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Abstract

In this paper, we consider networks of deterministic spiking neurons, firing synchronously at
discrete times; such spiking neural networks are inspired by networks of neurons and synapses
that occur in brains. We consider the problem of translating temporal information into spatial
information in such networks, an important task that is carried out by actual brains.

Specifically, we define two problems: “First Consecutive Spikes Counting (FCSC)” and “To-
tal Spikes Counting (TSC)”, which model spike and rate coding aspects of translating temporal
information into spatial information respectively. Assuming an upper bound of T on the length
of the temporal input signal, we design two networks that solve these two problems, each using
O(log T') neurons and terminating in time 7'+ 1. We also prove that these bounds are tight.

1 Introduction

Algorithms in the brain are inherently distributed. Although each neuron has relatively simple
dynamics, as a distributed system, a network of neurons shows strong computational power. There
have been many attempts to model the brain computationally. At a single-neuron level, theo-
retical neuroscientists were able to model the dynamics of a single neuron to high accuracy with
the Hodgkin-Huxley model [HH52]. At a circuit level, to make the analysis tractable, neurosci-
entists approximated detailed dynamics of neurons with simplified models such as the nonlinear
integrate-and-fire model [FTHvVBO03] and the spiking response model [WWv.J97]. Recently, there
is increasing interest on using biologically plausible spiking neuronal dynamics to solve differ-
ent computational problems [LMP17bl, [LMP17al, LMI8|, [TLD17, [CNC18, [JHM14]. These models
vary in their assumptions about spike/rate code, deterministic/stochastic response, and continu-
ous/discrete time. In this paper, we consider a network of spiking neurons with a deterministic
synchronous firing rule in discrete time to simplify the analysis and focus on the computational
principles.

One of the most important questions in neuroscience is how humans integrate information over
time. Sensory inputs such as visual and auditory stimulus are inherently temporal; however, brains
are able to integrate the temporal information to a single concept, such as a moving object in a
visual scene, or an entity in a sentence. There are two kinds of neuronal codings: rate coding and
temporal coding. Rate coding is a neural coding scheme assuming most of the information is coded
in the firing rate of the neurons. It is most commonly seen in muscle in which the higher firing
rates of motor neurons correspond to higher intensity in muscle contraction [AZ26]. On the other
hand, rate coding cannot be the only neural coding brains employ. A fly is known to react to new
stimuli and change its direction of flight within 30-40 ms. There is simply not enough time for
neurons to compute averages [RWdRvSB96|. Therefore, neuroscientists have proposed the idea of



temporal spike coding, assuming the information is coded in the specific temporal firing patterns.
One of the popular spike codings is the first-to-spike coding. It has been shown that the timing of
the first spike encodes most information of an image in retinal cells [GMO08]. We propose two toy
problems to model how brains extract information from different coding. “First consecutive spikes
counting” (FCSC) counts the first consecutive interval of spikes, which is equivalent to counting
the distance between the first two spikes, a prevalent spike coding scheme in sensory cortex. “Total
spikes counting” (TSC) counts the number of the spikes over an arbitrary interval, which is an
example of rate coding. In particular, TSC contains an interesting difficulty: there are conflicting
objectives between maintaining the count when no spike arrives and updating the count when a
spike arrives. To overcome this difficulty, we allow the network to enter an unstable intermediate
state which carries the information of the count. The intermediate state then converges to a stable
state that represents the count after a computation step without inputs.

In this paper, we design two networks that solve the above two problems by translating temporal
information into spatial information in time 7"+ 1 with O(log T') neurons. We also show that our
time bounds are tight. We would like to remark that although our problems are biologically
inspired, the optimal solutions we propose are not biologically plausible. Our networks are not
noise tolerant, whereas the neuronal dynamics are highly noisy and it is hard to conceive that the
brain uses binary representation as a neuronal representation. However, we hope that our proofs
can demonstrates an important computational principle: unstable intermediate states can carry
temporal information and then converge to a stable representation efficiently. The organization of
this paper is as follows. In Section 2, we present the definition of a network of spiking neurons
and the problem statements. In Section 3, we present the FCSC network that counts consecutive
spikes in binary. In Section 4, we generalize Section 3 and present the TSC network that counts
spikes over arbitrary intervals. In Section 5, we present the time lower bound of FCSC and TSC
problem and show our networks are optimal. In Section 6, we discuss our model assumptions and
their implications along with possible future directions.

2 Problem Statements/Goals

In this section, we cover the model definition and the following two problems: First Consecutive
Spikes Counting (FCSC) and Total Spikes Counting (TSC).

2.1 Model

In this paper, we consider a network of spiking neurons with deterministic synchronous firing at
discrete times. Formally, a neuron z consists of the following data with ¢t > 1

Z(t) — @( Z wyzy(tfl) _ bz)
yeP,

where z(*) is the indicator function of neuron z firing at time ¢. b, is the threshold (bias) of neuron
z. P, is the set of presynaptic neurons of z, w,, is the strength of connection from neuron y to
neuron z and © is a nonlinear function. Here we take © as the Heaviside function given by ©(z) = 1
if z > 0 and 0 otherwise. At t = 0, we let 2(9 = 0 if 2 is not one of the input neurons.

For the rest of the paper, we fix an input neuron z and m output neurons {y;}o<i<m In a
network.



2.2 First Consecutive Spikes Counting(T) (FCSC(T))

Given an input neuron z and the max input length 7', we consider any input firing sequence such
that for all t > T, z® = 0. Define L, in terms of this firing sequence as follows: if z(!) = 1 for some
t, then there must exist integers ¢, L such that for all t,¢ < { we have () = 0, for all 1,0 < i < L
we have z(*+) = 1, and z(**5) = 0. Define L, = L. (i.e., L is the length of the first consecutive
spikes interval in the sequence.) Otherwise, that is if for all ¢ > 0, z®) =0, then define L, = 0.

Then we say a network of neurons solves FCSC(T) in time ¢’ with m’ neurons if there exists
an injective function F : {0,--- , T} — {0,1}" such that for all = and for all ¢,t > ¢’ we have
y® = F(L,) and the network has m/ total neurons.

Intuitively, FCSC serves as a toy model for encoding distance between spikes, a prevalent spike
coding in sensory cortex. For mathematical convenience, we model the problem as counting the
distance between non-spikes which is mathematically equivalent as counting the distance between
spikes in our model.

2.3 Total Spikes Counting(T) (TSC(T))

Given an input neuron x and the max input length 7', we consider any input firing sequence such
that for all t > T, £ = 0. Define L, = |{t : z() = 1,0 <t < T}| as the total number of spikes in
the sequence. Then we say a network of neurons solves TSC(T) in time ¢’ with m/ neurons if there
exists an injective function F': {0,--- ,n} — {0, 1} such that for all x and for all ¢,¢ > t' we have
y® = F(L,) and the network has m’ total neurons.

Intuitively, TSC serves as a toy model for rate coding implemented by spiking neural networks
because the network is able to extract the rate information by counting the number of spikes over
arbitrary intervals.

2.4 Main Theorems

Our contributions in this paper are to design networks that solve these two problems respectively
with matching lower bounds in numbers of neurons.

Theorem 2.1. There exists a network with O(logT') neurons that solves FCSC(T) problem in time
T+1.

Theorem 2.2. There exists a network with O(logT) neurons that solves TSC(T) problem in time
T+1.

It is easy to see that we also have the corresponding information-theoretical lower bound on the
number of neurons all being 2(log T') by the requirements of the tasks.

In terms of time bound, we also show that our networks are optimal for FCSC and TSC problem
in the following sense:

Theorem 2.3. There does not exists a network with o(T") neurons that solves FCSC(t) problem in
time t for all 0 <t <T.

Theorem 2.4. There does not exists a network with o(T) neurons that solves TSC(t) problem in
time t for all 0 <t <T.



Figure 1: mod 2 Base Network
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Figure 2: First Stage

3 First Consecutive Spikes Counting

We present the constructions in two stages. At the first stage, we count consecutive spikes in
binary transiently. At the second stage, we transform the transient firing into persistant firing. By
composing the two stages, we get our desired network.

First stage: The network contains neurons zg, - - , zp, 901, -+ , 0, and we build the network
inductively. To construct mod 2 Base Network which counts mod 2, we have

Wz = 1, Wyyz = —1,by = 0.5

By noticing that for t > 1, z(()t) =1 if and only if z¢~1) =1 and z(()t_l) = 0, we have the following
lemma

Lemma 3.1. For the mod 2 base network, given t > 0 if for all t'suchthat0 < t' < t we have
) =1, then at time t, z(()t) =t mod 2.

Now we iteratively build the network where 1 < ¢ < n on top of the mod 2 base network with
the following rule:

Wyz; = 1+ ]-7 Wzjz; = 17 \V/],O S] < iawzkini = 1aVk70 <k < ivwinizi =—i— 1’wzizi =1
by, =21+ 0.5, by, =7—0.5
This completes the construction. From the construction, we can deduce the following lemma

Lemma 3.2. For i > 0, neurons z;,in; fire according to the following rules:



1. zz(t) =1 if and only if 2=V = 1, Y = 0, and (either for all j,0 < j < i we have

z§t_1) =1 or zz-(t_l) =1)

2. in!"” = 1 if and only if for all j,1 < j < we have z](t*l) -1

Proof. Case (1): The potential of zi(t) is

i—1 i—1
wxzw(t_l)%—z wzjziz](-t_l)+wmiziingt_l)jthizizi(t_l) = (i+1)$(t_1)+z Z](-t_l)—(i+1)inl(.t_1)+izi(t_1)
j=0 Jj=0

(®)

Only if: Let’s show the only if direction for the firing rule of z;” by proving the contrapositive.

If (=1 = 0, then the potential of zl-(t) is

Sl i+ ind Y 4i Y <2i <204 05 =1,

If ingtfl) =1, then the potential of ZZ-(t) is

1—1
i+ 1)@+ 3720 iy iV <2i <20 405 =1,
§=0

If there exists 7,0 < j < i such that zj(,t_l) =0 and zi(t_l) = 0, then the potential of zi(t) is

S Y i 12 — i+ Dind Y <20 <20 405 =1,
J#3,0<j<i1
©=o.
If: For the if direction, if z(¢~1) =1, ingtfl) = (0 and for all 7,0 < j < ¢ we have z](tfl) = 1, then
()

In all three cases, we have z

the potential of 2;” is
i—1
G+1)+Y 140z >2i+1>2i+05 =0,
j=0
If 270 =1, ingt_l) =0 and zi(t_l) =1, then the potential of zz-(t) is
i—1
G+ +> AV ri>2i 41> 20405=1,
j=0

In both cases, we have z,ft) =1.

Case (2): The firing rule of inl(t) can be analyzed similarly.
(®)

The potential of in;’ is

7

Zl: wzjinizj(‘til) = Z Z](-til)
=1

j=1



Only If: For the only if direction, if there exists j,1 < j < i such that xg,t*l) = 0, then the
()

potential of in,; " is

Yoo AT i 1<i—05=1bp,

JAINS i
We have ingt) = 0.
If: For the if direction, if for all j,1 < 5 <+ we have z](-t_l) =1, then the potential of ingt) is
i
dl=i>i—05=by,
j=1
We have in'" = 1 as desired. O

i
Using the above lemma, we can verify that indeed the network at the first stage fires in binary,
with z; encoding the ¢th digit in the binary representation.

Theorem 3.3. Given i > 1 and t > 0, if for all t' such that 0 <t <t we have ) =1, then
1. zl(t) =a; fort=3 22, a;j27 where a; € {0,1}.

2. ingt) =1 if and only if t mod 2771 = 27+1 — 1 or 0.

Proof. First, let’s verify that the claim is true for zy. Since for all ¢/,0 < ¢ < ¢ we have z(*) = 1,
z((]tl) = 1if and only if z(()t,_l) = 0. This implies exactly z(()t) =t mod 2 as desired (for all the modular
arithematic at this paper, we choose the smallest nonnegative number from the equivalence class).
Now let’s do the induction on ¢ and we will verify the induction by checking z;, in; fires in according
to the induction hypothesis for all ¢ > 1. When ¢ = 1, the induction statement is trivially satisfied

for all ¢ > 1. Fix i, we have the following cases:

1. 0 < ¢t mod 21+ < 21 ;7Y =
This implies that 0 < ¢ — 1 mod 2! < 2¢ — 1. By induction hypothesis, not all z](t*l) =1 for
0 <j <i. Now by Lemma we have 2\ = 0 = ai,in(t) = 0 as desired.

i i
2. tmod 211 = 2¢ 271 — ¢ in{V =0
This implies that ¢ — 1 mod 2° = 2¢ — 1. By induction hypothesis, for all j,0 < j < i we have
Z§t_1) = 1. Now by Lemma we have zft) =1=uay, ingt) = 0 as desired.
3.2 < tmod 21+ < 211 — 1 207U — 1 ip(TY — o
This implies that 0 < ¢ — 1 mod 2! < 2! — 2. By induction hypothesis, not all j,1 < j < i we
have Zj(t_l) = 1. Now by Lemma we have zgt) =1=uaqy, ingt) = 0 as desired.
4. t mod 20+ = 2+l 1 zi(t*l) =1, inl(tfl) =0:
This implies that ¢ — 1 mod 2° = 2¢ — 2. By induction hypothesis, for all j,1 < j < i we have
z](t_l) = 1. Now by Lemma we have zgt) =1=aq,, ingt) =1 as desired.
5. tmod 2711 = 0,20 = 1,in"™V = 1.
This implies that t — 1 mod 2 = 2! — 1. By induction hypothesis, for all j,1 < j < i we have
P 1,. Now by Lemma we have 2\ = 0 = a;, in® =1 as desired.

J ) 7



Figure 3: Second Stage

This completes the induction. ]

Second stage: Now the second stage is a simple “capture network” with input neurons z, z;
for all 4,0 < ¢ < n, output neurons y; for 0 < ¢ < n and an auxilary neuron s. Intuitively, the
network persistently captures the state of z; for all ¢,0 < i < n into y; for all 4,0 < i < n. We will
specify the timing of the states of z; being captured later. The network is defined as the following:

Wy, = —2,Wgs = —N— 1L, Wes = N+ 2,Wy,y, =4 Wy, = LwWss = Wy,s = 1, wgy, = —1.5,V0< i< n

and
by, = bs = 0.5

Notice that the above weight ensures the following one step firing rule:

(®)

Lemma 3.4. For 0 < ¢ <n, neurons y; . s fire according to the following rules:

1. yZ@ =1 if and only if ygt_l) =1, or (ygt_l) =0,2z¢D =0,s¢D =0 and zlgt_l) =1)

2. s =1 if and only if s~V =1, or (there exists i,7 such that zft_l) =1 or yi(,t_l) =1, and
x

Proof. Case (1): The potential of yz-(t) is

(t=1)

)

(t=1)

wﬂ:yix(t_l)"‘wyiyiy Wz, 2 +wzizi2£t_1)+w5yis(t_l) = _2x(t_1)+4y§t_l)+zz(t_1) — 1557V

Only If: Let’s show the only if direction for the firing rule of ygt) first. If yi(t_l) =0,z00-D =1,
the potential of yi(t) is
242D 15500 < —1 < 0.1 = b,

It %(t_l) = 0,51 =1, the potential of ygt) is
—2207D 4 ) 15 <05 <01 =b,
If y(t_l) =0, zi(t_l) = 0, the potential of y(t) is

) 7

—2¢4) — 155070 <0 < 0.1 = b,

7



In all three cases, we have y(t) 0.
If: For the if direction, if y(t D~ 1, then the potential of y( )

220 444 207D 155070 > 05> 0.1 = b,

If y(t_l) =0,z =0,stt-D =, zi(t_l) = 1, the potential of yl(t) is

7
4 4 1>1>01=b,

In both cases, we have ygt) =1.

Case (2): The potential of s(*) is
sz]szj(t )+Zwy]sy] +w sz pap st = ' z](t_l)+zy](t_l)—(n+1)x<t—1)+(n+2)s(t_1)

Only If: For the only if direction, if s~ = 0 and for all 7,0 < j < n we have y§t_1) = zj(-t_l) =0,

then the potetntial of s®) is
—(n+1)z"Y <0<0.5=b,

If s~V = 0,2t~ = 1, the potetntial of s(*) is

STATVLSTY iy <o<o05=0,
=0

j=0

In both cases, we have s() = 0.
If: For the if direction, if there exists 7,0 < i < n such that yi(t*l) =1 and 2D = 0, then the
potential of s® is

Zzg(t by Z yTV 14 (n+2)s07) 21> 0.5 =0,

Jj= 7#1,0<5<n

If there exists 7,0 < 7 < n such that zi(tfl) =1 and z(*~1) = 0, the potential of s*) is

ny Dy Y 1 (2D 215 052,

J#1,0<5<n

If s~ = 1, the potential of s is

Zz(t 1) J( 1)_(n+1)x(t_1)+(n—|—2)21>0-5:bs

=0

In all three cases, we have s) =1 as desired. O

Now we can describe the behaviors of the capture network in the following theorem. The
network persistantly captures the state of z; for all 4,0 < i < n at the first time point such that
x = 0 and there exists some ¢ such that z; = 1 into y; for all 4,0 < i < n.



Theorem 3.5. For the network at the second stage, let ' > 0 be such that ) = 0 and there
emistsj such that zj(,t) =1, and for all t,0 < t < ', either z® =1 or for all i,0 < i < n we have

zi(t) = 0. Then for all i,t such that 0 <i < n,t >t we have yz(t) =),

]

Proof. First by Lemma for all t,0 < ¢ < t' and for all i,0 < i < n we have y(t) = s = 0.

i
Now at time ¢’ + 1, by Lemma we see that yi(t +1) ") Vi 0 <i<nand s#+D) = 1. Now by

Lemma we know that for all ¢,¢ > ' we have s() = 1. Now by Lemma [3.4] again, if ygt/H) =0,
(t) (t'+1)
i i

=1 as desired. O

:Zi(

then since for all ¢,¢ > ¢’ we have s) =1, for all t > ¢ we have v, = 0; and if y =1, then we

()

%

also have for all t,t > t', y
Now we are ready to prove the main Theorem by setting n = m = [log T"|

Proof. We are going to prove the main theorem by composing the networks from stage one and two
together. If for all ¢,0 < t < T we have () = 0, then the network satisfies the criterion trivially
since for all 0 <t < T, yi(t) = 0. If not, then there exists t> 0, L; > 0 such that for all £,0 <t < t
we have () = 0, for all 1,0 < i < L, we have 2(0t) = 1, and 2z(t+L=) = 0 where L, is the length
of the first consecutive spikes interval. Let L, = Z?io aj2j ; then by Theorem E and Lemma
(t4Le—1)

‘ i
zj(,t tLe) _ 1 by Theorem And by Lemma we know for all 4, such that 0 <t < f, 0<i<n,
we have zy) = 0. Now the assumption of Theorem is satisfied with ¢ = ¢ + L,. By Theorem
we get for all ¢,7 such that 0 < i < n,t > t + L, we have ygt) —qgqand T+1>1{+ L, as
desired. This shows that the above network solves FCSC(T) problem in time 7'+ 1 with O(log T")
neurons. O]

for all 4,0 < i < n, we have z a;. Now because L, > 0, we know there exists j such that

Notice that in fact by the proof above, FCSC network enjoys an early convergence property.
The network actually converges at time £ 4+ L,. Therefore we have the following stronger version
of Theorem .11

Corollary 3.6. For allt,0 <t <T, FCSC network with O(log T') neurons solves FCSC(t) problem
wmn time t 4 1.

4 Total Spikes Counting

To count the total number of spikes in an arbitrary interval requires persistence of neurons without
external spikes. Notice that on FCSC network, each neuron toggles itself according to binary
representation without delay. However, persistence of neurons and toggles without delays are
conflicting objectives; persistence of neurons stabilizes the network while toggling without delays
changes the firing patterns of the network. For example, we use self-inhibition to count mod 2 but
if we use self inhibition to count mod 2, the neuron cannot maintain the count during intervals
with no inputs. In this section, we circumvent this difficulty by allowing the network to enter an
unstable intermediate state that still stores the information of the count when the spikes arrive;
however, the network will converge to a clean state that according to binary representation after
one step of computation without external signals, and this clean state is stable in an arbitrary
interval with no input.

In this section, because the self-inhibition used in Section 3 to count mod 2 cannot induce
persistence, we build a network of four neurons to count mod 4 to replace the function of zg, z1 in



Figure 4: mod 4 Counter Network

Section 3. We then iteratively build the rest of the network that approximately fires in binary on
top of the mod 4 counter network.
The construction of the mod 4 counter network is the following:

Wy, = Liwgys =2,0<11 < 3’wfj+1fj =307 S 2wpp =Whp = Whfy = Lwg s = Weyp = —3

and

by, =0.5,by, =1.5,i # 1
We have the following lemma to specify the firing rules of f;:

Lemma 4.1. For all t,i such that t > 1,0 < ¢ < 4, neurons fi(t) fire according to the following
rules:

1. fl(t) =1 if and only if f(t b f(t D _ 0, and (Y =1 or fl(t_l) =1)

2. Fori # 1 we have fit =1 if and only z'ff((:_; mod 4 = 0, and (-1 =1 fl 1)m0d4 =1 or
fz‘(til) = 1)
Proof. Case (1): The potential of fl(t) is
W fr T A wflflfl + wf2f1f2 + Wisfr f3 =zt~ 2f1(t71) - 3f2(t71) - ?’figtil)

Only If: Let’s show the only if direction for the firing rule of fl( first. If f(t - = 1, then the

potential of f(t)

2D poflt=h 334070 < < 0.5 = by,

If fét_l) =1, then the potential of fl

2D o= 37 3 <0 <05 =0y,

10



If £{'"Y = 0,20=1 = 0, then the potential of f{") is
_wgl_gﬂt1<o<05:wl

In all three cases, we have f; ® — .
If: For the if direction, if f(t b (t D - = 0,21 =1, then the potential of f

1+ 2D > 1505 =1by,
If fQ(t_l) = fét_l) =0,z0-D =1, flt_l =1, then the potential of fl(t) is
2@ 4+2>92>05=by
In both cases, we have fl(t) =1
Case (2): For ¢ # 1, The potential of fi(t) is

t—1 (t=1) (t=1) (t=1) _
wrfix( )+ wg, f, f; T Wf6 1) moa 4f7.f( ) mod 4 T W4 1) moa 4fif(i—|—1) mod 4 —

1)y o plt-1) 1) (t-1)
S A Jii21) mod 4 = 3(i41) mod 4

Only If: For the only if direction, if f =1, then the potential of fl-(t) is

z+1 mod 4
) A /R EA R R )
If (-1 =0, f = 0, then the potential of fi(t) is
P moda = 3Tt mod a <1< 15 =1,
It f((f:ll)) mod 4 = 05 fl-(t_l) = 0, then the potential of fl.(t) is

1)
x(t Y _3f((;+1 m0d4<1<15_b

In all three cases, we have fi(t) = 0.

If: For the if direction, if f((;:ll)) mod 4 = 0,z0-Y =1, f(?_l = 1, then the potential of fi(t) is

)
(i—1) mod 4
1+2f Y 41>2> 15 =1
HﬁQLMAZQﬁ“”:1¢mnmemmmmowﬁm

2D g Y 22> 15 =

In both cases, we have fl-(t) =1 as desired. O

For 0 < i < 4, define a clean state with value 7 at time ¢’ of the mod 4 counter network to be
a state in which fi(t/) = 1 and for all j,j # ¢ we have f](t/) = 0. By Lemma it is trivial to
see that if for all ¢,¢ > ¢ we have z(®) = 0, then for all ¢,¢ > ¢’ and for all 4,0 < i < 4 we have
fi(t) = fi(tl). Using Lemma we have the following lemma describing the behaviors of mod 4
counter network. Intuitively, when a new input arrives, the network enters an intermediate state
in which both neurons represent the old count and the new count fire; when there is no input,
the neuron that represents the new count will inhibit the neuron that represents the old count to
stabilize the network in a clean state.

11



Lemma 4.2. Let the mod 4 counter network be at a clean state with value i at time t'. Fiz a positive
integer L. For alli,0 <i < L, let z+) =1 and 2'+L) = 0. Then, at time t,t' <t <t + L+ 1,
we have the state of the network being

() _ @ _ () _ £(® _
i (i+t—t') mod 4 f(%«#tft/fl) mod4 ’f(i+t7t’72) mod 4 f(ithft’fS) mod 4 0

(#'+L+1)

Furthermore, the network will be at a clean state again at time t' + L + 1 with f VL) modd —

Proof. First, let’s use induction on t to prove at time ¢, <t <t + L + 1, we have the state of the

network be
() (®) _ £® _
f f(1+t t'—1) mod 4 =1 f(%+t—t’—2) mod 4 f(i+t—t’—3) mod 4 0

Base Case: By Lemma we have

H—t t’) mod 4 -

(t'+1) (t'+1) - (t'+1) G +1) o
f(%Jrl) mod 4 f (i+t—t') mod 4 1, f(%fl) mod 4 f ) mod 4 =0
for the base case.
Inductive Step: Now assume the induction hypothesis is true for ¢ = k, since we have z(*) = 1
by Lemma we indeed have

(k+1) (k+1) (k+1) (k+1)
f =f; L f: =/ =0
(t+k+1—t") mod 4 (t+k+1—t'—1) mod 4= (i+k+1—t'—2) mod 4 (t+k+1—t'—3) mod 4

This completes the induction.

Now since z(*'+£) = 0, by Lemma we can derive the state of the network at time ¢/ + L + 1

FERID =1, D 20, # G+ L) mod 4

as desired. ]

Now we iteratively build the network with the following rule on top of the mod 4 counter
network,

Wsz; = Wfgin; = 37waZi = Wfyin; = —1, ez, = Wain, = 1,

Wz = Wzjin, = 1, V5,2 < j <4, Win;z; = =% — 3, Wayin;, = 1, Wy, =1+ 3

and
b,, =1+ 1.5, bip, =1+2.5

In the full construction of the TSC network, intuitively, we replace the function of zg, z; in Section
3 with a mod 4 counter network. We design the weights coming from fs, fo such that they will
induce proper carry in an approximate binary representation at z;,¢ > 2, and we use a similar idea
as the mod 4 counter network to make T'SC network converge to an exact binary representation in
one computation step without input.

The following lemma specifies the firing rules of z;,in; for ¢ > 2:

Lemma 4.3. For i > 2, neurons zft), inz(t) fire according to the following rules:

1. zft) =1 if and only if ingt_l) =0, and either (fét_l) = 1,fét_1) = 0,21 =1 and for all
(t—1)

J,2 < j <1 we have z; =1)orz =



Figure 5: Total spikes counting (TSC) Network

2. ingt) =1 if and only if zgt_l) = 1,f3(t_1) = 1,f(§t_1) =0,z =1 and for all j,2 < j < i we

have z](-t_l) =1.

Proof. Case 1: The potential of zgt) is

i—1
Wy 3(t—l) + wfozifét_l) + Z wzjzizj(t_l) + wzizizz‘(t_l) + wimzz'inz(t_l) + '(U:rzi.’l,‘(t_l)
j=2
i—1
=370 — R (4 3)2Y — (4 3)in{ Y 4 2D
=2

Only If: Let’s show the only if direction for the firing rule of ZZ-(t) first. If inl(t*l) = 1, the potential
) ;

of z;7 is

i—1

3TV i N A 4 43) Y (4 3) 4tV it 1 <it 15 =0,

||
N

J
If fét_l) — 0,0V = 0, the potential of 20 s

[iag) A

i-1
YA i3yl p 2D <i -1 <it 15 =0,
=2
If fét_l) =1, LD 0, the potential of 20 s

) %

i—1
3TV 14 Y Y il 42tV il <it 15 =0,
=2

13



If (-1 =0, ZZ-(tfl) = 0, the potential of zi(t) is

1—1
3RV i YA 3yl Y it 1 <it 15 =0,
j=2

If zi(tfl) = 0 and there exists 7,2 < j < i such that Zj(' D _ 0, the potential of z( )
3 g Y A i3yl pa Y <ir1<it 15 =0,
J#5,2<5<i

In all cases, we have z(t) 0.
If: For the if direction, if m(t b - 0, f (=0 _ f(t . 0,20=Y =1 and for all j,2 < j < i we

have zj(t D _ 1, then the potential of zi( )
i—1
34> 1+ +3) V1>t 2>i+15=1,
j=2

If ingtfl) =0, ZZ-(tfl) =1, the potential of zl.(t) is
3fgst—l) Ot 1)_|_Z (t-1) Z+3)—|—x(t 1)>z—|—2>1_|_15_bzZ

In both cases, we have zz(t) =1.

()

Case 2: he potential of in; ’ is
(t—1) t—1 t—1 _
wf3znlf3 + wfoznlf() + Z Wzjin; # J( ) + wziinizg ) + wzinix(t b
j=2

— 3l (t—1)+Zz§t—1)+zi(t—1)+x(tfl)

Jj=2

(®) g

- 0, then the potential of in;

Only If: For the only if direction, if ZZ-(t

1—1
A - D L3 ) <2 < i+ 2.5 = by,
=2

If fétil) = 0, the potential of inz(t) is
— 15 ”+Z (D) 4 20D 4 gD << i+ 25 = by,
If fét_l) = 1, the potential of ingt) is

i—1
3TV 14 YT 1Y e <2 < i 2.5 = by,
j=2

14



If (=D =0, the potential of ingt) is
BN — NN L0 <o i 25 = by,

If there exists 5, 2 < j < 4 such that z; = 0, the potential of ingt) is
3V i Y AU et <o <ir a5 =,
3 0 j 7 = -9 = Uin;
J#3,2<5<i

" =o.

In all cases, in;
If: For the if direction, if zl-(t_l) = 1,f§t_1) = 1,f(§t_1) = 0,201 =1 and for all j,2 < j < i we

have z](-t_l) =1, then the potential of z'nl(-t)

is
i—1

B34+ 1+1+1<i+3>i+25=Dbp,
§=2

()

We have in; ’ = 1 as desired. O

Define a clean state at time ¢’ of TSC network with value X stored be one in which

1. f)(gr)nod 4= 1 f](tl) =0, Vj # X mod 4 (i.e., the mod 4 counter subnetwork is clean with value
X mod 4)

2. For X = Y%, a:2',a; € {0,1}, 2\") = ay, Vk > 2
3. in{") = 0if X mod 27+1 = 2i+1 — 1

So being at a clean state for TSC network with value X stored implies being at a clean state with
value X mod 4 for its mod 4 counter subnetwork with z; in binary representation for i > 2. By
Lemma it is trivial to see that if for all £ > # we have z(t) = 0, then for all ¢ > 2 and for
all t,t > t' we have fi(t) = fi(t/). Using Lemma we have the following lemma describing the
behaviors of the TSC network.

Lemma 4.4. Let TSC network be at a clean state at time t' with value X stored. Fix a positive
integer L. For alli such that 0 < i < L, let z'+) =1 and ' +E) = 0. Then, att,t' <t < t'+L+1,
zi,in; fire with the following rules for all i > 2:

1. for1 =X 4+t —t mod 21! < 2¢, zi(t) =0
2. for1 < X +t—t mod 2¢+! < 27, ZZ-(t) = ingt) =0
3. for X +t—t mod 21 > 2! we have zl-(t) = 1,inz(-t) =0
4. for X +t —t' mod 2T = 0, we have zlgt) = 1,in§t) =1
Furthermore, the network will be at a clean state with value X + L stored at time t' + L + 1.

Proof. Just like the mod 4 counter network case, we want to deduce the behaviors of network at
t,t' <t <t + L+ 1 using induction first.
Base Case: Fix i, for t =t + 1, we have the following cases

15



1. 0 < X + 1 mod 2t < 2%
This implies that 0 < X mod 2!+ < 2° —1. This shows that not all j,j < i we have D

J
or fét_l) =0 or fét_l) =1. By Lemmaﬁ, we have zgt) = z’ngt) =0

2. X + 1 mod 2+t > 2t
This implies that 2 — 1 < X mod 2! < 2¢+1 — 1. This shows that either for aﬁz Jj <iwe
3

have fét_l) = 1,f(§t_1) = O,z(-t_l) =1 or 2™ = 1 but not both. By Lemma

J i we have

0 _

—1,in =0

i =
3. X 4+ 1mod 27! = 0:
This implies that X mod 2% = 2i*1 — 1. This shows that fét_l) =1, fét_l) = 0 and for all

j < i we have z](.t_l) =1 and by the definition of a clean state, we have itV = 0. Now by

i
Lemma E we have 2" = 1, in® = 1.

i i
Inductive Step: Assume the induction hypothesis is accurate for ¢ = k. We have the following
cases

1. 1=X+k+1—t mod 2+ < 2%
This implies that X 4+ k — ¢’ mod 2!*! = 0. Now by induction hypothsis and Lemma we
know that fék) = 1,fék) =0 and for all 5,7 > j > 2 we have SR 1,in(k) = 1. By Lemma

J J
we have zi(kﬂ) = O,z’nz(kﬂ) =1.

2. 1< X +k+1—+t mod2! <20
This implies that 1 < X +k —# mod 2" < 2/ — 1. By induction hypothesis and Lemma
this shows that not all j,j < ¢ we have zj(-k) =1lor fék) =0or fék) = 1. By Lemma we
l(k+1) _ mz('k+1) -0
3. X +k+1—1t mod 2 > 2%
This implies that 2 — 1 < X + k — t' mod 2/T! < 2*1 — 1. By induction hypothesis and

Lemma this shows that either for all j,j < ¢ we have fék) = 1,fék) =0, P R

J
z§k) = 1 but not both. By Lemmam we have zi(kH) = 1,m§.k“) =0

have x

4. X +k+1—1t mod 2! = 0:
This implies that X + k — ¢/ mod 2¢+! = 2i*! — 1. By induction hypothesis and Lemma
this shows that all fék) =1, fo(k) = O,inl(-k) = 0 and for all j,j <1 we have 2B — 1. Now by

J
Lemma ﬂ we have 2\ = 1, in® = 1.

7 %

This completes the induction.

Now we just need to show that at time ¢ + L 4+ 1 the network is at a clean state with value
X + L stored. We have the following cases:

1. 1 =X + L mod 2°F1 < 2% /
By above induction, we have for j,j < 1, z](-t 1) _ (. No matter what the value of in

by Lemmaﬁ we have z(tl+L+1) = in(turL“) =0.

i %

t'+L) .
D) g

2. 1< X +Lmod 2! <2, 2" =inl” =0
By above induction, we have zft +L) _ ingt L) _ . By Lemma we have zl.(t +L+1)
. (Y'+L+1)
m.: =0

)
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3. X 4+ L mod 271 > 2! we have z,fturL) = 1,in§t,+L) =0. By Lemma we have zl.(turLH) =
inHD
(2

(t+L) _ 1,m§.t’+L) =1. By Lemma we have 2! TP =

% 7

4. X + L mod 2/t = 0, we have z
0,in(+H) _q

i
which is exactly a clean state with value X + L stored combining with Lemma [4.2] O

Now we are ready for the main proof of Theorem by setting n = [log7"] and let f;,z;,0 <
1 < 3,2 <7 <n be our output neurons.

Proof. Let fi,2;,0 <i < 4,2 < j < n be our output neurons. Let there be X spikes in T" time
steps. Let [to,to + Xo — 1], -+, [tk, tx + Xk — 1] be the disjoint maximal intervals of spikes ordered
by time (i.e., 2 =1ifte [ti,ti + X; — 1] for some 0 < i < k and [ti,ti +Xi] N [tj,tj —i—Xj] = () for
all i # j and tg < 1 < -+ < tg, Z?:o X = X). Now I claim that at time t; + X; + 1, the network
is at a clean state with value Zé':o X stored. We will prove the claim with induction on 4. For
i = 0, apply Lemma [£.4] we get that the network is at a clean state with value X stored. Assume
the network is at a clean state with value z;:o X stored at time ¢; + X; + 1. Then apply Lemma

again, we get at time ;41 + X; 1 + 1, the network is at a clean state with value Z;J;B X stored
at time t;11 + X;41 + 1. So at time ¢ + X +1 < T + 1, the network is at a clean state with value
Z?:o X; = X stored as desired. This shows that the above network solves TSC(T) problem in
time 7'+ 1 with O(logT") neurons. O

Notice that in fact by the proof above, TSC network enjoys an early convergence property. The
network actually converges at time t; + X + 1. Therefore we have the following stronger version
of Theorem 2.2

Corollary 4.5. For allt,0 <t < T, TSC network with O(logT) neurons solves FCSC(t) problem
wmn time t 4 1.

5 Time Lower Bound for FCSC and TSC

In Section 4, we mentioned that there is a conflicting objective between stabilizing the output and
toggling without delays. We therefore introduced the idea of carrying information of the count at
an unclean state and then converging to a clean state, which introduces one time step of delay. In
this Section, we are going to show that this delay is unavoidable.

Intuitively, the proof of the time lower bound uses the fact that if the network has to solve the
problem without delay, the network must stabilize immediately at each time step. Therefore, the
neurons that fire at the last round will stay firing. By injectivity of the representation, we can
conclude that the network can at most count up to the network size.

The proof of Theorem [2.3]is the follows. The proof of Theorem is identical.

Proof. Consider the following input sequence such that for all 0 < ¢t < T we have z® =1 and for
all t > T we have z(®) = 0. Let X be the collections of all neurons in the network. Assume for all
0 <t < T, the network solves FCSC(t) at time ¢. For all 0 < j < T, let S; = {y; : yzm =1,1<
i < m}. We would like to show that Sp 2 Sp_1 2 --- 2 Sp. To prove this by induction on t, we
strengthen our induction hypothesis to become S; 2 S;_1 2 --- 2 Sp and for all y; € S;_1 we have
Way,; > 0.
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Base Case: When t = 1, notice that Sy = () by construction. Now by injectivity of the counter
representation, we have S1 2 Sp and for y; € So, wzy, > 0 is vacuously true.

Induction Step: Now assume S; 2 S;—1 2 -+ 2 51 and wyy; > 0 for y; € S;—1. At time step
t + 1, since the network solves FCSC(t) at time ¢, the neurons in y is stabilized even without the
input from z. This means that

Z wzyjz(t) —by, >0ify; € S
zeX/{x}

Now since wyy, > 0, we know that neurons in S¢—1 will keep firing at time ¢ + 1. For neurons in
St/ S¢—1, since those neurons fire at time ¢, we have

Way, + Y way 2TV = by > 0if 5 € S/Si
2ex/{x}

And since the network solves FCSC(t-1) at time ¢ — 1, we also have

> w2V = by, <0ify; € 5,/
zeX/{x}

Substract two equations we get
Wy, > 0 if Y; € St/St—l

And hence Si4+1 C S;. By injectivity of the count representation, we have Siy1 2 Sy as desired.
Now we have Sp 2 Spr—1 2 --- 2 52 2 51, but we only have o(T") output neurons. Contradic-
tion. O

6 Discussion and Future Direction

In this paper, we have shown that networks of neurons are capable of integrating temporal informa-
tion to solve two different tasks with temporal inputs efficiently. Out of the spiking neural networks
literature, Hitron and Parter [HP19] tackled a similar problem. Their neural counter problem is
our TSC problem. Our works differ in three ways. First, our network has time bound T+ 1 while
theirs is 7'+ O(logT"). Second, we provide a time lower bound result and show our time bound is
optimal. Third, they consider an approximate version of the problem while we focus on the exact
version of the problem.

Our paper follows similar approaches to Lynch et al. [LMP17a, LMP17bl [LM18] by treating
neurons as static circuits to explore the computational power of neural circuits. There are three
noteworthy points about our model. First, instead of a stochastic model, we use a deterministic
one. However, it should be noted that all the results in this paper would still hold under the
randomized model of Lynch et al. [LMP17al [LMP17bl [LM18] with high probability. Second, we
use a model which resets the potential at every round. Therefore, to retain temporal information,
many self-excitation connections are employed in our networks. At the other extreme, we could
have a model in which the potential does not decay from past rounds. In that model, temporal
information can be stored in potentials, but it might require different mechanisms to translate
the information from potentials to spikes. The two models thus could lead to different possible
computational principles in brains. Third, we used a discrete time model instead of a continuous
time model, which would be more biologically plausible. However, this might not be a concern
since we could use Maass’s synchronization module [Maa96] to simulate our discrete time model
from a continuous time model.

18



This paper mainly deals with the exact versions of the problems. One possible extension is
to consider the approximate versions of the problems. By introducing noise into our models, we
might be able to solve the approximate versions of the problems more efficiently. For example, for
approximate counting, we aim to output some firing patterns corresponding to a number X such
that

P(X - X|>eX) <4

is small. The lower bound for this question is Q(loglog T") and finding a matching upper bound can
be an interesting future direction. However, approximate versions of the questions are tricky with
temporal inputs because the network inevitably reuses random bits if they are stored inside the
weights. A possible approach is to use a small number of random bits to generate a large family of
k-wise independent random functions within neurons.

Another aspect of the temporal input we have not exploited is the time-scale invariance of the
problem. In biology, many problems are time-scale invariant. A person who says “apple” fast can
be understood as well as a person who says “apple” slowly. If we exploit this invariance, we might
be able to reduce the networks’ complexity further.
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