
Integrating Temporal Information to Spatial Information in a

Neural Circuit

Nancy Lynch and Mien Brabeeba Wang

July 23, 2019

Abstract

In this paper, we consider networks of deterministic spiking neurons, firing synchronously at
discrete times; such spiking neural networks are inspired by networks of neurons and synapses
that occur in brains. We consider the problem of translating temporal information into spatial
information in such networks, an important task that is carried out by actual brains.

Specifically, we define two problems: “First Consecutive Spikes Counting (FCSC)” and “To-
tal Spikes Counting (TSC)”, which model spike and rate coding aspects of translating temporal
information into spatial information respectively. Assuming an upper bound of T on the length
of the temporal input signal, we design two networks that solve these two problems, each using
O(log T) neurons and terminating in time T + 1. We also prove that these bounds are tight.

1 Introduction

Algorithms in the brain are inherently distributed. Although each neuron has relatively simple
dynamics, as a distributed system, a network of neurons shows strong computational power. There
have been many attempts to model the brain computationally. At a single-neuron level, theo-
retical neuroscientists were able to model the dynamics of a single neuron to high accuracy with
the Hodgkin-Huxley model [HH52]. At a circuit level, to make the analysis tractable, neurosci-
entists approximated detailed dynamics of neurons with simplified models such as the nonlinear
integrate-and-fire model [FTHvVB03] and the spiking response model [WWvJ97]. Recently, there
is increasing interest on using biologically plausible spiking neuronal dynamics to solve differ-
ent computational problems [LMP17b, LMP17a, LM18, TLD17, CNC18, JHM14]. These models
vary in their assumptions about spike/rate code, deterministic/stochastic response, and continu-
ous/discrete time. In this paper, we consider a network of spiking neurons with a deterministic
synchronous firing rule in discrete time to simplify the analysis and focus on the computational
principles.

One of the most important questions in neuroscience is how humans integrate information over
time. Sensory inputs such as visual and auditory stimulus are inherently temporal; however, brains
are able to integrate the temporal information to a single concept, such as a moving object in a
visual scene, or an entity in a sentence. There are two kinds of neuronal codings: rate coding and
temporal coding. Rate coding is a neural coding scheme assuming most of the information is coded
in the firing rate of the neurons. It is most commonly seen in muscle in which the higher firing
rates of motor neurons correspond to higher intensity in muscle contraction [AZ26]. On the other
hand, rate coding cannot be the only neural coding brains employ. A fly is known to react to new
stimuli and change its direction of flight within 30-40 ms. There is simply not enough time for
neurons to compute averages [RWdRvSB96]. Therefore, neuroscientists have proposed the idea of

1

ar
X

iv
:1

90
3.

01
21

7v
2

 [
cs

.D
C

]
 2

0
Ju

l 2
01

9

temporal spike coding, assuming the information is coded in the specific temporal firing patterns.
One of the popular spike codings is the first-to-spike coding. It has been shown that the timing of
the first spike encodes most information of an image in retinal cells [GM08]. We propose two toy
problems to model how brains extract information from different coding. “First consecutive spikes
counting” (FCSC) counts the first consecutive interval of spikes, which is equivalent to counting
the distance between the first two spikes, a prevalent spike coding scheme in sensory cortex. “Total
spikes counting” (TSC) counts the number of the spikes over an arbitrary interval, which is an
example of rate coding. In particular, TSC contains an interesting difficulty: there are conflicting
objectives between maintaining the count when no spike arrives and updating the count when a
spike arrives. To overcome this difficulty, we allow the network to enter an unstable intermediate
state which carries the information of the count. The intermediate state then converges to a stable
state that represents the count after a computation step without inputs.

In this paper, we design two networks that solve the above two problems by translating temporal
information into spatial information in time T + 1 with O(log T) neurons. We also show that our
time bounds are tight. We would like to remark that although our problems are biologically
inspired, the optimal solutions we propose are not biologically plausible. Our networks are not
noise tolerant, whereas the neuronal dynamics are highly noisy and it is hard to conceive that the
brain uses binary representation as a neuronal representation. However, we hope that our proofs
can demonstrates an important computational principle: unstable intermediate states can carry
temporal information and then converge to a stable representation efficiently. The organization of
this paper is as follows. In Section 2, we present the definition of a network of spiking neurons
and the problem statements. In Section 3, we present the FCSC network that counts consecutive
spikes in binary. In Section 4, we generalize Section 3 and present the TSC network that counts
spikes over arbitrary intervals. In Section 5, we present the time lower bound of FCSC and TSC
problem and show our networks are optimal. In Section 6, we discuss our model assumptions and
their implications along with possible future directions.

2 Problem Statements/Goals

In this section, we cover the model definition and the following two problems: First Consecutive
Spikes Counting (FCSC) and Total Spikes Counting (TSC).

2.1 Model

In this paper, we consider a network of spiking neurons with deterministic synchronous firing at
discrete times. Formally, a neuron z consists of the following data with t ≥ 1

z(t) = Θ(
∑
y∈Pz

wyzy
(t−1) − bz)

where z(t) is the indicator function of neuron z firing at time t. bz is the threshold (bias) of neuron
z. Pz is the set of presynaptic neurons of z, wyz is the strength of connection from neuron y to
neuron z and Θ is a nonlinear function. Here we take Θ as the Heaviside function given by Θ(x) = 1
if x > 0 and 0 otherwise. At t = 0, we let z(0) = 0 if z is not one of the input neurons.

For the rest of the paper, we fix an input neuron x and m output neurons {yi}0≤i<m in a
network.

2

2.2 First Consecutive Spikes Counting(T) (FCSC(T))

Given an input neuron x and the max input length T , we consider any input firing sequence such
that for all t ≥ T, x(t) = 0. Define Lx in terms of this firing sequence as follows: if x(t) = 1 for some
t, then there must exist integers t̂, L such that for all t, t < t̂ we have x(t) = 0, for all i, 0 ≤ i < L
we have x(t̂+i) = 1, and x(t̂+L) = 0. Define Lx = L. (i.e., L is the length of the first consecutive
spikes interval in the sequence.) Otherwise, that is if for all t ≥ 0, x(t) = 0, then define Lx = 0.

Then we say a network of neurons solves FCSC(T) in time t′ with m′ neurons if there exists
an injective function F : {0, · · · , T} → {0, 1}m such that for all x and for all t, t ≥ t′ we have
y(t) = F (Lx) and the network has m′ total neurons.

Intuitively, FCSC serves as a toy model for encoding distance between spikes, a prevalent spike
coding in sensory cortex. For mathematical convenience, we model the problem as counting the
distance between non-spikes which is mathematically equivalent as counting the distance between
spikes in our model.

2.3 Total Spikes Counting(T) (TSC(T))

Given an input neuron x and the max input length T , we consider any input firing sequence such
that for all t ≥ T , x(t) = 0. Define Lx = |{t : x(t) = 1, 0 ≤ t < T}| as the total number of spikes in
the sequence. Then we say a network of neurons solves TSC(T) in time t′ with m′ neurons if there
exists an injective function F : {0, · · · , n} → {0, 1}m such that for all x and for all t, t ≥ t′ we have
y(t) = F (Lx) and the network has m′ total neurons.

Intuitively, TSC serves as a toy model for rate coding implemented by spiking neural networks
because the network is able to extract the rate information by counting the number of spikes over
arbitrary intervals.

2.4 Main Theorems

Our contributions in this paper are to design networks that solve these two problems respectively
with matching lower bounds in numbers of neurons.

Theorem 2.1. There exists a network with O(log T) neurons that solves FCSC(T) problem in time
T + 1.

Theorem 2.2. There exists a network with O(log T) neurons that solves TSC(T) problem in time
T + 1.

It is easy to see that we also have the corresponding information-theoretical lower bound on the
number of neurons all being Ω(log T) by the requirements of the tasks.

In terms of time bound, we also show that our networks are optimal for FCSC and TSC problem
in the following sense:

Theorem 2.3. There does not exists a network with o(T) neurons that solves FCSC(t) problem in
time t for all 0 ≤ t ≤ T .

Theorem 2.4. There does not exists a network with o(T) neurons that solves TSC(t) problem in
time t for all 0 ≤ t ≤ T .

3

Figure 1: mod 2 Base Network

Figure 2: First Stage

3 First Consecutive Spikes Counting

We present the constructions in two stages. At the first stage, we count consecutive spikes in
binary transiently. At the second stage, we transform the transient firing into persistant firing. By
composing the two stages, we get our desired network.

First stage: The network contains neurons z0, · · · , zn, in1, · · · , inn and we build the network
inductively. To construct mod 2 Base Network which counts mod 2, we have

wxz0 = 1, wz0z0 = −1, bz0 = 0.5

By noticing that for t ≥ 1, z
(t)
0 = 1 if and only if x(t−1) = 1 and z

(t−1)
0 = 0, we have the following

lemma

Lemma 3.1. For the mod 2 base network, given t ≥ 0 if for all t′suchthat0 ≤ t′ ≤ t we have

x(t
′) = 1, then at time t, z

(t)
0 = t mod 2.

Now we iteratively build the network where 1 ≤ i ≤ n on top of the mod 2 base network with
the following rule:

wxzi = i+ 1, wzjzi = 1, ∀j, 0 ≤ j < i, wzkini = 1, ∀k, 0 < k ≤ i, winizi = −i− 1, wzizi = i

bzi = 2i+ 0.5, bini = i− 0.5

This completes the construction. From the construction, we can deduce the following lemma

Lemma 3.2. For i > 0, neurons zi, ini fire according to the following rules:

4

1. z
(t)
i = 1 if and only if x(t−1) = 1, in

(t−1)
i = 0, and (either for all j, 0 ≤ j < i we have

z
(t−1)
j = 1 or z

(t−1)
i = 1)

2. in
(t)
i = 1 if and only if for all j, 1 ≤ j ≤ i we have z

(t−1)
j = 1

Proof. Case (1): The potential of z
(t)
i is

wxzix
(t−1)+

i−1∑
j=0

wzjziz
(t−1)
j +winiziin

(t−1)
i +wziziz

(t−1)
i = (i+1)x(t−1)+

i−1∑
j=0

z
(t−1)
j −(i+1)in

(t−1)
i +iz

(t−1)
i

Only if: Let’s show the only if direction for the firing rule of z
(t)
i by proving the contrapositive.

If x(t−1) = 0, then the potential of z
(t)
i is

i−1∑
j=0

x
(t−1)
j − (i+ 1)in

(t−1)
i + iz

(t−1)
i ≤ 2i < 2i+ 0.5 = bzi

If in
(t−1)
i = 1, then the potential of z

(t)
i is

(i+ 1)x(t−1) +
i−1∑
j=0

z
(t−1)
j − (i+ 1) + iz

(t−1)
i ≤ 2i < 2i+ 0.5 = bzi

If there exists ĵ, 0 ≤ ĵ < i such that z
(t−1)
ĵ

= 0 and z
(t−1)
i = 0, then the potential of z

(t)
i is∑

j 6=ĵ,0≤j≤i−1

z
(t−1)
j + (i+ 1)x(t−1) − (i+ 1)in

(t−1)
i ≤ 2i < 2i+ 0.5 = bzi

In all three cases, we have z
(t)
i = 0.

If: For the if direction, if x(t−1) = 1, in
(t−1)
i = 0 and for all j, 0 ≤ j < i we have z

(t−1)
j = 1, then

the potential of z
(t)
i is

(i+ 1) +

i−1∑
j=0

1 + iz
(t−1)
i ≥ 2i+ 1 > 2i+ 0.5 = bzi

If x(t−1) = 1, in
(t−1)
i = 0 and z

(t−1)
i = 1, then the potential of z

(t)
i is

(i+ 1) +

i−1∑
j=0

z
(t−1)
j + i ≥ 2i+ 1 > 2i+ 0.5 = bzi

In both cases, we have z
(t)
i = 1.

Case (2): The firing rule of in
(t)
i can be analyzed similarly.

The potential of in
(t)
i is

i∑
j=1

wzjiniz
(t−1)
j =

i∑
j=1

z
(t−1)
j

5

Only If: For the only if direction, if there exists ĵ, 1 ≤ ĵ ≤ i such that x
(t−1)
ĵ

= 0, then the

potential of in
(t)
i is ∑

j 6=ĵ,1≤j≤i

z
(t−1)
j ≤ i− 1 < i− 0.5 = bini

We have in
(t)
i = 0.

If: For the if direction, if for all j, 1 ≤ j ≤ i we have z
(t−1)
j = 1, then the potential of in

(t)
i is

i∑
j=1

1 = i > i− 0.5 = bini

We have in
(t)
i = 1 as desired.

Using the above lemma, we can verify that indeed the network at the first stage fires in binary,
with zi encoding the ith digit in the binary representation.

Theorem 3.3. Given i ≥ 1 and t ≥ 0, if for all t′ such that 0 ≤ t′ ≤ t we have x(t
′) = 1, then

1. z
(t)
i = ai for t =

∑∞
j=0 aj2

j where aj ∈ {0, 1}.

2. in
(t)
i = 1 if and only if t mod 2i+1 = 2i+1 − 1 or 0.

Proof. First, let’s verify that the claim is true for z0. Since for all t′, 0 ≤ t′ ≤ t we have x(t
′) = 1,

z
(t′)
0 = 1 if and only if z

(t′−1)
0 = 0. This implies exactly z

(t)
0 = t mod 2 as desired (for all the modular

arithematic at this paper, we choose the smallest nonnegative number from the equivalence class).
Now let’s do the induction on t and we will verify the induction by checking zi, ini fires in according
to the induction hypothesis for all i ≥ 1. When t = 1, the induction statement is trivially satisfied
for all i ≥ 1. Fix i, we have the following cases:

1. 0 < t mod 2i+1 < 2i, z
(t−1)
i = 0:

This implies that 0 ≤ t − 1 mod 2i < 2i − 1. By induction hypothesis, not all z
(t−1)
j = 1 for

0 ≤ j < i. Now by Lemma 3.2, we have z
(t)
i = 0 = ai, in

(t)
i = 0 as desired.

2. t mod 2i+1 = 2i, z
(t−1)
i = 0, in

(t−1)
i = 0:

This implies that t− 1 mod 2i = 2i − 1. By induction hypothesis, for all j, 0 ≤ j < i we have

z
(t−1)
j = 1. Now by Lemma 3.2, we have z

(t)
i = 1 = ai, in

(t)
i = 0 as desired.

3. 2i < t mod 2i+1 < 2i+1 − 1, z
(t−1)
i = 1, in

(t−1)
i = 0:

This implies that 0 ≤ t− 1 mod 2i < 2i − 2. By induction hypothesis, not all j, 1 ≤ j < i we

have z
(t−1)
j = 1. Now by Lemma 3.2, we have z

(t)
i = 1 = ai, in

(t)
i = 0 as desired.

4. t mod 2i+1 = 2i+1 − 1, z
(t−1)
i = 1, in

(t−1)
i = 0:

This implies that t− 1 mod 2i = 2i − 2. By induction hypothesis, for all j, 1 ≤ j < i we have

z
(t−1)
j = 1. Now by Lemma 3.2, we have z

(t)
i = 1 = ai, in

(t)
i = 1 as desired.

5. t mod 2i+1 = 0, z
(t−1)
i = 1, in

(t−1)
i = 1:

This implies that t− 1 mod 2i = 2i − 1. By induction hypothesis, for all j, 1 ≤ j < i we have

z
(t−1)
j = 1,. Now by Lemma 3.2, we have z

(t)
i = 0 = ai, in

(t)
i = 1 as desired.

6

Figure 3: Second Stage

This completes the induction.

Second stage: Now the second stage is a simple “capture network” with input neurons x, zi
for all i, 0 ≤ i ≤ n, output neurons yi for 0 ≤ i ≤ n and an auxilary neuron s. Intuitively, the
network persistently captures the state of zi for all i, 0 ≤ i ≤ n into yi for all i, 0 ≤ i ≤ n. We will
specify the timing of the states of zi being captured later. The network is defined as the following:

wxyi = −2, wxs = −n− 1, wss = n+ 2, wyiyi = 4, wziyi = 1, wzis = wyis = 1, wsyi = −1.5, ∀0 ≤ i ≤ n

and
byi = bs = 0.5

Notice that the above weight ensures the following one step firing rule:

Lemma 3.4. For 0 ≤ i ≤ n, neurons y
(t)
i , s(t) fire according to the following rules:

1. y
(t)
i = 1 if and only if y

(t−1)
i = 1, or (y

(t−1)
i = 0, x(t−1) = 0, s(t−1) = 0 and z

(t−1)
i = 1)

2. s(t) = 1 if and only if s(t−1) = 1, or (there exists i, i′ such that z
(t−1)
i = 1 or y

(t−1)
i′ = 1, and

x(t−1) = 0)

Proof. Case (1): The potential of y
(t)
i is

wxyix
(t−1)+wyiyiy

(t−1)
i +wziyiz

(t−1)
i +wziziz

(t−1)
i +wsyis

(t−1) = −2x(t−1)+4y
(t−1)
i +z

(t−1)
i −1.5s(t−1)

Only If: Let’s show the only if direction for the firing rule of y
(t)
i first. If y

(t−1)
i = 0, x(t−1) = 1,

the potential of y
(t)
i is

−2 + z
(t−1)
i − 1.5s(t−1) ≤ −1 < 0.1 = byi

If y
(t−1)
i = 0, s(t−1) = 1, the potential of y

(t)
i is

−2x(t−1) + z
(t−1)
i − 1.5 ≤ −0.5 < 0.1 = byi

If y
(t−1)
i = 0, z

(t−1)
i = 0, the potential of y

(t)
i is

−2x(t−1) − 1.5s(t−1) ≤ 0 < 0.1 = byi

7

In all three cases, we have y
(t)
i = 0.

If: For the if direction, if y
(t−1)
i = 1, then the potential of y

(t)
i is

−2x(t−1) + 4 + z
(t−1)
i − 1.5s(t−1) ≥ 0.5 > 0.1 = byi

If y
(t−1)
i = 0, x(t−1) = 0, s(t−1) = 0, z

(t−1)
i = 1, the potential of y

(t)
i is

4y
(t−1)
i + 1 ≥ 1 > 0.1 = byi

In both cases, we have y
(t)
i = 1.

Case (2): The potential of s(t) is

n∑
j=0

wzjsz
(t−1)
j +

n∑
j=0

wyjsy
(t−1)
j +wxsx

(t−1)+wsss
(t−1) =

n∑
j=0

z
(t−1)
j +

n∑
j=0

y
(t−1)
j −(n+1)x(t−1)+(n+2)s(t−1)

Only If: For the only if direction, if s(t−1) = 0 and for all j, 0 ≤ j ≤ n we have y
(t−1)
j = z

(t−1)
j = 0,

then the potetntial of s(t) is
−(n+ 1)x(t−1) ≤ 0 < 0.5 = bs

If s(t−1) = 0, x(t−1) = 1, the potetntial of s(t) is

n∑
j=0

z
(t−1)
j +

n∑
j=0

z
(t−1)
j − (n+ 1) ≤ 0 < 0.5 = bs

In both cases, we have s(t) = 0.

If: For the if direction, if there exists i, 0 ≤ i ≤ n such that y
(t−1)
i = 1 and x(t−1) = 0, then the

potential of s(t) is

n∑
j=0

z
(t−1)
j +

n∑
j 6=i,0≤j≤n

y
(t−1)
j + 1 + (n+ 2)s(t−1) ≥ 1 > 0.5 = bs

If there exists i, 0 ≤ i ≤ n such that z
(t−1)
i = 1 and x(t−1) = 0, the potential of s(t) is

n∑
j=0

y
(t−1)
j +

n∑
j 6=i,0≤j≤n

z
(t−1)
j + 1 + (n+ 2)s(t−1) ≥ 1 > 0.5 = bs

If s(t−1) = 1, the potential of s(t) is

n∑
j=0

z
(t−1)
j +

n∑
j=0

y
(t−1)
j − (n+ 1)x(t−1) + (n+ 2) ≥ 1 > 0.5 = bs

In all three cases, we have s(t) = 1 as desired.

Now we can describe the behaviors of the capture network in the following theorem. The
network persistantly captures the state of zi for all i, 0 ≤ i ≤ n at the first time point such that
x = 0 and there exists some î such that zî = 1 into yi for all i, 0 ≤ i ≤ n.

8

Theorem 3.5. For the network at the second stage, let t′ ≥ 0 be such that x(t
′) = 0 and there

exists ĵ such that z
(t′)

ĵ
= 1, and for all t, 0 ≤ t < t′, either x(t) = 1 or for all i, 0 ≤ i ≤ n we have

z
(t)
i = 0. Then for all i, t such that 0 ≤ i ≤ n, t > t′ we have y

(t)
i = z

(t′)
i .

Proof. First by Lemma 3.4, for all t, 0 < t ≤ t′ and for all i, 0 ≤ i ≤ n we have y
(t)
i = s(t) = 0.

Now at time t′+ 1, by Lemma 3.4, we see that y
(t′+1)
i = z

(t′)
i ,∀i, 0 ≤ i ≤ n and s(t

′+1) = 1. Now by

Lemma 3.4, we know that for all t, t > t′ we have s(t) = 1. Now by Lemma 3.4 again, if y
(t′+1)
i = 0,

then since for all t, t > t′ we have s(t) = 1, for all t > t′ we have y
(t)
i = 0; and if y

(t′+1)
i = 1, then we

also have for all t, t > t′, y
(t)
i = 1 as desired.

Now we are ready to prove the main Theorem 2.1 by setting n = m = dlog T ′e

Proof. We are going to prove the main theorem by composing the networks from stage one and two
together. If for all t, 0 ≤ t ≤ T we have x(t) = 0, then the network satisfies the criterion trivially

since for all 0 ≤ t ≤ T , y
(t)
i = 0. If not, then there exists t̂ ≥ 0, Lx > 0 such that for all t, 0 ≤ t < t̂

we have x(t) = 0, for all i, 0 ≤ i < Lx we have x(t̂+i) = 1, and x(t̂+Lx) = 0 where Lx is the length
of the first consecutive spikes interval. Let Lx =

∑∞
j=0 aj2

j ; then by Theorem 3.3 and Lemma 3.1,

for all i, 0 ≤ i ≤ n, we have z
(t̂+Lx−1)
i = ai. Now because Lx > 0, we know there exists ĵ such that

z
(t̂′+Lx)

ĵ
= 1 by Theorem 3.3. And by Lemma 3.2, we know for all i, t such that 0 ≤ t ≤ t̂, 0 ≤ i ≤ n,

we have z
(t)
i = 0. Now the assumption of Theorem 3.5 is satisfied with t′ = t̂ + Lx. By Theorem

3.5, we get for all t, i such that 0 ≤ i ≤ n, t ≥ t̂ + Lx we have y
(t)
i = ai and T + 1 ≥ t̂ + Lx as

desired. This shows that the above network solves FCSC(T) problem in time T + 1 with O(log T)
neurons.

Notice that in fact by the proof above, FCSC network enjoys an early convergence property.
The network actually converges at time t̂ + Lx. Therefore we have the following stronger version
of Theorem 2.1.

Corollary 3.6. For all t, 0 ≤ t ≤ T , FCSC network with O(log T) neurons solves FCSC(t) problem
in time t+ 1.

4 Total Spikes Counting

To count the total number of spikes in an arbitrary interval requires persistence of neurons without
external spikes. Notice that on FCSC network, each neuron toggles itself according to binary
representation without delay. However, persistence of neurons and toggles without delays are
conflicting objectives; persistence of neurons stabilizes the network while toggling without delays
changes the firing patterns of the network. For example, we use self-inhibition to count mod 2 but
if we use self inhibition to count mod 2, the neuron cannot maintain the count during intervals
with no inputs. In this section, we circumvent this difficulty by allowing the network to enter an
unstable intermediate state that still stores the information of the count when the spikes arrive;
however, the network will converge to a clean state that according to binary representation after
one step of computation without external signals, and this clean state is stable in an arbitrary
interval with no input.

In this section, because the self-inhibition used in Section 3 to count mod 2 cannot induce
persistence, we build a network of four neurons to count mod 4 to replace the function of z0, z1 in

9

Figure 4: mod 4 Counter Network

Section 3. We then iteratively build the rest of the network that approximately fires in binary on
top of the mod 4 counter network.

The construction of the mod 4 counter network is the following:

wxfi = 1, wfifi = 2, 0 ≤ i ≤ 3, wfj+1fj = −3, 0 ≤ j ≤ 2, wf1f2 = wf2f3 = wf3f0 = 1, wf0f3 = wf3f1 = −3

and
bf1 = 0.5, bfi = 1.5, i 6= 1

We have the following lemma to specify the firing rules of fi:

Lemma 4.1. For all t, i such that t ≥ 1, 0 ≤ i < 4, neurons f
(t)
i fire according to the following

rules:

1. f
(t)
1 = 1 if and only if f

(t−1)
2 = f

(t−1)
3 = 0, and (x(t−1) = 1 or f

(t−1)
1 = 1)

2. For i 6= 1 we have f
(t)
i = 1 if and only if f

(t−1)
(i+1) mod 4 = 0, and (x(t−1) = 1, f

(t−1)
(i−1) mod 4 = 1 or

f
(t−1)
i = 1)

Proof. Case (1): The potential of f
(t)
1 is

wxf1x
(t−1) + wf1f1f

(t−1)
1 + wf2f1f

(t−1)
2 + wf3f1f

(t−1)
3 = x(t−1) + 2f

(t−1)
1 − 3f

(t−1)
2 − 3f

(t−1)
3

Only If: Let’s show the only if direction for the firing rule of f
(t)
1 first. If f

(t−1)
2 = 1, then the

potential of f
(t)
1 is

x(t−1) + 2f
(t−1)
1 − 3− 3f

(t−1)
3 ≤ 0 < 0.5 = bf1

If f
(t−1)
3 = 1, then the potential of f

(t)
1 is

x(t−1) + 2f
(t−1)
1 − 3f

(t−1)
2 − 3 ≤ 0 < 0.5 = bf1

10

If f
(t−1)
1 = 0, x(t−1) = 0, then the potential of f

(t)
1 is

−3f
(t−1)
2 − 3f

(t−1)
3 ≤ 0 < 0.5 = bf1

In all three cases, we have f
(t)
1 = 0.

If: For the if direction, if f
(t−1)
2 = f

(t−1)
3 = 0, x(t−1) = 1, then the potential of f

(t)
1 is

1 + 2f
(t−1)
1 ≥ 1 > 0.5 = bf1

If f
(t−1)
2 = f

(t−1)
3 = 0, x(t−1) = 1, f

(t−1)
1 = 1, then the potential of f

(t)
1 is

x(t) + 2 ≥ 2 > 0.5 = bf1

In both cases, we have f
(t)
1 = 1.

Case (2): For i 6= 1, The potential of f
(t)
i is

wxfix
(t−1) + wfifif

(t−1)
i + wf(i−1) mod 4fif

(t−1)
(i−1) mod 4 + wf(i+1) mod 4fif

(t−1)
(i+1) mod 4 =

x(t−1) + 2f
(t−1)
i + f

(t−1)
(i−1) mod 4 − 3f

(t−1)
(i+1) mod 4

Only If: For the only if direction, if f
(t−1)
(i+1) mod 4 = 1, then the potential of f

(t)
i is

x(t−1) + 2f
(t−1)
i + f

(t−1)
(i−1) mod 4 − 3 ≤ 1 < 1.5 = bi

If x(t−1) = 0, f
(t−1)
i = 0, then the potential of f

(t)
i is

f
(t−1)
(i−1) mod 4 − 3f

(t−1)
(i+1) mod 4 ≤ 1 < 1.5 = bi

If f
(t−1)
(i−1) mod 4 = 0, f

(t−1)
i = 0, then the potential of f

(t)
i is

x(t−1) − 3f
(t−1)
(i+1) mod 4 ≤ 1 < 1.5 = bi

In all three cases, we have f
(t)
i = 0.

If: For the if direction, if f
(t−1)
(i+1) mod 4 = 0, x(t−1) = 1, f

(t−1)
(i−1) mod 4 = 1, then the potential of f

(t)
i is

1 + 2f
(t−1)
i + 1 ≥ 2 > 1.5 = bi

If f
(t−1)
(i+1) mod 4 = 0, f

(t−1)
i = 1, then the potential of f

(t)
i is

x(t−1) + 2 + f
(t−1)
(i−1) mod 4 ≥ 2 > 1.5 = bi

In both cases, we have f
(t)
i = 1 as desired.

For 0 ≤ i < 4, define a clean state with value i at time t′ of the mod 4 counter network to be

a state in which f
(t′)
i = 1 and for all j, j 6= i we have f

(t′)
j = 0. By Lemma 4.1, it is trivial to

see that if for all t, t ≥ t′ we have x(t) = 0, then for all t, t ≥ t′ and for all i, 0 ≤ i < 4 we have

f
(t)
i = f

(t′)
i . Using Lemma 4.1, we have the following lemma describing the behaviors of mod 4

counter network. Intuitively, when a new input arrives, the network enters an intermediate state
in which both neurons represent the old count and the new count fire; when there is no input,
the neuron that represents the new count will inhibit the neuron that represents the old count to
stabilize the network in a clean state.

11

Lemma 4.2. Let the mod 4 counter network be at a clean state with value î at time t′. Fix a positive
integer L. For all i, 0 ≤ i < L, let x(t

′+i) = 1 and x(t
′+L) = 0. Then, at time t, t′ < t < t′ + L+ 1,

we have the state of the network being

f
(t)

(̂i+t−t′) mod 4
= f

(t)

(̂i+t−t′−1) mod 4
= 1, f

(t)

(̂i+t−t′−2) mod 4
= f

(t)

(̂i+t−t′−3) mod 4
= 0

Furthermore, the network will be at a clean state again at time t′ + L+ 1 with f
(t′+L+1)

(̂i+L) mod 4
= 1.

Proof. First, let’s use induction on t to prove at time t, t′ < t < t′+L+ 1, we have the state of the
network be

f
(t)

(̂i+t−t′) mod 4
= f

(t)

(̂i+t−t′−1) mod 4
= 1, f

(t)

(̂i+t−t′−2) mod 4
= f

(t)

(̂i+t−t′−3) mod 4
= 0

Base Case: By Lemma 4.1, we have

f
(t′+1)

(̂i+1) mod 4
= f

(t′+1)

(̂i+t−t′) mod 4
= 1, f

(t′+1)

(̂i−1) mod 4
= f

(t′+1)

(̂i−2) mod 4
= 0

for the base case.
Inductive Step: Now assume the induction hypothesis is true for t = k, since we have x(k) = 1
by Lemma 4.1, we indeed have

f
(k+1)

(̂i+k+1−t′) mod 4
= f

(k+1)

(̂i+k+1−t′−1) mod 4
= 1, f

(k+1)

(̂i+k+1−t′−2) mod 4
= f

(k+1)

(̂i+k+1−t′−3) mod 4
= 0

This completes the induction.

Now since x(t
′+L) = 0, by Lemma 4.1 we can derive the state of the network at time t′ + L+ 1

f
(t′+L+1)

(̂i+L) mod 4
= 1, f

(t′+L+1)
j = 0, ∀j 6= (̂i+ L) mod 4

as desired.

Now we iteratively build the network with the following rule on top of the mod 4 counter
network,

wf3zi = wf3ini
= 3, wf0zi = wf0ini

= −1, wxzi = wxini = 1,

wzjzi = wzjini = 1, ∀j, 2 ≤ j < i, winizi = −i− 3, wziini = 1, wzizi = i+ 3

and
bzi = i+ 1.5, bini = i+ 2.5

In the full construction of the TSC network, intuitively, we replace the function of z0, z1 in Section
3 with a mod 4 counter network. We design the weights coming from f3, f0 such that they will
induce proper carry in an approximate binary representation at zi, i ≥ 2, and we use a similar idea
as the mod 4 counter network to make TSC network converge to an exact binary representation in
one computation step without input.

The following lemma specifies the firing rules of zi, ini for i ≥ 2:

Lemma 4.3. For i ≥ 2, neurons z
(t)
i , in

(t)
i fire according to the following rules:

1. z
(t)
i = 1 if and only if in

(t−1)
i = 0, and either (f

(t−1)
3 = 1, f

(t−1)
0 = 0, x(t−1) = 1 and for all

j, 2 ≤ j < i we have z
(t−1)
j = 1) or z

(t−1)
i = 1.

12

Figure 5: Total spikes counting (TSC) Network

2. in
(t)
i = 1 if and only if z

(t−1)
i = 1, f

(t−1)
3 = 1, f

(t−1)
0 = 0, x(t−1) = 1 and for all j, 2 ≤ j < i we

have z
(t−1)
j = 1.

Proof. Case 1: The potential of z
(t)
i is

wf3zif
(t−1)
3 + wf0zif

(t−1)
0 +

i−1∑
j=2

wzjziz
(t−1)
j + wziziz

(t−1)
i + winiziin

(t−1)
i + wxzix

(t−1)

= 3f
(t−1)
3 − f (t−1)0 +

i−1∑
j=2

z
(t−1)
j + (i+ 3)z

(t−1)
i − (i+ 3)in

(t−1)
i + x(t−1)

Only If: Let’s show the only if direction for the firing rule of z
(t)
i first. If in

(t−1)
i = 1, the potential

of z
(t)
i is

3f
(t−1)
3 − f (t−1)0 +

i−1∑
j=2

z
(t−1)
j + (i+ 3)z

(t−1)
i − (i+ 3) + x(t−1) ≤ i+ 1 < i+ 1.5 = bzi

If f
(t−1)
3 = 0, z

(t−1)
i = 0, the potential of z

(t)
i is

−f (t−1)0 +
i−1∑
j=2

z
(t−1)
j − (i+ 3)in

(t−1)
i + x(t−1) ≤ i− 1 < i+ 1.5 = bzi

If f
(t−1)
0 = 1, z

(t−1)
i = 0, the potential of z

(t)
i is

3f
(t−1)
3 − 1 +

i−1∑
j=2

z
(t−1)
j − (i+ 3)in

(t−1)
i + x(t−1) ≤ i+ 1 < i+ 1.5 = bzi

13

If x(t−1) = 0, z
(t−1)
i = 0, the potential of z

(t)
i is

3f
(t−1)
3 − f (t−1)0 +

i−1∑
j=2

z
(t−1)
j − (i+ 3)in

(t−1)
i ≤ i+ 1 < i+ 1.5 = bzi

If z
(t−1)
i = 0 and there exists ĵ, 2 ≤ ĵ < i such that z

(t−1)
ĵ

= 0, the potential of z
(t)
i is

3f
(t−1)
3 − f (t−1)0 +

∑
j 6=ĵ,2≤j<i

z
(t−1)
j − (i+ 3)in

(t−1)
i + x(t−1) ≤ i+ 1 < i+ 1.5 = bzi

In all cases, we have z
(t)
i = 0.

If: For the if direction, if in
(t−1)
i = 0, f

(t−1)
3 = 1, f

(t−1)
0 = 0, x(t−1) = 1 and for all j, 2 ≤ j < i we

have z
(t−1)
j = 1, then the potential of z

(t)
i is

3 +
i−1∑
j=2

1 + (i+ 3)z
(t−1)
i + 1 ≥ i+ 2 > i+ 1.5 = bzi

If in
(t−1)
i = 0, z

(t−1)
i = 1, the potential of z

(t)
i is

3f
(t−1)
3 − f (t−1)0 +

i−1∑
j=2

z
(t−1)
j + (i+ 3) + x(t−1) ≥ i+ 2 > i+ 1.5 = bzi

In both cases, we have z
(t)
i = 1.

Case 2: he potential of in
(t)
i is

wf3ini
f
(t−1)
3 + wf0ini

f
(t−1)
0 +

i−1∑
j=2

wzjiniz
(t−1)
j + wziiniz

(t−1)
i + wxinix

(t−1)

= 3f
(t−1)
3 − f (t−1)0 +

i−1∑
j=2

z
(t−1)
j + z

(t−1)
i + x(t−1)

Only If: For the only if direction, if z
(t−1)
i = 0, then the potential of in

(t)
i is

3f
(t−1)
3 − f (t−1)0 +

i−1∑
j=2

z
(t−1)
j + x(t−1) ≤ i+ 2 < i+ 2.5 = bini

If f
(t−1)
3 = 0, the potential of in

(t)
i is

−f (t−1)0 +
i−1∑
j=2

z
(t−1)
j + z

(t−1)
i + x(t−1) ≤ i < i+ 2.5 = bini

If f
(t−1)
0 = 1, the potential of in

(t)
i is

3f
(t−1)
3 − 1 +

i−1∑
j=2

z
(t−1)
j + z

(t−1)
i + x(t−1) ≤ i+ 2 < i+ 2.5 = bini

14

If x(t−1) = 0, the potential of in
(t)
i is

3f
(t−1)
3 − f (t−1)0 +

i−1∑
j=2

z
(t−1)
j + z

(t−1)
i ≤ i+ 2 < i+ 2.5 = bini

If there exists ĵ, 2 ≤ ĵ < i such that zĵ = 0, the potential of in
(t)
i is

3f
(t−1)
3 − f (t−1)0 +

∑
j 6=ĵ,2≤j<i

z
(t−1)
j + z

(t−1)
i + x(t−1) ≤ i+ 2 < i+ 2.5 = bini

In all cases, in
(t)
i = 0.

If: For the if direction, if z
(t−1)
i = 1, f

(t−1)
3 = 1, f

(t−1)
0 = 0, x(t−1) = 1 and for all j, 2 ≤ j < i we

have z
(t−1)
j = 1, then the potential of in

(t)
i is

3 +

i−1∑
j=2

1 + 1 + 1 ≤ i+ 3 > i+ 2.5 = bini

We have in
(t)
i = 1 as desired.

Define a clean state at time t′ of TSC network with value X stored be one in which

1. f
(t′)
X mod 4 = 1, f

(t′)
j = 0, ∀j 6= X mod 4 (i.e., the mod 4 counter subnetwork is clean with value

X mod 4)

2. For X =
∑∞

i=0 ai2
i, ai ∈ {0, 1}, z(t

′)
k = ak, ∀k ≥ 2

3. in
(t′)
i = 0 if X mod 2i+1 = 2i+1 − 1

So being at a clean state for TSC network with value X stored implies being at a clean state with
value X mod 4 for its mod 4 counter subnetwork with zi in binary representation for i ≥ 2. By
Lemma 4.3, it is trivial to see that if for all t ≥ t′ we have x(t) = 0, then for all i ≥ 2 and for

all t, t ≥ t′ we have f
(t)
i = f

(t′)
i . Using Lemma 4.3, we have the following lemma describing the

behaviors of the TSC network.

Lemma 4.4. Let TSC network be at a clean state at time t′ with value X stored. Fix a positive
integer L. For all i such that 0 ≤ i < L, let x(t

′+i) = 1 and x(t
′+L) = 0. Then, at t, t′ < t < t′+L+1,

zi, ini fire with the following rules for all i ≥ 2:

1. for 1 = X + t− t′ mod 2i+1 < 2i, z
(t)
i = 0

2. for 1 < X + t− t′ mod 2i+1 < 2i, z
(t)
i = in

(t)
i = 0

3. for X + t− t′ mod 2i+1 ≥ 2i, we have z
(t)
i = 1, in

(t)
i = 0

4. for X + t− t′ mod 2i+1 = 0, we have z
(t)
i = 1, in

(t)
i = 1

Furthermore, the network will be at a clean state with value X + L stored at time t′ + L+ 1.

Proof. Just like the mod 4 counter network case, we want to deduce the behaviors of network at
t, t′ < t < t′ + L+ 1 using induction first.
Base Case: Fix i, for t = t′ + 1, we have the following cases

15

1. 0 < X + 1 mod 2i+1 < 2i:
This implies that 0 ≤ X mod 2i+1 < 2i−1. This shows that not all j, j < i we have z

(t−1)
j = 1

or f
(t−1)
3 = 0 or f

(t−1)
0 = 1. By Lemma 4.3, we have z

(t)
i = in

(t)
i = 0

2. X + 1 mod 2i+1 ≥ 2i:
This implies that 2i − 1 ≤ X mod 2i+1 < 2i+1 − 1. This shows that either for all j, j < i we

have f
(t−1)
3 = 1, f

(t−1)
0 = 0, z

(t−1)
j = 1 or z

(t−1)
i = 1 but not both. By Lemma 4.3, we have

z
(t)
i = 1, in

(t)
i = 0

3. X + 1 mod 2i+1 = 0:
This implies that X mod 2i+1 = 2i+1 − 1. This shows that f

(t−1)
3 = 1, f

(t−1)
0 = 0 and for all

j ≤ i we have z
(t−1)
j = 1 and by the definition of a clean state, we have in

(t−1)
i = 0. Now by

Lemma 4.3, we have z
(t)
i = 1, in

(t)
i = 1.

Inductive Step: Assume the induction hypothesis is accurate for t = k. We have the following
cases

1. 1 = X + k + 1− t′ mod 2i+1 < 2i:
This implies that X + k − t′ mod 2i+1 = 0. Now by induction hypothsis and Lemma 4.2, we

know that f
(k)
3 = 1, f

(k)
0 = 0 and for all j, i ≥ j ≥ 2 we have z

(k)
j = 1, in

(k)
j = 1. By Lemma

4.3, we have z
(k+1)
i = 0, in

(k+1)
i = 1.

2. 1 < X + k + 1− t′ mod 2i+1 < 2i:
This implies that 1 ≤ X + k− t′ mod 2i+1 < 2i− 1. By induction hypothesis and Lemma 4.2,

this shows that not all j, j < i we have z
(k)
j = 1 or f

(k)
3 = 0 or f

(k)
0 = 1. By Lemma 4.3, we

have x
(k+1)
i = in

(k+1)
i = 0

3. X + k + 1− t′ mod 2i+1 ≥ 2i:
This implies that 2i − 1 ≤ X + k − t′ mod 2i+1 < 2i+1 − 1. By induction hypothesis and

Lemma 4.2, this shows that either for all j, j < i we have f
(k)
3 = 1, f

(k)
0 = 0, z

(k)
j = 1 or

z
(k)
i = 1 but not both. By Lemma 4.3, we have z

(k+1)
i = 1, in

(k+1)
i = 0

4. X + k + 1− t′ mod 2i+1 = 0:
This implies that X + k − t′ mod 2i+1 = 2i+1 − 1. By induction hypothesis and Lemma 4.2,

this shows that all f
(k)
3 = 1, f

(k)
0 = 0, in

(k)
i = 0 and for all j, j ≤ i we have z

(k)
j = 1. Now by

Lemma 4.3, we have z
(t)
i = 1, in

(t)
i = 1.

This completes the induction.

Now we just need to show that at time t′ + L + 1 the network is at a clean state with value
X + L stored. We have the following cases:

1. 1 = X + L mod 2i+1 < 2i:
By above induction, we have for j, j ≤ i, z(t

′+L)
j = 0. No matter what the value of in

(t′+L)
i is,

by Lemma 4.3 we have z
(t′+L+1)
i = in

(t′+L+1)
i = 0.

2. 1 < X + L mod 2i+1 < 2i, z
(t)
i = in

(t)
i = 0:

By above induction, we have z
(t′+L)
i = in

(t′+L)
i = 0. By Lemma 4.3, we have z

(t′+L+1)
i =

in
(t′+L+1)
i = 0

16

3. X + L mod 2i+1 ≥ 2i, we have z
(t′+L)
i = 1, in

(t′+L)
i = 0. By Lemma 4.3, we have z

(t′+L+1)
i =

in
(t′+L+1)
i = 0

4. X + L mod 2i+1 = 0, we have z
(t′+L)
i = 1, in

(t′+L)
i = 1. By Lemma 4.3, we have z

(t′+L+1)
i =

0, in
(t′+L+1)
i = 1

which is exactly a clean state with value X + L stored combining with Lemma 4.2.

Now we are ready for the main proof of Theorem 2.2 by setting n = dlog T ′e and let fi, zj , 0 ≤
i ≤ 3, 2 ≤ j ≤ n be our output neurons.

Proof. Let fi, zj , 0 ≤ i < 4, 2 ≤ j ≤ n be our output neurons. Let there be X spikes in T time
steps. Let [t0, t0 +X0 − 1], · · · , [tk, tk +Xk − 1] be the disjoint maximal intervals of spikes ordered
by time (i.e., x(t) = 1 if t ∈ [ti, ti +Xi − 1] for some 0 ≤ i ≤ k and [ti, ti +Xi]∩ [tj , tj +Xj] = ∅ for

all i 6= j and t0 < t1 < · · · < tk,
∑k

i=0Xk = X). Now I claim that at time ti +Xi + 1, the network
is at a clean state with value

∑i
j=0Xj stored. We will prove the claim with induction on i. For

i = 0, apply Lemma 4.4, we get that the network is at a clean state with value X0 stored. Assume
the network is at a clean state with value

∑i
j=0Xj stored at time ti +Xi + 1. Then apply Lemma

4.4 again, we get at time ti+1 +Xi+1 + 1, the network is at a clean state with value
∑i+1

j=0Xj stored
at time ti+1 +Xi+1 + 1. So at time tk +Xk + 1 ≤ T + 1, the network is at a clean state with value∑k

j=0Xj = X stored as desired. This shows that the above network solves TSC(T) problem in
time T + 1 with O(log T) neurons.

Notice that in fact by the proof above, TSC network enjoys an early convergence property. The
network actually converges at time tk + Xk + 1. Therefore we have the following stronger version
of Theorem 2.2.

Corollary 4.5. For all t, 0 ≤ t ≤ T , TSC network with O(log T) neurons solves FCSC(t) problem
in time t+ 1.

5 Time Lower Bound for FCSC and TSC

In Section 4, we mentioned that there is a conflicting objective between stabilizing the output and
toggling without delays. We therefore introduced the idea of carrying information of the count at
an unclean state and then converging to a clean state, which introduces one time step of delay. In
this Section, we are going to show that this delay is unavoidable.

Intuitively, the proof of the time lower bound uses the fact that if the network has to solve the
problem without delay, the network must stabilize immediately at each time step. Therefore, the
neurons that fire at the last round will stay firing. By injectivity of the representation, we can
conclude that the network can at most count up to the network size.

The proof of Theorem 2.3 is the follows. The proof of Theorem 2.4 is identical.

Proof. Consider the following input sequence such that for all 0 ≤ t < T we have x(t) = 1 and for
all t ≥ T we have x(t) = 0. Let X be the collections of all neurons in the network. Assume for all
0 ≤ t ≤ T , the network solves FCSC(t) at time t. For all 0 ≤ j ≤ T , let Sj = {yi : y

(j)
i = 1, 1 ≤

i ≤ m}. We would like to show that ST) ST−1) · · ·) S0. To prove this by induction on t, we
strengthen our induction hypothesis to become St) St−1) · · ·) S0 and for all yj ∈ St−1 we have
wxyj > 0.

17

Base Case: When t = 1, notice that S0 = ∅ by construction. Now by injectivity of the counter
representation, we have S1) S0 and for yj ∈ S0, wxyj > 0 is vacuously true.

Induction Step: Now assume St) St−1) · · ·) S1 and wxyj > 0 for yj ∈ St−1. At time step
t + 1, since the network solves FCSC(t) at time t, the neurons in y is stabilized even without the
input from x. This means that ∑

z∈X/{x}

wzyjz
(t) − byj > 0 if yj ∈ St

Now since wxyj > 0, we know that neurons in St−1 will keep firing at time t + 1. For neurons in
St/St−1, since those neurons fire at time t, we have

wxyj +
∑

z∈X/{x}

wzyjz
(t−1) − byj > 0 if yj ∈ St/St−1

And since the network solves FCSC(t-1) at time t− 1, we also have∑
z∈X/{x}

wzyjz
(t−1) − byj ≤ 0 if yj ∈ St/St−1

Substract two equations we get
wxyj > 0 if yj ∈ St/St−1

And hence St+1 ⊂ St. By injectivity of the count representation, we have St+1) St as desired.
Now we have ST) ST ′−1) · · ·) S2) S1, but we only have o(T) output neurons. Contradic-

tion.

6 Discussion and Future Direction

In this paper, we have shown that networks of neurons are capable of integrating temporal informa-
tion to solve two different tasks with temporal inputs efficiently. Out of the spiking neural networks
literature, Hitron and Parter [HP19] tackled a similar problem. Their neural counter problem is
our TSC problem. Our works differ in three ways. First, our network has time bound T + 1 while
theirs is T +O(log T). Second, we provide a time lower bound result and show our time bound is
optimal. Third, they consider an approximate version of the problem while we focus on the exact
version of the problem.

Our paper follows similar approaches to Lynch et al. [LMP17a, LMP17b, LM18] by treating
neurons as static circuits to explore the computational power of neural circuits. There are three
noteworthy points about our model. First, instead of a stochastic model, we use a deterministic
one. However, it should be noted that all the results in this paper would still hold under the
randomized model of Lynch et al. [LMP17a, LMP17b, LM18] with high probability. Second, we
use a model which resets the potential at every round. Therefore, to retain temporal information,
many self-excitation connections are employed in our networks. At the other extreme, we could
have a model in which the potential does not decay from past rounds. In that model, temporal
information can be stored in potentials, but it might require different mechanisms to translate
the information from potentials to spikes. The two models thus could lead to different possible
computational principles in brains. Third, we used a discrete time model instead of a continuous
time model, which would be more biologically plausible. However, this might not be a concern
since we could use Maass’s synchronization module [Maa96] to simulate our discrete time model
from a continuous time model.

18

This paper mainly deals with the exact versions of the problems. One possible extension is
to consider the approximate versions of the problems. By introducing noise into our models, we
might be able to solve the approximate versions of the problems more efficiently. For example, for
approximate counting, we aim to output some firing patterns corresponding to a number X̃ such
that

P (|X̃ −X| > εX) < δ

is small. The lower bound for this question is Ω(log log T) and finding a matching upper bound can
be an interesting future direction. However, approximate versions of the questions are tricky with
temporal inputs because the network inevitably reuses random bits if they are stored inside the
weights. A possible approach is to use a small number of random bits to generate a large family of
k-wise independent random functions within neurons.

Another aspect of the temporal input we have not exploited is the time-scale invariance of the
problem. In biology, many problems are time-scale invariant. A person who says “apple” fast can
be understood as well as a person who says “apple” slowly. If we exploit this invariance, we might
be able to reduce the networks’ complexity further.

References

[AZ26] E. D. Adrian and Yngve Zotterman. The impulses produced by sensory nerve-
endings: Part ii. the response of a single end-organ. J Physiol, 61(2):151–171, 1926.

[BP98] G.Q. Bi and M.M. Poo. Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neu-
rosci, 18:10464–10472, 1998.

[CNC18] Chi-Jen Lu Chi-Ning Chou, Kai-Min Chung. On the algorithmic power of spiking
neural networks. arXiv:1803.10375 [cs.NE], 2018.

[FTHvVB03] N. Fourcaud-Trocme, D. Hansel, C. van Vreeswijk, and N. Brunel. How spike
generation mechanisms determine the neuronal response to fluctuating input. J.
Neuroscience, 23:11628–11640, 2003.

[GM08] T. Gollisch and M. Meister. Rapid neural coding in the retina with relative spike
latencies. Science, 319:1108–1111, 2008.

[GS06] Rober Gutig and Haim Sompolinsky. The tempotron: a neuron that learns spike
timing-based decisions. Nature Neuroscience, 9(3):420–428, 2006.

[Heb49] D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.

[HH52] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. J Physiol., 117(4):500–
544, 1952.

[HKP91] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Com-
putation. Addison-Wesley, Redwood City CA, 1991.

[Hop82] J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. USA, 79:2554–2558, 1982.

19

[HP19] Yael Hitron and Merav Parter. Counting to ten with two fingers: Compressed
counting with spiking neurons. arXiv:1902.10369 [cs.NE], 2019.

[JHM14] Zeno Jonke, Stefan Habenschuss, and Wolfgang Maass. A theoretical basis for
efficient computations with noisy spiking neurons. arXiv:1412.5862 [cs.NE], 2014.

[JJ15] Hopfield JJ. Understanding emergent dynamics: Using a collective activity coordi-
nate of a neural network to recognize time-varying patterns. Neural Computation,
27:2011–2038, 2015.

[Kos88] B. Kosko. Bidirectional associative memories. IEEE Transactions on Systems, Man,
and Cybernetics, 18:49–60, 1988.

[LM18] Nancy Lynch and Cameron Musco. A basic compositional model for spiking neural
networks. arXiv:1808.03884 [cs.DC], 2018.

[LMP17a] Nancy A. Lynch, Cameron Musco, and Merav Parter. Computational tradeoffs in
biological neural networks: Self-stabilizing winner-take-all networks. ITCS, 2017.

[LMP17b] Nancy A. Lynch, Cameron Musco, and Merav Parter. Neuro-ram unit with ap-
plications to similarity testing and compression in spiking neural networks. DISC,
33:1–16, 2017.

[Maa96] Wolfgang Maass. Lower bounds for the computational power of networks of spiking
neurons. Neural Computation, 8:1–40, 1996.

[RWdRvSB96] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek. Spikes -
exploring the neural code. MIT Press, Cambridge, MA., 1996.

[TLD17] Ping Tak Peter Tang, Tsung-Han Lin, and Mike Davies. Sparse coding by spiking
neural networks: Convergence theory and computational results. arXiv:1705.05475
[cs.LG], 2017.

[WWvJ97] Kistler W.M., Gerstner W., and vanHemmen J.L. Reduction of hodgkin-huxley
equations to a threshold model. Neural Comput, 9:1069–1100, 1997.

20

	1 Introduction
	2 Problem Statements/Goals
	2.1 Model
	2.2 First Consecutive Spikes Counting(T) (FCSC(T))
	2.3 Total Spikes Counting(T) (TSC(T))
	2.4 Main Theorems

	3 First Consecutive Spikes Counting
	4 Total Spikes Counting
	5 Time Lower Bound for FCSC and TSC
	6 Discussion and Future Direction

