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Abstract

We study a family of closely-related distributed graph problems, which we call degree splitting,
where roughly speaking the objective is to partition (or orient) the edges such that each node’s
degree is split almost uniformly. Our findings lead to answers for a number of problems, a sampling
of which includes:

• We present a poly log n round deterministic algorithm for (2∆− 1) · (1 + o(1))-edge-coloring,
where ∆ denotes the maximum degree. Modulo the 1 + o(1) factor, this settles one of the
long-standing open problems of the area from the 1990’s (see e.g. Panconesi and Srinivasan
[PODC’92]). Indeed, a weaker requirement of (2∆− 1) · poly log ∆-edge-coloring in poly log n
rounds was asked for in the 4th open question in the Distributed Graph Coloring book by
Barenboim and Elkin.

• We show that sinkless orientation—i.e., orienting edges such that each node has at least one
outgoing edge—on ∆-regular graphs can be solved in O(log∆ log n) rounds randomized and in
O(log∆ n) rounds deterministically. These prove the corresponding lower bounds by Brandt
et al. [STOC’16] and Chang, Kopelowitz, and Pettie [FOCS’16] to be tight. Moreover, these
show that sinkless orientation exhibits an exponential separation between its randomized and
deterministic complexities, akin to the results of Chang et al. for ∆-coloring ∆-regular trees.

• We present a randomized O(log4 n) round algorithm for orienting a-arboricity graphs with
maximum out-degree a(1 + ε). This can be also turned into a decomposition into a(1 + ε)
forests when a = Ω(log n) and into a(1 + ε) pseduo-forests when a = o(log n). Obtaining
an efficient distributed decomposition into less than 2a forests was stated as the 10th open
problem in the book by Barenboim and Elkin.
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1 Introduction & Related Work
Graph symmetry breaking problems form one of the central subareas of distributed algorithms, and
they have received extensive attention over the last three decades. See the book by Barenboim and
Elkin [BE13] for an instructive survey. In this paper, we revisit some of the classical problems of
this area, as well as some newer ones which have received attention only recently. The common
denominator of the problems we consider is that they all revolve around a seemingly rudimentary edge
symmetry-breaking task, which we refer to as degree-splitting, and discuss shortly.

Throughout, we work with the standard distributed model called LOCAL, due to Linial [Lin92]:
The network is abstracted as a graph G = (V,E). There is one processor on each vertex, which initially
knows only its neighbors. Per round, each processor can send one message to each of its neighbors.

1.1 Degree Splitting and Edge Coloring

We start our discussion of degree splitting with the classical edge-coloring problem, as these two
problems have a simple and clear relation. One basic version of degree splitting is as follows:

Undirected Degree Splitting: Given a graph with maximum degree ∆, color each edge red or
blue such that each node has at most ∆(1 + ε)/2 edges in each color, for a small ε ≥ 0.

To understand the connection to edge-coloring, imagine an ideal world—though not always
feasible—where everything is fair and one could always have a perfect split, i.e., with ε = 0. Then, by
a recursion of depth log ∆ of degree-splittings, we would get to a setting where edges are colored in
2log ∆ = ∆ colors, and each node has at most 1 edge of each color. That is a proper ∆ edge-coloring.

But that is too good to be true! Not every graph admits a ∆ edge-coloring1, and not every graph
admits a perfect degree-split. Take K3 for instance. But almost perfect splits exist, with ε = 2/∆.
Here is one way of getting them: Add a dummy node and connect it to all odd degree nodes; then take
an Eulerian tour and color its edges red and blue in alternating order. The same guarantee also follows
from the Discrepancy Theory result of Beck and Fiala [BF81]—which is in fact far more general2.

We present distributed algorithms for computing almost perfect degree-splits. As Eulerian tours
cannot be computed distributedly, our methods are vastly different from the above. As formalized in
Theorem C.1, we present a randomized algorithm that achieves an almost-perfect split with per-color
degree at most ∆/2 + 1 in poly(∆ log n) rounds. However, as far as we know, this result itself does
not lead to an improvement in any of the well-studied distributed problems. Instead, as formalized in
Theorem 3.1, we present a deterministic algorithm that in poly log n rounds produces a degree-split
with ε = 1/ logc n, for a desirably large constant c ≥ 2, in graphs of max-degree ∆ = Ω(poly log n).
This immediately leads to an improvement for edge-coloring:

Theorem 1.1. There is a deterministic poly log n-round algorithm for (2∆−1)(1+o(1))-edge-coloring.

As Panconesi and Rizzi [PR01] state, four key problems of the area from the 1990’s were to find
poly log n-round deterministic algorithms for Maximal Independent Set, (∆+1)-vertex-coloring, (2∆−
1)-edge-coloring, and Maximal Matching. To this day, only the Maximal Matching problem is resolved,
due to a breakthrough of Hanckowiak, Karonski, and Panconesi [HKP98,HKP01]. Theorem 1.1 almost
settles the edge-coloring problem, modulo the (1 + o(1)) factor. The previously best-known number

of required colors were ∆ · 2O( log ∆
log log ∆

)
, due to Barenboim and Elkin [BE11], and O(∆ log n), due to

Czygrinow et al. [CHK01]. We in fact present a simpler proof of the former via degree splittings in
Appendix B. As stated in the 4th open problem of the Distributed Graph Coloring book by Barenboim
and Elkin [BE13, Section 11], even ∆ · poly(log ∆)-edge-coloring in poly log n rounds remained open.

In Appendix C.2, we explain that mixing Theorem 1.1 with some other ideas also leads to a fast
randomized (2∆− 1)(2 + o(1))-edge-coloring in O(poly(log log n)) rounds.

1Although, a (∆ + 1)-edge-coloring is guaranteed to always exist, by Vizing’s theorem [Viz64].
2It follows from Beck-Fiala’s theorem that hypergraphs of rank t—i.e., where each hyperedge has at most t vertices—

admit a red-blue hyperedge-coloring where each node has at most ∆/2 + t− 1 edges in each color.
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1.2 Degree Splitting and Edge Orientations

We also consider the following natural variant of degree-splitting:

Directed Degree Splitting: Given a graph with maximum degree ∆, orient each edge such
that each node has in-degree and out-degree at most ∆/2(1 + ε), for a small ε ≥ 0.

We note that in directed splitting, even in graphs which admit perfect splits, computing them
might be time-consuming—e.g., perfectly splitting an n-node cycle would require Ω(n) rounds.

The directed degree splitting relates closely to Eulerian Orientations, as the latter requires an ori-
entation such that each node has the same in-degree and out-degree. We note that on bipartite graphs
(with the bi-partition given), the directed and undirected degree-slitting problems are equivalent.
However, we are not aware of a formal reduction between them in the general case.

Despite that, we use more or less the same methodology as that of our undirected degree splitting
to find almost perfect directed splits: As formalized in Corollary D.5, we get an existentially best
possible guarantee of per-node out-degree and in-degree at most ∆/2 + 1 in poly(∆ logn) rounds
randomized. More importantly, as formalized in Theorem D.3, we get a deterministic algorithm that
computes a degree splitting with ε = 1/ logc n, for a desirably large constant c ≥ 2, in graphs of
max-degree ∆ = Ω(poly log n) in poly log n rounds.

Sinkless Orientation and Its Refinements: One related problem which has received attention
recently is sinkless orientation, where the objective is to orient edges of a ∆-regular graph such that
each node has out-degree at least 1. Note that this is clearly a much weaker requirement than that of
the directed degree splitting problem. Recently, Brandt et al. [BFH+16] gave an elegant Ω(log∆ log n)
round lower bound for this problem, which was then extended by Chang et al. [CKP16] to an Ω(log∆ n)
lower bound for deterministic algorithms. For this weaker orientation problem, we can achieve much
better round complexities, which match the respective lower bounds.

Theorem 1.2. There is a randomized O(log∆ log n)-round algorithm which solves sinkless orientation
in all ∆-regular graphs, for ∆ ≥ 3, and in fact all graphs of minimum degree at least ∆, with high
probability. Moreover, the same problem has a deterministic O(log∆ n)-round algorithm.

We can in fact guarantee a more balanced split in almost the same running time: We show how to
find an orientation with per-node in-degree and out-degree at most 5∆/6—that is, a directed degree
split with ε = 2/3—in O(log log n) rounds randomized and O(log n) rounds deterministically.

Brandt et al. [BFH+16] used sinkless orientation to prove an Ω(log∆ log n) round lower bound on
LOCAL-algorithms for Lovasz Local Lemma (LLL). Since LLL can provide much finer degree splits,
studying these stronger degree-splits might expose higher lower bounds for LLL. Moreover, Chang et
al. [CKP16] recently presented the first exponential separation between randomized and deterministic
distributed complexities, by showing that ∆-vertex-coloring ∆-regular trees requires Θ(log∆ log n)
rounds randomized and Θ(log∆ n) rounds deterministically. Theorem 1.2, in conjunction with the
aforementioned lower bounds, exhibits the same exponential separation on sinkless orientation.

Low Out-Degree Orientations and Nash-Williams Decompositions: An alternative way of
viewing the directed degree splitting problem is as follows: it asks for an orientation that achieves a
maximum out-degree within a 1 + ε factor of what is necessary, given the maximum degree. In this
regard, one can ask for a stronger guarantee: find an orientation with maximum out-degree a(1 + ε),
where a is the arboricity of the graph. Clearly any orientation of any graph with arboricity a needs
out-degree at least a. Our methods allow us to achieve such an approximation:

Theorem 1.3. There is a randomized O(poly log n/ε)-round algorithm which orients a-arboricity
graphs with maximum out-degree at most a(1+ε). This is equivalent with a decomposition into a(1+ε)
pseudo-forests. If a = Ω(log n), we can turn this into a decomposition into a(1 + ε) forests.
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See Theorem D.4 and Lemma D.11 for the formal statements. We note that efficient distributed
orientation with out-degree less than 2a had remained open. The best previously known results were
as follows: an orientation with out-degree at most 2a in O(a log n) rounds and an orientation with
out-degree at most (2 + ε)a in O(log n) rounds, both due to Barenboim and Elkin [BE10]. The same
authors state the closely-related problem of efficient distributed decomposition into less than 2a forests
as the 10th open problem in their book [BE13, Section 11].

1.3 Other Related Work

Related Work on Degree Splitting: Degree splitting was first considered by Israeli and Shiloach
[IS86] in the parallel algorithms model—a.k.a. PRAM—as a subroutine for computing a maximal
matching. Their method for computing the split relies on finding an Eulerian cycle of the graph and
2-coloring its edges in alternating order. We note that a number of other work in the PRAM model,
e.g., [KS87], also used degree splittings but all relying on Eulerian cycles. Unfortunately, Eulerian
cycles cannot be computed using distributed algorithms (with sublinear complexity). Hence, these
methods cannot extend to our setting. Our approach is quite different, and it is morally much closer
to the classic ideas of augmenting paths and blocking-flows in the maximum flow problem [EK72,Din].

However, there is an ingenious line of work that comes close to distributedly computing degree
splits. Inspired by the parallel maximal matching algorithm of Israeli and Shiloach [IS86], Hanck-
owiak, Karonski, and Panconesi [HKP98, HKP01] used a clever relaxation of the degree splitting to
distributedly compute a maximal matching in poly log n rounds deterministically. Their relaxation
allows a small but non-negligible fraction δ > 0 of nodes to have an unfair split, even possibly having
all of their edges in one color. This relaxation is indeed essential to their method. While for Maximal
Matching this relaxation is good enough, it becomes too costly for the other problems, e.g., the num-
ber of required colors in edge-coloring blows up by an O(log n) factor, as Czygrinow et al. [CHK01]
show. In this regard, one can view our degree-splitting results as a qualitative improvement on those
of [HKP98,HKP01], as we do not need the relaxation of admitting some unbalanced nodes. However,
we pay for this refinement and our round-complexity ends up being a higher poly log n.

Related Work on Edge Coloring: Edge coloring is one of the classical distributed problems and
it has been studied extensively over the years. There is a clear dichotomy between randomized and
deterministic algorithms for this problem, and we review the results in these two categories.

First, we review the deterministic results. Panconesi and Rizzi provide an O(∆ + log∗ n) algo-
rithm for (2∆ − 1)-edge-coloring. This complexity was recently improved by Barenboim [Bar15] to
O(∆3/4 log ∆ + log∗ n) and subsequently to O(∆1/2 log5/2 ∆ + log∗ n) by Fraigniaud, Heinrich, and
Kosowski [FHK16]. Both these results work indeed for the harder problem of (∆ + 1)-vertex coloring.
However, these complexities can be much larger than poly log n. The best known number of required

colors for poly log n-round algorithms remained at ∆ ·2O( log ∆
log log ∆

)
, due to Barenboim and Elkin [BE11],

and O(∆ log n), due to Czygrinow et al. [CHK01]. See also [BE13, Chapter 8 & Chapter 11.1].
Now, we review the randomized results. The classical O(log n) round randomized Maximal Inde-

pendent Set algorithm of Luby [Lub86] leads to a randomized O(log n)-round (2∆− 1)-edge coloring.

This round complexity was improved to O(log ∆) + eO(
√

log logn) by Barenboim et al. [BEPSv3]. This

was further improved to just 2O(
√

log logn) by Elkin, Pettie, and Su [EPS15]. In the randomized world,
there are also algorithms for finding colorings with smaller number of colors. Panconesi and Srini-
vasan [PS97] give the first such result. Dubhashi, Grable and Panconesi [DGP98] later improve this
to (1 + ε)∆-edge-coloring in O(log n) rounds, when ∆ = Ω(log1+Ω(1) n). This was later refined and
extended to graphs of degree ∆ ≥ C0, for a constant C0 depending on ε. The final work in this track
is by Elkin, Pettie, and Su [EPS15] which improves the complexity to O(log∗∆ ·max{1, logn

∆1−o(1) }).
Related Work on Orientations: Distributed low out-degree orientation of low-arboricity graphs
was first studied by Barenboim et al. [BE10] and the same results have been used in a few subsequent
works. This orientation was then turned into a forest decomposition which subsequently lead to
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sublinear-time algorithms for maximal independent set, vertex coloring, edge coloring and maximal
matching in graphs of low arboricity. See [BE13, Chapter 4 & Chapter 11.3]. Sinkless orientation was
recently introduced by Brandt et al. [BFH+16] and studied also by Chang et al. [CKP16].

1.4 Our General Method In a Nutshell

Our general method follows a natural idea and it is inspired by classical concepts from the maximum
flow problem. Although, as we soon see, to have an efficient algorithm, particularly an efficient
distributed algorithm and especially a deterministic one, various aspects require novel techniques.

Let us consider directed degree splitting as our running example in discussing the methodology.
Consider an arbitrary orientation. In this orientation, some nodes might have an out-degree (much)
larger than in-degree and some nodes might have a larger in-degree than out-degree. Virtually, we
can think of out-degree as the commodity of our flow. This means that the first group have excess
flow and the second group have flow deficiency. Naturally, we wish to transfer some flow from the
first group to the second to even things out. For instance, if we find a directed path from the first
group to the second—i.e. what we usually call an augmenting path—we can flip the direction of its
edges, improving the degrees on the two endpoints, but keeping them unchanged in the middle nodes.
We would continue doing this until each node has about the same out-degree and in-degree, at which
point we have found our almost-perfect degree split.

Finding an efficient distributed algorithm following this idea necessitates a number of considerations
and novel techniques. First, we need the augmenting paths to be short, as otherwise we cannot
even find them distributedly. That issue is not hard, because as we will see imperfect splits have
relatively short augmenting paths. Second, in a fast distributed algorithm, we cannot afford to fix
imbalanced nodes by using augmenting paths one by one; we instead need to have many “disjoint”
short augmenting paths. Third, we need to find them fast distributedly. These second and third
issues are much more crucial. We will show that imperfect splits in fact have large sets of “disjoint”
augmenting-paths. However, finding such a set distributedly, and especially doing it deterministically,
will require quite some effort. We leave those discussions to the technical sections.

Finally, we note that in some problems, we desire much faster solutions, e.g., an O(log∆ log n)
round complexity in sinkless orientation. In these cases, our general methodology provides some algo-
rithm but not quite matching the lower bound. There, we deviate slightly from this flow augmenting
mentality and use some other ideas to optimize the complexity.

2 Sinkless Orientation

In this section, we present a simple O(log∆ log n) round randomized algorithm for sinkless orientation
in ∆-regular graphs. This matches the Ω(log∆ log n) lower bound presented by Brandt et al. [BFH+16].
As a component of this result, we also present an O(log∆ n) round deterministic algorithm for the
same problem, which itself proves the corresponding Ω(log∆ n) lower bound of Chang et al. [CKP16]
to be tight. These results prove Theorem 1.2. We first present an algorithm that works assuming
∆ > 500. The extension to all cases with ∆ ≥ 3, to cases with irregularity, and also to a setting where
we desire a more balanced split of in-degree and out-degree, are deferred to Appendix A.2.

2.1 Sinkless Orientation for ∆-regular graphs with ∆ > 500

Notice that if ∆ = Ω(log n), orienting each edge randomly ensures that all nodes have at least Θ(∆)
outgoing edges, with high probability, which is a sinkless orientation. The far more interesting case of
the problem is when ∆ = O(log n), and this is the focus of this section.

The algorithm is composed of two parts: a randomized part, which shatters the graph thus leaving
only small components of polylogn size, and then a deterministic part, which takes care of these
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remaining small components. The random part will take O(1) rounds and then the deterministic
part will solve these remaining polylogn-size components in O(log∆ log n) rounds, hence leading to
the overall randomized complexity of O(log∆ log n). The deterministic part itself is a full solution for
n-node graphs with complexity O(log∆ n). Next, we present these two parts.

2.1.1 The Randomized Part of the Algorithm (Pre-Shattering)

The randomized algorithm is quite simple and it works as follow. Before presenting the algorithm,
we note that in the course or the algorithm, we will allow half-edges, which are edges with only one
endpoint (which needs the edge to be outgoing).

Algorithm 1 Randomized Orientation

Mark each edge with probability 1
4 .

For each marked edge, orient it randomly with probability 1/2 for each direction.
For each node v, mark v as a bad node of the following types according to these rules:

• Type I. If v has more than ∆/2 marked edges incident to it.

• Type II. If v is not Type I but it has at least one neighbor of Type I.

• Type III. If v is not Type I or Type II but it has no outgoing marked edges.

Unmark all the edges incident to Type I nodes.
Orient unmarked edges which both of their endpoints are good nodes arbitrarily.
Consider unmarked edges with exactly one good endpoint as a half-edge only attached to the bad-node.
Run the deterministic algorithm on the components induced by the bad nodes and their edges or half-edges.

The analysis is presented in Appendix A.1. Here, we only mention a few key aspects which
should deliver the intuition. One can see that, after Algorithm 1, each bad node is incident to
at least ∆/2 unmarked edges or half-edges. Moreover, each good node has at least one outgoing
marked edge. Also, the probability of each node to be bad is at most exp(−∆). As we show in
Corollary A.7, it follows that with high probability, each connected component induced by bad nodes
has size O(∆2 log n) = poly log n. The deterministic algorithm solves these remaining components,
where each remaining node has at least ∆/2 edges or half-edges, in O(log∆ log n) rounds.

2.1.2 The Deterministic Part of the Algorithm (Post-Shattering)

Consider an N -node graph where each node is incident on at least d ≥ 3 edges or half-edges. We
explain how to find a sinkless orientation of this graph in O(logdN) rounds deterministically. Note
that when plugging this subroutine in the algorithm of the previous section, we will have N = poly log n
and d ≥ ∆/2. Hence, this deterministic piece would work in O(log∆ log n) rounds.

The Deterministic Algorithm: Orient half-edges outwards from their single endpoint. For the
edges, do as follows: Uniquely identify cycles by appending the ids of the related edges. For each
cycle, define its preferred orientation by taking the smallest id edge from the lower id node to the
higher id node, and then following this direction through the whole cycle. Call a cycle short if it has
at most 2 logd−1N + 1 edges. Call an edge short if it is in at least one short cycle. First, orient each
short edge e consistent with the preferred orientation of the smallest id short cycle that contains e.
Call a node short if it is incident on at least one short edge, or on a half-edge, and long otherwise.
Then, for each long node v, let u be one neighbor of v who is closer to short nodes (compared to v).
Then orient this edge as v → u.

Lemma 2.1. For any d ≥ 3, this deterministic algorithm works in O(logdN) rounds on any N -node
graph where each node is incident on at least d edges or half-edges, and it orients these edges or
half-edges such that each node has out-degree at least 1.
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Proof. Regarding the time complexity, notice that each half-edge is oriented immediately and each
short edge can find its orientation in O(logd−1N) = O(logdN) rounds. Hence, in O(logd−1N) rounds,
we have all short edges oriented. We argue that orienting edges for long nodes can also be done in
O(logd−1N) rounds because each such node has distance at most O(logd−1N) to some short node.
More concretely, we argue that each node has either a half-edge or a short cycle within its logd−1N
neighborhood. This is true because otherwise, the BFS tree of depth logd−1N rooted at this node
would have minimum degree d and depth logd−1N . Such a tree necessarily has more than N nodes,
which would be a contradiction.

We next argue that each node has out-degree at least 1. The argument for long nodes is easy
as they are oriented towards the short cycles. The argument for nodes incident on half-edges is also
trivial. The key part is to argue that in the orientation of short edges, despite the fact that different
short edges act according to possibly different short cycles, each short node has out-degree at least 1.
For that, consider a short node v, consider all the short edges incident on it, and let C be the smallest
id short cycle which contains at least one of these edges. Suppose that C has edges e1 = (v, u1) and
e2 = (v, u2) incident on v. If e1 is oriented as v → u1, we are done. Suppose e1 is oriented as u1 → v.
We claim that then it must be the case that e2 is oriented as v → u2, which would finish the proof.
This claim is true because the only reason for e2 to be oriented in the opposite direction is if e2 is a
part of short cycle C ′ which has an id smaller than that of C. However, that would be in contradiction
with the choice of C.

3 Edge-Coloring via Undirected Degree Splitting

In this section, we explain a method for (2∆ − 1) · (1 + o(1))-edge coloring graphs with maximum
degree ∆, based on degree splitting. As a formalized restatement of Theorem 1.1, we get:

Theorem 3.1. There is a deterministic distributed algorithm that computes a (2 + ε)∆-edge coloring
of any graph with maximum degree ∆, in O(log11 n/ε3) rounds.

We note that, coarser degree splittings can also be used to obtain much simpler algorithms for
edge coloring. Particularly, in Appendix B, we explain a much simpler method for edge-coloring that
matches the bounds of Barenboim and Elkin [BE11]. However, to get Theorem 3.1, we need to
have an almost perfect split, particularly the loss in each degree-splitting iteration should be at most a
1+1/poly log n. This would allow us to say that even after log n iterations, the overall loss is negligible.

In the rest of this section, we explain how to achieve this fine degree splitting. We first explain in
Section 3.1 how to split graphs of maximum degree at most poly log n into two spanning subgraphs,
each with maximum degree almost half the previous maximum degree. Then, in Section 3.2, we
explain how to lift this solution to graphs of higher degree, and how to use that to obtain the claimed
edge-coloring result.

3.1 Deterministic Undirected Degree Splitting for Low-Degree Graphs

We say a red-blue edge coloring is t-balanced, if there are at most t red edges and at most t blue edges
incident to each node. We show the following result:

Lemma 3.2. Given a graph G with maximum degree d, a b(1+ε)d/2c-balanced coloring can be obtained
in O((d2 log5 n)/ε) rounds provided that (4 log1.5m)/d < ε < 1.

Given a t-balanced coloring with t > b(1 + ε)d/2c, we show how to improve the coloring to a
(t− 1)-balanced coloring. Then we iterate t from d to b(1 + ε)d/2c+ 1.

Label a node blue if it has t or t− 1 blue edges incident to it. Label a node red if it has t or t− 1
red edges incident to it. A node is a source if it is incident to exactly t red edges or t blue edges. Let
S be the set of all source nodes. An alternating path v1 . . . vk is a path that satisfies the following:
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(a) Before the augmentation. (b) After the augmentation.

Figure 1: t = 4 and v1v2v3v4 forms an augmenting path.

1. v1 ∈ S. 2. vi and vi+1 alternate between red and blue for 1 ≤ i ≤ k − 2. 3. Edge vivi+1 is colored
the same with the label of vi for 1 ≤ i ≤ k − 1. An augmenting path is an alternating path with an
additional condition: 4. vk is unlabeled or labeled differently than vk−1.

Suppose there is an augmenting path that starts at v1. Without loss of generality, suppose that v1

is blue, v1v2 is blue, v2 is red, v2v3 is red, etc. By augmenting along the augmenting path, we recolor
v1v2 with red, v2v3 with blue, etc. The number of red/blue edges incident to v2, v3, . . . vk−1 remain
the same after the augmentation. The number of blue edges incident to v1 decreases by 1. If k is
even, then vk−1vk was blue. When we recolor vk−1vk in red, the number of red edges incident to vk
increases by 1. Since vk is not labelled red by (4.), after the increment, the number of red edges is
still at most t − 1. Therefore, the number of source nodes decreases by 1. If k is odd, then a similar
argument applies. See Figure 1 for an illustration.

Thus, given an augmenting path, we can decrease the number of source nodes by 1. By finding
the augmenting paths repeatedly, we can eliminate all the sources, and so the graph becomes (t− 1)-
balanced. However, to reduce the number of sources efficiently, we need to do multiple augmentations
in parallel. Therefore, we find a set of almost edge-disjoint augmenting paths, as described below.

Finding Many Almost Edge-Disjoint Augmenting Paths:

Definition 3.1 (Ordered Disjointness). We say two paths v1 . . . vk and v′1 . . . v
′
k′ are ordered disjoint

if there does not exist 1 ≤ i < k and 1 ≤ j < k such that the ordered pair (vi, vi+1) and (v′j , v
′
j+1) are

the same.

A set of almost edge-disjoint augmenting paths is a set of augmenting paths with the following
property (see Figure 2a for an example): 1. The first nodes of the augmenting paths in S are distinct.
2. For any two augmenting paths in S, they are ordered disjoint.

The second property actually characterizes the edge-disjointness property among the paths except
on the last edge. Indeed, suppose that (vi, vi+1) and (v′j , v

′
j+1) denote the same edge vivi+1 (that is,

{vi, vi+1} = {v′j , v′j+1}). Then vi and v′j must have been labeled the same color with the edge vivi+1

by definition of an augmenting path. Moreover, since vi 6= v′j , we must have vi = v′j+1 and v′j = vi+1.
This implies that vi and vi+1 are labeled the same color and so are v′j and v′j+1. Therefore, v1 . . . vi+1

and v′1 . . . v
′
j+1 must be augmenting paths, which implies that vivi+1 is their last edge.

The augmenting paths may share the same last node. Augmenting along more than one augmenting
paths of the same last node may increase the red/blue degree of it to more than t − 1, creating new
sources. However, if each such node accepts only one path that ends at it and we only augment the
accepted paths, then the red/blue degrees can only increase to at most t−1. Since we know that there
can be at most d augmenting paths that end at the same node, if we find Ω(|S|) augmenting paths, at
least 1/d fraction of them can be augmented. Thus, the sources can be reduced to (1− Ω(1/d)) · |S|.

In the rest of this section we show how to find Ω(|S|) almost edge-disjoint augmenting paths
deterministically with the restriction that (4 log1.5m)/d < ε < 1. In Appendix C.1 we show how to find
Ω(|S|) almost edge-disjoint augmenting paths randomly but without the restriction that εd = Ω(log n).
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(a) A set of almost edge-disjoint augmenting paths.
S is the set of sources. The 4 augmenting paths
are abcf , defc, gdhim, and jklm. Note that cf is
included in both abcf and defc, as their last edge.

(b) A pseudo-tree rooted at s with 4 leaves. The
numbers on the edges denote their depth in the
pseudo-tree. Each leaf corresponds to an alternat-
ing path from s to it.

Figure 2: A set of almost edge-disjoint augmenting path and a pseudo-tree.

Technical Overview: Corollary C.3 in Appendix C.1 shows that there exists a set of |S| almost
edge-disjoint augmenting paths of length O(log n/ε). Moreover, the cardinality of any maximal set
of almost edge-disjoint augmenting paths of length O(log n/ε) is |S|. This implies in the sequential
setting we can find such a set of paths greedily. Similar to the approach in [LPSP15] by Lokter et al.,
in Appendix C.1, we show it can be found in the distributed setting randomly by simulating Luby’s
maximal independent set algorithm on a super-graph. However, finding a maximal set of (almost)
edge-disjoint augmenting paths deterministically is more challenging technically. Fortunately, in this
problem, we have the property that if we build a search tree from a source to search for an augmenting
path, the search tree expands very quickly. This property allows us to build (almost) edge-disjoint
search trees from different sources such that they are still able to expand quickly. Note that our
algorithm and analysis below is independent of that in Appendix C.1.

The deterministic algorithm is described in Algorithm 2. The main idea is to grow a tree-like
structure from each s ∈ S simultaneously. We call these pseudo-trees (See Figure 2b for an example).
In a pseudo-tree, each edge is associated with 0,1, or 2 children edges, who are the adjacent edges.
Each edge except those who are adjacent to s have exactly one parent edge. The edges without children
are leaves. Also, the structure does not contain a cycle. That is, if we view each edge as a node, then
the pseudo-tree is a collection of rooted trees whose roots are the edges incident to s. Thus, there is
an unique path from s to each leaf. We require each such path to be an alternating path.

When we grow the pseudo-trees Ts and Ts′ from different sources s and s′, we require that any
alternating paths v1 . . . vk from Ts and v′1 . . . v

′
k′ from Ts′ are ordered disjoint. This ensures that if we

extract an augmenting path from each of the pseudo-trees, they will be almost edge-disjoint.
To grow the pseudo-trees simultaneously, each source s ∈ S maintain a set of tokens. Initially,

there is only one token starting at each source s ∈ S. Then, they split as they travel. The edges
traveled by the tokens from s form a pseudo-tree of s. In each step, the tokens at each node request
for the edges to grow the pseudo-trees. Because of the ordered disjointness property, each edge uv can
be assigned only once to the tokens at u and once to the tokens at v. In our algorithm, each request
of the token will be granted either 1 edge or 2 edges. Those who got 1 edge will travel along the edge.
Those who got 2 edges will split into two tokens. Then each edge will be traveled by one of the token.
We will assign the edges properly so that a large fraction of the pseudo-trees will grow exponentially.

Define L1 = 1 and Li+1 = 2d3Li/4e. Algorithm 2 consists of multiple levels. At level i, an active
source s maintains Li tokens. The goal is for d3Li/4e tokens of s to split into two tokens, so the
number of tokens becomes Li+1 = 2d3Li/4e (discard the rest). Once a token splits into two, they will
pause until the next level. We will show that a large fraction of sources achieve the goal in each level.
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Algorithm 2 Finding Almost Edge-Disjoint Augmenting Paths(S)

Each source s ∈ S create a token located at s.
for level i = 1, 2, . . . , log1.5m do

For each node u, set its budget, budget(u), to be b(2t− d− 2)/ log1.5mc.
for step j = 1, 2, . . . , h, where h = d(16/3) log2

1.5m/εe do
Each active token requests for edge assignment at its current node.
For each node u, min(#request, budget(u)) requests will be granted two tokens, others one edge. Each

red (blue) node assign unused, distinct red (blue) edges to tokens. Update budget(u).
if a token has been assigned one edge then

Travel along the edge.
else . The token has been assigned two edges.

Split into two tokens. Then each token take one of the edge and travel along it.
Deactivate the tokens.

For each source:
if a path from the source to one of its tokens forms an augmenting path then

Deactivate all the tokens from s and save the augmenting path.
else if it has less than Li+1 then

Mark s as failure and remove s from S and deactivate all the tokens.
else if it has at least Li+1 then

Discard the tokens so that it has exactly Li+1 tokens.
Set the Li+1 tokens to be active.

Each level has h steps. In each step j of level i, the active tokens are assigned either 1 or 2 edges.
If a node has more budget than the number of requesting tokens, then every token on it is given 2
edges. Otherwise, the node is allowed to assign budget(u) tokens 2 edge; other tokens get 1 edge.

Now we bound the number of requests at u by d− t+ 1. First note that the requests happen only
at the labelled nodes, since if a token reaches an unlabelled node then an augmenting has been found.
W.l.o.g. assume u is blue. There are two cases. If u has exactly t− 1 blue edges, then there is at most
d− t+ 1 red edges incident to it. If a token enters through one of the blue edges then the augmenting
path must have been found and so the token will be deactivated. Therefore, those who are requesting
must enter u through red edges. Thus, the number of requests is at most d− t+ 1. If u has exactly t
blue edges, then there is at most d− t red edges incident to it. By the same argument, the number of
requests is at most d− t. However, since u ∈ S, a additional token has been created at u initially. In
any case, the number of requests at u is bounded d− t+ 1.

The intuition of why each token can split without traveling too far is that because the number of
edges that can be assigned is at least t− 1, the average number of edges that can be assigned to each
request is (t−1)/(d− t+ 1) = 1 + Ω(ε), since t > b(1 + ε)d/2c. Therefore, intuitively, it seems possible
for each pseudo-tree to grow by an 1 + Ω(ε) factor in each step. However, since 1 + Ω(ε) is not even
an integer, it is not clear what it means to have each token to split into 1 + Ω(ε) tokens. Instead, our
analysis shows that most tokens will split into two after Õ(1/ε) steps.

We use budget(u) to control how many edges can a node assign in each level. Suppose that we
assign 1 edge to all the d − t + 1 requests first, then the number of unused blue edges is at least
t− 1− (d− t+ 1) = 2t− d− 2. These edges can be used to grant 2t− d− 2 tokens 1 additional edge.
We divide the budget across all the log1.5m levels, so each level has b(2t − d − 2)/ log1.5mc budget.
We say a token did not successfully split, if it has not been granted two edges during the h steps. We
say a source failed if less than 3/4 fraction of their tokens sucessfully split. Given the budget, we show
that the number of failure sources in each level is bounded. If a source did not fail or did not found
an augmenting path yet, then we say it is active.

Lemma 3.3. Suppose that (4 log1.5m)/d < ε < 1. Let Si denote the set of active sources at the
beginning of level i and let Fi be the set of failure sources during level i. We have |Fi| ≤ |Si|/(2 log1.5m).

Proof. First, call a token unlucky if it has not been successfully split after the h steps. Otherwise, we
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say a token is lucky (either an augmenting path has been found or the token has successfully split.)
Consider a bipartite multi-graph where the left nodes X denote the unlucky tokens and the right nodes
Y denote the lucky tokens. Add an edge between an unlucky token x and a lucky token y, if y’s split
prevents x to split on one of its h steps. Note that in case x traveled through the same node multiple
times, multiple edges can be added between the same pair of nodes.

Observe that the degree of a left node is exactly h · b(2t− d− 2)/ log1.5mc. The number of edges
in the bipartite graph is h · |X| · b(2t− d− 2)/ log1.5mc. Also, the degree of each right node is at most
d− t+ 1, as the number of requests at each node is at most d− t+ 1. Therefore,

|Y | ≥ h · |X| · b(2t− d− 2)/ log1.5mc/(d− t+ 1)

≥ |X| · h
d
·
⌊
εd− 2

log1.5m

⌋
t ≥ b(1 + ε)d/2c+ 1

≥ |X| · h
d
·
(

εd

2 log1.5m

)
εd ≥ 4 log1.5m and when log1.5m ≥ 2

≥ |X| · (8/3) log1.5m h ≥ (16/3) log2
1.5m/ε

Therefore,

|Si| · Li = |X|+ |Y | ≥ |X| · (1 + (4/3) log1.5m)

≥ |Fi| ·
(

3

4
Li

)
· (1 + (4/3) log1.5m) ≥ |Fi| ·

(
3

4
Li

)
·
(

8

3
log1.5m

)
Thus, |Fi| ≤ |Si|/(2 log1.5m).

Lemma 3.4. Let Ai ⊆ Si \ Fi denote the set of sources that successfully find an augmenting path
during level i. |

⋃
iAi| ≥ |S|/2.

Proof. Notice that Si+1 = Si \ (Ai ∪ Fi). First we claim that |
⋃
i Fi| ≤ |S|/2. Since |Fi| ≤

|Si|/(2 log1.5m) ≤ |S|/(2 log1.5m), we have
∑

i |Fi| ≤ |S|/2. Now we show that every source
x ∈ S \

⋃
i Fi must be in one of Ai. Suppose to the contrary, there exists x ∈ S such that

x ∈ Slog1.5 m \ (Alog1.5 m ∪ Flog1.5m). Consider the edges travel by the tokens of x. At level i, since it
has successfully advanced to level i+ 1, it must have traveled at least Li+1 edges. The total number

of edges traveled by the tokens of x is
∑log1.5 m

i=1 Li+1 > (3/2)log1.5 m = m. A contradiction occurs.

In Algorithm 2, level i takes O(i·h) rounds, since the length of the path spanned by the tokens from
the source is O(i ·h) and they have to communicate with the source at the end of the level. Therefore,

the total number of rounds of Algorithm 2 is O(
∑log1.5m

i=1 i · h) = O(h log2
1.5m) = O((log4 n)/ε).

Proof of Lemma 3.2. Given a t-balanced coloring, we can improve it to a (t − 1)-balanced coloring
by calling Algorithm 2 repeatedly. By Lemma 3.4, each invocation of Algorithm 2 finds |S|/2 almost
edge-disjoint augmenting paths from distinct sources. Of those |S|/2 augmenting paths, at least 1/d
fraction will be accepted and augmented, since there can be at most d paths ending with the same node.
Therefore, the source reduces by a 1/(2d) fraction for each invocation. Since |S| ≤ n, after O(d log n)
invocations, we have obtained a (t−1)-balanced coloring. If we iterate t from d to b(1+ ε)d/2c−1, we
obtain a b(1 + ε)d/2c-balanced coloring. The total number of invocation of Algorithm 2 is O(d2 log n).
Thus, the running time is O((d2 log5 n)/ε).

3.2 Deterministic Undirected Degree Splitting for High-Degree Graphs

Suppose that the input is a graph with maximum degree ∆. In this case, if we apply Lemma 3.2
directly, it takes Õ(∆2/ε) rounds to get a b(1 + ε)∆/2c-balanced coloring. Here, we show a method
which removes the dependency on ∆.
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Theorem 3.5. Suppose that ∆ ≥ d32 log1.5m/ε
2e, then a b(1 + ε)∆/2c-balanced coloring can be

obtained in O((log7 n)/ε3) rounds.

Proof. Let ε′ = ε/2 and d = d4 log1.5m/ε
′e. Thus, we have ∆ ≥ 2d/ε′. First, obtain G′ as follows: For

each node u, split it into d∆/de copy-nodes and divide evenly the edges adjacent to u between the copy-
nodes such that each copy-node, except possibly one, has degree d. Since ε′d ≥ 4 log1.5m, we can apply
Lemma 3.2 to get a get a b(1 + ε′)d/2c-balanced coloring in G′ in O((d′ log5 n)/ε′) = O((log7 n)/ε3)
rounds. Then, we merge the copy-nodes back. Then, for each node of G, the number of incident edges
of each color is bounded by:

⌊
(1 + ε′)d

2

⌋
·
⌈

∆

d

⌉
≤ (1 + ε′)d

2
·
(

∆

d
+ 1

)
≤ ∆

2
·
(
1 + ε′

)
+ d

≤ ∆

2
·
(

1 + ε′ +
2d

∆

)
≤ ∆

2
· (1 + ε) ∆ ≥ 2d/ε′

Since the number of colors must be an integer, it is a b(1 + ε)∆/2c-balanced coloring.

Proof of Theorem 3.1. Let ε′ = ε/(2 log2 ∆) and ∆0 = ∆. Suppose that ∆0 ≤ d32 log1.5m/ε
′2e, we can

use Panconesi and Rizzi’s algorithm [PR01] that runs in O(∆0 + log∗ n) rounds to get (2∆0 − 1)-edge
coloring. Otherwise, we apply Theorem 3.5 to get a b(1+ε′)∆/2c-balanced coloring. For the subgraph
consists of red edges and the subgraph consists of blue edges, we recursively apply this procedure on
both of them in parallel with a new maximum degree ∆i+1 = b(1 + ε′)∆i/2c. Let t be the level where
the recursion halts. That is, t is the smallest integer such that ∆t ≤ d32 log1.5m/ε

′2e. The recursion
will stop at level t, where we will apply Panconesi and Rizzi’s algorithm to get an (2∆t − 1)-edge
coloring on each subgraph. Since the number of subgraphs at level t is 2t, the total number of color
used is

(2∆t − 1) · 2t ≤ 2 · (1 + ε′)t∆

≤ 2∆ + 4tε′∆ (1 + x)n ≤ 1 + 2nx for 0 ≤ nx ≤ 1

≤ (1 + 2tε′) · 2∆

≤ (1 + ε) · 2∆ t ≤ log2 ∆

We apply the balanced coloring procedure for O(log ∆) rounds, each takes O(log10 n/ε3) rounds by
Theorem 3.5. At the last level, Panconesi and Rizzi’s algorithm takes O(∆k + log∗ n) = O(log n/ε′2 +
log∗ n) = O(log3 n/ε2) rounds. Therefore, the total number rounds is: O(log11 n/ε3).
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A Missing Proofs of Section 2

A.1 Missing Proofs of Section 2.1

Claim A.1. After Algorithm 1, each node is incident to at least ∆/2 unmarked edges.

Proof. Node of type I get all their ∆ edges unmarked. Each other node has at most ∆/2 marked edges
incident to it, by definition.

Claim A.2. After Algorithm 1, if the unmarked edges are oriented in a way such that all bad nodes
have at least one outgoing unmarked edge, then the orientation is sinkless.

Proof. If a node is bad, then by the assumption it will have at least one outgoing unmarked edge.
Otherwise, it must have at least one outgoing marked edge by the definition of Type III.

In Section 2.1.2, we show the deterministic algorithm can be used orient the unmarked edges if the
number of unmarked edges incident to each node is between ∆/2 and ∆. Now it remains to bound
the size of the connected components induced by the bad nodes.

Let TI(v) and TIII(v) denote the events that v is Type I or Type III, respectively.

Lemma A.3. For any v ∈ G, Pr(TI(v)) ≤ exp(−∆/12).

Proof. Let X denote the number of edges incident to v. We have E[X] = ∆/4. By a Chernoff Bound,
Pr(X > ∆/2) ≤ exp(−∆/12).

Lemma A.4. For any v ∈ G, Pr(TIII(v)) ≤ exp(−∆/8).

Proof. The probability that an edge is marked and oriented toward v is 1/8. Therefore, the probability
that no edges are marked and oriented toward v is (1− 1/8)∆ ≤ exp(−∆/8).

Let dist(u, v) denote the distance between u and v in G. If dist(u, v) ≥ 2, then it is clearly that the
event TI(u) (or TIII(u)) and TI(v) (or TIII(v)) are independent. Let V ′ be the set of nodes that are
Type I or Type III. Define dist(X, v) = minu∈X dist(u, v). Let E2,4 = {uv | 2 ≤ dist(u, v) ≤ 4} denote
the set of edges whose endpoints have distance between 2 and 4. Let Nk(u) = {x | dist(x, u) ≤ k} be
the set of nodes within distance k to u.

Lemma A.5. Let C be a connected components induced by the bad nodes. Then, there exists S ⊆ V ′∩C
such that |S| ≥ |C|/∆2 and (S,E2,4) is connected.

Proof. We will construct S step by step. First notice that V ′ ∩ C must be non-empty, since a Type
II node must be adjacent to a Type I node, which must be in V ′ ∩ C. Let u ∈ V ′ ∩ C. Initially, Let
S = {u}. Now we will show how to extend S by adding one node z ∈ (V ′ ∩ C) \ S into it provided
that |S| < |C|/∆2, and z is connected to some node in S with an edge in E2,4.

Suppose that |S| < |C|/∆2, then there exists a node w in C \S such that dist(S,w) = 3, since the
2-neighborhood of S can only span at most |S|(1+∆+∆ · (∆−1)) ≤ |S|∆2 nodes and C is connected.
If w is Type I or Type III, then w ∈ V ′ ∩ C and we can add w to S. Otherwise, it is Type II, which
implies it has a neighbor z of Type I. We must have 2 ≤ dist(u, z) ≤ 4. Thus, we can add z to S.
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Therefore, given a connected component C induced the bad nodes, we can find a tree T in (V ′ ∩
C,E2,4) such that |T | ≥ |C|/∆2. Next we show that any sufficient large tree are not likely to occur,
which implies no big bad components exist.

Lemma A.6. The probability that any tree T with T ⊆ (V ′, E2,4) and |T | = Ω(log n) exists is at most
1/ poly(n).

Proof. Let T be a tree such that T ⊆ (V ′, E2,4) and |T | = t. The probability that a node in T is
marked as Type I and Type III (thus in V ′) is at most exp(−∆/12) by Lemma A.3 and Lemma A.4.
Therefore, the probability that T occurs is at most exp(−t ·∆/12), since the events TI(u) (or TIII(u))
are independent among the nodes u ∈ T . The total possible number of such trees is at most 4tn(∆4)t−1.
By union bounding the possible trees, the probability that any tree in (V ′, E2,4) of size t occur is at
most n · (4∆4 · exp(−∆/12))t. For ∆ ≥ 500, this is at most n · e−t. Thus, the probability that any
tree in (V ′, E2,4) of size at least 10 log n exists is at most (1/n9) ·

∑∞
i=0 e

−i = 1/ poly(n).

Corollary A.7. The probability that any connected component induced by the bad nodes has size of
Ω(∆2 log n) is at most 1/ poly(n).

Proof. If there exists a bad connected component C with size Ω(∆2 log n), then by Lemma A.5, there
exists S ⊂ V ′∩C such that |S| = Ω(log n) and (S,E2,4) is connected. Therefore, a tree T in (V ′, E2,4)
occurs with |T | = Ω(log n), which happens with probability 1/ poly(n) by Lemma A.6.

A.2 Generalization to Irregular Graphs with Min-Degree d ≥ 3, and Refinements

In the previous subsection, we presented an O(log∆ log n) sinkless orientation algorithm for ∆-regular
graphs with ∆ > 500. Here, we extend the result to a irregular graphs with min-degree d ≥ 3, with
round complexity becoming O(logd log n). We also show how to achieve a more refined directed degree
split in almost the same running time.

First let us deal with irregular graphs with min-degree d > 500.

Lemma A.8. There is a randomized algorithm that computes a sinkless orientation of graphs of
minimum degree d ≥ 500 in O(logd log n) rounds.

Proof. We transform graph G into a d-regular structure H, which is essentially a graph but allowing
edges with only one endpoint, which we call half-edges. For each node v ∈ G with degree d′ > d,
remove v and instead add bd′/dc copy-nodes, assign d of edges of v to each of these copy-nodes, and
mark the remaining edges. We do not need those marked edges to be oriented outwards from v (or
its copy-nodes). If an edge is marked by both of its end-points, drop it. Otherwise, think of it simply
as a half-edge, having only one endpoint which may wish to have this edge outgoing. Now, the graph
is transformed into a new structure where each node is incident on exactly d edges or half-edges. A
sinkless orientation of this structure can be compute using Lemma 2.1.

We now explain how to extend the algorithm to cases where min-degree is d ∈ [3, 500].

Lemma A.9. There is a randomized algorithm that computes a sinkless orientation of graphs of
minimum degree d ∈ [3, 500] in O(log log n) rounds.

Proof. Let c be a small constant such that (d− 1)c/2 > 500. First, we find an orientation for all edges
which are in cycles of length up to 3c, in O(1) rounds. This can be done easily using the method of
Section 2.1.2. This already takes care of giving an outgoing edge to nodes which are incident on these
edges. We next handle the rest of the nodes.

By means of the method of the previous paragraph, we can assume without loss of generality that
the graph is d-regular, albeit possibly having half-edges. Note that this step cannot introduce a cycle
of length less than 3c. Now, compute a Maximal c-Independent Set S, on the graph while ignoring
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the half-edges. This can be done in O(dc + log∗ n) = O(log∗ n) rounds using standard algorithms.
Then, cluster nodes by letting each node join the cluster of the closest node in S, while breaking ties
arbitrarily. Since we have no cycle of length less than 3c, each cluster is a tree of depth at least c/2 and
with at least (d− 1)c/2 > 500 edges connecting to other clusters, and each two clusters are connected
by at most 1 edge. We now think of contracting each cluster into one node. Communications on this
contracted graph can be simulated with a constant running time overhead as each cluster has constant
diameter. Since each two clusters are connected with at most 1 edge and as each cluster has at least
500 edges connecting to other clusters, the graph after this contraction is a simple graph with each
node incident on at least 500 edges or half-edges. We can now orient this graph using the method
of Lemma A.8 in O(log log n) rounds. At the end, each contracted cluster has at least one outgoing
edge. We can then orient the edges inside the cluster towards this outgoing edge, hence ensuring that
all other nodes of the cluster also have out-degree at least 1.

Lemma A.10. There is a randomized algorithm that, for a desirably small constant δ > 0 and
sufficiently large constant C, computes an orientation of ∆-regular graphs with ∆ ≥ C in O(log∆ log n)
rounds which guarantees a lower bound of (1/6 + δ)∆ on the in-degree and out-degree of each node,
with high probability3.

Proof. We here simply the sketch the necessary changes for obtaining this result, but defer working
out the details to the full version of this paper. In the randomized algorithm of Section 2.1.1, mark
each edge with probability 1/3− δ, for a small constant δ, and redefine type I bad nodes as those with
more than ∆/3 marked edges. Also, redefine type III bad nodes to be those which are not type I or
type II but still have less than (1/6 − δ)∆ incoming marked edges or less than (1/6 − δ)∆ outgoing
marked edges. It is easy to go over the analysis of this algorithm and see that bad components will
induce components of size at most poly log n, with high probability. Moreover, nodes that are not
bad (and thus also not bad type III) already have at least (1/6 − δ)∆ incoming edges and at least
(1/6− δ)∆ outgoing edges.

Now we turn to the deterministic algorithm that is to be run on these bad nodes, each of which
is incident on at least 2∆/3 unmarked edges. Now, replace each of these bad nodes v with d∆/6e
copy-nodes, and assign 4 edges of v to each of its copies. Leave the remaining edges as half-edges,
connected only to the other endpoint. Now we are dealing with a graph H where each node is incident
on 4 edges or half-edges. We will compute a sinkless and sourceless orientation of H, hence ensuring
that each node of G has at least (1/6− δ)∆ incoming edges and at least (1/6− δ)∆ outgoing edges.

First, compute a sinkless orientation of H using the deterministic algorithm of Section 2.1.2. It
is easy to see that in this orientation, all nodes have at least one outgoing edge and at least one
incoming edge, except for long nodes which are at maximal distance from short nodes. These long
nodes then have only an outgoing edge, but the rest of their edges were oriented arbitrarily. We fix
these arbitrary orientations to give these long-nodes also at least one outgoing edge, hence making
the overall orientation of H sinkless and sourceless. Let us call those long nodes at maximal distance
from short nodes leaves. Each leaf v has one of its edges, one of those that go closer to short nodes,
oriented outwards. If v has any other edge to a non-leaf node, orient that edge inwards, hence giving
v also an incoming edge and solving its case. Each remaining leaf v has 4 − 1 = 3 edges, which are
either half-edges, or they connect to non-leaf nodes. Take the graph induced by the remaining leaves
and these remaining edges, orient it sinkless by repeating the deterministic orientation algorithm, and
then flip all of these edges. That ensures each of these remaining leaves to also have at least one
incoming edge, hence giving us the desired sinkless and sourceless orientation of H.

3We have not tried to optimize the constants or to extend the result to irregular graphs. We believe that both should
be possible without too much more effort.
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B Edge-Coloring via Coarse-grained Degree Splitting

In this section, we explain a deterministic distributed edge-coloring algorithm based on a trivial and
crude degree splitting. Interestingly, this simple approach already matches the state of art for very
fast algorithms. More concretely, it provides a considerably simpler method for edge-coloring that
matches the bounds of Barenboim and Elkin [BE11]. See also [BE13, Chapter 8].

The Algorithm: The algorithm is recursive, we explain one level of recursion. Consider graph G,
and suppose its maximum degree is ∆. If ∆ = O(x), compute and output a (2∆ − 1) edge coloring
of G in O(x + log∗ n) rounds, using the classical algorithm of Panconesi and Rizzi [PR01]. Suppose
∆ = Ω(x). Let each node split itself into d∆/xe copy-nodes, and partition its edges between these
copy-nodes such that each copy-node is incident on at most x edges. Call this new graph H. Note
that H has maximum degree at most x. Use the algorithm of Panconesi and Rizzi [PR01] to find a
(2x − 1) edge coloring of H, in O(x + log∗ n) rounds. This coloring provides a (2x − 1) coloring of
edges of G such that in each color class, there are at most d∆/xe edges incident on each node. That is,
we have partitioned G into 2x− 1 graphs G1, . . . , G2x−1, each with per-node degree at most d∆/xe.
Now recursively run the procedure on each of these subgraphs.

Lemma B.1. The algorithm works in O((x+log∗ n) log ∆/ log x) rounds and produces a 21+log ∆/ log x∆
edge coloring.

Proof. In each iteration, the maximum degree goes down by an x factor. Thus, log ∆/ log x recursions
suffice. Each recursion level takes O(x+log∗ n) rounds, which means we use O((x+log∗ n) log ∆/ log x)
rounds in total. To bound the number of colors, let us consider the summation of the maximum degrees
in different subgraphs. Since at the end each subgraph will be colored with about 2 factor of its max
degree colors, modulo the 2 factor, this summation is an upper bound on the number of used colors.
In each iteration, we lose at most a 2 factor in this summation, because we split a graph of maximum
degree d into 2x − 1 subgraphs each of maximum degree at most d/x. Hence, after log ∆/ log x
recursions, we use 21+log ∆/ log x∆ colors.

The next corollary shows that by setting x appropriately, we can reconstruct the edge-coloring
results of Barenboim and Elkin [BE11]. See also [BE13, Theorem 8.14].

Corollary B.2. Consider a graph G = (V,E), and let ε > 0 be an arbitrarily small constant.

(1) An O(∆)-edge-coloring of G can be computed in O(∆ε + log∗ n) time.

(2) A ∆1+o(1)-edge-coloring of G can be computed in O((log ∆)1+ε + log∗ n · log ∆
log log ∆) time.

(3) An O(∆1+ε)-edge-coloring of G can be computed in O(log∗ n · log ∆) time.

Proof. Respectively use x = ∆ε, x = logε ∆, or x = 21/ε, in Lemma B.1.

C Undirected Degee Splitting

C.1 Randomized Undirected Degree Splitting

In this section, we give a randomized distributed algorithm for obtaining a d(1 + ε)∆/2e-balanced
coloring where 0 < ε < 1 in O(∆2 log4 n/ε2) rounds. Note that this allows one to obtain a d(∆+1)/2e-
balanced coloring in O(poly(log n,∆)) rounds. Also note that the change from floor in the previous
sections to ceiling is necessary. Consider when ∆ = 2 and ε = 1/2. Obtaining a 1-balanced coloring is
impossible in an odd cycle. In the previous sections, the restriction that ε∆ = Ω(log n) avoided this
problem.

Theorem C.1. Given a graph G with maximum degree ∆, a d(1 + ε)∆/2e-balanced coloring can be
obtained in O(∆2 log4 n/ε2) for 0 < ε < 1.
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We use the same approach with that in the previous sections. Given a t-balanced coloring, we show
how to improve the coloring to a (t−1)-balanced coloring. Then we iterate t from ∆ to d(1+ε)∆/2e+1.
The only difference is that we show how to find a set of almost edge-disjoint augmenting paths of size
Ω(|S|) in O(poly(log n, ε−1)) rounds without the restriction that ε∆ = Ω(log n).

The following lemma can be used to show that the size of any maximal set of almost edge-disjoint
short augmenting paths is |S|.

Lemma C.2. Let P ′ be a set of almost edge-disjoint augmenting paths. If s is not a source of an
augmenting path in P ′, then an augmenting path P from s of length at most O(log n/ε) exists and
P ′ ∪ P is also a set of almost edge-disjoint augmenting paths.

Proof. Grow a tree from s such that the path from s to the leaves are alternating paths. In each step,
each leaf grows by adding all the edges that have the same color with it. Three cases may occur when
a leaf tries to add an edge that does not intersect with any paths in P ′.

If the endpoint of an edge is an unvisited node (i.e. the node is not in the tree) with the opposite
color, then it will be added to the tree. If the endpoint of an edge is a node with the same color or an
unlabelled node, then an augmenting path is found. Otherwise, if the endpoint is a visited node, we
will ignore it.

There are two cases when a leaf u tries to add an edge uv that intersects with some path Q ∈ P ′.
If u comes before v in Q, then we will not add v to the tree and ignore it. If v comes before u in Q,
then it must be the case that u and v are labeled the same color. Therefore, uv is the last edge of Q
and an augmenting path P has been found from s. Therefore, any augmenting path found during this
process must be almost edge-disjoint from P.

Suppose that an augmenting path has not been found and T ′ is the tree after growing T by one
level. We show that |T ′| ≥ (1+ε)|T |. First, note that each node u ∈ T is not the last node of any path
Q in P. Let G′ = G \ P be the graph obtained by deleting all the edges in P from G. Let indegH(u)
denote the number of incident edges to u with the opposite color in a subgraph H. Let outdegH(u)
denote the number of incident edges to u with the same color in H. We claim that for any u ∈ T ,
outdegG′(u)− indegG′(u) ≥ 2t− 2− d.

Note that since u is a labelled node, we have outdegG(u) ≥ t − 1, indegG(u) ≤ d − t + 1 and
so outdegG(u) − indegG(u) ≥ 2t − 2 − d. Suppose that u in not the first node of any paths in
P, then both indeg u and outdeg(u) decreases by 1 when we delete the path from G. This implies
outdegG′(u)− indegG′(u) ≥ 2t−2−d. On the other hand, if u is the first node of some path in P, then
u must be a source. In this case, deleting the path decreases outdeg(u) by 1. Also, since u is a source,
outdegG(u)− indegG(u) ≥ 2t−d Therefore, outdegG′(u)− indegG′(u) ≥ outdegG(u)−1− indegG(u) ≥
2t− 1− d.

For each edge uv where u, v ∈ T , it must be the case that u and v are colored differently. Otherwise,
an augmenting path would have been found. Therefore, there must be at least

∑
u∈T (outdegG′(u) −

indegG′(u)) ≥ |T | · (2t − 2 − d) ≥ |T | · (2(d(1 + ε)d/2e + 1) − 2 − d) ≥ ε|T | · d edges going outside
of T . Since the maximum degree is d, the number of nodes added must be at least ε|T |. Therefore,
|T ′| ≥ (1 + ε)|T |. After O((log n)/ε) levels, the tree would grow to contain more than n nodes.
Therefore, an augmenting path must have been found before this happens.

Corollary C.3. The size of any maximal set of almost edge-disjoint augmenting paths of length
O(log n/ε) is |S|.

Proof. If P is a maximal set of almost edge-disjoint augmenting paths of length O(log n/ε) with
cardinality less than |S|, then there is a source s ∈ S that does not appear in P. We can apply
Lemma C.2 to add an augmenting path of length O(log n/ε) to P without violating the maximality
condition.

Lemma C.4. A maximal set of almost edge-disjoint augmenting paths of length at most l can be found
in O(l2 log n) rounds.
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Proof. We construct a super-graph G where each node in G denotes an augmenting path of length at
most l. Two nodes P1 and P2 are connected if they are not ordered disjoint or if they share the same
source. A maximal independent set (MIS) in G corresponds to a maximal set of almost edge-disjoint
augmenting paths of length at most l in G.

To simulate the computation on G, we let each source s ∈ S to be responsible for the nodes whose
corresponding augmenting path start at s. Then, one round of communication in G can be simulated
in O(l) rounds. The total number of nodes in G is O(nl). Therefore, Luby’s MIS algorithm takes
O(log(nl)) = O(l log n) rounds in G. Since each round in G can be simulated in O(l) rounds, the
number of rounds needed to simulate Luby’s algorithm is O(l2 log n).

By setting l = O(log n/ε), we can find |S| almost edge-disjoint augmenting paths in O(log3 n/ε2)
rounds. Then, at least 1/∆ fraction of the paths can be augmented, since there are at most ∆
augmenting paths could end at the same node and one of them will be augmented. Therefore, since
the number of sources is at most n, after O(∆ log n) iterations, all the sources are saturated. Also,
since we iterate t from ∆ to d(1 + ε)∆/2e, the total number of rounds is O(∆2 log4 n/ε2).

C.2 Randomized Edge Coloring

In this section, we show how to obtain a faster randomized edge-coloring algorithm using (4+ε)∆ colors,
in poly(log log n) rounds. This is by combining the graph shattering technique with our deterministic

algorithm. For ∆ ∈ [poly(log log n), logn
poly(log logn) ], this is faster than the O(

√
∆ log ∆)-round O(∆)-

edge-coloring that follows from the work of Barenboim [Bar15], and the O(log∗∆ ·max{1, logn
∆1−o(1) })-

round ((1 + ε)∆)-edge-coloring result of Elkin, Pettie, and Su [EPS15].

Theorem C.5. Given a graph G and 0 < ε < 1, a (4 + ε)∆-edge coloring can be obtained in
O((log11 log n)/ε3) rounds.

Proof. First we will assume that ∆ = O(log2 n). Since for ∆ = Ω(log2 n), by using Elkin et al.’s
algorithm [EPS15, Theorem 2.1], a (1 + o(1))∆-edge-coloring can be obtained in O(log∗ n) rounds.
Let ε′ = ε/4. We will divide the (4 + ε)∆ colors into two sets C1 and C2 with an equal size, so each
set consists of 2(1 + ε′)∆ colors.

Pre-shattering: Let x = ε′2∆/(18 log ∆). First we partition the edges randomly to form subgraphs
G1, G2, . . . Gx. The expected degree of each node u in Gi is at most ∆/x = (18 log ∆)/ε′2. By Chernoff

Bound, Pr(degGi
(u) ≥ (1 + ε′)∆/x) ≤ e−ε′2(18 log ∆)/(3ε′2) ≤ (1/∆)6. For v ∈ G, we mark v as a Type I

node if there exists 1 ≤ i ≤ x, such that degGi
(u) ≥ (1 + ε′)∆/x. By an union bound over 1 ≤ i ≤ x,

the probability that v is Type I is at most x · (1/∆)6 ≤ 1/∆5.
If u ∈ G is a not Type I node but it is adjacent to a Type I node, then it is a Type II node. Type I

nodes and Type II nodes are the bad nodes. Let B be the set of bad nodes and V ′ be the set of Type
I nodes.

Post-shattering: First note that every subgraph Gi[V \ V ′] has maximum degree bounded by (1 +
ε′)∆/x. We divide the colors in C1 evenly into Ci1, C12, . . . , C1x so that each has size 2(1+ε′)∆/x. We
will run Panconesi and Rizzi’s algorithm [PR01] to get a 2(1+ε′)∆/x-edge coloring inO(∆/x+log∗ n) =
O((log ∆)/ε2 + log∗ n) = O((log log n)/ε2) rounds on each Gi[V \V ′] in parallel with the color set C1i.

Now the uncolored edges must be the ones that are adjacent to V ′. Since B = N(V ′)∪ V ′, all the
uncolored edges must be in G[B]. Similar to the analysis of sinkless orientation in Section 2, we will
show that each component in G[B] has their size bounded by polylog(n). Then, we will apply our
determinisitic algorithm on each component with the color set C2.

Let dist(u, v) denote the distance between u and v in G. If dist(u, v) ≥ 2, then it is clearly that
the event u becomes Type I and the event v becomes Type I are independent. Let E2,4 = {uv | 2 ≤
dist(u, v) ≤ 4} denote the set of edges whose endpoints have distance between 2 and 4.
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Lemma C.6. Let C be a connected components in G[B]. Then, there exists S ⊆ V ′ ∩ C such that
|S| ≥ |C|/∆2 and (S,E2,4) is connected.

Proof. The proof is exactly the same with that of Lemma A.5 except that now we are omitting Type
III nodes.

Lemma C.7. The probability that any tree T with T ⊆ (V ′, E2,4) and |T | = Ω(log n) exists is at most
1/ poly(n).

Proof. Let T be a tree such that T ⊆ (V ′, E2,4) and |T | = t. The probability that a node in T is
marked as Type I is at most 1/∆5. Therefore, the probability that T occurs is at most 1/∆5t, since
the events each node in T becomes Type I are independent. The total possible number of such trees
is at most 4tn(∆4)t−1. By an union bound over all possible trees, the probability that any tree in
(V ′, E2,4) of size t occur is at most n · (4∆4 · (1/∆5))t. For ∆ ≥ 4e, this is at most n · e−t. By
summing over t ≥ 10 log n, the probability that any tree in (V ′, E2,4) of size at least 10 log n is at least
(1/n9) ·

∑∞
i=0 e

−i = 1/ poly(n).

Therefore, if C is a connected compnent in G[B] of size Ω(∆2 log n). Then by Lemma C.6, there
exists a set of vertices S ⊆ V ′ ∩ C with |S| = Ω(log n) and (S,E2,4) is connected. Take a spanning
tree T of the graph (S,E2,4). Since |T | = Ω(log n), by Lemma C.7, the probability that |T | exists is at
most 1/ poly(n). Therefore, we conclude that the probability |C| = Ω(∆2 log n) is at most 1/poly(n).

Since ∆ = O(log2 n), each component has size at most O(log3 n). Now we will run our deterministic
(2 + ε′)∆-edge coloring using colors in C2 on each of the component. By Theorem 3.1, the running
time is O((log11 log n)/ε3).

D Directed Degree Splitting

Here, we consider the problem of orienting the edges such that the out-degree and in-degree of each
node are both upper bounded by D, for any given D ≥ d(∆+1)/2e. The following lemma allows us to
focus on only the out-degree side of the problem, and then extend it to both out-degree and in-degree:

Lemma D.1. Let D ≥ d(∆ + 1)/2e. Let G be a graph with an arbitrary orientation. Suppose that A
is a distributed algorithm that orients G into G′ such that the out-degree of each node is at most D in
T rounds with the following property: For each u, outdegG′(u) ≥ min(outdegG(u), D). Then in O(T )
rounds, G can be oriented such that both the in-degree and the out-degree of each node is at most D.

Proof. First run A on G to obtain an orientation with out-degree at most D, say the resulting graph
is G1. Then, we reverse each edge in G1 to obtain G2. G2 is a graph such that the in-degree of each
node is at most D. Now, run A on G2 to obtain G3. If the in-degree of a node u in G2 is at most D,
then

indegG3
(u) = deg(u)− outdegG3

(u)

≤ deg(u)−min(outdegG2
(u), D) by the property of A

≤ deg(u)−min(deg(u)−D,D) indegG2
(u) ≤ D

≤ deg(u)− (deg(u)−D) = D D > ∆/2 and deg(u) ≤ ∆

Therefore, the in-degree of every node is still at most D in G3.

By Lemma D.1, it suffices to develop algorithms that orient the graph such that each node’s
out-degree is bounded by D, with the stated additional property. Our augmentation-based approach
satisfies this property, because we only decrease the out-degree in nodes with out-degree at least D+1.
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For deterministic algorithms, we will use the same approach as in Section 3. Recall that in Section 3
we assumed that a t-balanced coloring is given, and we showed how to improve it to a (t−1)-balanced
coloring. Similarly, here we assume that we have an orientation with the out-degree of each node
upper bounded by t. We use the same approach to improve it to an orientation with the out-degree
of each node upper bounded by t− 1. The outer-loop will iterate t from ∆ to D + 1.

The definition of an augmenting path is much more straightforward here. An augmenting path
is just a directed path that starts from a node with out-degree equals to t and ends at a node with
outdegree at most t − 2. We augment along a path by reversing the orientation of each edge. After
we augmented along an augmenting path, the out-degree of the first node decreased by 1 and the
out-degree of the last node increased by 1. All the other nodes remain to have the same out-degree.
Since t > D, we will not decrease the out-degree of a node with out-degree at most D. This satisfies
the property stated in Lemma D.1.

Let S be the source nodes, which are the nodes with out-degree t. Similar to Section 3, we
will find a set of Ω(|S|) edge-disjoint augmenting paths from distinct sources in S here. However, the
singularity that appeared in Section 3 where the last edges of augmenting paths in a set of almost edge-
disjoint augmenting paths may overlap do not appear here. We just need to find a set of edge-disjoint
augmenting path. By repeating the same arguments as in Section 3, we can obtain the analogues of
Lemma 3.2 and Theorem 3.5, which we state without proofs in this version.

Lemma D.2. Given a graph G with maximum degree d, an orientation where the out-degree and the
in-degree of each node is at most b(1 + ε)d/2c can be obtained in O((d2 log5 n)/ε) rounds provided that
(4 log1.5m)/d < ε < 1.

Theorem D.3. Suppose that ∆ ≥ d32 log1.5m/ε
2e, then an orientation where the out-degree and the

in-degree of each node is at most b(1 + ε)∆/2c can be obtained in O((log7 n)/ε3) rounds.

D.1 Randomized Directed Degree Splitting and Graphs with Bounded Arboricity

In this section, we show how to obtain an orientation with the out-degree of each node bounded by
d(1 + ε)ae for any 0 < ε < 1 in graphs with arboricity bounded by a.

Theorem D.4. There is a randomized distributed algorithm that in O(log4 n/ε3) rounds, produces an
orientation of a-arboricity graphs with per-node out-degree at most d(1 + ε)ae, for any 0 < ε < 1.

Notice that by setting ε = 1/a, we get an orientation with per-node out-degree at most a + 1
in O(a3 log4 n) rounds. Moreover, notice that each graph with maximum degree ∆ has arboricity
a ≤ ∆/2. Hence, the above theorem already supplies an orientation with per-node out-degree at
most d(1 + ε)∆/2e, in O(log4 n/ε3) rounds, which can again be made a much finer orientation with
out-degree at most d(∆ + 1)/2e, in O(∆3 log4 n) rounds, by setting ε = 1/∆. Moreover, our algorithm
is again augmentation-based and it satisfies the properties in Lemma D.1, which can be used to satisfy
the reqirement on both the in-degree and the out-degree of each node.

Corollary D.5. Given a graph G with maximum degree ∆, an orientation where the in-degree and
the out-degree of each node is bounded by d(1 + ε)∆/2e can be obtained in O(log4 n/ε3) for 0 < ε < 1.

Note that in comparision with our randomized algorithm stated in Theorem C.1 of Appendix C.1,
we have removed the dependency on ∆ in the running time. This is because in Appendix C.1 there
is a singularity on the augmenting paths who intersects on the last edge. Here, the structure of the
augmenting paths is the same with the flow networks. This allows us to apply the known techniques
such as the arguments of blocking-flows.

We now explain our method for achieving Theorem D.4. Let G0 be a directed graph obtained
by orienting the original graph arbitrarily. Let D = d(1 + ε)ae. Define an augmenting path to be a
directed path starting from a node with out-degree at least D+ 1 and ends at a node with out-degree
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at most D−1. By augmenting along an augmenting path, we flip all the edges to the reverse direction.
After the augmentation, the out-degree of the starting node decreased by 1 and the out-degree of the
ending node increased by 1.

Define G′0 to be a directed graph by adding a source node s and a sink node t to G0. Also, add
outdegG0

(u) − D edges from s to every node with degree at least D + 1 and add D − outdegG0
(u)

edges from every node with degree at most D − 1 to t. Now we will do multiple augmentations on
G′0 to obtain G′1 . . . G

′
l. Define Gi to be G′i \ {s, t}. First note that distG′0(s, t) ≥ 3. In step i, we will

find a maximal set of edge-disjoint paths of length 3 + i from s to t in G′i and augment along them to
obtain G′i+1. The standard blocking-flow type argument shows that the distance from s to t increases
after the augmentation.

Lemma D.6. distG′i(s, t) ≥ 3 + i for 0 ≤ i ≤ l.
Proof. We will show by induction that distG′i(s, t) ≥ 3 + i. When i = 0, it is true that distG′0(s, t) ≥ 3.

Suppose that it is true that distG′i(s, t) ≥ 3 + i. Consider G′i+1. Let P be a maximal set of paths of

length 3 + i from s to t in G′i. If P is non-empty, then all paths in it must have length 3 + i and so
they are the shortest paths.

First we show that distG′i+1
(x, t) ≥ distG′i(x, t) for every x by induction on distG′i(x, t). For a node

x with distG′i(x, t) = 1, it is obviously true that distG′i+1
(x, t) ≥ 1 since x 6= t. Suppose that it is true

that distG′i+1
(x, t) ≥ distG′i(x, t) for all distG′i(x, t) < k. For a node x with distG′i(x, t) = k, suppose

that there is a path P of length at most k − 1 from x to t in G′i+1. Then it must be the case that P
intersects with some path in P. Let uv be the first edge in P that has a non-empty intersection with
a path (say, Q) in P. Without loss of generality, assume that distG′i(u, t) = distG′i(v, t) + 1. We have:

distQ(s, u) + distQ(v, t) = 3 + (i− 1) (1)

distP (x, v) + distP (u, t) = k − 2 (2)

If distP (x, v) + distQ(v, t) ≤ k− 1, then it implies that distG′i(x, t) ≤ k− 1 and a contradiction occurs.
Otherwise, distP (x, v) + distQ(v, t) ≥ k − 2, we have

distQ(s, u) + distQ(u, t) = distQ(s, u) + distG′i(u, t)

≤ distQ(s, u) + distG′i+1
(u, t) by induction hypothesis

≤ distQ(s, u) + distP (u, t)

≤ 3 + (i− 1). by (1) and (2)

This contradicts with that distQ(s, t) = 3 + i. Therefore, we have distG′i+1
(x, t) ≥ distG′i(x, t) for all x.

Now suppose to the contrary that a path P ′ from s to t with length at most 3 + i exists in G′i+1. If P ′

does not intersect with any paths in P, then it must have length d and so it must have been included
in P. Otherwise, P ′ must intersect with some edge of the paths in P. Suppose that u′v′ is the first
edge P ′ has a non-empty intersection with and u′v′ ∈ Q′ ∈ P. Without loss of generality, assume that
distG′i(u

′, t) = distG′i+1
(v′, t) + 1. We have:

distQ′(s, u
′) + distQ′(v

′, t) = 3 + (i− 1) (3)

distP ′(s, v
′) + distP ′(u

′, t) ≤ 3 + i (4)

If distP ′(s, v
′) + distQ′(v

′, t) ≤ 3 + (i − 1), then distG′i(s, t) ≤ 3 + (i − 1), a contradiction occurs.

Otherwise, we have distP ′(s, v
′) + distQ′(v

′, t) ≥ 3 + i and

distQ′(s, u
′) + distQ′(u

′, t) = distQ′(s, u
′) + distG′i(u

′, t)

≤ distQ′(s, u
′) + distG′i+1

(u′, t)

≤ distQ′(s, u
′) + distP ′(u

′, t)

≤ 3 + (i− 1) by (3) and (4)

21



This contradicts with that distQ′(s, t) = 3 + i. Therefore, we must have distG′i+1
(s, t) ≥ 3 + (i+ 1)

Lemma D.7. Let Si denote the set of node with out-degree at least D+ 1 in Gi and Ti denote the set
of node with out-degree at most D − 1 in Gi. We have Si+1 ⊆ Si and Ti+1 ⊆ Ti.

Proof. Let P be the set of shortest path from s to t in G′i. Each P ∈ P must contain exactly one
node in Si as the second node, since P is a shortest path. Similarly, P must contain exactly one node
in Ti as the second to the last node. Therefore, augmenting along P can only decrease the out-degree
of the node in Si by 1 and increase the out-degree of Ti by 1 in Gi. The out-degrees of other nodes
remain the same. Therefore, it is impossible to create new nodes with out-degree at least D + 1 or
new nodes with out-degree at most D − 1.

Lemma D.8. No augmenting path of length at most l exists in Gl.

Proof. By Lemma D.6, we have distG′l(s, t) ≥ l+3. Suppose that P is an augmenting path with length
at most l in Gl. Let x and y be the starting node and the ending node of P . Since the out-degree
of x in Gl is at least D + 1, by Lemma D.7, the out-degree of x in G0 is also at least D + 1. This
implies outdegG0

(x) − D edges have been added from s to x. Since the out-degree of x is the same
in G′0, . . . G

′
l and the out-degree of x in Gl is at least D + 1, it must be the case that there is at least

one edge going from s to x in G′l. Similarly, it must be the case that there is at least one edge going
from y to t in G′l. This implies P can be extended to a direct path sP t of length l + 2 in G′l, which
contradicts with the fact distG′l(s, t) ≥ l + 3.

Therefore, no augmenting path of length at most l exists in Gl. However, by setting l =
Ω((log n)/ε), this contradicts with the following lemma.

Lemma D.9. Let G be a directed graph. Let D = d(1 + ε)ae, where a is the arboricity. Suppose that
the out-degree of u is at least D + 1, then an augmenting path from u of length O((log n)/ε) exists.

Proof. Let Bi be the set of all nodes reachable from u by directed paths of length i. We show by
induction that |Bi| ≥ (1 + ε)i−1, unless Bi includes a node of out-degree less than t in which case,
we have found an augmenting path of length i. The base case i = 0 is trivial as B0 = {u}. For the
inductive step, suppose that all nodes in Bi have out-degree at least D ≥ (1+ε)a. Then, Bi is incident
on at least |Bi| · D outgoing edges. Since all these edges have both their endpoints in Bi+1, and as
Bi+1 has at most a|Bi+1| edges by definition of arboricity, we get that |Bi+1| ≥ D

a |Bi| ≥ (1+ε) · |Bi| ≥
(1 + ε) · (1 + ε)i−1 = (1 + ε)i. Now, since this growth cannot continue beyond h = log1+ε n = O( logn

ε )
hops, as that would exhaust the graph, we get that there must be a node of out-degree less than D
within h hops, i.e., an augmenting path of length at most h = O( logn

ε ).

Lemma D.10. Suppose the current graph is Gi. Then, Gi+1 can be computed in O(i2 log n) round.

Proof. Recall that G′i+1 is obtained by augmenting along a maximal set of edge-disjoint paths from s
to t of length 2+ i in G′i. We consider the supergraph G, where each node denotes a path from s to t in
G′i of length 2 + i. An edge is added between two nodes, if the corresponding paths intersects at some
edges. Then, a maximal independent set (MIS) in G corresponds to a maximal set of edge-disjoint
paths from s to t of length i in G′i.

We will show how to how to simulate the computation of the MIS in G when the underlying
network is Gi. Let Si denote the set of nodes with out-degree at least D + 1 in Gi. Each node x ∈ Si
is responsible for the paths from s to t of length 2 + i whose second node is x (the first node is s).
Therefore, each node in G is taken care by some node x ∈ Si. One round of communication between
an edge in G can be simulated in O(i) rounds in Gi, since the length of the paths is 2 + i. Since the
number of paths of length 2 + i is at most n2+i, Luby’s MIS algorithm takes O(log n2+i) = O(i log n)
rounds. It takes O(i) rounds to simulate a round in G. Therefore, the running time is O(i2 log n).

The total running time is
∑l

i=1O(i2 log n) = O(log4 n/ε3).

22



Turning Low Out-Degree Orientations to Forest Decomposition: Above, we explained a
method for obtaining an orientation with out-degree a(1 + ε). This is immediately a decomposition
of the edges into a(1 + ε) pseudo-forests. Recall that a pseudo-forest is a graph where each connected
component is a pseudo-tree, that is a tree with the exception of having at most one more edge, which
creates one cycle. If we let each node number its at most a(1 + ε) out-going edges by numbers 1,
2, . . . , a(1 + ε) uniquely, then the edges of each number form a pseudo-forest, as they form a graph
with per-node out-degree at most 1. For practically all the distributed applications that we are aware
of, graphs with out-degree 1 are as good as trees. However, from an aesthetic viewpoint, having a
decomposition into actual forests would be much nicer. We next explain a method for decomposing
into forests in high-arboricity graphs. Indeed, the decomposition will have an extra property which
might be quite useful in the distributed context:

Lemma D.11. There is a randomized O(log n)-round algorithm that for graphs of arboricity a =
Ω(log n/ε2), transforms orientations with out-degree at most a(1 + ε) to an edge-decomposition into
a(1+8ε) forests, with high probability. Moreover, except for O(ε) fractions of the forests, each connected
component in the other forests is merely a star-graph, that is, a tree with diameter 2.

Proof. We first randomly build a(1 + ε) primary forests such that each node v has at most 3εa of its
outgoing edges not put in these forests. We then put these left-over edges into 7εa additional forests,
hence getting a decomposition into a(1+8ε) forests. The connected components of the primary forests
will be stars.

First, notice that some nodes might have out-degree less than a(1 + ε). For simplicity, we first
remove this imperfection, by giving each node v with out-degree dv exactly a(1 + ε)dv outgoing edges
that go to dummy nodes. These dummy nodes are just simulated by v and no other actual node will
need to interact with them. Now, each real node has out-degree a(1 + ε). Once we have the forest
decomposition, we will drop these edges going to the dummy nodes.

Call each real node v active in each of the primary a(1 + ε) forests with probability q = 1−ε
1+ε

independently. Given that a = Ω(log n/ε2), by a Chernoff bound, the number of active forests in each
node is a number in [a(1− 2ε), a], with high probability.

Now, we find the outgoing edges of each node in each of its active forests. For each forest i and
each node v, we will find an outgoing edge of v that goes to a neighbor u who is not active in forest
i (or a dummy neighbor u). We claim that node v can find a collection of such edges, one for each of
its active forests, with high probability, given that a = Ω(log n). The argument is as follows: we will
find these edges for the active forests of v greedily, and one by one. In each step, when looking for an
edge for forest i, there are at least aε outgoing edges of v remaining. This is because v has a(1 + ε)
outgoing edges and we only find edges for at most a active forests. Now each of the endpoints of
these remaining outgoing edges is active in the current forest i with probability q = 1−ε

1+ε . Hence, with

probability at least 1− (1−ε
1+ε)

aε ≥ 1− 1/poly(n), at least one of these outgoing neighbors is not active
in forest i. We assign the outgoing edge to that neighbor to forest i. Also, notice that this process
can be done in just 1 round, by each node informing its incoming neighbors of its active forests, and
then each node v picking its outgoing edges for its active forests. At the end, we have created a(1 + ε)
forests, where indeed each connected component is a star.

What remains for each node is at most 3εa outgoing edges. These can be put in 7εa additional
forests in O(log n) rounds, by a method of Barenboim and Elkin [BE10]. Hence, we have our desired
decomposition into a(1 + 8ε) forests.
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