
ar
X

iv
:1

80
4.

10
14

0v
1

 [
cs

.D
C

]
 2

6
A

pr
 2

01
8

Securing Distributed Machine Learning in High Dimensions

Lili Su

MIT

lilisu@mit.edu

Jiaming Xu

Purdue University

xu972@purdue.edu

April 27, 2018

Abstract

We consider securing a distributed machine learning system wherein the data is kept confi-
dential by its providers who are recruited as workers to help the learner to train a d–dimensional
model. In each communication round, up to q out of the m workers suffer Byzantine faults;
faulty workers are assumed to have complete knowledge of the system and can collude to behave
arbitrarily adversarially against the learner. We assume that each worker keeps a local sample
of size n. (Thus, the total number of data points is N = nm.) Of particular interest is the
high-dimensional regime d≫ n.

We propose a secured variant of the classical gradient descent method which can tolerate up
to a constant fraction of Byzantine workers. We show that the estimation error of the iterates
converges to an estimation error O(

√
q/N+

√
d/N) in O(logN) rounds. The core of our method

is a robust gradient aggregator based on the iterative filtering algorithm proposed by Steinhardt
et al. [SCV18] for robust mean estimation. We establish a uniform concentration of the sample
covariance matrix of gradients, and show that the aggregated gradient, as a function of model
parameter, converges uniformly to the true gradient function. As a by-product, we develop a
new concentration inequality for sample covariance matrices of sub-exponential distributions,
which might be of independent interest.

1 Introduction

Many effective and efficient distributed machine learning algorithms [BPC+11, JLY16] and sys-
tem [MNSJ15, PH96, DG08, LBG+12] have been proposed and implemented. In typical learning
frameworks, data is collected from its providers (who might or might not be voluntary) and stored
by the learner. Such data collection immediately leads to significant privacy risk and users’ pri-
vacy concerns. These privacy concerns root in not only pure psychological reasons but also the
poor real-world practice of privacy-preserving solutions. In fact, privacy breaches occur frequently,
with recent examples including Facebook data leak scandal, iCloud leaks of celebrity photos, and
PRISM surveillance program. Putting this privacy risk aside, the data providers often benefit from
the learning outputs. For example, in medical applications, although a participant may be em-
barrassed about his use of drugs, he might benefit from a good learning output that can provide
high-accuracy predictions of developing cancer [DJW14].

To resolve this dilemma of data providers, an alternative learning framework has been proposed
wherein the training data is kept confidential by its providers from the learner and the providers
function as workers [KMR15, fed, DJW14]. We refer to this framework as learning with external
workers. This framework arises in many practical systems such as Google’s Federated Learning
system [KMR15, fed], wherein Google tries to learn a model with the training data kept confidential
on the users’ mobile devices. In contrast to the traditional learning framework under which models

1

http://arxiv.org/abs/1804.10140v1

are trained within datacenters, in learning with external workers the learner faces serious security
risk. In particular, on the one hand, some external workers may be highly unreliable or even be
adversarial. For example, in Google’s Federated Learning, the users’ mobile devices may not be
always reliable and can be easily compromised by hackers. On the other hand, the leaner lacks
enough administrative power over those external workers and thus is vulnerable to adversarial
attacks. What’s worse, each worker/data provider typically has access to a sample of small size
comparing to the dimension of the model to train, as is often the case in Federated Learning. Two
immediate consequences are: (1) to learn an accurate model, the learner has to interact closely
with those external workers, and such close interaction gives the adversary more chances to foil the
learning process; (2) identifying the adversarial workers based on abnormality is highly challenging,
because it is difficult to distinguish the statistical errors from the adversarial errors due to small
sample sizes.

In this paper, we aim to develop strategies to safeguard distributed machine learning against
adversarial workers while keeping the following practical constraints in mind: 1

• Small local samples versus high model dimensions: While the total volume of data over all
workers may be large, individual workers may keep only small samples comparing to model
dimensions.

• Communication constraints: Transmission between the external workers and the learner typ-
ically suffers from high latency and low-throughout. Thus communication between them is a
scarce resource. In fact, communication cost is often argued to be the principal constraint in
Federated Learning [MMR+16, KMY+16, KMR15].

1.1 System Model

To formally study security issues in distributed maching learning, we consider a setup proposed
in [CSX17]. Specifically, let X denote the input data generated from some unknown distribution
P . Let Θ ⊂ R

d denote the set of all possible model parameters. We consider a risk function
f : X × Θ → R, where f(x, θ) measures the risk induced by a realization x of the data under the
model parameter choice θ. A classical example of the above statistical learning framework is linear
regression, where x = (w, y) ∈ R

d−1 × R is the feature-response pair and f(x, θ) = 1
2 (〈w, θ〉 − y)2.

The learner is interested in learning the model parameter choice θ∗ which minimizes the population
risk, i.e.,

θ∗ ∈ arg min
θ∈Θ

F (θ) , E [f(X, θ)] (1)

– assuming that E [f(X, θ)] is well-defined. The model choice θ∗ is optimal in that it minimizes the
expected risk to pay if it is used for prediction in the future over a freshly drawn data.

If P–the underlying distribution of X–were known, then the population risk might be evaluated
directly, and θ∗ might be computed by solving the minimization problem in (1). Unfortunately, in
statistical learning, the distribution P is typically unknown; instead, training data is available for

the learner to learn/estimate θ∗. Formally, we assume that there exist N i.i.d. data points Xi
i.i.d.∼ P

in the learning system. In this paper, we consider the distributed/decentralized learning system
wherein the training data is kept locally by data providers and cannot be accessed by the learner
directly. The learner can only request those providers to compute gradient-like quantities of the
locally kept data, as is the case in Federated Learning. We refer to those data providers as workers

1Depending on the detailed applications, there might be many other constraints such as unevenly distributed
training data, intermittent availability of mobile phones, etc.

2

as they can be viewed as workers that are “recruited” by the learner. We assume there are m
workers, and the N data points are distributed evenly across the m workers. Specifically, the index
set [N] is partitioned into m subsets Sj such that |Sj | = N/m , n, and Si ∩ Sj = ∅ for i 6= j. In
the example of Federated Learning, Google is the learner and users’ mobile devices, such as smart
phones, are the workers. Notably, the local data volume n is often much smaller than the model
dimension d, which we refer to as the high-dimensional regime.

We further assume the learner communicates with the workers in synchronous communication
rounds, while communication among non-faulty workers is not allowed. We leave the asynchronous
communication as one future direction. We consider the practical learning scenario wherein the
communication rounds are costly, as is the case in Federated Learning.

To capture the unreliability and potential malicious behaviors of the workers, we use the Byzan-
tine fault model [Lyn96]. In particular, we assume that among the m workers, up to q of them
might suffer Byzantine faults and thus behave arbitrarily and possibly maliciously. This arbitrar-
ily faulty behavior arises when the workers are reprogrammed and completely controlled by the
adversary. We refer to those faulty workers as Byzantine workers. We assume the learner knows
the upper bound q – a standard assumption in literature [DKK+17, CSV17, SCV18]. Nevertheless,
an effective and efficient learning algorithm that does not call for the knowledge of q as input is
highly desired. The set of Byzantine workers is allowed to change between communication rounds;
the adversary can choose different sets of workers to control across communication rounds. Byzan-
tine workers are assumed to have complete knowledge of the system, including the total number of
workers m, all N data points over the whole system, the programs that the workers are supposed
to run, the program run by the learner, and the realization of the random bits generated by the
learner. Moreover, Byzantine workers can collude. We assume that when the adversary gives up
the control of a worker, this worker recovers and becomes normal immediately. This implies that
Byzantine faults can only cause a worker to lie about the local data to the learner but cannot
corrupt the local data. It is easy to see that the Byzantine fault model covers the data-poisoning
attacks as a speical case.

As can be seen later, the (mobile) Byzantine faults creates unspecified dependency across com-
munication rounds — a key challenge in our algorithm design and convergence analysis.

1.2 Related Work

There is a recent flurry of work on securing distributed machine learning algorithms against
adversarial attacks [CSX17, CSV17, FXM14, SV16, DKK+17, DKK+16a, BMGS17, AAZL18,
YCRB18], among which the most related work is [CSX17, CSV17, FXM14, SV16, BMGS17,
AAZL18, YCRB18]. Both [SV16, BMGS17] considered a pure optimization framework and char-
acterizations of statistical performance of the learning outputs are left open; whereas [CSX17,
AAZL18, YCRB18] studied the same statistical learning framework as we do in this paper.

Among the proposed algorithms, the robust one-shot aggregation algorithm [FXM14] uses only
one round communication and hence is communication-efficient. Specifically, in robust one-shot
aggregation algorithm, each worker trains a preliminary model based on local sample and reports
it to the learner; then the learner robustly aggregates these preliminary models to obtain a final
model. However, the correctness of this algorithm relies crucially on the assumption that the local
sample size satisfies n = N/m ≫ d, so that a preliminary model is sufficiently close to the true
model, which excludes its applications to the high-dimensional regime.

There have been attempts to robustify stochastic gradient descent (SGD) against adversarial
workers [BMGS17, AAZL18]. In every iteration/round of SGD, each worker computes a gradient
using only a single fresh random data point. Even when the population risk function F is strongly

3

convex, the mean squared error of SGD is only O(1/t) with t iterations [NJLS09]. Therefore,
SGD requires a large number of communication rounds to achieve a small estimation error and at
every communication round, a d-dimensional gradient needs to be transmitted from every worker
to the learner. This is undesirable for many applications where the model dimensions are high and
communication cost is the principal constraint [KMY+16, MMR+16].

In constrast to SGD, under full gradient descent, each worker computes the gradient based
on all locally available n data samples. When the population risk function F is strongly convex,
full gradient descent converges exponentially fast, and hence requires only a few communication
rounds. This makes full gradient descent approach particularly appealing in the high-dimensional
regime. The previous work [CSX17] proposed a computationally-efficient algorithm – Byzantine-
resilient gradient descent (BGD) method, where in each round the learner computes the geometric
median of means of the gradients reported by the workers. It was shown that BGD converges in
logarithmic rounds with an estimation error on the order of

√
dq/N for q ≥ 1, which is larger than

minimax-optimal error rate
√
d/N in the failure-free setting by at most a factor of

√
q. In fact,

geometric median is shown to be fundamentally suboptimal in high dimension [DKK+16b]. In the
low dimensional regime where d = O(1), more recent work [YCRB18] obtains an order-optimal
error rate based on coordinate-wise median and trimmed mean, but the dependency of error rate
on dimension d is still highly suboptimal.

1.3 Contributions

In this work, we propose a robust version of full gradient descent method that tolerates up to
a constant fraction of adversarial workers and converges to a statistical estimation error on the
order of O(

√
q/N +

√
d/N) with O(logN) communication rounds. We adapt the iterative filtering

approach originally proposed for robust mean estimation problems [SCV18] to our distributed
statistical learning setting. In particular, in each round, we use this iterative filtering approach to
robustly aggregate the gradients reported by the external workers.

On the technical front, in contrast to robust mean estimation, in robust gradient descent, we
need to deal with the interplay of the randomness of the data and the iterative updates of θ: the
iterates and the associated gradients are highly dependent on each other 2. What’s worse, due to
the fact that the Byzantine workers can behave arbitrarily, the aforementioned dependency can not
even be specified. To handle this, we first establish the concentration of sample covariance matrix
of gradients uniformly at all possible model parameters. Then we further prove that our aggregated
gradient, as function of θ, converges uniformly to the population gradient function ∇F (·).

Similar uniform convergence concentration of sample covariance matrix has been derived in
[CSV17, Lemma 2.1] under the assumption that the gradients are sub-gaussian. However, it turns
out that even in the simplest linear regression example, the gradients are sub-exponential instead
of sub-gaussian. To this end, we develop a new concentration inequality for sample covariance
matrices of sub-exponential distributions, which might be of independent interest.

2 Our Robust Gradient Descent Approach and Main Results

Recall that our goal is to learn the optimal model choice θ∗ defined in (1), i.e., θ∗ ∈ arg minθ∈Θ F (θ),
where F (θ) , E [f(X, θ)] for all θ ∈ Θ. A standard approach to estimate θ∗ in statistical learning

2For online learning with fresh data drawn at each iteration, the gradients computed in a given iteration are
independent from the gradients previously computed conditioning on the current iterate. Thus, securing the gradient
descent is reduced to the robustly estimating the mean from i.i.d. samples [DKK+17, DKK+16b, CSV17, SCV18].

4

is via empirical risk minimization. Given N independent copies X1, · · · ,XN of X, the empirical
risk function is a random function over Θ defined as

1

N

N∑

i=1

f(Xi, θ), ∀θ ∈ Θ.

By the functional law of large numbers, the empirical risk function converges uniformly to the

population risk function in probability, i.e., supθ∈Θ
∣∣∣ 1N
∑N

i=1 f(Xi, θ)− F (θ)
∣∣∣ converges to 0 in

probability as sample size N → ∞. As a consequence, we expect the minimizer of the empirical
risk function (which is random) also converges to the population risk minimizer θ∗ in probability.
Unfortunately, even a single Byzantine worker can completely skew the empirical risk function and
thus foils the whole empirical risk minimization approach [SV16]. While it may be possible to secure
the empirical risk minimization using some “robust” versions of empirical risk functions [SV16,
CSV17], the characterizations of the estimation error are either unavailable or too loose. Moreover,
in our distributed settting, it is costly to transmit the local emprical risk function from every worker
to the learner.

In this paper, we take a different approach: Instead of robustifying the empirical risk functions,
we aim at robustifying the learning process. Specifically, we focus on securing the gradient de-
scent method against the interruption caused by the Byzantine workers during model training. As
commented in the introduction, due to the fact that (1) the local sample sizes are typically small,
and that (2) the communication is a scarce resource (in terms of rounds), we consider full gradient
descent – having each non-faulty worker compute gradient based on the entire local sample.

2.1 Approximate Gradient Descent Method

To motivate our Approximate Gradient Descent Method, let’s first consider the ideal case where
the population risk function F is known. In this case, the learner is able to perform the standard
gradient descent update:

θt = θt−1 − η ×∇F (θt−1), (2)

where η is some fixed stepsize, and θ0 is the given initial guess of θ∗. It is well-known [BV04] that
θt converges to θ∗ exponentially fast under the following standard assumption.

Assumption 1. The population risk function F : Θ→ R is M -strongly convex, and differentiable
over Θ with L-Lipschitz gradient. That is, for all θ, θ′ ∈ Θ,

F (θ′) ≥ F (θ) +
〈
∇F (θ), θ′ − θ

〉
+
M

2

∥∥θ′ − θ
∥∥2 ,

and

∥∥∇F (θ)−∇F (θ′)
∥∥ ≤ L

∥∥θ − θ′
∥∥ .

Note that both M and L may scale in d – the dimension of θ. Under Assumption 1, choosing
the stepsize η in (2) to be M/(2L2), it holds that

‖θt − θ∗‖ ≤
(

1−
(
M

2L

)2
)t/2

‖θ0 − θ∗‖ . (3)

5

Thus ‖θt − θ∗‖ converges to 0 exponentially fast as long as M/(2L) is bounded away from 1.
Exponential convergence (or even faster convergence) is highly desired because the communication
between the learner and the workers is costly.

Now consider the more practical case where the population risk F is unknown. In this case,
the population gradient ∇F (θ) used in the standard gradient descent update (2) is unavailable.
Nevertheless, if the learner, by interacting with the workers (among whom up to q workers may be
Byzantine), is able to obtain good estimates of the population gradients ∇F (θ), the learner may
learn θ∗ exponentially fast as well. In particular, if the learner could have access to an approximate
gradient function G(θ) : Θ→ R

d such that

‖G(θ)−∇F (θ)‖ ≤ ξ1 + ξ2 ‖θ − θ∗‖ , ∀θ ∈ Θ, (4)

where ξ1 > 0 and ξ2 > 0 are two positive precision parameters that are independent of θ, and run
the following approximate gradient descent:

θt = θt−1 − η ×G(θt−1), (5)

where η = M/(2L2), it follows immediately from (3) and the triangle inequality that

‖θt − θ∗‖ ≤
(√

1−M2/(4L2) +M/(2L2)ξ2

)
‖θt−1 − θ∗‖+M/(2L2)ξ1. (6)

Hence, as long as
√

1−M2/(4L2) + M/(2L2)ξ2 is bounded away from 1, ‖θt − θ∗‖ converges to
M/(2L2)ξ1 exponentially fast. See [CSX17] for details. Therefore, to learn θ∗, it remains for the
learner to compute an approximate gradient function G : Θ→ R

d with small ξ1 and ξ2, despite the
fact that the training data is kept collectively by the workers among whom up to q of them may
be Byzantine.

Algorithm 1 Approximate Gradient Descent Method: Round t ≥ 1

The learner:

1: Initialization: Let θ0 be an arbitrary point in Θ. Let η = M
2L2 .

2: Broadcast the current model iterate θt−1 to all workers;
3: Wait to receive all the gradients reported by the m workers; Let gj(θt−1) denote the value

received from worker j.
If no message from worker j is received, set gj(θt−1) to be some arbitrary value;

4: Aggregate gradients: Pass the received gradients to a gradient aggregator R to obtain an
aggregated gradient G(θt−1), i.e.,

G(θt−1) ← R(g1(θt−1), · · · , gj(θt−1), · · · , gm(θt−1)). (7)

5: Update: θt ← θt−1 − η ×G(θt−1);

Worker j:

1: On receipt of θt−1, compute the gradient at θt−1, i.e., 1
n

∑
i∈Sj
∇f(Xi, θt−1);

2: Send 1
n

∑
i∈Sj
∇f(Xi, θt−1) back to the learner;

6

Next we describe our approximated (full) gradient descent method given by Algorithm 1. In
Algorithm 1, θ0 is initialized to be an arbitrary point in the parameter space Θ. In each round
t ≥ 1, the learner broadcasts θt−1 to all workers. If worker j is non-faulty at round t, on receipt of
θt−1, it computes its local gradient 1

n

∑
i∈Sj
∇f(Xi, θt−1) at θt−1 and reports the computed gradient

to the learner; if worker j is Byzantine faulty at round t, instead of reporting the true local gradient
1
n

∑
i∈Sj
∇f(Xi, θt−1), it may report arbitrary value to the learner. Formally,

gj(θt−1) =

{
1
n

∑
i∈Sj
∇f(Xi, θt−1), if worker j is non-faulty at round t;

⋆, otherwise.

where ⋆ denotes arbitrary value. In addition, the Byzantine workers are allowed to use all the
information of the system to determine the value to report. In line 4 of Algorithm 1, the learner
aggregates the received gradients via a gradient aggregator R (an algorithmic function) to obtain
an approximate gradient G(θt−1) at θt−1. In line 5, the learner updates θt using a gradient descent
step. Since the system is synchronous, the learner can proceed from line 3 to lines 4 and 5.

We will specify our choice of gradient aggregator R in the next subsection. Before that, we
provide a remark on the vulnerability of the standard “averaging” for gradient aggregation.

Remark 1. In the traditional failure-free setting, the learner can simply take the average of the
received gradients:

G(θt−1) =
1

m

m∑

j=1

1

n

∑

i∈Sj

∇f(Xi, θt−1) =
1

N

N∑

i=1

∇f(Xi, θt−1).

By the functional law of large numbers, as N →∞,

sup
θ

∣∣∣∣∣
1

N

N∑

i=1

∇f(Xi, θt−1)−∇F (θ)

∣∣∣∣∣→ 0 in probability.

Hence, by the property (6) of approximate gradient descent, θt converges to θ∗ exponentially fast
in probability. Unfortunately, averaging is not resilient to Byzantine fault. In fact, even a single
Byzantine worker can completely skew the average of the local gradients and thus foils the whole
gradient descent algorithm. Neither the average over a randomly selected subset of received gra-
dients is resilient to a single Byzantine fault. This is because Byzantine workers have complete
information of the system, including the gradients reported by other workers and the realization of
the random bits generated by the learner.

To secure the distributed gradient descent against Byzantine faults, the previous work [CSX17]
chooses the gradient aggregator R to be the geometric median of means, which is known to be
computationally efficient. The estimation error of the obtained learning algorithm is on the order
of
√
dq/N (where q ≥ 1), which is larger than the minimax-optimal error rate

√
d/N in the failure-

free setting by at most a factor of
√
q. In the high dimensional regime, the multiplicative

√
q factor

is highly suboptimal. To illustrate this, suppose each worker has only one data point, i.e., n = 1.
To guarantee a small estimation error, the fraction of Byzantine machines q/m needs to be much
smaller than 1/d.

Next, we present a gradient aggregator which is originally proposed for the problem of robust
mean estimation [SCV18]. The existing performance guarantees and analysis are far from being
applicable to our statistical learning problems directly. The reason is two-fold: (1) the literature on
robust mean estimation [SCV18] often focuses on q/m = Θ(1), whereas we are mainly interested in
q/m = O(1); (2) for robust mean estimation [SCV18], only a concentration of good random data
points is needed, whereas in our setting, we need to establish a concentration of random functions.

7

2.2 Robust Gradient Aggregator

In this subsection, we present the robust gradient aggregator R that will be used in Algorithm 1.
Robust gradient aggregation is closely related to robust mean estimation, formally stated next.

Definition 1 (Robust mean estimation). Let S = {y1, · · · , ym} be a sample of size m, wherein
each of the data point yi is generated independently from an unknown distribution. Among those
m data points, up to q of them may be adversarially corrupted. Let {ŷ1, · · · , ŷm} be the observed
sample. The goal is to estimate the true mean of the unknown distribution when only corrupted
sample {ŷ1, · · · , ŷm} is accessible.

A very interesting recent line of work on robust mean estimation [DKK+16a, DKK+17, SCV18]
discovers computationally efficient iterative filtering approaches that can achieve a bounded esti-
mation error as long as at most a constant fraction (q/m = Θ(1)) of data is corrupted, irrespective
of dimension d. In this paper, we consider an iterative filtering algorithm proposed in [SCV18],
formally presented in Algorithm 2. At a high level, Algorithm 2 iteratively finds a direction along
which all data points are spread out the most, and filters away data points which have large residual
errors projected along this direction, by solving (8) and (9) for a saddle point (W,U). See Appendix
D for detailed discussions.

Algorithm 2 Iterative Filtering for Robust Mean Estimation [SCV18]

Input: Corrupted sample {ŷ1, · · · , ŷm} ⊆ R
d, 1− α , ǫ ∈ [0, 14), and σ > 0.

Initialization: A← {1, · · · ,m}, ci ← 1 and τi ← 0 for all i ∈ A.

1: while true do

2: Let W ∈ R
|A|×|A| be a minimizer to the following convex program:

min
0≤Wji≤ 4−α

α(2+α)m∑
j∈A Wji=1

max
U�0

Tr(U)≤1

∑

i∈A
ci


ŷi −

∑

j∈A
ŷjWji




⊤

U


ŷi −

∑

j∈A
ŷjWji


 , (8)

and U ∈ R
d×d be a maximizer to the following convex program:

max
U�0

Tr(U)≤1

min
0≤Wji≤ 4−α

α(2+α)m∑
j∈A

Wji=1

∑

i∈A
ci


ŷi −

∑

j∈A
ŷjWji




⊤

U


ŷi −

∑

j∈A
ŷjWji


 . (9)

3: For i ∈ A, τi ←
(
ŷi −

∑
j∈A ŷjWji

)⊤
U
(
ŷi −

∑
j∈A ŷjWji

)

4: if
∑

i∈A ciτi > 8mσ2 then

5: For i ∈ A, ci ←
(

1− τi
τmax

)
ci, where τmax = maxi∈A τi.

6: A ← A/
{
i : ci ≤ 1

2

}
.

7: else

8: Break while–loop.
9: end if

10: end while

11: return µ̂ = 1
|A|
∑

i∈A ŷi.

8

In each iteration in the while-loop, the column/row indices of W ∈ R
|A|×|A| correspond to the

data indices remained in A, and at least one point is removed from set A. Thus, this loop will
be executed at most m times. Given the corrupted sample {ŷ1, · · · , ŷm}, ǫ, and σ, Algorithm 2
deterministically outputs an estimate µ̂ differing from the true sample mean by at most a bounded
distance, formally stated next.

Lemma 1. [SCV18] Let S = {y1, · · · , ym} be the true sample. Define µS = 1
m

∑m
i=1 yi as the

sample mean on S. Let {ŷ1, · · · , ŷm} ⊆ R
d be the observed sample, which is obtained from S by

adversarially corrupting up to q data points. Suppose that
∥∥∥∥∥

1

m

∑

i∈S
(yi − µS) (yi − µS)⊤

∥∥∥∥∥ ≤ σ
2. (10)

Then for q/m = ǫ ≤ 1
4 , Algorithm 2 outputs a parameter µ̂ such that

‖µ̂− µS‖ = O(σ
√
ǫ). (11)

Remark 2. Let µ be the true mean of the unknown underlying distribution. By triangle inequality,

‖µ̂− µ‖ ≤ ‖µ̂− µS‖+ ‖µS − µ‖ = O
(
σ
√
ǫ
)

+ ‖µS − µ‖ .

Thus, to characterize ‖µ̂− µ‖ – the estimation error of the output of µ̂, it is enough to control the

spectral norm
∥∥∥ 1
m

∑
i∈S (yi − µS) (yi − µS)⊤

∥∥∥ of covariance matrix of the uncorrupted sample and

the deviation of the empirical average ‖µS − µ‖ – the latter of which is standard.

Remark 3. Note that
∥∥∥∥∥

1

m

∑

i∈S
(yi − µS) (yi − µS)⊤

∥∥∥∥∥ =
1

m

∥∥∥
(

[y1, · · · , ym]− µS1⊤m
) (

[y1, · · · , ym]− µS1Tm
)⊤∥∥∥

=
1

m

∥∥∥[y1, · · · , ym]− µS1⊤m
∥∥∥
2

≤ 1

m

(∥∥∥[y1, · · · , ym]− µ1⊤m
∥∥∥+
√
m ‖µ− µS‖

)2
,

where 1m ∈ R
m is an all-ones vector. Therefore, to guarantee (10), it is enough to bound ‖µ− µS‖

and 1√
m

∥∥[y1, · · · , ym]− µ1⊤m
∥∥.

Remark 4. The termination condition of Algorithm 2 needs to know σ. In the case where we do
not know σ a priori, the termination condition for Algorithm 2 can be replaced by checking the
cardinality of set |A| instead. In particular, we can replace the if condition in line 4 as

if

∣∣∣∣A \
{
i :

(
1− τi

τmax

)
ci ≤

1

2

}∣∣∣∣ ≥
α(2 + α)m

4− α then

The correctness of this modification can be found in Appendix D.3.

Our statement of Lemma 1 is slightly different from [SCV18, Proposition 16]. The focus therein
is on adversarial data insertion, where ǫm arbitrary data points are inserted to a sample of size
(1− ǫ)m in R

d and the goal is to obtain a robust mean estimator with a constant error independent
of the dimension d. In this case, it is enough to have a significantly large proportion of good
data points which enjoys nice spectral concentration in the sense of (10). In contrast, here we are

9

dealing with more challenging data corruption, where an adversary can look up all m good data
points in the original sample, and arbitrarily corrupt any ǫ fraction of them. More importantly, the
concentration for the robust mean estimation is point-wise, and ǫ therein is implicitly assumed to
be bounded away from 0, i.e., ǫ = Θ(1). However, in general statistical learning problem, uniform
concentration is typically involved and diminishing ǫ is of primary interest. Thus, in this paper, we
require the whole set of good data points to have nice spectral concentration according to (10).

We present the proof of Lemma 1 in Appendix D for completeness.

2.3 Main Results

In this work, we use Algorithm 2 as our robust gradient aggregator R, with inputs

ŷ1(θ) = g1(θ), · · · , ŷm(θ) = gm(θ),

where g1(θ), · · · , gm(θ) are the gradients reported by the m workers, among which up to q reported
gradients may not be the true local gradients. The true m local gradients are

y1(θ) =
1

n

∑

i∈S1

∇f(Xi, θ), · · · , ym(θ) =
1

n

∑

i∈Sm

∇f(Xi, θ),

– recalling that |Sj| = n = N
m for j ∈ [m]. The sample mean µS(θ) is

1

m

m∑

j=1


 1

n

∑

i∈Sj

∇f(Xi, θ)


 =

1

N

N∑

i=1

∇f(Xi, θ),

and the population mean E [Y (θ)] is ∇F (θ). In view of Lemma 1, to guarantee that the aggregated
gradient is close to the true gradient, we need to characterize the upper bound in (10) for all θ ∈ Θ.
From Remarks 2 and 3, we know that to bound the spectral norm of the sample covariance matrix
uniformly over θ ∈ Θ, it suffices to bound

1√
m

∥∥∥∥∥∥


 1

n

∑

i∈S1

∇f(Xi, θ)−∇F (θ), · · · , 1

n

∑

i∈Sm

∇f(Xi, θ)−∇F (θ)



∥∥∥∥∥∥

(12)

and
∥∥∥∥∥

1

N

N∑

i=1

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ (13)

uniformly over all θ ∈ Θ.
To this end, we need a set of standard technical assumptions, which are also made in [CSX17].

It can be checked that the standard linear regression satisfies these assumptions [CSX17]. Let
Sd−1 =

{
v ∈ R

d : ‖v‖ = 1
}

denote the unit Euclidean sphere.

Assumption 2. The sample gradient at the optimal model parameter θ∗, i.e., ∇f(X, θ∗), is sub-
exponential with constants (σ1, α1), i.e., for every unit vector v ∈ Sd−1,

E [exp (λ〈∇f(X, θ∗), v〉)] ≤ eσ2
1λ

2/2, ∀|λ| ≤ 1

α1
.

We further assume the Lipschitz continuity of the sample gradient functions.

10

Assumption 3. There exists an L′ such that

∥∥∇f(X, θ)−∇f(X, θ′)
∥∥ ≤ L′ ∥∥θ − θ′

∥∥ ∀ θ, θ′ ∈ Θ.

For applications where Assumption 3 does not hold deterministically, it suffices to have As-
sumption 3 hold with high probability for all training data. Notably, L′ may be much larger than
L and scale polynomially in N and d. However, L′ affect our results only by logarithmic factors
logL′.

Next define the gradient difference function

h(X, θ) = ∇f(X, θ)−∇f(X, θ∗)− (∇F (θ)−∇F (θ∗)) . (14)

Note that h(X, θ)/ ‖θ − θ∗‖ characterizes the change of f(X, θ) − ∇F (θ) from f(X, θ∗) − ∇F (θ∗)
in terms of distance of θ from θ∗; hence it can viewed as a a local Lipschitz parameter with respect
to θ∗.

Assumption 4. The local Lipschitz parameter h(X, θ)/ ‖θ − θ∗‖ is sub-exponential with constants
(σ2, α2), i.e.., for fixed θ and v,

E

[
exp

(
λ〈h(X, θ), v〉
‖θ − θ∗‖

)]
≤ eσ2

2λ
2/2, ∀|λ| ≤ 1

α2
.

Notably, Assumption 4 assumes a concentration of the local Lipschitz parameter with respect
to θ∗, instead of a global Lipschitz parameter.

2.3.1 Standard Concentration Inequalities

For any fixed θ, the matrix in (12) is of independent columns. Standard routine to bound the spec-
tral norm of (12) is available, see [Ver10, Theorem 5.44] and [ALPTJ10, Corollary 3.8] for example.
To get a uniform concentration result, we can use ǫ–net argument to extend the concentration of
a fixed θ to uniform over all θ ∈ Θ. Nevertheless, using the standard matrix concentration results,
the concentration bound we get is far from being optimal.

The following theorem is a standard concentration inequality for matrices with sub-exponential
columns [ALPTJ10, Corollary 3.8].

Theorem 1. Let A be a d × m matrix whose columns Aj are i.i.d., zero-mean, sub-exponential

random vectors in R
d with the scaling parameters σ and α. Assume that σ, α = O(1) and m ≤ e

√
d.

There are absolute positive constants C and c such that for every K ≥ 1, with probability at least

1− e−cK
√
d,

‖A‖ ≤ CK
(√

m+
√
d
)
.

Note that assuming m ≤ e
√
d only loses minimal generality in the high-dimensional regime. The

above theorem is tight up to constant factors when the tail probability is on the order of e−
√
d, i.e.,

when K = Θ(1) [ALPTJ10][Remark 3.7]. However, in our problem, to guarantee a uniform bound
of the spectral norm of (12), we need a tail probability on the order of e−d, i.e., K ≈

√
d. In this

case, Theorem 1 yields an upper bound on the order of
√
md + d. Using [Ver10, Theorem 5.44],

we can obtain an alternative upper bound O(
√
m+ d3/2). Both of these two upper bounds are not

tight.
Next, we develop a new matrix concentration inequality, proving a nearly tight upper bound

on the order of
√
m+ d up to logarithmic factors.

11

2.3.2 New Concentration Inequalities

A key step in deriving a concentration inequality for matrices with sub-exponential random vectors
is to obtain a large deviation inequality for the sum of independent random variables whose tails
decay slower than sub-exponential random variables. Note that in this case, the moment generating
function may not exist and thus we cannot follow the standard approach to obtain a large deviation
inequality by invoking the Chernoff bound. To circumvent this, we partition the support of a real-
valued random variable Y into countably many finite segments, and write Y as a summation of
component random variables, each of which is supported on its corresponding segment. Due to
the fact that each segment is of finite length, we can apply the Bennett’s inequality for bounded
random variables (cf. Lemma 5). Then we take a union bound to arrive at a concentration result
of the original Y . Some additional care is needed in choosing the partition. Our proof is inspired
by Proposition 2.1.9 and Excercise 2.1.7 in [Tao12].

Lemma 2. Let Y be a random variable whose tail probability satisfies

P {|Y | ≥ t} ≤ exp (−E(t)) ,

where E(t) : R+ → [0,∞] is a non-decreasing function. Suppose that there exists t0 ≥ e2 such that
for all t ≥ t0

E(ek−1) ≥ 2 (2k + 4 log(k + 1) + log 2− log t) , ∀k with 4(k + 1)2ek ≥ t, ∀t ≥ t0, (15)

and

E(t)/t is monotone in t. (16)

Let Y1, · · · , Ym be m independent copies of Y . Then if E(t)/t non-decreasing

P





∣∣∣∣∣∣

m∑

j=1

Yj −mE [Y]

∣∣∣∣∣∣
≥ mt



 ≤ 2 log(mt) exp

(
− m

4(log(mt) + 1)2
E

(
t

4e log2 t

))

+ exp

(
−1

2
E

(
mt

e

))
; (17)

if E(t)/t is non-increasing

P





∣∣∣∣∣∣

m∑

j=1

Yj −mE [Y]

∣∣∣∣∣∣
≥ mt



 ≤ 2 log(mt) exp

(
− 1

4e(log(mt) + 1)2
E

(
mt

e

))

+ exp

(
−1

2
E

(
mt

e

))
. (18)

Remark 5. Let us consider the following special cases:

• Suppose Y is sub-Gaussian. In this case, E(t) = ct2 for a universal constant c > 0. Thus,
there exists a universal constant t0 ≥ e2 such that both (15) and (16) hold. It follows from
Lemma 2 that for all t ≥ t0,

P





∣∣∣∣∣∣

m∑

j=1

Yj −mE [Y]

∣∣∣∣∣∣
≥ mt



 ≤ 2 log(mt) exp

(
− cmt2

64e2 log2(emt) log4 t

)
+ exp

(
−cm

2t2

2e2

)
,

which gives the desired sub-Gaussian tail bound up to logarithmic factors.

12

• Suppose Y is sub-exponential. In this case, E(t) = ct for a universal constant c. Thus, there
exists t0 ≥ e2 that only depends on c such that both (15) and (16) hold. It follows from
Lemma 2 that for all t ≥ t0 (large deviation region),

P





∣∣∣∣∣∣

m∑

j=1

Yj −mE [Y]

∣∣∣∣∣∣
≥ mt



 ≤ 2 log(mt) exp

(
− cmt

16e log2(emt) log2 t

)
+ exp

(
−cmt

2e

)
,

which gives the desired sub-exponential tail bound up to logarithmic factors.

• Suppose Y = Z2, where Z is sub-exponential. In this case, E(t) = c
√
t for a universal

constant c > 0. Thus, there exists t0 ≥ e2 that only depends on c such that both (15) and
(16) hold. It follows from Lemma 2 that for all t ≥ t0 (large deviation region),

P





∣∣∣∣∣∣

m∑

j=1

Yj −mE [Y]

∣∣∣∣∣∣
≥ mt



 ≤ 2 log(mt) exp

(
− c

√
mt

4e
√
e log2(emt)

)
+ exp

(
−c
√
mt

2
√
e

)
.

Despite the fact that Lemma 2 is loose up to logarithmic factors comparing to the standard sub-
gaussian and sub-exponential random variables, Lemma 2 applies to much larger family than the
sub-gaussian distributions, and requires much less structures on the distributions. In particular,
Lemma 2 does not even require the existence of moment generating function.

The proof of Lemma 2 can be found in Appendix B. Lemma 2 is our key machinery to obtain
a concentration inequality for matrices with i.i.d. sub-exponential random vectors.

Theorem 2. Let A be a d×m matrix whose columns Aj are independent and identically distributed
sub-exponential, zero-mean random vectors in R

d with parameters (σ, α). Assume that

σ/α = Ω(1). (19)

Then with probability at least 1− δ,

‖A‖ ≤ c
(
σ
√
m+ σφ

(
d+ log

1

δ

)
+ αφ2

(
d+ log

1

δ

))
,

where c is a universal positive constant and φ(x) : R→ R is a function given by φ(x) =
√
x log3/2(x).

Remark 6. We discuss two consequences of Theorem 2.

• Suppose α = 0. In this case, A has sub-Gaussian columns, and Theorem 2 implies that

‖A‖ . σ

(
√
m+

√
d+ log

1

δ
log3/2

(
d+ log

1

δ

))
,

which matches the sub-Gaussian matrix concentration inequality [Ver18][Theorem 5.39] up
to logarithmic factors.

• Suppose σ, α = Θ(1), and log(1/δ) = d. In this case, we get that with probability at least
1− e−d,

‖A‖ .
√
m+ d log3 d implied by Theorem 2 , (20)

13

whereas the analogous bound implied by Theorem 1 is on the order of
√
md + d. The up-

per bound (20) is tight up to logarithmic factors. To see this, consider an example, where
Aj ’s are i.i.d. isotropic Laplace distribution with the density function given by f(x) =∏d

i=1(1/
√

2) exp
(
−
√

2xi
)

for x ∈ R
d. In this case, note that

{
‖A‖ ≥ max{

√
m/2, d}

}
⊇



|A11| ≥ d and

m∑

j=1

A2
2j ≥ m/2



 .

Since

P {|A11| ≥ d} =

∫

|t|≥d

1√
2

exp
(
−
√

2t
)

dt = exp
(
−
√

2d
)
,

and by Chebyshev’s inequality,

P





m∑

j=1

A2
2j ≥ m/2



 ≥ 1−O(1/m) ≥ 1

2

for m suffciently large, and A11 is independent of
∑m

j=1A
2
2j , it follows that

P

{
‖A‖ ≥ max{

√
m/2, d}

}
≥ P



|A11| ≥ d and

m∑

j=1

A2
2j ≥ m/2



 ≥

1

2
exp

(
−
√

2d
)
.

2.3.3 Convergence of Approximate Gradient Descent Method

Recall from Subsection 2.1 that if the learner could have access to an approximate gradient function
G(θ) : Θ→ R

d such that

‖G(θ)−∇F (θ)‖ ≤ ξ1 + ξ2 ‖θ − θ∗‖ , ∀θ ∈ Θ,

for small enough ξ1 > 0 and ξ2 > 0 that are independent of θ, and run approximate gradient descent
in (5), then ‖θt − θ∗‖ converges to M/(2L2)ξ1 exponentially fast.

With Algorithm 2 as our robust gradient aggregator R in Algorithm 1, we show that the learner
can indeed access those desired good approximate gradient.

Theorem 3. Suppose Assumptions 1, 2, 3, and 4 hold. Assume that log(L + L′) = O(log(Nd))
and Θ ⊂ {θ : ‖θ − θ∗‖ ≤ r} for some positive parameter r such that log r = O(log(Nd)). Suppose

N ≥ cd2 log8(Nd)) for a sufficiently large constant c and m ≤ e
√
d. Let G(θ) (for each θ ∈ Θ) be

the aggregated gradient returned by Algorithm 2. Then with probability at least 1− 2e−
√
d,

‖G(θ)−∇F (θ)‖ .

(√
q

N
+

√
d

N
log2(Nd)

)
‖θ − θ∗‖+

(√
q

N
+

√
d

N

)

holds for all θ ∈ Θ.

Theorem 3 allows both the Lipschitz constant of the population gradient L and that of the
sample gradient L′ to scale in d and N . Theorem 3 also allows the diameter of Θ to scale in d and
N . We postpone the proof of Theorem 3 to Section 3.

14

Remark 7. Theorem 3 requires the total sample size N & d2 (ignoring the logarithmic factors),
which is due to our sub-exponential assumption 3 of local Lipscthiz parameter h(X, θ)/ ‖θ − θ∗‖.
This sample size requirement N & d2 is inevitable as can be seen from the linear regression example
(cf. Remark 8). If instead h(X, θ)/ ‖θ − θ∗‖ is assumed to be sub-Gaussian, then N & d suffices.

Theorem 4. Consider the same setup as Theorem 3. Further assume that N ≥ c′q for a sufficiently

large constant c′, and M ≥ 1. Then with probability at least 1 − 2e−
√
d,the iterates {θt} given by

Algorithm 1 with η = L/(2M2) satisfy

‖θt − θ∗‖ .
(

1− M2

16L2

)t

‖θ0 − θ∗‖+

(√
q

N
+

√
d

N

)
.

Proof. From Theorem 3, we know that there a constant c0 such that with probability at least

1− 2e−
√
d, for all θ ∈ Θ,

‖G(θ)−∇F (θ)‖ ≤ c0
((√

q

N
+

√
d

N
log2(Nd)

)
‖θ − θ∗‖+

(√
q

N
+

√
d

N

))
.

Let

ρ ,

√
1− M2

4L2
+ c0

M

2L2

(√
q

N
+

√
d

N
log2(Nd)

)
.

Recall that, by definition, M ≤ L. For sufficiently large constants c′ and c such that N ≥ c′q,
N ≥ cd2 log8(Nd), it holds that

c0
M

2L2

(√
q

N
+

√
d

N
log2(Nd)

)
≤ M

16L2
.

Consequently,

ρ ≤
√

1− M2

4L2
+

M

16L2
≤ 1− M2

8L2
+

M

16L2
≤ 1− M2

16L2
,

where the last inequality follows from the assumption that M ≥ 1. From (6), we have

‖θt − θ∗‖ ≤ ρt ‖θ0 − θ∗‖+ c0
M

2L2

1

1− ρ

(√
q

N
+

√
d

N

)

≤
(

1− M2

16L2

)t

‖θ0 − θ∗‖+ 8c0

(√
q

N
+

√
d

N

)
,

proving Theorem 4.

3 Proof of Theorem 3

Recall that we need to bound (12) and (13) uniformly for all θ ∈ Θ. Bounding (13) uniformly is
relatively easy and has been done in previous work [CSX17, Proposition 3.8].

15

Proposition 1. [CSX17, Proposition 3.8] Consider the same setup as Theorem 3. Assume that
N = Ω(d log(Nd)). Then with probability at least 1− e−d,

∥∥∥∥∥
1

N

N∑

i=1

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ . ∆2 ‖θ − θ∗‖+ ∆1, ∀ θ ∈ Θ,

where

∆1 ,

√
d

N
, and ∆2 ,

√
d log(Nd)

N
.

It remains to bound (12) uniformly over all θ ∈ Θ. For notational convenience, let

G(XS , θ) ,
1√
m

[
1
n

∑
i∈S1
∇f(Xi, θ)−∇F (θ), · · · , 1

n

∑
i∈Sm

∇f(Xi, θ)−∇F (θ)
]
. (21)

Proposition 2. Consider the same setup as Theorem 3. With probability at least 1− 2e−
√
d,

‖G(XS , θ
∗)‖ . ∆3 and ‖G(XS , θ)−G(XS , θ

∗)‖ . ∆4 ‖θ − θ∗‖ , ∀θ ∈ Θ, (22)

where

∆3 ,
1√
n

+

√
d

N
,

∆4 ,
1√
n

+
1√
N
φ
(
d log

(
r
√
n(L + L′)

))
+

1√
Nn

φ2
(
d log

(
r
√
n(L+ L′)

))
.

It follows from triangle inequality that

‖G(XS , θ)‖ . ∆4 ‖θ − θ∗‖+ ∆3, ∀θ ∈ Θ.

Remark 8. The uniform upper bound ∆4 in (22) depends linearly in d (ignoring logarithmic
factors). Such linear dependency is inevitable as can be seen from the linear regression example.
Suppose yi = 〈wi, θ

∗〉 + ζi, where θ∗ is an unknown true model parameter, wi ∼ N(0, I) is the
covariate vector whose covariance matrix is assumed to be identity, and ζi ∼ N(0, 1) is i.i.d.
additive Gaussian noise independent of wi’s. The risk function f(Xi, θ) = 1

2 (〈wi, θ〉 − yi)2 . In this
case ∇f(Xi, θ) = wiw

⊤
i (θ − θ∗) − wiζi and ∇F (θ) = θ − θ∗. For simplicity, assume n = 1 and

m = N . Then

sup
θ∈Sd−1

‖G(XS , θ)−G(XS , θ
∗)‖ ≥ sup

θ∈Sd−1

1√
N

∥∥∥(w1w
⊤
1 − I)(θ − θ∗)

∥∥∥

=
1√
N

(
‖w1‖2 − 1

)
‖θ − θ∗‖

= OP

(
d√
N

)
‖θ − θ∗‖ ,

where the first equality holds by choosing θ − θ∗ parallel to w1.

Proof. We prove the two bounds in (22) individually.

16

Bounding ‖G(XS , θ∗)‖: It follows from Assumption 2 that the columns of G(XS , θ∗) are i.i.d.
sub-exponential random vectors in R

d with mean 0 and scaling parameters σ1/
√
nm and α1/(n

√
m).

The sub-exponential parameters for the scaled matrix
√
N G(XS , θ∗) are σ1 and α1/

√
n – recalling

that N = nm. Applying Theorem 1 to A =
√
N G(XS , θ∗), it holds that with probability at least

1− e−
√
d,

‖G(XS , θ
∗)‖ =

1√
N
‖A‖ .

1√
N

(√
m+

√
d
)

=
1√
n

+

√
d

N
. (23)

Bounding ‖G(XS , θ)−G(XS , θ∗)‖ for a fixed θ ∈ Θ: For notational convenience, define

H(XS , θ) , G(XS , θ)−G(XS , θ
∗) =

1√
m


 1

n

∑

i∈S1

h(Xi, θ), · · · ,
1

n

∑

i∈Sm

h(Xi, θ)


 , (24)

where recall from (14) that the gradient difference function h(X, ·) is defined as

h(X, θ) = ∇f(X, θ)−∇f(X, θ∗)− (∇F (θ)−∇F (θ∗)) .

It follows from Assumption 4 that the columns of H(XS , θ)/ ‖θ − θ∗‖ are i.i.d. sub-exponential
random vectors in R

d with mean 0 and scaling parameters σ2/
√
nm and α2/(n

√
m). Recall that

N = nm. Applying Theorem 2 toH(XS , θ)/ ‖θ − θ∗‖, we know that for any fixed θ, with probability
at least 1− δ,

‖H(XS , θ)‖ .
(
σ2√
n

+
σ2√
N
φ

(
d+ log

1

δ

)
+

α2√
Nn

φ2
(
d+ log

1

δ

))
‖θ − θ∗‖

.

(
1√
n

+
1√
N
φ

(
d+ log

1

δ

)
+

1√
Nn

φ2
(
d+ log

1

δ

))
‖θ − θ∗‖ , (25)

where φ(x) =
√
x log3/2(x), and σ2 = O(1), α2 = O(1).

ǫ-net argument: We apply ǫ-net argument to extend the point convergence in (25) to the uniform
convergence over Θ. In particular, let Nǫ0 be an ǫ0-cover of Θ = {θ : ‖θ − θ∗‖ ≤ r} with

ǫ0 =
σ1√

n(L+ L′)
.

By [Ver10, Lemma 5.2], we have

log |Nǫ0 | ≤ d log (r/ǫ0) = d log
r(L+ L′)

√
n

σ1
.

By (25) and the union bound, we get that with probability at least 1− δ, for all θ ∈ Nǫ0

‖H(XS , θ)‖ .
(

1√
n

+
1√
N
φ

(
d+ log

|Nǫ0 |
δ

)
+

1√
Nn

φ2
(
d+ log

|Nǫ0 |
δ

))
‖θ − θ∗‖ . (26)

So far, we have shown the uniform convergence over net Nǫ0 . Next, we extend this uniform
convergence to the entire set Θ.

For any θ ∈ Θ, there exists a θk ∈ Nǫ0 such that ‖θ − θk‖ ≤ ǫ0. By triangle inequality,

‖H(XS , θ)‖ ≤ ‖H(XS , θk)‖+ ‖H(XS , θ)−H(XS , θk)‖ .

17

Note that

‖H(XS , θ)−H(XS , θk)‖ ≤ ‖H(XS , θ)−H(XS , θk)‖F ≤ max
1≤j≤m

∥∥∥∥∥∥
1

n

∑

i∈Sj

h(Xi, θ)−
1

n

∑

i∈Sj

h(Xi, θk)

∥∥∥∥∥∥
(a)

≤ (L+ L′) ‖θ − θk‖ ≤ (L + L′)ǫ0 =
σ1√
n
, (27)

where (a) holds because
∥∥∥∥∥∥

1

n

∑

i∈Sj

h(Xi, θ)−
1

n

∑

i∈Sj

h(Xi, θk)

∥∥∥∥∥∥
≤ 1

n

∑

i∈Sj

‖h(Xi, θ)− h(Xi, θk)‖ ≤ (L+ L′) ‖θ − θk‖ ,

in view of Assumption 1 and Assumption 3.
Combining (26) and (27), we have that with probability at least 1− δ, for any θ ∈ Θ,

‖H(XS , θ)‖ ≤ ‖H(XS , θk)‖+
σ1√
n

.

(
1√
n

+
1√
N
φ

(
d+ log

|Nǫ0|
δ

)
+

1√
Nn

φ2
(
d+ log

|Nǫ0 |
δ

))
‖θ − θ∗‖+

1√
n
.

Choose δ = e−d, we get with probability at least 1− e−d,

‖H(XS , θ)‖ .
(

1√
n

+
1√
N
φ
(
d log

(
r
√
n(L+ L′)

))
+

1√
Nn

φ2
(
d log

(
r
√
n(L + L′)

)))
‖θ − θ∗‖

+
1√
n
. (28)

holds for all θ ∈ Θ.

Putting all pieces together Combing (23) and (28), we conclude Proposition 2.

Finish the proof of Theorem 3:

Recall that log(L + L′) = O(log(Nd)), Θ ⊂ {θ : ‖θ − θ∗‖ ≤ r} for some positive parameter r such
that log r = O(log(Nd)), and that N = Ω(d2 log8(Nd)). Then,

∆4 ,
1√
n

+
1√
N
φ
(
d log

(
r
√
n(L + L′)

))
+

1√
Nn

φ2
(
d log

(
r
√
n(L+ L′)

))

.
1√
n

+

√
d

N
log2(Nd) +

1√
n

.
1√
n

+

√
d

N
log2(Nd).

Let E1 and E2 denote the two events on which the conclusions in Proposition 1 and Proposition 2
hold, respectively. On event E1 ∩ E2, for each θ ∈ Θ, condition (10) in Lemma 1 is satisfied with

c2

(
1√
n

+

√
d

N
log2(Nd)

)
‖θ − θ∗‖+

(√
1

n
+

√
d

N

)
log(Nd). (29)

for sufficently large constant c2. In view of Lemma 1, Remarks 2 and 3, we have

‖G(θ)−∇F (θ)‖ .
(√

q

m
∆4 + ∆2

)
‖θ − θ∗‖+

√
q

m
∆3 + ∆1.

The proof is complete by invoking Proposition 1 and Proposition 2.

18

Appendices

A Preliminaries

The following lemma presents the standard and well-known concentration inequality for sum of
independent sub-exponential random variables.

Lemma 3. [Ver18] Let Y1, . . . , Ym denote a sequence of independent random variables, where Yj’s
are sub-exponential with scaling parameters (σj, αj) and mean 0. Then

∑m
j=1 Yj is sub-exponential

with scaling parameters (σ∗, α∗), where σ2∗ =
∑m

j=1 σ
2
j and α∗ = max1≤j≤m αj . Moreover,

P





m∑

j=1

Yj ≥ t



 ≤





exp
(
− t2

2σ2
∗

)
if 0 ≤ t ≤ σ2∗/α∗;

exp
(
− t

2α∗

)
o.w.

The following lemma gives an upper bound to the spectral norm of the covariance matrix of a
sub-exponential random vector.

Lemma 4. Let Y ∈ Rd denote a zero-mean, sub-exponential random vector with scaling parameters
(σ, α), and Σ denote its covariance matrix Σ = E

[
Y Y ⊤] . Then

‖Σ‖ ≤ 4σ2 + 16α2.

Proof. First recall that

‖Σ‖ = sup
v∈Sd−1

v⊤Σv = sup
v∈Sd−1

v⊤E
[
Y Y ⊤

]
v = sup

v∈Sd−1

E

[
〈Y, v〉2

]
.

For each unit vector v, from [Ver18, Exercise 1.2.3], we have

E

[
〈Y, v〉2

]
=

∫ ∞

0
2t P {|〈Y, v〉| ≥ t} dt

≤
∫ ∞

0
4t exp

(
−1

2
min

{
t2

σ2
,
t

α

})
dt

≤ 4σ2 + 16α2. (30)

Note that the above upper bound is independent of v. The lemma follows by combining the last
two displayed equations.

B Proof of Lemma 2

We first quote a classical concentration inequality for sum of independent, bounded random vari-
ables.

Lemma 5 (Bennett’s inequality). Let Y1, · · · , Ym be independent random variables. Assume that
|Yj − E [Yj]| ≤ B almost surely for every j. Then, for any t > 0, we have

P





m∑

j=1

(Yj − E [Yj]) ≥ t



 ≤ exp

(
− σ

2

B2
· h
(
Bt

σ2

))
,

where σ2 =
∑m

j=1 var(Yj) is the variance of the sum, and

h(u) = (1 + u) log(1 + u)− u.

19

Proof of Lemma 2. We use the idea of truncation. In this proof, we adopt the convention that
1
0 = +∞.

For each copy j = 1, · · · ,m, we partition Yj into countably many pieces as follows: Let

Yj,0 = Yj1{|Yj |≤1}

Yj,k = Yj1{ek−1≤|Yj|≤ek}, for k = 1, 2, . . .

It is easy to see that

Yj =
∞∑

k=0

Yj,k, for j = 1, · · · ,m.

Let S =
∑m

j=1 Yj. We have

S =
m∑

j=1

Yj =
m∑

j=1

(∞∑

k=0

Yj,k

)
=

∞∑

k=0

m∑

j=1

Yj,k =
∞∑

k=0

Sk,

where Sk ,
∑m

j=1 Yj,k, for k = 0, 1, · · · . Thus,

P





∣∣∣∣∣∣

m∑

j=1

Yj −mE [Y]

∣∣∣∣∣∣
> mt



 = P {|S − E [S]| > mt} = P

{∣∣∣∣∣

∞∑

k=0

(Sk − E [Sk])

∣∣∣∣∣ > mt

}

To bound P

{∣∣∣
∑m

j=1 Yj −mE [Y]
∣∣∣ > mt

}
for a given t, our plan is to find a sequence of tk (which

depends on t) such that

{|S − E [S]| > mt} ⊆ ∪∞k=0 {|Sk − E [Sk]| > mtk} , (31)

and
P {|Sk − E [Sk]| > mtk}

is small enough to apply the union bound over all k.
In this proof, we choose tk = t

2(k+1)2
for k = 0, 1, · · · . It is easy to see that (31) holds.

Next, we bound P {|Sk − E [Sk]| > mtk} for each k. For given t ≥ t0, define

k0 , inf
{
k ∈ Z : 4ek(k + 1)2 ≥ t

}
. (32)

We are particularly interested in the setting when t ≥ t0 ≥ e2, which implies that

1 ≤ k0 ≤ log t− 1, (33)

noting that 4elog t−1(log t− 1 + 1)2 ≥ t.
Case 1: 0 ≤ k ≤ k0− 1. It is easy to see that when t ≥ t0 ≥ e2, k0 ≥ 1. Thus, case 1 is well posed.
As per the definition of (32), for all 0 ≤ k ≤ k0 − 1, it holds that 4ek(k + 1)2 < t. That is,

2ek <
t

2(k + 1)2
= tk. (34)

On the other hand, by construction of Yj,k we have almost surely

|Yj,k − E [Yj,k]| ≤ 2ek, for all k. (35)

20

Thus, almost surely

|Sk − E [Sk]| =

∣∣∣∣∣∣

m∑

j=1

Yj,k − E




m∑

j=1

Yj,k



∣∣∣∣∣∣
≤

m∑

j=1

|Yj,k − E [Yj,k]| ≤ 2mek for all k,

i.e.,

P

{
|Sk − E [Sk]| > 2mek

}
= 0 for all k.

By (34), we have when 0 ≤ k ≤ k0 − 1,

P {|Sk − E [Sk]| > mtk} ≤ P

{
|Sk − E [Sk]| > 2mek

}
= 0, (36)

Case 2: k0 ≤ k ≤ log(mt). For each k in this range, we will apply Bennett’s inequality.
From (35), we know that for any fixed k, the random variable |Yj,k − E [Yj,k]| ≤ 2ek . The

variance of Yj,k can be bounded as follows: for k ≥ 1

var(Yj,k) = E

[
(Yj,k − E [Yj,k])2

]
≤ E

[
Y 2
j,k

]
≤ e2kP

{
|Yi| ≥ ek−1

}
≤ e2k exp

(
−E

(
ek−1

))
. (37)

For notational convenience, define

σ2k , e2k exp
(
−E(ek−1)

)
. (38)

To see that σ2k is well-defined, recall that we adopt the convention that 1
0 =∞ and exp (−∞) = 0.

For each k in this case, i.e., k0 ≤ k ≤ log(mt), by Lemma 5, we get

P {|Sk − E [Sk]| ≥ mtk} = P





∣∣∣∣∣∣

m∑

j=1

(Yj,k − E [Yj,k])

∣∣∣∣∣∣
≥ mtk





≤ 2 exp

(
−
∑m

j=1 var(Yj,k)

e2(k+1)
· h
(

e(k+1)mtk∑m
j=1 var(Yj,k)

))
,

Note that when u > 0, it holds that h(u) ≥ u log(u/e). So we have

P {|Sk − E [Sk]| ≥ mtk} ≤ 2 exp

(
−
∑m

j=1 var(Yj,k)

e2(k+1)
· e(k+1)mtk∑m

j=1 var(Yj,k)
log

(
e(k+1)mtk

e
∑m

j=1 var(Yj,k)

))

= 2 exp

(
− mtk
e(k+1)

log

(
ekmtk∑m

j=1 var(Yj,k)

))

≤ 2 exp

(
− mtk
e(k+1)

log

(
ektk
σ2k

))
, (39)

where the last inequality follows from the fact that
∑m

j=1 var(Yj,k) ≤ mσ2k. We proceed to bound

21

log
(
ektk
σ2
k

)
using the assumption (15).

log

(
ektk
σ2k

)
= log

(
ekt

2(k + 1)2e2k exp (−E (ek−1))

)

= log

(
t

2(k + 1)2ek exp (−E (ek−1))

)

= log t−
(

log 2 + 2 log(k + 1) + k − E
(
ek−1

))

= E(ek−1)− (log 2 + 2 log(k + 1) + k − log t)

(a)

≥ 1

2
E(ek−1) + (2k + 4 log(k + 1) + log 2− log t)− (log 2 + 2 log(k + 1) + k − log t)

≥ 1

2
E(ek−1) + 2 log(k + 1) + k, (40)

where inequality (a) holds due to the assumption (15). Combining the last displayed equation with
(39) yields

P {|Sk − E [Sk]| ≥ mtk} ≤ 2 exp

(
− mtk

2e(k+1)
E(ek−1)

)

= 2 exp

(
− mt

4(k + 1)2e(k+1)
E(ek−1)

)

≤ 2 exp

(
− mt

4(log(mt) + 1)2e(k+1)
E(ek−1)

)
, (41)

where the last inequality holds because in the case under consideration, k0 ≤ k ≤ log(mt). To
proceed, we use the monotonicity assumption of E(t)/t. If E(t)/t is non-decreasing (increasing),
we can bound (41) as

P {|Sk − E [Sk]| ≥ mtk}
(a)

≤ 2 exp

(
− mt

4(log(mt) + 1)2e(k0+1)
E(ek0−1)

)

(b)

≤ 2 exp

(
− mt

4(log(mt) + 1)2t
E

(
t

4e(k0 + 1)2

))

(c)

≤ 2 exp

(
− m

4(log(mt) + 1)2
E

(
t

4e log2 t

))
, (42)

where (a) holds because k0 ≤ k ≤ log(mt); (b) holds because k0 ≤ log t− 1, 4ek0(k0 + 1)2 ≥ t, and
that E(·) is non-decreasing; (c) follows from k0 ≤ log t− 1, and that E(·) is non-decreasing.

If E(t)/t is non-increasing, we can bound (41) as

P {|Sk − E [Sk]| ≥ mtk} ≤ 2 exp

(
− mt

4(log(mt) + 1)2elog(mt)+1
E(elog(mt)−1)

)

= 2 exp

(
− 1

4e(log(mt) + 1)2
E

(
mt

e

))
. (43)

22

Case 3: k ≥ log(mt). In this case, we use the Chebyshev’s inequality:

P {|Sk − E [Sk]| ≥ mtk} ≤
σ2k
tk

= exp

(
− log

tk
σ2k

)

(a)

≤ 1

(k + 1)2
exp

(
−1

2
E(ek−1)

)

≤ 1

(k + 1)2
exp

(
−1

2
E

(
mt

e

))
, (44)

where (a) follows from (40); the last inequality follows from the fact that E(u) is increasing (non-
decreasing) in u.

For a fix t, summing over all k ∈ N, we have

P





∣∣∣∣∣∣

m∑

j=1

Yj −mE [Y]

∣∣∣∣∣∣
≥ mt



 ≤

∞∑

k=0

P {|Sk − E [Sk]| ≥ mtk}

=

k0−1∑

k=0

P {|Sk − E [Sk]| ≥ mtk}+

log(mt)∑

k=k0

P {|Sk − E [Sk]| ≥ mtk}

+

∞∑

log(mt)+1

P {|Sk − E [Sk]| ≥ mtk}

≤ 0 + exp

(
−1

2
E

(
mt

e

))
+

log(mt)∑

k=k0

P {|Sk − E [Sk]| ≥ mtk} .

Therefore, we have if E(t)/t non-decreasing

P





∣∣∣∣∣∣

m∑

j=1

Yj −mE [Y]

∣∣∣∣∣∣
≥ mt



 ≤ 2 log(mt) exp

(
− m

4(log(mt) + 1)2
E

(
t

4e log2 t

))

+ exp

(
−1

2
E

(
mt

e

))
;

if E(t)/t is non-increasing

P





∣∣∣∣∣∣

m∑

j=1

Yj −mE [Y]

∣∣∣∣∣∣
≥ mt



 ≤ 2 log(mt) exp

(
− 1

4e(log(mt) + 1)2
E

(
mt

e

))

+ exp

(
−1

2
E

(
mt

e

))
.

C Proof of Theorem 2

Proof of Theorem 2. Recall Σ = E
[
A1A

⊤
1

]
. Then

‖A‖2 =
∥∥∥AA⊤

∥∥∥ ≤
∥∥∥AA⊤ −mΣ

∥∥∥+m ‖Σ‖ .

23

In view of Lemma 4, we have ‖Σ‖ ≤ 4σ2 + 16α2. It remains to bound
∥∥AA⊤ −mΣ

∥∥ . Note that

∥∥∥AA⊤ −mΣ
∥∥∥ = sup

v∈Sd−1

∣∣∣v⊤
(
AA⊤ −mΣ

)
v
∣∣∣ = sup

v∈Sd−1

∣∣∣∣∣∣

m∑

j=1

(
〈Aj , v〉2 − E

[
〈Aj , v〉2

])
∣∣∣∣∣∣
.

Fix a v ∈ Sd−1. Note that 〈Aj , v〉 is zero-mean sub-exponential random variable with parameter
(σ, α). For j = 1, · · · ,m, define

Yj = 〈Aj , v〉2 /σ2. (45)

It follows from Lemma 3 that

P {|Yj | ≥ t} = P

{
|〈Aj, v〉| ≥ σ

√
t
}
≤ 2 exp

(
−min

{
t

2
,
σ
√
t

2α

})
,

We apply Lemma 2 to Y1, · · · , Ym with

E(t) = min

{
t

2
,
σ
√
t

2α

}
− log 2,

which is non-decreasing in t. By assumption σ/α = Ω(1), it follows that E(t) scales as
√
t in t.

Thus there exits t0 ≥ e2 such that (15) holds. In addition, E(t)/t is non-increasing. Therefore,
(18) in Lemma 2 applies, i.e., for all t ≥ t0,

P





∣∣∣∣∣∣

m∑

j=1

(Yj − E [Yj])

∣∣∣∣∣∣
≥ mt



 ≤ 2 log(mt) exp

(
− 1

4e log2(emt)
E

(
mt

e

))
+ exp

(
−1

2
E

(
mt

e

))

≤ 4 log(mt) exp

(
− 1

4e log2(emt)
E

(
mt

e

))
. (46)

Next, we apply ǫ-net argument. Let N 1
4

be the 1
4–net of the unit sphere Sd−1. From [Ver10,

Lemma 5.2], we know that
∣∣∣N 1

4

∣∣∣ ≤ 9d. In addition, it follows from [Ver10, Lemma 5.4] that

∥∥∥AA⊤ − Σ
∥∥∥ ≤ 2 sup

v∈N 1
4

∣∣∣∣∣∣

m∑

j=1

(
〈Aj, v〉2 − E

[
〈Aj , v〉2

])
∣∣∣∣∣∣
.

Hence,

P

{∥∥∥AA⊤ − Σ
∥∥∥ ≥ 2σ2mt

}
≤ P



 sup

v∈N 1
4

∣∣∣∣∣∣

m∑

j=1

(
〈Aj , v〉2 − E

[
〈Aj, v〉2

])
∣∣∣∣∣∣
≥ σ2mt





≤
∣∣∣N 1

4

∣∣∣P





∣∣∣∣∣∣

m∑

j=1

(
〈Aj , v〉2 − E

[
〈Aj , v〉2

])
∣∣∣∣∣∣
≥ σ2mt





≤ 9dP





∣∣∣∣∣∣

m∑

j=1

(Yj − E [Yj])

∣∣∣∣∣∣
≥ mt



 by definition of Yj in (45)

≤ exp

(
− 1

4e log2(emt)
E

(
mt

e

)
+ log 4 + log log(mt) + d log 9

)
by (46).

24

To complete the proof, we need to choose mt so that the right hand side of the last inequality is
smaller than δ. In other words, we need to find x ≥ mt0 such that

1

4e log2(ex)
E(x/e) − log log x ≥ log

4

δ
+ d log 9 , a.

One such x is given by

x = c

(
a log3 a+

α2

σ2
a2 log6 a+m

)
,

where c is a sufficiently large constant. Therefore, we choose

mt = c

((
d+ log

1

δ

)
log3

(
d+ log

1

δ

)
+
α2

σ2

(
d+ log

1

δ

)2

log6
(
d+ log

1

δ

)
+m

)

The lemma follows by taking the square root of mt.

D Robust Mean Estimation

We present the proof of Lemma 1 for completeness. For ease of exposition, in the sequel, we let

α , 1− ǫ and σ̃2 = 2σ2.

We first need a minimax identity between the min-max problem (8) and max-min problem (9).
For W ∈ R

|A|×|A| and U ∈ R
d×d, define a function ψ : (W,U)→ R as:

ψ(W,U) =
∑

i∈A
ci


ŷi −

∑

j∈A
ŷjWji




⊤

U


ŷi −

∑

j∈A
ŷjWji


 .

Also, let W denote the set of all column stochastic matrices W ∈ R
|A|×|A| such that 0 ≤ Wji ≤

4−α
α(2+α)m , and U denote the set of all positive semi-definite matrices U ∈ R

d×d such that Tr(U) ≤ 1.

Then the min-max program (8) can be rewritten as

W ∗ ∈ arg min
W∈W

max
U∈U

ψ(W,U) = arg min
W∈W

∥∥∥∥∥∥∥

∑

i∈A
ci


ŷi −

∑

j∈A
ŷjWji




ŷi −

∑

j∈A
ŷjWji




⊤
∥∥∥∥∥∥∥
. (47)

and the max-min program (9) can be rewritten as

U∗ ∈ max
U∈U

min
W∈W

ψ(W,U).

Note that ψ(W,U) is convex in W for a fixed U and concave (in fact linear) in U for a fixed W .
By von Neumann’s minimax theorem, we have

min
W∈W

max
U∈U

ψ(W,U) = max
U∈U

min
W∈W

ψ(W,U) = ψ(W ∗, U∗).

Moreover, (W ∗, U∗) is a saddle point, i.e.,

W ∗ ∈ arg min
W∈W

ψ(W,U∗), (48)

U∗ ∈ arg max
U∈U

ψ(W ∗, U). (49)

25

The saddle point properties (48) and (49) are crucial to prove Lemma 1.
Moreover, by condition (10), the underlying true sample S (of size m) satisfies the following

condition:
∥∥∥∥∥

1

m

m∑

i=1

(yi − µS)(yi − µS)⊤
∥∥∥∥∥ ≤ σ

2,

where µS = 1
m

∑m
i=1 yi. Recall that up to q points in S are corrupted. Let S0 ⊆ S be a subset of

uncorrupted subset of S of size m− q = (1− ǫ)m = αm. Notably, since q is only an upper bound
on the number of corrupted data points, the choice of subset S0 may not be unique. Nevertheless,
for any choice of subset S0, the following holds:

∥∥∥∥∥∥
1

|S0|
∑

i∈S0

(yi − µS)(yi − µS)⊤

∥∥∥∥∥∥
=

1

|S0|

∥∥∥∥∥∥

∑

i∈S0

(yi − µS)(yi − µS)⊤

∥∥∥∥∥∥

≤ 1

|S0|

∥∥∥∥∥

m∑

i=1

(yi − µS)(yi − µS)⊤
∥∥∥∥∥

≤ 1

α
σ2

≤ 2σ2, (50)

where the last inequality follows because by assumption, α = 1− ǫ ≥ 3
4 ≥ 1

2 .
As commented in Subsection 2.2, Algorithm 2 terminates within m iterations. For ease of

exposition, we use t = 1, 2, · · · to denote the iteration number in the loop from line 3 to line 9. We
use ci(t), τi(t), and A(t) to denote the quantities of interest at iteration t. Note that weights ci
and set A may be updated throughout an iteration. Therefore, we use A′(t) and c′i(t) to denote
the updated quantities at the end of iteration t. Note that c′i(t− 1) = ci(t) and A′(t− 1) = A(t).

D.1 Two auxiliary lemmas

We first show that when Algorithm 2 terminates, most of data points in S0 are remained in A.

Lemma 6. For every iteration t ≥ 1 in the while–loop of Algorithm 2,

∑

i∈S0∩A(t)

ci(t)τi(t) ≤ αmσ̃2 (51)

∑

i∈S0

(1− ci(t)) ≤
α

4

m∑

i=1

(1− ci(t)) (52)

|S0 ∩ A(t)| ≥ α(2 + α)m

4− α . (53)

Intuitively, Lemma 6 says that in every iteration: (1) the summation of the projected residual
error over the non-corrupted data is small; (2) the weights of non-corrupted data points are reduced
by a relatively small amount; (3) and more importantly, most non-corrupted data points are not
removed.

Proof of Lemma 6. The proof is by induction on (52) and (53). Recall that we use t = 1, · · · to
denote the iteration number in the while–loop.

26

Base case: t = 1. Note that A(1) = [m], and ci(1) = 1 for all i ∈ A(1). Therefore, (52) and (53)
hold for t = 1 trivially.

Induction Step: Suppose (52) and (53) hold for t, and the while– has not terminate at iteration
t. We aim to show (52) and (53) hold for t+ 1.

We first prove (51) holds for t. Recall that

τi(t) =


yi −

∑

j∈A(t)

ŷjWji(t)




⊤

U(t)


yi −

∑

j∈A(t)

ŷjWji(t)


 ,

where W (t) is a minimizer to (8) and U(t) is a maximizer to (9) at iteration t, respectively. Since
(W (t), U(t)) is a saddle point, it follows from (48) that W (t) ∈ arg minW∈W ψ(W,U(t)). Moreover,
this minimization is decoupled over all data points in A(t) and hence each column of W (t) is
optimized independently. Therefore, by letting W∗i(t) denote the column of W (t) corresponding to
i ∈ A(t), we have

W∗i(t) ∈ arg min
w


yi −

∑

j∈A(t)

ŷjwj




⊤

U(t)


yi −

∑

j∈A(t)

ŷjwj




s. t.
∑

j∈A(t)

wj = 1

0 ≤ wj ≤
4− α

α(2 + α)m
. (54)

Let w̃ ∈ R
|A(t)| be the column stochastic vector such that

w̃j ,
1{j∈S0∩A(t)}
|S0 ∩A(t)| , ∀ j ∈ A(t).

By the induction hypothesis, w̃ is feasible to (54). Let YA(t) ∈ R
d×n be the matrix with ŷi with

i ∈ A(t) as columns. Moreover,

YA(t)w̃ =
∑

j∈A(t)

ŷjw̃j =
1

|S0 ∩ A(t)|
∑

j∈S0∩A(t)

yj , µS0∩A(t).

27

Thus, we have

∑

i∈S0∩A(t)

ci(t)τi(t)
(a)

≤
∑

i∈S0∩A(t)

ci(t)(yi − µS0∩A(t))
⊤U(t)

(
yi − µS0∩A(t)

)

(b)

≤
∑

i∈S0∩A(t)

(yi − µS0∩A(t))
⊤U(t)

(
yi − µS0∩A(t)

)

(c)

≤
∑

i∈S0∩A(t)

(yi − µS)⊤U(t) (yi − µS)

≤
∑

i∈S0

(yi − µS)⊤U(t) (yi − µS)

(d)

≤ Tr (U(t))

∥∥∥∥∥∥

∑

i∈S0

(yi − µS)(yi − µS)⊤

∥∥∥∥∥∥
(e)

≤ αmσ̃2,

where (a) holds by the optimality of W∗i(t) to (54); (b) holds because ci(t) ≤ 1 and U(t) � 0; (c)
holds because µS0∩A(t) = 1

|S0∩A(t)|
∑

i∈S0∩A(t) yi is a minimizer of the quadratic form
∑

i∈S0∩A(t)(yi−
u)⊤U(t) (yi − u), as a function of u; (d) holds because |〈A,B〉| ≤ ‖A‖ ‖B‖∗, where ‖B‖∗ is the sum
of singlular values of B and ‖B‖∗ = Tr(B) when B � 0; (e) follows by (50) and the facts that
|S0| ≤ αm and Tr(U(t)) = 1.

Next we prove (52) and (53). Since by induction hypothesis the while– has not terminate at
iteration t, it follows that

∑

i∈A(t)

ci(t)τi(t) > 4mσ̃2. (55)

Note that the weights of the data points that do not lie in A(t) are not updated in iteration t, i.e.,
c′i(t) = ci(t) for i /∈ A(t). As a consequence, we have

∑

i∈S0

(
1− c′i(t)

)
=
∑

i∈S0

(1− ci(t)) +
∑

i∈S0∩A(t)

(
ci(t)− c′i(t)

)

≤ α

4

m∑

i=1

(1− ci(t)) +
1

τmax(t)

∑

i∈S0∩A(t)

τi(t)ci(t), (56)

where the last inequality follows from induction hypothesis. Furthermore, we have

1

τmax(t)

∑

i∈S0∩A(t)

τi(t)ci(t)
(a)

≤ 1

τmax(t)
αmσ̃2

(b)
<

α

4τmax(t)

∑

i∈A(t)

τi(t)ci(t),

where (a) holds because we have shown that (51) holds for t; (b) holds because we have assumed
without loss of generality that

∑
i∈A(t) ci(t)τ

∗
i (t) > 4mσ̃2.

28

Thus, (56) can be further bounded as

∑

i∈S0

(
1− c′i(t)

)
≤ α

4

m∑

i=1

(1− ci(t)) +
α

4τmax(t)

∑

i∈A(t)

τi(t)ci(t)

=
α

4


 ∑

i/∈A(t)

(1− ci(t)) +
∑

i∈A(t)

(1− ci(t)) +
1

τmax(t)

∑

i∈A(t)

τ∗i (t)ci(t)




=
α

4



∑

i/∈A(t)

(1− c′i(t)) +
∑

i∈A(t)

(
1−

(
1− τ∗i (t)

τmax(t)

)
ci(t)

)


=
α

4

m∑

i=1

(1− c′i(t)),

proving (52) for t+ 1. We rewrite (52) for t+ 1 as

∑

i∈S0

(
1− c′i(t)

)
≤ α

4− α
∑

i/∈S0

(
1− c′i(t)

)
.

One the one hand, we have ∑

i/∈S0

(
1− c′i(t)

)
≤ |Sc0| ≤ (1− α)m.

On the other hand,

∑

i∈S0

(
1− c′i(t)

)
≥

∑

i∈S0\A′(t)

(
1− c′i(t)

)
≥ 1

2

∣∣S0 \ A′(t)
∣∣ ,

where the last inequality holds from the fact that c′i(t) ≤ 1/2 for all i /∈ A′(t) – by the data removal
criterion in Algorithm 2. Combining the last three displayed equations, we get that

∣∣S0 \ A′(t)
∣∣ ≤ 2α(1 − α)

4− α m,

proving (52) for t+ 1. The proof of Lemma 6 is complete.

Let W be the minimizer of (8) when the while–loop terminates. Let W1 be the result of zeroing
out all singular values of W that are greater than 0.9.

Lemma 7. The matrix W0 = (W −W1)(I −W1)
−1 is a column stochastic matrix, and the rank of

the weight matrix W0 is one.

Remark 9. Let XA ⊆ R
d×|A| be the data matrix with columns being the data points in A. Let

Z = XAW0. Since W0 is rank one, all the |A| columns in the matrix Z are identical. Denote

Z = [µ̃, · · · , µ̃] . (57)

Then µ̃ is a weighted average of the points in A.

29

Proof. We first show that W0 is a column stochastic matrix:

1⊤W0 = 1⊤(W −W1)(I −W1)
−1 (a)

= (1⊤ − 1⊤W1)(I −W1)−1

= 1⊤(I −W1)(I −W1)
−1 = 1⊤,

where (a) follows because W is column stochastic.
Next we show that rank of W0 is one. From (8), we know that ‖W‖2F ≤ 4−α

α(2+α) . To see this,

‖W‖2F =
∑

i,j∈A
W 2

ji ≤
∑

i,j∈A

(
Wji · max

i,j∈A
Wji

)
≤



∑

i,j∈A
Wji


 4− α
α(2 + α)m

≤ 4− α
α(2 + α)

.

When α ≥ 3
4 ,

4− α
α(2 + α)

≤ 52

33
< 2× 0.92.

Hence, at most one singular value of W can be greater than 0.9. Moreover, since W is column
stochastic, its largest singular value is at least 1. Thus, W −W1 is of rank one. As a consequence,
W0 is of rank one.

D.2 Proof of Lemma 1

Recall that our goal is to show

‖µS − µ̂‖ = O(σ
√

1− α),

where µ̂ = 1
|A|
∑

i∈A ŷi is the algorithm output. Recall YA ⊆ R
d×|A| is the data matrix with columns

being the data points in A. In view of Remark 9, columns of Z = YAW0 are identical and denoted
by µ̃. Our proof is divided into two steps:

• We first show that points in A are clustered around the center µ̃. In addition, by (53) in
Lemma 6, the set A mainly consists of uncorrupted data. As a conseqeuence, we are able to
show that

µ̂ =
1

|A|
∑

i∈A
ŷi ≈

1

|S0 ∩ A|
∑

i∈S0∩A
ŷi =

1

|S0 ∩ A|
∑

i∈S0∩A
yi. (58)

• By (50), points in S0 are clustered around the center µS . In addition, by (53) in Lemma 6,
most of the points in S0 have been preserved. Thus we are able to show that

µS =
1

m

m∑

i=1

yi ≈
1

|S0 ∩ A|
∑

i∈S0∩A
yi. (59)

Putting these two pieces together, the proof of Lemma 1 is complete.

Step 1: We show (58).
When the while–loop terminates, in view of (47), we have

∥∥∥YA(I −W)diag
{

(cA)
1
2

}∥∥∥ ≤ 2
√
mσ̃., (60)

30

where diag
{

(cA)
1
2

}
is the diagonal matrix with diagonal entries given by {c1/2i }i∈A. We will show

that ŷi ≈ µ̃ for all i ∈ A. For this purpose, it is enough to show ‖YA − Z‖ is small:

∥∥YA − µ̃1T
∥∥ = ‖YA − Z‖ = ‖YA − YAW0‖

=
∥∥YA(I −W1)(I −W1)

−1 − YA(W −W1)(I −W1)−1
∥∥

=
∥∥YA(I −W)(I −W1)

−1
∥∥

≤ ‖YA(I −W)‖
∥∥(I −W1)

−1
∥∥

(a)

≤ ‖YA(I −W)‖ × 10

(b)

≤ 10
√

2
∥∥∥YA(I −W)diag

{
(cA)

1
2

}∥∥∥
(c)

≤ 20
√

2mσ̃,

where (a) holds because the largest singular value of W1 is at most 0.9; (b) holds because ci ≥ 1
2

for all i ∈ A; (c) follows from (60).
Fix any 0 < ǫ′ < 1/2. Let T ⊆ A such that |T | ≥ (1− ǫ′)|A|. We have

∥∥∥∥∥
1

|T |
∑

i∈T
ŷi − µ̂

∥∥∥∥∥ =

∥∥∥∥∥
1

|T |
∑

i∈T
ŷi −

1

|A|
∑

i∈A
ŷi

∥∥∥∥∥ =

∥∥∥∥∥
1

|T |
∑

i∈T
(ŷi − µ̃)− 1

|A|
∑

i∈A
(ŷi − µ̃)

∥∥∥∥∥

=

∥∥∥∥∥∥

(
1

|T | −
1

|A|

)∑

i∈T
(ŷi − µ̃)− 1

|A|
∑

i∈A/T
(ŷi − µ̃)

∥∥∥∥∥∥
(a)

≤ |A| − |T ||T ||A| ‖[YA − Z]T 1‖+
1

|A|
∥∥∥[YA − Z]A/T 1

∥∥∥

=

(
|A| − |T |√
|T | |A|

+

√
|A/T |
|A|

)
‖YA − Z‖

≤ 80
√

2σ̃
√
ǫ′, (61)

where [YA − Z]T denotes the submatrix of YA−Z – restricting to columns in T , and 1 ∈ R
|T |; the

last inequality holds because ǫ′ < 1/2 and

|A| ≥ |A ∩ S0| ≥
α(2 + α)

4− α m.

Note that
α(2 + α)

4− α ≥ 1− 5

3
(1− α)⇔ (α− 1)2 ≥ 0.

Thus, |A − A ∩ S0| ≤ 5
3(1− α)m. Choosing T = A ∩ S0, we obtain

‖µS0∩A − µ̂‖ ≤ 80
√

2σ̃
√

5(1− α)/3 ≤ 160σ̃
√

1− α = O(σ̃
√

1− α). (62)

Step 2: We show (59). The proof of (59) is similar to that of (58).

31

Recall that µS = 1
m

∑m
i=1 yi, and that µS0∩A = 1

|S0∩A|
∑

i∈S0∩A yi. We have

‖µS − µS0∩A‖ =

∥∥∥∥∥∥
µS −

1

|A ∩ S0|
∑

i∈S0∩A
yi

∥∥∥∥∥∥

=

∥∥∥∥∥∥
1

|A ∩ S0|
∑

i∈A∩S0

(yi − µS)

∥∥∥∥∥∥

=
1

|A ∩ S0|
‖[YA∩S0 − µS]1‖

≤
√
|S0|√
|A ∩ S0|

σ̃

≤
√

4− α
α(2 + α)

√
1− ασ̃ ≤

√
2(1− α)σ̃.

D.3 Modification of Algorithm 2

Recall that Algorithm 2 needs to know the upper bound σ in (10) to terminate. If we do not know
σ a priori, as commented in Remark 4, we can modify the termination condition of Algorithm 2 as
follows: If ∣∣∣∣A \

{
i :

(
1− τi

τmax

)
ci ≤

1

2

}∣∣∣∣ ≥
α(2 + α)m

4− α ,

we update ci ←
(

1− τi
τmax

)
ci and remove

{
i : ci ≤ 1

2

}
from A; otherwise, we break the while–loop.

Similar to the original Algorithm 2, in the modified Algorithm 2, in each iteration of the while–
loop at least one point will be removed. Thus, the modified Algorithm 2 terminates in at most m
iterations. Suppose the modified Algorithm 2 terminates at iteration t∗. By the modified code we
know |A(t∗)| ≥ α(2+α)m

4−α ; otherwise, the algorithm terminates earlier than t∗. By the termination
condition, we also know that

∣∣∣∣A(t∗)−
{
i :

(
1− τi

τmax

)
ci ≤

1

2

}∣∣∣∣ <
α(2 + α)m

4− α . (63)

Claim 1. There exists an iteration t′ ≤ t∗ such that
∑

i∈A(t′) ci(t
′)τi(t′) ≤ 8mσ2.

Proof. We prove by contradiction. Suppose
∑

i∈A(t)

ci(t)τi(t) > 8mσ2, ∀t ≤ t∗. (64)

Note that the modified Algorithm 2 and the original Algorithm 2 differ only in their termination
conditions. Recall that the original termination condition is only used in the proof of Lemma 6
to conclude that (55) holds when the while-loop does not terminate. Thus, under the hypothesis
(given in the last displayed equation), Lemma 6 still holds. It follows that

∣∣∣∣A(t∗)−
{
i :

(
1− τi

τmax

)
ci ≤

1

2

}∣∣∣∣ ≥
∣∣∣∣S0 ∩

(
A(t∗)−

{
i :

(
1− τi

τmax

)
ci ≤

1

2

})∣∣∣∣

≥ α(2 + α)m

4− α ,

which leads to a contradiction.

32

Since A(t) is monotone decreasing, it follows that A(t∗) ⊆ A(t′). Moreover,

|A(t∗)| ≥ α(2 + α)m

4− α ≥ α(2 + α)

4− α
∣∣A(t′)

∣∣ ≥
(

1− 5

3
(1− α)

) ∣∣A(t′)
∣∣ .

By (61), we know

∥∥∥∥∥∥
1

|A(t∗)|
∑

i∈A(t∗)

ŷi −
1

|A(t′)|
∑

i∈A(t′)

ŷi

∥∥∥∥∥∥
≤ 80

√
2σ̃

√
5

3
(1− α) = O(σ

√
1− α).

From Lemma 1, we know

∥∥∥∥∥∥
1

|A(t′)|
∑

i∈A(t′)

ŷi − µS

∥∥∥∥∥∥
= O(σ

√
1− α).

Combining the last two displayed equations, we have

∥∥∥∥∥∥
1

|A(t∗)|
∑

i∈A(t∗)

ŷi − µS

∥∥∥∥∥∥
= O(σ

√
1− α).

Acknowledgment

J. Xu was supported in part by the NSF Grant CCF-1755960.

References

[AAZL18] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent.
arXiv preprint arXiv:1803.08917, 2018. 3

[ALPTJ10] Rados law Adamczak, Alexander Litvak, Alain Pajor, and Nicole Tomczak-
Jaegermann. Quantitative estimates of the convergence of the empirical covariance
matrix in log-concave ensembles. Journal of the American Mathematical Society,
23(2):535–561, 2010. 11

[BMGS17] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
Byzantine-tolerant machine learning. arXiv preprint arXiv:1703.02757, 2017. 3

[BPC+11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-
tributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122, 2011. 1

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004. 5

[CSV17] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted
data. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 47–60, New York, NY, USA, 2017. ACM. 3, 4, 5

33

[CSX17] Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent. Proc. ACM Meas. Anal. Comput.
Syst., 1(2):44:1–44:25, December 2017. 2, 3, 4, 6, 7, 10, 15, 16

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008. 1

[DJW14] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Privacy aware learning.
J. ACM, 61(6):38:1–38:57, December 2014. 1

[DKK+16a] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Robust
estimators in high dimensions without the computational intractability. In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS), pages 655–664,
Oct 2016. 3, 8

[DKK+16b] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. Robust estimators in high dimensions without the computational
intractability. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual
Symposium on, pages 655–664. IEEE, 2016. 4

[DKK+17] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra,
and Alistair Stewart. Being robust (in high dimensions) can be practical. CoRR,
abs/1703.00893, 2017. 3, 4, 8

[fed] Federated learning: Collaborative machine learning without centralized training data.
https://research.googleblog.com/2017/04/federated-learning-collaborative.html. Ac-
cessed: 2017-04-10. 1

[FXM14] Jiashi Feng, Huan Xu, and Shie Mannor. Distributed robust learning. arXiv preprint
arXiv:1409.5937, 2014. 3

[JLY16] Michael I Jordan, Jason D Lee, and Yun Yang. Communication-efficient distributed
statistical inference. arXiv preprint arXiv:1605.07689, 2016. 1

[KMR15] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization:
Distributed optimization beyond the datacenter. arXiv preprint arXiv:1511.03575,
2015. 1, 2

[KMY+16] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for im-
proving communication efficiency. In NIPS Workshop on Private Multi-Party Machine
Learning, 2016. 2, 4

[LBG+12] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M Hellerstein. Distributed graphlab: a framework for machine learning and
data mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.
1

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996. 3

34

https://research.googleblog.com/2017/04/federated-learning-collaborative.html

[MMR+16] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al.
Communication-efficient learning of deep networks from decentralized data. arXiv
preprint arXiv:1602.05629, 2016. 2, 4

[MNSJ15] Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jordan. Sparknet: Train-
ing deep networks in spark. arXiv preprint arXiv:1511.06051, 2015. 1

[NJLS09] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on
optimization, 19(4):1574–1609, 2009. 3

[PH96] Foster J Provost and Daniel N Hennessy. Scaling up: Distributed machine learning
with cooperation. In AAAI/IAAI, Vol. 1, pages 74–79. Citeseer, 1996. 1

[SCV18] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A Criterion for
Learning in the Presence of Arbitrary Outliers. In Anna R. Karlin, editor, 9th Innova-
tions in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 45:1–45:21, Dagstuhl, Ger-
many, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 1, 3, 4, 7, 8, 9

[SV16] Lili Su and Nitin H. Vaidya. Fault-tolerant multi-agent optimization: Optimal iterative
distributed algorithms. In Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, PODC ’16, pages 425–434, New York, NY, USA, 2016. ACM.
3, 5

[Tao12] T. Tao. Topics in random matrix theory. American Mathematical Society, Providence,
RI, USA, 2012. 12

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027, 2010. 11, 17, 24

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications
in Data Science. Cambridge university press, 2018. 13, 19

[YCRB18] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Byzantine-
robust distributed learning: Towards optimal statistical rates. arXiv preprint
arXiv:1803.01498, 2018. 3, 4

35

	1 Introduction
	1.1 System Model
	1.2 Related Work
	1.3 Contributions

	2 Our Robust Gradient Descent Approach and Main Results
	2.1 Approximate Gradient Descent Method
	2.2 Robust Gradient Aggregator
	2.3 Main Results
	2.3.1 Standard Concentration Inequalities
	2.3.2 New Concentration Inequalities
	2.3.3 Convergence of Approximate Gradient Descent Method

	3 Proof of Theorem ??
	Appendices
	A Preliminaries
	B Proof of Lemma ??
	C Proof of Theorem ??
	D Robust Mean Estimation
	D.1 Two auxiliary lemmas
	D.2 Proof of Lemma ??
	D.3 Modification of Algorithm ??

