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Abstract
We study the distributed task allocation problem in multi-agent systems, where each agent selects
a task in such a way that, collectively, they achieve a proper global task allocation. In this paper,
inspired by ant colonies, we propose several scalable and efficient algorithms to dynamically
allocate the agents as the task demands vary. Similar to ants, in our algorithms, each agent
obtains sufficient information to make its local decision by gossiping with the other ants. Our
algorithms vary in their advantages and disadvantages, with respect to (1) how fast they react to
dynamic demands change, (2) how many agents need to switch tasks, (3) whether extra agents
are needed, and (4) whether they are resilient to faults.
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1 Introduction

In a multi-agent system, different tasks may need to be performed. The task allocation
problem is to find an allocation of agents such that there are enough agents working on each
task. This is often done in a distributed manner in many applications. For instance, drone
package delivery for one city may consist of deliveries for several different regions [19]. The
drones may learn the demands in each region from a broadcasting ground control station.
The demands may vary from time to time. The drones are required to coordinate among
themselves, without central control, to ensure that there are enough individuals working in
each region.

The problem of task allocation also occurs in the ant world. In ant colonies, there are
several different tasks (brood care, foraging, nest maintenance, defense [28]) which require
different number of ants. Ant colonies generally do a good job of regulating the assignment
of workers to tasks. In this work, we take inspiration from ants to develop several algorithms
that are efficient and robust for the task allocation problem. Conversely, we hope our work
can shed some light on questions about collective insect behavior.
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To model the task allocation without centralized controllers, we consider randomized
gossip protocols [6] (sometimes known as population protocols 1 [1] ) as the underlying method
of communication among the agents. In short, randomized gossip protocols consist of rounds.
In each round, each agent chooses another agent uniformly at random to contact, and
then the pair exchanges messages. Gossip-based protocols capture a common method of
communication in biological systems. For example, in ant colonies, two ants communicate by
touching each other with their antennae [14]. The gossip protocol model captures the way
they exchange information in a peer-to-peer manner. Not only are gossip-based protocols
natural communication mechanisms in biological systems, the algorithms in such protocols
are usually simple, easily scalable, and resilient to failures.

1.1 The Model
We assume there are n agents and k tasks. Each agent a is associated with a unique identifier,
IDa ≤ poly(n), and a state Qa ∈ {1, 2, . . . , k}, which indicates the task that it is working on.
(Note that in ant colonies, k is usually a small constant less than 20.) The scenario proceeds
in synchronized rounds. In the beginning of round t, each agent receives the demand signals
~d(t) = (d(t)

1 , d
(t)
2 , . . . , d

(t)
k ) from the tasks, where d(t)

i indicates the demand of task i 2. Note
that the demands may change arbitrarily in every round. Each agent a chooses another agent
a′ uniformly at random and then they can exchange messages of O(k logn) bits (which fit
the size of the input signals). Then, the agents can change their states. Then they proceed
to the next round.

Cornejo et al. [5] and Radeva et al. [26] defined a model for the task allocation problem
in ant colonies. In their work, when the ants receive heterogeneous feedback from the
environment, there could be information flow from one ant to another. In our model, the
information flow happens only through gossiping.

1.2 Problem Formulation
We formulate the task allocation problem similarly to [26] and [5] as follows. Let A(t)

i denote
the set of agents working on task i for 1 ≤ i ≤ k. Let ~w(t) = (w(t)

1 , w
(t)
2 , . . . , w

(t)
k ) denote the

number of workers working on the k tasks (wi = |Ai|). We say the allocation at round t is
a proper allocation if w(t)

i ≥ d
(t)
i for all i ∈ {1, 2, . . . , k}. For convenience, assume that the

total demand D =
∑k
i=1 di is fixed. We can assume this without loss of generality, since we

can let task k denote the dummy task for idle agents. We often omit the superscripts (t) to
denote the quantities of the current round.

There are several objectives we consider for an algorithm. First, whenever the demands
change, we hope that the allocation recovers to a proper one as soon as possible. The
reallocation time is defined to be the number of rounds needed for the algorithm to find a
proper allocation, after the demand stabilizes. Algorithms are allowed to have a preprocessing
phase, so that the reallocation can be done faster after that. Second, when the demands
change, we hope the number of task switches is as small as possible, since task changing
may incur some overheads. We define the switching cost to be the number of agents who
switched tasks until a proper allocation is achieved. When the demands change from ~d to ~d′,
it is clear that the switching cost is at least OPT def= |~d− ~d′|1/2 (if the work exactly matches

1 Although gossip-based protocols and population protocols are slightly different. For example, the latter
usually have a more restrictive memory constraint.

2 The demands should be thought as the work-rates required to keep the tasks satisfied.
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Table 1 Comparisons of the Algorithms.

Mv. and Fill Tkn. Pass I Tkn. Pass II Ranking I Ranking II
#Agents D (1 + ε)D (1 + ε)D (1 + ε)D (1 + ε)D
Preproc. Time O( kε logn) O( kε logn) O( 1

ε log2 n) O(
(
k
ε

)2
logn)

Realloc. Time O(log2 n) O(1) O(1) O(1) O(1)

Switching Cost OPT (k − 1) ·OPT OPT O(n) O(k logn) ·OPT
(or O(n))

Fault Tolerance transient faults
after preproc.

transient faults
after preproc.

transient & (crash)
no global clock

the demand for each task). Third, we study the number of agents needed for the algorithm.
Clearly, all algorithms that behave correctly need to have at least D agents. However, the
question is whether extra agents can help us in designing more efficient algorithms. Finally,
we consider two types of faults: transient faults and crash faults. A transient fault means an
agent temporary malfunctions but later recovers. For example, an agent might not receive
the most recent demands for some reason (perhaps due to the propagation delay). We say
an algorithm tolerates transient faults if the agents adapt to a proper allocation after all the
agents recover from the faults. A crash fault is when an agent malfunctions permanently
(and it will no longer be contacted by other agents). We say an algorithm tolerates crash
faults if the agents adapt to a proper allocation after some of them crashed, as long as there
are enough remaining agents.

1.3 Our Contribution
The main contribution of our work is to explore different possibilities that can be achieved
by a(ge)nts under the gossip model where information exchanges are limited. We give three
different types of algorithms for the task allocation problem. They are incomparable in the
sense that no one dominates the other on all the objectives (see Table 1). Our first algorithm,
the move-and-fill algorithm, is similar to the algorithm of Radeva et al. [26], where the
excess ants working on over-satisfied tasks leave the tasks and switch to the unsatisfied
tasks. We show that this can be done in O(log2 n) rounds in our model w.h.p.3 using the
gossip-based counting and selection algorithms developed in [18] . The main advantage of
the algorithm over the other two is that the number of agents needed is exactly D. Moreover,
the switching cost is optimal. The drawback of the algorithm is that whenever the demands
change, the re-allocation time is O(log2 n) rounds. If the demands change more frequent
than O(log2 n) rounds, the allocation will not be able to catch up to the demands. In reality,
the demands may change very frequently due to both internal factors (consumable tasks
where the demands decrease when they are done) and external factors (sudden changes in
the environment).

The ant inspiration for the next two algorithms. Consider ant colonies, where
ants receive the demand signals from the tasks. In reality, the signals can be the temperature
or the stimulation of chemicals. Biologist have conjectured that different ants have different
response thresholds to the signals [3]. The question is whether such a design could help in
task allocation. Consider the following simple example, where n = k = 2. Suppose that the
first ant a1 is more sensitive to the signal of task 1 than a2. Then, when task 1 and task
2 have both 1 unit of demand, it is possible that a1 goes to work on task 1 and a2 goes to
work on task 2. The main inspiration here is that if the ants have different responses to the

3 With high probability, which means with probability at least 1 − 1/ poly(n).
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signals, then they can take advantage of the difference to facilitate task allocation. Each ant
can decide where to go based on the demand signals, independent of the other ants’ actions.
Therefore, the reallocation can be done very quickly.

Both our token passing algorithm and ranking algorithm are based on this idea.
Both algorithms consist of a preprocessing phase, where each ant a computes a value Xa.
After Xa is computed, they will allocate themselves according to Xa and the vector of
demands, so that when the demands change, each ant can reallocate itself instantaneously.
The drawback compared to the first algorithm is that they both need extra agents. After the
Xa-values are computed, the allocation is done in a very simple way. In a high level sense,
we divide the range of Xa-values into k disjoint intervals such that the length of i’th interval
is proportional to the demand of task i (with additional slacks, see Algorithm 2). Every
agent will go to the task whose interval contains its Xa-value. In general, we hope that the
Xa-values of the agents are well-spread so that an interval of length proportional to di would
contain di agents whose Xa-values lying in the interval.

In the token passing algorithm, each agent is assigned a unique token Xa from
{1, 2, . . . , n+ b εk ·Dc} in the preprocessing phase. This is done by using the loose renaming
procedure developed by Giakkoupis et al. [13]. When there are (1 + ε) · D agents, the
preprocessing phase takes O(kε logn) rounds. After that, each agent can determine its role
based on Xa and the demand vector in O(1) rounds. There are two variants of the algorithms
that reallocate in different ways when the demands change. The first is that every agent
keeps the Xa-value the same and then reallocates according to that. In that algorithm, the
switching cost is bounded by (k − 1) ·OPT. In the second variant, the Xa-values are also
reallocated. This achieves the optimal switching cost and the reassignments of Xa-values
can be done instantaneously. However, unlike the first variant it does not tolerate transient
faults after the preprocessing phase.

We define the notion of stable algorithms which capture the type of algorithms where
each agent’s decision only depends on the current input signals. As long as the agents run
Algorithm 2 with fixed Xa-values (like the first variant), the resulting algorithm is stable.
The stable algorithms are resilient to transient faults, because as long as each agent functions
normally and receives the current input signals, the allocation is proper. We show that for
this type of algorithms, the switching cost is at least 2 ·OPT. In comparison, our first variant
achieves a switching cost of (k − 1) · OPT. We discuss the possibility to close the gap in
Section 5.

In the ranking algorithm, Xa is an estimate of the normalized rank (i.e. rank(a)/n)
of a, where rank(a) is the rank of a’s ID over all the agents. In fact, the algorithm is more
similar to ants’ behavior. The ID of each agent can be thought as some features of the agents.
In ant colonies, ants allocate the tasks based on their individual traits such as age [28, 30],
body size [31], genetic background [17]. For example, there are tendencies for older ants to
go foraging and for younger ants to work on the tasks that are closer to the nests [30]. The
ranking algorithms mimic this in the way that if the demands are fixed, then the allocation
for every agent is determined by the relative position of its trait (assuming the traits are
comparable).

We propose two different ways for estimating the normalized ranks. The first is a
rounding-based algorithm that runs in O( 1

ε log2 n) rounds while the second is a light-weight
sampling-based algorithm runs in O((kε )2 logn) rounds. The advantage of the first one is
that the estimate does not depend on the execution of the algorithm and so that an agent
always gets the same estimate. The advantage of the second algorithm is that it can tolerant
both transient and crash faults. Moreover, each agent is allowed to keep its own clock, there
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is no global clock. The drawback is that the algorithms may have a fairly large switching
cost (e.g., task switching can happen even when the demands are stabilized). However, for
the second variant we may sacrifice the crash fault tolerance for a bounded switching cost of
O(k logn) ·OPT by fixing the Xa-values after the agents get accurate enough estimates.

1.4 Related Work
The task allocation problem in ant colonies has been studied extensively in biology literature.
Empirical works suggest that the task an ant chooses to work on depends on various factors,
including its age [28], body size [31], genetic background [17], position in the nest [29], social
interaction [16], and internal response thresholds [4]. There are also works that formulate
the task allocation problems using mathematical models [2, 4, 15, 24, 25]. Most of the works
focus on the dynamics of workers and studied the convergence of the dynamics rather than
on the individual algorithmic mechanisms.

Cornejo et al. [5] was the first to model the ant task allocation problem from a distributed
computing perspective. Then, [26] studied how extra agents can speed up the task allocation
process. In the ant-colony task allocation models of [26] and [5], they assumed the signals
the agents received from the tasks are the deficit (i.e. di − wi) or whether the tasks need
more work (i.e. sgn(wi− di)). Biologists claimed that it is not clear what the actually signals
the ants are receiving in reality, and they may depend on the type of the tasks. The reason
we use the demands as signals rather than the (functions of) deficits is because that it gives
a clear separation between the environment and the communication. For example, if agent a
learns the deficit of task i, there is an information flow from the agents working on task i to
a. In our model, such an information flow only happens through explicit communication.
Moreover, since the agents can do counting (c.f. Section 2), the demands can be converted to
the deficits (and vice versa) with an O(logn) delay in our model.

In computer science, task allocation problems have also been well-studied under various
contexts, including scheduling of multiprocessors [7, 21], robotics [22, 11], and communication
complexity [8]. The major difference between their problems and ours is that we consider the
case where the tasks are understood as the task types, where each task (type) is accomplished
by many agents collaboratively. As a result, the number of tasks is usually much smaller
than the number of agents. While as in their cases, each task is a single instance that will be
handled by a single agent. Their goal is to study how the tasks should be assigned to the
agents such that some objectives are optimized (possibly under some constraints).

Recently, there has been a rising number of work to model collective insect behavior
from a distributed computing perspective. This includes the studies for the foraging problem
[20, 9], the house-hunting problem [12], and density estimation problem [23]. See [27] for a
more comprehensive survey.

1.5 Organization
In Section 2, we present the move-and-fill algorithm. In Section 3, we present the token-
passing algorithm. In Section 4, we present the ranking algorithm. Finally, in Section 5, we
propose fundamental open problems inspired by this work.

2 The Move-and-Fill Algorithm

We first present an algorithm that does not require extra agents and achieves an optimal
switching cost. Before describing the algorithm, we review a few elementary subroutines that
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can be achieved by gossip protocols.
Broadcasting. Suppose that a message m is initiated at a. Suppose that in each round,
each agent a that holds m forwards it to a′, the agent being contacted by a. Frieze and
Grimmett [10, Theorem 5.2] showed that in O(logn) rounds, w.h.p. all the agents receive
the message.
Counting. For any 1 ≤ i ≤ k, the number of agents working on task i can be counted in
O(logn) rounds w.h.p. Suppose that each node (or agent, in our case) is associated with
an integer. The push-sum algorithm of [18, Algorithm 1] approximates the summation up
to (1± ε) factor via gossiping in O(logn+ log(1/ε) + log(1/δ)) rounds with probability at
least 1− δ. Let Ai denote the set of agents working on task i for 1 ≤ i ≤ k. To count the
number of agents in Ai, we let the agents in Ai initiate the values to 1 and agents not in
Ai set their values to 0. Then, by approximating the summation using the algorithm with
ε = 1/(2n+ 1) and δ = 1/ poly(n), we can count the exact number of agents working on
task i in O(logn) rounds w.h.p. Also, since our bandwidth on the messages is O(k logn),
we can run k executions of the algorithms in parallel in O(logn) rounds to count the
number of agents working on every task.
Selection and Rank Testing Let A′ ⊆ A be a set of agents and let r be an integer.
Suppose that a ∈ A′, let rankA′(a) denote the rank of a in the set A′, beginning with 0.
We explain that in O(log2 n) rounds, w.h.p. each agent a in A′ can determine whether
rankA′(a) is at least r or not. In Kempe et al. [18, Theorem 4.2], they gave an algorithm
for computing the t’th smallest element in O(log2 n) rounds w.h.p. We can set t = r + 1
and use their algorithm to find out the ID of the agent a with rankA′(a) = r. Then, it
will broadcast its ID to every agent in O(logn) rounds. Therefore, all agents can compare
their own IDs with the received ID to determine whether its rank is at least r. Again,
we can run k copies of the algorithms simultaneously, since each copy uses only O(logn)
message size.

Algorithm 1 The Move-and-Fill Algorithm
Obtain w1, . . . , wk by counting the number of agents working on each task.
For each a ∈ Ai, include a in A′ if rankAi(a) ≥ di.
Let φi = max(di − wi, 0) be the deficit of task i.
For 1 ≤ i ≤ k, let Φi =

∑i
j=1 φi be the prefix sum of the deficit and let Φ0 = 0.

Let Ii = [Φi−1,Φi) be the half-open intervals for 1 ≤ i ≤ k.
For each a ∈ A′, go to task i(a), where Ii(a) is the interval that contains rankA′(a).

We assume n = D. The move-and-fill algorithm is described in Algorithm 1. The
algorithm is similar to Radeva et al.’s algorithm [26], where the excess agents at each task pop
out and move to the unsatisfied tasks. We use A′ to denote the set of excess agents. Agents
in A′ will reassign themselves to the unsatisfied tasks according to the deficits and their
ranks in A′. To determine whether a ∈ A′, a does so by testing whether rankAQa (a) ≥ dQa .
Such a test can be done for every agent by running k rank testing algorithms (one for each
task) in parallel. For task i, max(0, wi − di) agents will be in A′. Since the number of
agents is equal to the total demand, the number of excess agents must be equal to the total
deficits of the tasks, Φk. We partition the interval of length Φk into k intervals, each with
length Φi − Φi−1 = φi, so that there will be exactly φi agents whose rankA′(a) lying in the
interval Ii. Thus, φi agents will go to task i. This implies all the tasks become satisfied.
Again, such a test can be done for every agent by running k rank testing algorithm to test if
rankA′(a) ≥ Φi for each i.
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The number of rounds needed to get to a proper allocation is O(log2 n). Suppose
that the demands change from ~d to ~d′. It is clear that the algorithm achieves an optimal
switching cost of OPT = |~d − ~d′|1/2, since the number of agents who switched tasks is∑k
i=1 max(0, d′i − wi) =

∑k
i=1 min(0, d′i − di) = |~d′ − ~d|1/2.

3 The Token Passing Algorithm

While the move-and-fill algorithm achieves an optimal switching cost, it requires a significant
amount of re-computation whenever the demands change. In situations where the demands
change more frequent than O(log2 n), the algorithm may fail. In this section, we present
an algorithm that reallocates in O(1) rounds whenever the demands change. However, the
algorithm requires some extra agents in additional to the total demand.

We assume that n = d(1 + ε)De − b εk ·Dc, which is slightly less than d(1 + ε)De. In the
preprocessing phase, we assign each agent a a token TKa from {0, . . . , d(1 + ε)De − 1} such
that each token is assigned to at most one agent. Giakkoupis et al. [13] gave an algorithm
for the renaming problem in the gossip model that assigns a name from the name space
{1, 2, . . . , (1 + ε′)n} to each node in O( 1

ε′ logn) rounds, where n is the number of nodes. This
can be used to assign the tokens for the agents in our case, where we have n ≤ (1+ε)D− ε

k ·D+2
agents and at least (1 + ε)D tokens and so ε′ ≥ (1+ε)D

n − 1 = (1+ε)D
(1+ε)D− ε

k ·D+2 − 1 = Ω(ε/k),
provided D = Ω(k/ε). Therefore, in O(kε · logn) rounds, the agents will get a token from
{0, . . . , d(1 + ε)eD − 1}.

Once the agents are assigned tokens, the allocation is obtained by comparing its token
with the demand vector. Define the error εi = i · bD · εk c for 0 ≤ i ≤ k. Define the
interval Ij = [Dj−1+εj−1

N ,
Dj+εj
N ) for 1 ≤ j ≤ k, where N = D + εk is a normalization term

(which is actually not necessary for the token passing algorithm, but will be needed for
the ranking algorithm). These intervals form a disjoint partition of [0, 1). Let TKa denote
the token assigned to agent a. Let Xa = TKa /N . We show that if each agent a executes
allocate_task(a, Xa) described in Algorithm 2, where a goes to task j(a) such that Ij(a)
contains Xa, then the allocation is proper.

Algorithm 2 allocate_task(a, Xa)

Let Ij = [Dj−1+εj−1
N ,

Dj+εj
N ), for 1 ≤ j ≤ k, where Dj =

∑j
i=1 dj ,εj = jb εk · Dc, and

N = D + εk.
Let Ij(a) be the interval where Xa is.
Go to task j(a).

I Lemma 1. Suppose that n = d(1 + ε)De − b εk ·Dc and each agent is assigned a unique
token from {0, 1, . . . , d(1 + ε)eD − 1}. If each agent a goes to work on task j(a), where the
interval Ij(a) contains TKa, then the allocation is proper.

Proof. The length of the interval Ij is
dj+b εk ·Dc

N . Therefore, it supposedly contains at least
dj + b εk ·Dc tokens. However, since at most d(1 + ε)De − n = b εk ·Dc tokens are not taken
by the agents, it contains at least dj + b εk ·Dc − b

ε
k ·Dc = dj tokens used by the agents.

Therefore, at least dj agents are working on task i. J

When the demands change from ~d to ~d′, there are two variants of the algorithms to deal
with that. The first one is to continue to run allocate_task(a, Xa) with the same Xa. The
second one is to update the token and Xa and then run allocate_task(a, Xa). We will show
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that the first one has a (k− 1)-optimal switching cost, while the second one gives an optimal
switching cost. However, the second one requires all the agents receive the same demand
vectors in a consistent order. Therefore, unlike the first variant, it does not tolerant transient
faults, since when an agent temporarily malfunctions, it is not able to receive input signals.

3.1 The First Variant
We will bound the switching cost when all the agents keep running Algorithm 2 without
changing the values of Xa. The lemma is stated in a more general way so that we can also
apply it later in the next section.

I Lemma 2. Suppose that the demands change from ~d to ~d′ and the Xa-values of all the
agents are fixed. Let X = {Xa}a∈A be the multi-set that consists of all the Xa-values of
the agents. Let γ(X ) = sup0≤i≤N−1

∑
Xa∈X |Xa ∩ [ iN ,

i+1
N )| denote the maximum number of

agents whose Xa-value lie in the interval over all intervals of length 1
N . The switching cost

is bounded by γ · (k − 1) ·OPT, where OPT = |~d− ~d′|1/2.

Proof. First, let m = |~d− ~d′|1/2. It is not hard to see that there exists a sequence of demand
vectors ~d(0) = ~d, ~d(1), ~d(2), . . . , ~d(m) = ~d′ such that for 1 ≤ i ≤ m, |~d(i−1) − ~d(i)|1 = 2.

Let I(i−1) = {I(i−1)
j }1≤j≤k (and I(i) = {I(i)

j }1≤j≤k) be the set of intervals defined in
Algorithm 2 with respect to the demand ~d(i−1) (and ~d(i), respectively). Let ∆(I(i−1), I(i)) =⋃k
j=1(I(i−1)

j \ I(i)
j ) ∪ (I(i)

j \ I
(i−1)
j ). Note that only those agents whose Xa-values lie in

∆(I(i−1), I(i)) will switch tasks. It is not hard to see that ∆(I(i−1), I(i)) is the union of
at most (k − 1) half-open intervals of length 1/n, since |~d(i−1) − ~d(i)|1 = 2. By definition
of γ, there are at most γ · (k − 1) agents whose Xa-values lie in ∆(I(i−1), I(i)). Therefore,
the switching cost is γ · (k − 1) · |~d(i−1) − ~d(i)|1/2 if the demand changes from ~d(i−1) to ~d(i).
Therefore, the total switching cost is γ · (k − 1) · |~d′ − ~d|1/2 = γ · (k − 1) ·OPT. J

Since Xa is defined to be the token value divided by N and the token values are integers,
we must have γ(X ) = 1. Therefore, the switching cost is at most (k − 1) ·OPT. Algorithm
2 is capped at this bound for the switching cost. An interesting question is whether there
exists another scheme for achieving a better switching cost, perhaps by partitioning the [0, 1)
interval in a better way. The algorithms where the Xa-values do not change can be captured
by the following definition of stable algorithms. We will show that stable algorithms cannot
achieve the optimal switching cost when n = D.

I Definition 3. A stable task allocation algorithm is where each agent a is associated with
a function fa(d1, d2, . . . , dk) such that agent a goes to (d1, . . . , dk) when the demand vector
is (d1, d2, . . . , dk).

We show that the stable algorithms that achieve proper allocations must incur a switching
cost of at least 2 ·OPT.

I Lemma 4. Suppose that an algorithm is stable. Then there exists demands ~d and ~d′ such
that the algorithm uses at least |d′ − d|1 switching cost when the demands change from ~d to
~d′.

Proof. Suppose there are 3 agents, a1, a2, a3. Suppose to the contrary that fa1 , fa2 , fa3 are
functions for a1, a2, and a3 that achieve the optimal movements when there are 3 tasks
with total demand 3. Suppose that the initial demand is ~d1 = (1, 1, 1). Without loss of
generality, suppose that (fa1(~d1), fa2(~d1), fa3(~d1)) = (1, 2, 3). When the demands change to
~d2 = (1, 2, 0), since we assume the strategy achieves the optimal movement, we must have
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(fa1(~d1), fa2(~d1), fa3(~d1)) = (1, 2, 2). If the demands again change to ~d3 = (0, 2, 1), then
we must have (fa1(~d1), fa2(~d1), fa3(~d1)) = (3, 2, 2) by the same reasoning. Finally, if the
demands again change back to ~d1 = (1, 1, 1), then by the same reasoning, we have either
(fa1(~d1), fa2(~d1), fa3(~d1)) = (3, 2, 1) or (fa1(~d1), fa2(~d1), fa3(~d1)) = (3, 1, 2), contradicting
with the fact that fa1 , fa2 , fa3 are functions. J

While we have shown that stable algorithms cannot achieve the optimal switching cost.
However, it is still unknown how good can the switching cost be for stable algorithms. In
fact, even showing the switching cost is ω(1) ·OPT or o(k) ·OPT seems to be non-trivial.

3.2 The Second Variant
If we consider outside the scope of stable algorithms, then it is still possible to achieve an
optimal switching cost. In the second variant, we will reassign TKa (and set Xa = TKa /N)
when the demands change. In the following, we will pretend as if there are dummy agents
such that all tokens are used up. The agents reassign the tokens according to the following
rules. There are two cases, depending on whether agent a is going to switch task or not.

Suppose that a is working on a task j(a) such that the demand of j(a) decreases. Then
dj(a) − d′j(a) agents will pop out and go to the other tasks. If Xa belongs to the last
(dj(a)−d′j(a))/N segment of Ij(a) (i.e. TKa ∈ [

∑j(a)−1
i=1 di+d′j(a) + εj(a),

∑j(a)
i=1 di+ εj(a))),

then it will pop out.
Let A′ denote the set of all agents belong to this category. In fact, a can figure out what
rankA′(a) is by using only the information from ~d and ~d′. In particular,

rankA′(a) =
j(a)−1∑
i=1

max(0, di − d′i) + TKa−

j(a)−1∑
i=1

di

+ d′j(a) + εj(a)


Then, they will use rankA′(a) and the deficits of the tasks φi

def= max(0, d′i−di) to update
its token. Define the interval Ji = [

∑i−1
j=1 φj ,

∑i
j=1 φj). Let j′(a) be the interval such

that rankA′(a) ∈ Jj′(a). It will update its token to be

TKa ←

j′(a)−1∑
i=1

d′i

+ dj′(a) + εj′(a) + rankA′(a)−

j′(a)−1∑
i=1

φi


Otherwise, a will not switch task. However, a still needs to reassign its token. For
1 ≤ i ≤ k, define the offset ∆i =

∑i−1
j=1

(
d′j − dj

)
. If agent a is working on task i, it will

set TK′a ← TKa +∆i.

We show that after updating the tokens, for each token in {0, 1, . . . , d(1 + ε)De − 1}, it is
assigned to at most one agent. The proof of the following lemma is deferred to the appendix.

I Lemma 5. If TKa 6= TKa′ for any a 6= a′, then TK′a 6= TK′a′ for any a 6= a′. Moreover,
TK′a ∈ {0, 1, . . . , d(1 + ε)De − 1}.

By Lemma 5, all the tokens held by the agents (including dummy agents) are distinct
after updating. Now if we delete the dummy agents, all the tokens are still distinct. By
Lemma 1, we conclude that the allocation obtained is proper. Furthermore, the switching
cost is

∑
i max(0, di − d′i) = |d′ − d|1/2 = OPT.
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4 The Ranking Algorithm

In this section, we assume that d(1 + ε) · De ≤ n ≤ 2D for some 0 < ε < 1. Let rank(a)
denote the order of IDa among all the ID of other agents. We assume the rank begins with
0, i.e. the rank of the agent with the smallest ID is 0. Let nank(a) = rank(a)/n denote the
normalized rank of a.

We give two variants of algorithms for approximating the normalized ranks of the agents.
By setting Xa to be the estimated normalized rank of a and running allocate_task(a, Xa)
described in Algorithm 2, we show that the allocation is proper if the estimates are accurate
enough. Recall that in Algorithm 2, we partition the entire working space [0, 1) into half-open
intervals Ij = [Dj−1+εj−1

N ,
Dj+εj
N ), for 1 ≤ j ≤ k, where Dj =

∑j
i=1 dj , εj = j · b εk ·Dc, and

N = D + εk. Interval Ij has length of (dj + b εk ·Dc)/N , which is slightly larger than dj/N ,
the fraction of work needed. The additional length is to accommodate the approximation
error of the (normalized) ranks of the agents. Each agent a will use the estimated normalized
rank Xa to determine which task to work on. In particular, if Xa lies in the interval Ij(a),
then it will go to task j(a). We show that if each agent has a sufficiently good estimate of
its own rank, then the allocation obtained is proper.

I Lemma 6. Suppose that Xa ∈ [nank(a)− ε/(6k),nank(a) + ε/(6k)] for each a, then for
each task j, there are at least dj agents working on it. That is, the allocation is proper.

Proof. Consider the interval Ij = [Dj−1+εj−1
N ,

Dj+εj
N ). The length of the interval is (dj + b εk ·

Dc)/N . Consider the half-open interval I ′j ⊆ Ij obtained by removing the first ε/(6k) and
the last ε/(6k) of Ij . The length of I ′j is at least

dj
N

+
⌊
εD

k

⌋
· 1
N
− ε

3k ≥
dj
N

+
(
εD

k
− 1
)
· 1
N
− ε

3k

≥ dj
N

+ ε

2k −
1
N
− ε

3k N ≤ 2D

≥ dj
N

+ ε

6k −
1
N
≥ dj
N

+ 1
N

D ≥ 12k
ε

Since the smallest normalized rank in I ′j must appear in the first 1/N segment from the
beginning of the interval, the number of agents whose normalized rank lie in I ′j is at least
n · (djN + 1

N )− 1 ≥ dj + 1− 1 ≥ dj , since n ≥ N . Moreover, if nank(a) ∈ I ′j , then its estimate
Xa must be in Ij , since Xa ∈ [nank(a) − ε/(6k),nank(a) + ε/(6k)]. Because there are at
least dj agents whose normalized rank lie in I ′j , there are at least dj agents whose Xa-values
lie in Ij . Therefore, the number of workers working on task j is at least dj . J

4.1 The First Variant
In this section, we show how to approximate the normalized rank up to an additive ±ε/(6k)
factor in O((log2 n)/ε) rounds. Moreover, w.h.p. the estimated rank for each agent is the
same for different executions of the algorithm. The resulting task allocation algorithm is
therefore stable.

The algorithm works as follow: First, count the total number of agents, n, in O(logn)
rounds. Then, identify the O(k/ε) pivot agents whose ranks are 0, b εn6k c, 2·b

εn
6k c, . . . , d

6k
ε e·b

εn
6k c.

This can be done in O((log2 n)/ε) rounds by running O(k) selection algorithms of [13] in
parallel, using O(k logn) message size. Then, the pivot agents broadcast their IDs and the
normalized ranks to everyone in O(logn) rounds. Each agent a sets its estimate Xa to be
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the normalized rank of the pivot agent with the largest ID smaller than its own (that is,
rounding down).

I Lemma 7. After running the algorithm described above, we have Xa ∈ [nank(a) −
ε/(6k),nank(a)].

Proof. The normalized ranks between two consecutive pivot agents is b n6k c. Therefore, we
must have Xa ≥ nank(a)− b εn6k c/n ≥ nank(a)− ε

6k . J

For the switching cost of this algorithm, it is not hard to see that γ(X ) = b εn6k c (where γ(X )
is defined in Lemma 2). Therefore, by Lemma 2, the switching cost is at most O(εn) ·OPT.
This implies the switching cost can be pretty large in this algorithm. Note that the algorithm
is robust to transient fault after Xa-values are computed. Because like the first variant of
the token passing algorithm, once the Xa-values are computed, as long as the agent gets the
correct demand vector, it can allocate itself to the right task without any communication.

4.2 The Second Variant
In this section, we present a fault-tolerant algorithm, based on a simple approach to approxi-
mate the ranks. The algorithm can be implemented in an asynchronous manner, where each
agent maintains its own clock. In that setting, the t’th round is defined to be the earliest
time when every agent completed its t’th round.

Algorithm 3 Sampling-Based Rank Estimation
for each round t do
for each agent a do
Let a′ be the agent a met during round t.

Let Xt ←

{
1, if IDa′ < IDa .

0, otherwise.
.

Let T = Θ((kε )2 logn).
Let Xa =

∑t
i=t−T+1 Xi/T .

allocate_task(a, Xa)
end for

end for

I Lemma 8. Suppose that agent a finishes its T = Θ((kε )2 logn) rounds after its last transient
fault, w.h.p. Xa ∈ [nank(a)− ε

6k ,nank(a) + ε
6k ].

Proof. Notice that Pr(Xt = 1) = rank(a)/n = nank(a). Therefore, E[Xt] = nank(a). By
Hoeffding’s inequality, we have

Pr
(
|Xt−T+1 +Xt−T+2 + . . .+Xt − T · E[Xt]| > T · ε6k

)
≤ exp

(
( εT6k )2

T

)

Pr
(
|Xa − nank(a)| > 1

6k

)
≤ exp

(
−ε

2 · T
36k2

)
≤ exp(−Ω(logn))
≤ 1/poly(n) J
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Therefore, by Lemma 8 and Lemma 6, after every agent finishes its T ’th round, the
allocation is proper. However, since they keep updating their Xa-values after T ’th round in
order to cope with the crash faults (see the next subsection), the switching cost can fairly
large (Ω̃(n)) even if the demands do not change. In the following, we show that if the agents
stop updating the Xa-values after T ’th round, then they can achieve a bounded switching
cost of O(k logn) ·OPT. By Lemma 2, it suffices to show γ(X ) = O(logn).

I Lemma 9. After Ω((kε )2 logn) rounds, w.h.p. γ(X ) = O(logn) (Recall that γ(X ) =
sup0≤x≤n−1

∑
Xa∈X |Xa ∩ [ xN ,

x+1
N )|).

Proof. For any 0 ≤ x ≤ N − 1, consider the interval [ xN ,
x+1
N ) ⊆ [0, 1). For −D ≤ i ≤ D, let

Ai be the set of agents whose normalized ranks lies in [x+i
N , x+i+1

N ) (note that there are at
most n/N such agents). Let Ya be the indicator random variable denoting whether a lies in
[ xN ,

x+1
N ). Let Y =

∑
−D≤i≤D Ya. For a ∈ Ai, it is not hard to see that Pr(Ya = 1) ≤ 1/(i+1).

Therefore,

E[Y ] =
∑

−D≤i≤D

∑
a∈Ai

E[Ya]

≤ 2 ·
∑

0≤i≤D

n

N
· 1

(i+ 1) = O (logn)

Since Y is a sum of independent variables, by Chernoff Bound, for some constant K > 0,
Pr(Y ≥ K · logn) ≤ 1/poly(n). By taking an union bound the intervals [ xN ,

x+1
N ) for

x = 0, 1, . . . , N − 1, we conclude that w.h.p. γ(X ) < 2K logn. J

4.2.1 Fault Tolerance for Crash Faults
In this section, we show that our algorithm is resilient to crash failures. Now suppose there
are at most f agents who died in the previous T rounds. We will show that if f is sufficiently
small, then the current allocation is a proper allocation w.h.p. On the other hand, if f is
large, then we give a bound on the number of rounds needed to recover to a proper allocation.

I Lemma 10. Let T = Θ((kε )2 logn). Let f denote the number of agents who crashed
during rounds t − T + 1, t − T + 2, . . . , t. Suppose that f = O(εn/k), then w.h.p. Xa ∈
[nank′(a)− ε

12k ,nank′(a) + ε
12k ], where nank′(a) denote the normalized rank of a at round t.

Proof. Recall that Xa =
∑t
i=t−T+1 Xi/T . First we will show that E[Xa] ∈ [nank′(a) −

ε
12k ,nank′(a) + ε

12k ].
Let rank(a),nank(a), n denote the rank, normalized rank, and the number of agents at

round t− T + 1. Let rank(a)′,nank(a)′, n′ denote those quantities at round t. First notice
that the normalized rank of a during rounds t− T + 1, t− T + 2, . . . , t is at least rank′(a)/n.
Also note that n′ = n− f . Therefore, for any i ∈ [t− T + 1, t],

nank′(a)− E[Xi] ≤
rank′(a)

n′
− rank′(a)

n

= rank′(a) ·
(

1
n− f

− 1
n

)
= rank′(a) ·

(
f

(n− f) · n

)
= f

n
rank′(a) ≤ n′ = n− f (1)

≤ ε

12k f = O
(εn
k

)
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On the other hand, the normalized rank of a during rounds t− T + 1, t− T + 2, . . . , t is
at most max0≤j≤f

rank′(a)+j
n′+j ≤ rank′(a)+f

n . Therefore, for any i ∈ [t− T + 1, t],

E[Xi]− nank′(a) ≤ rank′(a) + f

n
− rank′(a)

n′

≤ f · (n− f − rank′(a))
(n− f) · n

≤ f

n
≤ ε

12k f = O(εn/k) (2)

Therefore,

E[Xa] ∈
[
nank′(a)− ε

12k ,nank′(a)− ε

12k

]
. (3)

Since Xa is a sum of (not necessarily identical) independent random variables, we can drive
the same bound obtained by Lemma 8 by using a Hoeffding’s inequality:

Pr
(
Xa ∈

[
E[Xa]− ε

12k ,E[Xa] + ε

12k

])
≥ 1− 1/ poly(n). (4)

Combining (3) and (4), we conclude that w.h.p. Xa ∈
[
nank′(a)− ε

6k ,nank′(a) + ε
6k
]
. J

I Lemma 11. Let T = Θ((k/ε)2 logn). Let f denote the number of agents who died during
the past T rounds. Suppose that f = Ω(εn/k), then the allocation becomes proper after
(1− εn

12fk ) · T rounds, if no more failures happen.

Proof. Consider the round t after the (1− εn
12fk ) · T additional rounds. It suffices to show

that the expected Xa-value of a lies in [nank(a)− ε
12k ,nank(a) + ε

12k ].
The current estimate of Xa is an average over the rounds t− T + 1, t− T + 2, . . . t. We

can divide the rounds into two parts, where the second part consists of the “additional”
(1− εn

12fk ) · T rounds and the first part is the εn
12fk · T rounds before the additional rounds. If

round i belongs to the second part, then we have E[Xi] = rank(a)/n. Otherwise, from (1)
and (2) in the proof of Lemma 10, we have:

nank(a)− f

n
≤ E[Xi] ≤ nank(a) + f

n
.

Therefore,

E[Xa] ≤ εn

12fk ·
(

nank(a) + f

n

)
+
(

1− εn

12fk

)
· nank(a)

≤ nank(a) + ε

12k .

Similarly, E[Xa] ≥ nank(a)− ε
12k . J

5 Open Problems Motivated by This Work

In the following, we propose some open problems motivated from this work.

The role of extra agents. In our token passing algorithm and ranking algorithm,
extra agents are needed to achieve a logarithmic running time. An interesting question is
whether the extra agents are really necessary to achieve that. Also, in stable algorithms,
although we showed that the switching cost is at least 2-optimal when n = D, the
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existence of extra agents helps reducing the switching cost. For example, when there
are D2 agents, we can achieve 0 switching cost by allocating D agents to every task.
Studying the trade-off between the number of agents and the switching cost seems to be
an interesting direction.
The ranking problem in the gossip model. In our ranking algorithm, the prepro-
cessing phase relies on the estimation of ranks for every agent. We have two algorithms
for estimating the normalized rank up to ±ε in O( 1

ε2 · logn) and O( 1
ε · log2 n) rounds

w.h.p. in the uniform gossip model. The question is whether one can do better, say in
O( 1

ε · logn) rounds using O(logn) bits of messages.
The switching cost gap of stable algorithms. We showed that stable algorithms
cannot achieve the optimal switching cost (they must be at least 2-optimal). On the other
hand, if all agents have their Xa-values properly assigned, then Algorithm 2 can achieve
a switching cost that is (k − 1)-optimal. There is still a large gap between a factor of
(k − 1) and a factor 2. Closing this gap is a very interesting open problem. Our bounds
are tight when the number of tasks is three. Our partition scheme shows that 2 ·OPT is
achievable, while our lower bound shows that this is the best possible. In fact, we have
partial results showing that for D ≤ 7 (see Appendix A), we can achieve a switching cost
of 2 ·OPT. For D > 7, we could not generalize the pattern and therefore it is yet to be
investigated.
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A 2-Optimal Switching Cost for Small Demands with 4 Tasks

We give a solution for achieving a 2-optimal switching cost for n = D = 7 and k = 4 by
figures. For n = D < 7, the solutions can be easily derived from that.

Figure 1 A solution for k = 4 and D = 7. Each node represents a demand vector. For example,
the node in the first level represents (7, 0, 0, 0). Therefore, the set of all demands (d1, d2, d3, d4) such
that d1 + d2 + d3 + d4 = 7 form a 3D simplex. Two nodes are adjacent if the L1 difference of the
demands vectors they represents equal to 2. The labels on the edges denote the ants that switch
tasks when the demands change from one endpoint to another (the edges across levels are omitted
due to the difficulty of drawing). Since each adjacent move involves at most 2 agents, the solution is
2-optimal.

(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

(e) Level 5
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(f) Level 6

(g) Level 7

B Proof of Lemma 5

I Lemma 5. If TKa 6= TKa′ for any a 6= a′, then TK′a 6= TK′a′ for any a 6= a′. Moreover,
TK′a ∈ {0, 1, . . . , d(1 + ε)De − 1}.

Proof. First, we try to bound of the range of TK′a. Note that originally we have TKa ∈
[
∑j(a)−1
i=1 di + εj(a)−1,

∑j(a)
i=1 di + εj(a)). Consider the case where a did not switch tasks first.

If d′j(a) < dj(a), then it must be the case that TKa < (
∑j(a)−1
i=1 di) + d′j(a) + εj(a). Otherwise,
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we must have TKa < (
∑j(a)−1
i=1 di) + dj(a) + εj(a). In any case,

j(a)−1∑
i=1

di

+ εj(a)−1 ≤ TKa <

j(a)−1∑
i=1

di

+ min(d′j(a), dj(a)) + εj(a) (5)

Therefore, we can derive the following:

TKa +∆j(a) ≤TK′a < TKa +∆j(a)j(a)−1∑
i=1

di

+ εj(a)−1 +
j(a)−1∑
i=1

(d′i − di) ≤TK′a <

j(a)−1∑
i=1

di

+

min(d′j(a), dj(a)) + εj(a) +
j(a)−1∑
i=1

(d′i − di)j(a)−1∑
i=1

d′i

+ εj(a)−1 ≤TK′a <

j(a)−1∑
i=1

d′i

+ min(d′j(a), dj(a)) + εj(a)

(6)

On the other hand, consider the case where a switched task, then it must switch to a
task j′(a) such that d′j′(a) > dj′(a). Therefore,

TK′a =

j′(a)−1∑
i=1

d′i

+ dj′(a) + εj′(a) + rankA′(a)−

j′(a)−1∑
i=1

φi


<

j′(a)−1∑
i=1

d′i

+ dj′(a) + εj′(a) +

j′(a)−1∑
i=1

φi

+ d′j′(a) − dj′(a) −

j′(a)−1∑
i=1

φi


=

j′(a)−1∑
i=1

d′i

+ d′j′(a) + εj′(a) (7)

Also,

TK′a =

j′(a)−1∑
i=1

d′i

+dj′(a)+εj′(a)+rankA′(a)−

j′(a)−1∑
i=1

φi

 ≥
j′(a)−1∑

i=1
d′i

+dj′(a)+εj′(a)

(8)

In both cases (whether a switched task or not), if a ends up working on task j′(a), we
have

TK′a ∈

j′(a)−1∑
i=1

d′i

+ εj′(a)−1,

j′(a)∑
i=1

d′i

+ εj′(a)


Therefore, for any two agents a and a′ such that j′(a) 6= j′(a′), it is impossible that
TK′a = TK′a′ . Thus, it suffices to consider the case where j′(a) = j′(a′). In this case, if both
a and a′ switched tasks, then it is clearly that TK′a 6= TK′a′ by definition. Similar, if both a
and a′ did not move, then it is also true that TK′a 6= TK′a′ . Finally, if a switched task but a′
did not, then by (6), (7), and (8), the possible ranges of TK′a and TK′a′ are disjoint and thus
they cannot by the same. J
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