality, we can bound the numerator in Equa-
tion E.9 by O(y2

sΛ) almost surely where the y2
s terms are borrowed from the z terms. To see the

denominator cannot be too small, first by the choice of η,Λ, and Lemma E.7, we have

cη(xs,1 + fs,n(w(s∧τt)−1)) = O(λ1) (E.10)

almost surely. Thus, the bracket in the denominator of Equation E.9 would be Ω(1). Next, as
|ft,n(w(s∧τt)−1)| = O(Λ) almost surely by Lemma E.7, we have

|Ct,s∧ξ∧τt | = O

(
y2
sΛ

w2
(s∧τt)−1,1

)
= O

(
ft(w(s∧τt)−1)2Λ

)
= O(Λ3) .

• (Conditional expectation) Recall the original definition of Bt,s,j in Lemma D.6, it is naturally a mar-
tingale. Thus, its stopped process {Bt,s∧ξ∧τt,j} is also a martingale and the conditional expectation of
the stopped process is zero.
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As for the Ct,s∧ξ∧τt,j term, let us start with rewriting the numerator of Equation E.9 by replacing zs,i
with ys(xs,i − ysws−1,i) as follows.

2y2
sft,j(ws−1 + cηzs)(xs,1 − ysws−1,1)2 −

j∑
i=2

y2
sxt,i(xs,i − ysws−1,i)(xs,1 − ysws−1,1)

=2y2
sft,j(ws−1 + cηzs)(xs,1 − ysws−1,1)2 −

j∑
i=2

y2
sxt,ixs,ixs,1

+

j∑
i=2

y3
sxt,ixs,iws−1,1 +

j∑
i=2

y4
sxt,iws−1,i(xs,1 − ysws−1,1) .

Let D =
[
1 + cη(xs∧ξ∧τt,1 + fs∧ξ∧τt,n(w(s∧ξ∧τt)−1))(xs∧ξ∧τt,1 − ys∧ξ∧τtw(s∧ξ∧τt)−1,1)

]2
be the bracket

term in the denominator of Equation E.9, from the previous discussion we know that |D| = Θ(1)
almost surely. Now, Consider the first term combining with the denominator, we have∣∣∣∣∣E

[
2y2
s∧ξ∧τtft,j(w(s∧ξ∧τt)−1 + cηzs∧ξ∧τt)(xs∧ξ∧τt,1 − ysw(s∧ξ∧τt)−1,1)2

w2
(s∧ξ∧τt)−1,1D

| F (t)
s−1

]∣∣∣∣∣
=O

(
Λ3 · E[(xs∧ξ∧τt,1 − ysw(s∧ξ∧τt)−1,1)2

∣∣∣∣ F (t)
s−1]

)
= O(λ1Λ3) .

Note that the first equality holds because the quantity in the expectation is always non-negative. Next,
consider the second term as follows.∣∣∣∣∣E
[∑j

i=2 y
2
s∧ξ∧τtxt,ixs∧ξ∧τt,ixs∧ξ∧τt,1

w2
(s∧ξ∧τt)−1,1D

∣∣∣∣ F (t)
s−1

]∣∣∣∣∣ ≤
∣∣∣∣∣E
[∑j

i=2 y
2
s∧ξ∧τtxt,i(x

2
s∧ξ∧τt,i + x2

s∧ξ∧τt,1)

w2
(s∧ξ∧τt)−1,1D

∣∣∣∣ F (t)
s−1

]∣∣∣∣∣
≤ O

(
Λ2 · E

[
x2
s∧ξ∧τt,i + x2

s∧ξ∧τt,1
])

= O(λ1Λ2) .

The third term can be upper bounded as follows.∣∣∣∣∣E
[∑j

i=2 y
3
s∧ξ∧τtxt,ixs∧ξ∧τt,iw(s∧ξ∧τt)−1,1

w2
(s∧ξ∧τt)−1,1D

∣∣∣∣ F (t)
s−1

]∣∣∣∣∣ = O
(

Λ · E[y2
s∧ξ∧τt | F

(t)
s−1]

)
= O(λ1Λ) .

The last term can be upper bounded as follows.∣∣∣∣∣E
[∑j

i=2 y
4
s∧ξ∧τtxt,iw(s∧ξ∧τt)−1,i(xs∧ξ∧τt,1 − ysw(s∧ξ∧τt)−1,1)

w2
(s∧ξ∧τt)−1,1D

| F (t)
s−1

]∣∣∣∣∣
=O

(
Λ2 · E

[
y2
s∧ξ∧τt | F

(t)
s−1

])
= O(λ1Λ2) .

We conclude that |E[Ct,s∧ξ∧τt,j | F
(t)
s−1]| = O(λ1Λ3).

• (Conditional variance) The conditional variance of Bt,s∧ξ∧τt,j and Ct,s∧ξ∧τt,j can be upper bounded
using the same argument as we did in the calculation of conditional expectation. Thus, we omit the
details here for simplicity.

Proof of Lemma E.8 Let us complete this subsection with the proof for the lemma that rewrites Bt,s,j
and Ct,s,j .

Proof of Lemma E.8. Recall that

Bt,s,j =

n∑
i=1

∂ft,j
∂wi

(ws−1) · (zs,i − E[zs,i | Fs−1]) and Ct,s,j =

n∑
i,i′=1

∂2ft,j
∂wi∂wi′

(ws−1) · zs,izs,i′
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For simplicity, in the following we denote Et−1[·] := E[· | Ft−1]. Observe that

∂ft,j(w)

∂wi
=

{
−ft,j(w)

w1
, if i = 1

xt,i
w1

, if i = 2, 3, . . . , j

and

∂2ft,j(w)

∂wi∂wi′
=


2ft,j(w)

w2
1

, if i = i′ = 1
−xt,i′
w2

1
, if i = 1 and i′ = 2, 3, . . . , j

−xt,i
w2

1
, if i = 2, 3, . . . , j and i′ = 1

0 else.

Let us start with rewriting Bt,s,j as follows.

Bt,s,j = −−ft,j(ws−1) · (zs,1 − Es−1[zs,1])

ws−1,1
+

∑j
i=2 xt,i · (zs,i − Es−1[zs,i])

ws−1,1
.

Recall that zs,i = ys(xs,i − ysws−1,i) and Es−1[zs,i] = (λi −w>s−1diag(λ)ws−1) ·ws−1,i. The equation then
becomes

=
−ft,j(ws−1)ysxs,1

ws−1,
+ (y2

s + λ1 −w>s−1diag(λ)ws−1) · ft,j(ws−1)

+

∑j
i=2 ysxt,ixs,i − (y2

s + λi −w>s−1diag(λ)ws−1) · xt,iws−1,i

ws−1,1
.

Recall that ys =
∑n
i=1 xs,iws−1,i = xs,1ws−1,1 + fs,n(ws−1)ws−1,1. The equation becomes

= ft,j(ws−1) ·
(
−x2

s,1 − fs,n(ws−1)xs,1 + λ1

)
+

j∑
i=2

fs,n(ws−1)xt,ixs,i +

j∑
i=2

(λi − λi+1)ft,i(ws−1) .

Note that now Bt,s,j only depends on ft′,j′(ws−1) for any t′ ∈ [t] and j′ ∈ [n].
Next, let us rewrite Ct,s,j by expanding the second order derivative as follows.

Ct,s,j =
2ft,j(ws−1)z2

s,1

w2
s−1,1

−
∑j
i=2 xt,izs,izs,1

w2
s−1,1

.

By mean value theorem, we can replace ws−1 with ws−1 + cηzs for some c ∈ [0, 1] and by definition, we can
replace the zs in the denominator with ys(xs − ysws−1). The equation becomes

=
2ft,j(ws−1 + cηzs)z

2
s,1 −

∑j
i=2 xt,izs,izs,1

(ws−1,1 + cηys(xs,1 − ysws−1,1))
2 .

Next, replace ys with xs,1ws−1,1 + fs,n(ws−1)ws−1,1 as we did before and get

=
2ft,j(ws−1 + cηzs)z

2
s,1 −

∑j
i=2 xt,izs,izs,1

w2
s−1,1 [1 + cη(xs,1 + fs,n(ws−1))(xs,1 − ysws−1,1)]

2 .

Note that now Ct,s,j is under control in the sense that the numerator is bounded by O(Λ) and the denominator
is Ω(w2

s−1,1) under the stopping time condition.

F Proof of Theorem 4.2

Let us first state a corollary of Lemma 7.4 as follows.
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Corollary F.1. For any ε, δ′, η ∈ (0, 0.5) such that η = O
(
ε(λ1−λ2)

λ1 log 1
δ′

)
, let t3 ∈ N be

t3 =
4

3
· 1

η(λ1 − λ2)
+ Θ

(
1

η(λ1 − λ2) log 1
ε

)
.

Suppose there exists some t0 ∈ N such that wt0,1 ≥ 1− ε
2 . Then,

Ht3 = exp

(
−3

4
η(λ1 − λ2)t3

)
≤ 1

10

and

Pr

[
min

1≤t≤t3

t0+t∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

< − ε
2

]
< δ′ .

Proof of Corollary F.1. This is an immediately corollary of Lemma 7.4 by setting ε′ = ε, k = log log(1/ε),
and γ = ε.

Proof of Theorem 4.2. The first statement of the theorem is an immediate corollary of the second so we only
focus on the for-all-time guarantee. The proof is based on an inductive argument. Concretely, let t3 be the
time parameter from Corollary F.1 with δ′ = δ/10s2.

Claim F.2. For any s ∈ N, denote t0 = (s− 1)t3 we have

Pr

[
min

1≤t≤t3
wt0+t,1 < 1− ε

∨
wt0+t3,1 < 1− ε

2

∣∣∣∣ wt0,1 ≥ 1− ε

2

]
<

δ

10s2
.

Proof of Claim F.2. For any s ∈ N, let t0 = (s − 1)t3 and condition on the event {wt0,1 ≥ 1 − ε/2}. Next,

invoke Corollary F.1 with δ′ = δ
10s2 . Check that 10 log t0+t

δ ≥ 10 log s
δ ≥ log 10s2

δ = log 1
δ′ . Thus,

ηt0+t = O

(
ε(λ1 − λ2)

λ1 log t0+t
δ

)
= O

(
ε(λ1 − λ2)

λ1 log 1
δ′

)
for all 1 ≤ t ≤ t3. Then, by Lemma 7.4 we have

Pr

[
min

1≤t≤t3

t0+t∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

< − ε
2

∣∣∣∣ wt0,1 ≥ 1− ε

2

]
<

δ

10s2

and Ht3 ≤ 1
10 . For any 1 ≤ t ≤ t3, recall that w′t0+t,1 = wt0+t,1 − 1. Now, apply the ODE trick in Phase 2

(i.e., Corollary 7.3), we have

w′t0+t,1 ≥ Ht ·

(
w′t0,1 +

t0+t∑
i=t0+1

ηFi + ηPi + η2Qi
Hi−t0

)
.

Conditioning on the event {wt0,1 ≥ 1− ε/2}, with probability at least 1− δ
10s2 , the inequality becomes

≥ Ht ·
(
− ε

2
− ε

2

)
≥
{
−ε , 1 ≤ t < t3
− ε

2 , t = t3 .

This completes the proof of the claim.

By the chain rule for conditional probability, Claim F.2 gives

Pr [∃t ≥ 0, wt,1 < 1− ε]

≤
∞∑
s=0

Pr

[
min

(s−1)t3+1≤t≤s·t3
wt,1 < 1− ε

∨
ws·t3,1 < 1− ε

2

∣∣∣∣ w(s−1)t3 ≥ 1− ε

2

]

≤
∞∑
s=0

δ

10s2
≤ δ .

This completes the proof of Theorem 4.2.
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