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Abstract. We consider the problems of reaching average consensus and solving consensus-based opti-
mization over unreliable communication networks wherein packets may be dropped accidentally during
transmission. Existing work either assumes that the link failures affect the communication on both
directions or that the message senders know exactly their outgoing degrees in each iteration. In this
paper, we consider directed links, and we do not require each node know its current outgoing degree.
We characterize the convergence rate of reaching average consensus in the presence of packet-dropping
link failures. Then we apply our robust consensus update to the classical distributed dual averaging
method as the information aggregation primitive. We show that the local iterates converge to a common
optimum of the global objective at rate O(%), where t is the number of iterations, matching the failure-
free performance of the distributed dual averaging method.

1 Introduction

Reaching consensus and solving distributed optimization are two closely related global tasks of
multi-agent networks. In the former, every agent has a private input, and the goal of the networked
agents is to reach an agreement on a value that is a function of these private inputs such as
maximum, minimum, average, etc; in the latter, typically, every agent has a private cost function,
and the goal is to collaboratively minimize a global objective which is a proper aggregation of these
private cost functions.

Average consensus has received intensive attention [8,10,21] partially due to the fact that one
can use average consensus as a way to aggregate agents’ private information. Different strategies to
robustify reaching average consensus against unreliable networks have been proposed [17,7,4,20,6].
Specifically, undirected graphs were considered in [17,6], where the link failures affect the commu-
nication in both directions; dynamically changing data and networks are considered in [6]. Directed
graphs were first considered in [7], however, only biased average was achieved. This bias was later
corrected in [4,20] via introducing auxiliary variables at each agent; however, only asymptotic
convergence was shown. To the best of our knowledge, the characterization of non-asymptotic con-
vergence rate is still lacking.

Consensus-based multi-agent optimization is an important family of distributed optimization
algorithms. In a typical consensus-based multi-agent optimization problem [5,14,13,19], each agent
i keeps a private cost function h; : X — R, and the networked agents, as a whole, want to reach
agreement on a global decision z* € X such that the average of these private cost functions is
minimized, i.e.,

. BN
z* € argmingcy nz;hi(x),
1=
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where n is the total number of agents in the system. The applications of such distributed opti-
mization problems include distributed machine learning and distributed resource allocation. Ro-
bustifying distributed optimization against link failures has received some attention recently [5,13].
Duchi et al. [5] assumed that each realizable link failure pattern admits a doubly-stochastic matrix.
In the case wherein each agent knows the number of reliable outgoing links [13], the requirement
for the doubly stochastic matrices was removed by incorporating the push-sum mechanism. How-
ever, the implementation of push-sum in [13] implicitly assumed the adoption of acknowledgement
mechanism.

In this work, we consider directed links, and we do not require each node know its current
outgoing degree. As a result of this, if a message packet is dropped over a link, the sender is not
aware of this loss. This scenario arises frequently in real systems. Although acknowledge mechanisms
can be incorporated to improve reliability, this may slow down the convergence due to the need for
message retransmission (requiring more time for each iteration of the algorithm). We characterize
the convergence rate of reaching average consensus in the presence of packet-dropping link failures,
which is, to the best of our knowledge, lacking in literature. Then we apply our robust consensus
update to the classical distributed dual averaging method as the information aggregation primitive.
We show that the local iterates converge to a common optimum of the global objective at rate O(%),
where t is the number of iterations, matching the failure-free performance of the distributed dual
averaging method.

2 Network Model and Notation

We consider a synchronous system that consists of n networked agents. The network structure
is represented as a strongly connected graph G(V, &), where V = {1,...,n} is the collection of
agents, and & is the collection of directed communication links. Let Z; = {j | (j,7) € £} and
O; ={j | (4,7) € £} be the sets of incoming neighbors and outgoing neighbors, respectively, of
agent i. For ease of exposition, we assume there exist no self-loops, i.e., i ¢ Z; U O;,Vi € V. For
i €V, let df = |O;|. The communication links are unreliable in that packets may be dropped during
transmission unexpectedly. However, a given link is operational at least once during B consecutive
iterations, where B > 1. Similar assumption is adopted in [13,14].

3 Robust Average Consensus

Reaching average consensus in directed networks has been intensively studied [16,1,12]. In particu-
lar, in Push-Sum [12,2], each networked agent updates two coupled iterates and the ratio of these
two iterates approaches the average asymptotically. The correctness of Push-Sum relies crucially on
“mass preservation” (specified later) of the system. However, when the communication links suf-
fer packet-dropping failures, the desired “mass preservation” may not hold, since the transmitted
“mass” may be dropped without even being notified by the senders. Robustification method has
been introduced to recover the dropped “mass” [10,9], where auxiliary variables are introduced to
record the total “mass” sent and delivered, respectively, through a given communication link. Only
asymptotic convergence is provably guaranteed [10,9]. In this section, we focus on characterizing the
convergence rate of robust average consensus. To do that, we need to modify the robust Push-Sum
proposed in [10].

3.1 Robust Push-Sum

In this subsection, we briefly review the Push-Sum algorithm [12,2] and its robust variant [10]. In



Algorithm 1: Push-Sum [12,2]

1 Initialization: z[0] = y; € R, w;[0] =1 € R.
2 fort>1do
3 Broadcast

zi[t—1

] w;[t—1]
and doF1

to all outgoing neighbors;

do+1 o+l
zj[t—1]
4 2i[t] Ejeliu{i} §;+1 )
w,[t—1]
5 wilt] <2 5ez,000y 5;+1 :
6 end

standard Push-Sum [12,2], described in Algorithm 1, each agent i runs two iterates:

— value sequence {z;[t]}72,, and
— weight sequence {w;[t]}22,,

where z[0] = y; € R? is the private input, and w;[0] = 1 € R is the initial weight of agent 1.
The weight sequences {w;[t]}?2, are introduced to relax the need for doubly stochastic matrices.
Intuitively speaking, the weights are used to correct the “bias” caused by the network structure. In
each iteration of Algorithm 1, each agent ¢ divides both the local value z; and local weight w; by
d? + 1, recalling that df is the out-degree of agent i in the fixed G(V, ). Among the df + 1 parts

of the values fractions dfil and the weight fractions —--, agent i sends df parts to its outgoing

o+1°

neighbors and one part to itself. Upon receiving the value fractions and the weight fractions from
its incoming neighbors, agent ¢ sums them up respectively. When the communication network is
reliable, it has been shown that, at each agent, the ratio of the value and the weight converges to

the average of the private inputs, i.e.,

[t 1w
lim 1 =~ . Vi=1,---,n. 1
o wilt]  n ;yﬂ o
The correctness of Push-Sum algorithm relies crucially on the mass preservation of the system
[3,12], which says that the total weights kept by the agents in the system sum up to n at every
iteration, i.e.,

> wilt]) =, Vit (2)
=1

Unfortunately, (2) does not hold in the presence of packet-dropping link failures. Nevertheless, as
illustrated in [10] (also described below in Algorithm 2), if we are able to keep track of the dropped
“mass”, we are able to show that the total mass is preserved in some augmented graph. And, running
Algorithm 2 can be viewed as running standard push-sum on this augmented graph.

Similar to the standard Push-Sum, in Algorithm 2, each agent ¢ wants to share with its outgoing
neighbors of its value fraction d?zjrl and weight fraction d_é“il. If agent ¢ sends these two fractions
out directly, the total mass will not be preserved. In order to recover the “mass” dropped by an
incoming link, in addition to z;[t] and w;[t], in Algorithm 2 each agent i uses variable ;[t] to record
the cumulative weight (up to iteration ¢) sent through each outgoing link; uses variable o;[t] for the
corresponding quantity of the value sequence. In particular,

Zi[t — 1]
d2+1"7

w,-[t — 1]
d2+1"

oilt] = ot — 1] + and

5’1'[15] = 51'[75 — 1] +



Algorithm 2: Robust Push-Sum [10]

1 Initialization: z;[0] = y; € R4 w;[0] =1 € R, 0;[0] = 0 € R, 5;[0] =0 € R, and p;;[0] = 0 € R%, 5;,[0] =0 € R
for each incoming link, i.e., j € Z;.
2 fort>1do

3 oilt] < oit — 1] + 2=,

4 Gilt] « it — 1] + 2=l

5 Broadcast (o;[t], &:[t]) to outgoing neighbors;
6 for each incoming link (j,1) do

7 if message (o;lt],5;[t]) is received then
8 ‘ pjilt] = a;[t],

0 pilt] < &;5t];
10 else

11
12

pjilt] + psilt — 1],
pjilt] < pjilt — 11;

13 end

14 zilt] <= - ez,0pay (Pailt] — pist — 1]),
15 wilt] < > cr,upy (Piilt] — pailt — 1))
16 end

17 end

with ¢;[0] = 0 € R, and &;[0] = 0 € R. In each iteration, agent i broadcasts the tuple (o;[t], 5;[t]) to
all of its outgoing neighbors. To record the cumulative information delivered via the link (i, k), the
outgoing neighbor k uses a pair of variables p;x[t] and p[t], with p[0] = 0 € R? and p;[0] = 0 € R.
If the link (7, k) is operational, i.e., the tuple (o;[t], d;[t]) is successfully delivered, then

pirlt] = oi[t], and p[t] = &;ft].

Otherwise, since no new message is delivered, both p;[t] and p;x[t] are unchanged. In summary, if
the link is operational at a given iteration, then

total “mass” sent = total “mass” delivered;
Otherwise,
total “mass” sent # total “mass” delivered.

In addition, if the link (4, k) is operational at iteration ¢, it holds that

t—1
zi[r]
wlt = plt — 1] = . and 4
pikt] — pirl ] rztl &+ 1 an (4)
t—1 wilr]
pinlt] — Pt —1] = ol 5
Pikt] — pirlt — 1] 2 i (5)

where t’ is the immediately preceding iteration of ¢ such that link (i, k) is operational. As a link is
reliable at least once during B consecutive iterations, it holds that ¢ — ¢’ < B. Under Algorithm 2,
it has been shown that [10], at each agent 1,

zi[t]
ws; [t]

n
a.s. 1
—_— — g Yi, ast — oo.
n
i=1



However, no convergence rate (asymptotic or non-asymptotic) is given. Informally speaking, this is
because the dynamics of the system under Algorithm 2 is not stable enough. In particular, in the
augmented graph constructed in [10] (formally defined later), the two iterates “kept” by the virtual
agents are reset to zero periodically and unexpectedly. This “reset” causes non-trivial technical
challenges — the corresponding matrix product does not converge to a rank one matrix.

3.2 Convergent Robust Push-Sum

In this subsection, we propose a simple variant of Algorithm 2. We refer to our algorithm as
Convergent Robust Push-Sum, described in Algorithm 3 — simply to emphasize the fact that a
finite-time convergence rate is derived. Note that this does not mean that our Algorithm 3 is
superior to Algorithm 2 [10]. Our Algorithm 3 has the same set of variables as that in Algorithm
2. For ease of exposition, we use o; [t], 5;'[t], 2;7[t], and w; [t] to emphasize the fact that they are
intermediate values of corresponding quantities in an iteration.

Algorithm 3: Convergent Robust Push-Sum

1 Initialization: z;[0] = y; € R4 w;[0] =1 € R, 0;[0] = 0 € R%, 5;[0] =0 € R, and p;;[0] =0 € R%, 5;,[0] =0 € R
for each incoming link, i.e., j € Z;.
2 fort>1do

z;[t—1]

3 [t](—U[t_l]‘i' d°+17
a aj[t] —at—1)+ ‘”O’,Eﬂ”,
5 Broadcast (o} [t],5; [t]) to outgoing neighbors;
6 for each mcommg link (j7 1) do
7 if message (o o lt], o] T[t]) is received then
8 psilt] o [t
9 pyilt] « & [t;
10 else
11 piilt] < pjilt — 1],
12 pyilt] <= pialt — 15
13 end
e U zé"tﬂl + 2 jez; (piilt] = pialt — 1),
15 wi [t] + w;t[»tﬂl + Xjez, (Biilt] — pjalt — 1]).
16 end
17 oilt] < ot [t] + doﬂ,
18 | Gilt] « &) []+do+“1],
19 zi[t] du[ﬂv
+
20 wi[t] Zgﬁ]
21 end

In each iteration of our Algorithm 3, the cumulative transmitted value and weight (o, 5;), and
the local value and weight (z;, w;) are updated twice, with the first update being identical to that
in Algorithm 2. As mentioned before, with only this first update, the dynamics in the system is
not stable enough, as the two iterates “kept” by the virtual agents are reset to zero periodically
and unexpectedly. This “reset” is prevented by the second update in our Algorithm 3. Intuitively
speaking, in the second update, each agent pushes nonzero “mass” to the virtual agents on its
outgoing links. As a result of this, the two iterates “kept” by a virtual agent will never be zero at
the end of an iteration.



3.3 Augmented Graph
The augmented graph of a given G(V, ), denoted as G*(V*, £?), is constructed as follows [20]:

1. V* =V UE, ie., |€| additional auxiliary agents are introduced, each of which represents a link
in G(V,€). For ease of notation, we use n;; to denote the virtual agent corresponding to edge
(i,7)-

2. £ C &% ie., the edge set in G*(V?, E?) preserves the topology of G(V, E);

3. Additionally, auxiliary edges are introduced: each auxiliary agent n;; has one incoming neighbor
— agent 7 — and one outgoing neighbor — agent j.

(a) Original graph (b) Augmented graph

Fig. 1: For each directed link, a buffer agent is added.

As shown in Fig. 1, in the augmented graph (i.e., Fig. 1(b)), four additional agents are introduced,
each of which corresponds to a directed edge of the original graph.

3.4 Matrix Representation

For each link (j,i) € £, and t > 1, define the indicator variable By; ;[t] as follows:

1, if link (7,4%) is reliable at time ¢;
Bialt] = { 1) (6)

0, otherwise.

Recall that z; and w; are the value and weight for i € V = {1,--- ,n}. For each (j,4) € £, we define
Znj; and wp;; as

2u,lt] 2 ylt] — pylt], and ™)
wnji[t] - &j[t] _ﬁji[tL (8)

with 2 ,[0] = 0 € R? and w,,[0] =0 € R.

Let m = n + |&|. We next show that the evolution of z and w can be described in a matrix
form. Since the update of value z and weight w are identical, for ease of exposition, henceforth, we
focus on the value sequence z.

From Algorithm 3, we know

>

pjilt] = B ltlo] [t] + (1 — B [t]) pjalt — 1], 9)



By (6), (7) and (9), for each ¢ € V, the update of z; is

Zj [t] = zczl[ot_i__;] + ZjGIi B(],z) [ﬂ (Z(Jjgt_,:ll] + ani [t - 1]) 9

(10)
t
Al =
Thus,
zi[t — 1] B ] B ]
zilt] = —— + ’ zi[t — 1] + oy, [t — 1] (11)
(dg +1)° %(df+1)<dg+1)J ;L(di+1) ’
Similarly, we get
1 1 —Blt] y[t]
] = e =l LR LI alt—1
0 ’+1 0
(a2+1) j kez, (dg + (d +1)
Bk t]
)2 g [t = 1]+ (1 = By [t]) 2y [t — 1. (12)
d?+1
kETZ; J
Details about the derivation can be found in Appendix A. Thus, we construct a matrix M[t] € R™*™
with the following structure:
1
M;i[t] & ——;
(d7 +1)
Biinlt
Mi[t] = Gl , Ve
(d2+1) (d;% + 1)
B,.. [t]
Mnu ; n é (.7»1) - I’L
Ju[] dg_i_lvvje )
1 1—Binlt
M, ] 2 = Dunld,
o o d?+1
(dj + 1) J
Bt
VI L
(dg +1) (a2 +1)
B .)[¢]
a 2(kg) .
Mnkjvnji[t]i d‘?_i_l ) Vkezj7
Mﬂjimji [t] £1- B(j,i) [t] (13)

and any other entry in M[t] be zero. It is easy to check that the obtained matrix M]Jt| is row
stochastic. Let W(r,t) be the product of ¢t — r + 1 row-stochastic matrices

W(r,1) 2 [ Mir] = MEIMr + 1] M,

T=r

with » < t. In addition, (¢ + 1,t) = I by convention.



For ease of exposition, without loss of generality, let us fix a one-to-one mapping between
{n+1,--- ,m} and (j,4) € €. Thus, for each non-virtual agent : € V = {1,--- ,n}, we have

Zt]:zmjzj[o] Ui(1,t) = Zy] i(1,1), (14)

where the last equality holds due to z;{0] = y; for i € V and 2;[0] = 0 for j ¢ V. Similar to (14),
for the weight evolution, for each i € {1,--- ,m}, we have

Zw] U,i(1,t), (15)

Using ergodic coefficients and some celebrated results obtained by Hajnal [11], we show the following
thoerem.

Theorem 1. Under Algorithm 3, at each agent i €V ={1,--- ,n},

zi[t] 12ka 2 k=1 Yk =il

- —nBi1 )
. nB+1
wilt] n — nB
A 1 A B+1
U}h@?ﬁeﬂ—W and’y—l—,@"
Here we use ||| to denote 5 norm. The proof of Theorem 1 can be found in Appendix B.

4 Robust Distributed Dual Averaging Method

We apply Algorithm 3 to distributed dual averaging method as information fusion primitive.
Throughout this section, we assume that each agent ¢ knows a private cost function h; : X — R,
where

(A) X CR?is nonempty, convex and compact; and

(B)  h; is convex and L-Lipschitz continuous with respect to f2 norm, i.e., for all z,y € X,

[hi(x) = hi(y)l| < Lz =y, Vi€V (16)

We are interested in solving
min h(z) 2 Zn:h-(a;) (17)
n &

using a multi-agent network where the communication links may suffer packet-dropping failures.
Let X* be the collection of optimal solutions of h subject to X. Since X C R? is a nonempty,
convex and compact, X* is also nonempty, convex and compact.

In addition to the estimate sequence {z[t]}7°,, in dual averaging method, there is an additional
sequence {z[t]}?2, in the dual space that essentially aggregates all the sub-gradients generated so
far. In addition, the dual averaging scheme involves a prozimal function 1 : RY — R that is strongly
convex. In this paper, we choose 1 to be 1-strongly convex with respect to 3 norm, that is

$(y) > 6(x) + (Ve(@), y—a)+ 3 o — o],
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for z,y € R? In addition, we assume that ¢ > 0 and argmin, i (z) = 0 € R?, which is also referred
as proximal center. This choice of v is rather standard [5,19]. As it can be seen later, this proximal
function can be used to smooth the update of the primal sequence {z[t]}2,.

One typical iterate sequence under dual averaging method is as follows. Initializing z[0] = z[0] =
0 € R?, for iteration (¢ > 0), compute g[t] € dh(x[t]), and update z and z as

z[t+1] = z[t] + g[t], (18)
ele+1) = T, (le+11,alt). (19)

where Hf cga (") is the projection operator defined as

[T (o) 2 angminges { (o) + 20 | (20)

z€R4

From (19), we know that the update of = is based on all the subgradients generated so far, and
all these subgradients are weighted equally. The convergence rate of the dual averaging method is
O(%), which is faster than the subgradient method whose convergence rate is O(h\)%t). Besides,

the constants of the dual averaging method are often smaller [15].
Next we present our Robust Push-Sum Distributed Dual Averaging (RPSDA) method. In our
RPSDA, each agent ¢ locally keeps

— estimate sequence {z;[t]}72,,
— gradient aggregation (value) sequence {z;[t]}72,, and
— weight sequence {w;[t]}72,

where z;[0] = %[0] = 0 € R? and w;[0] = 1 € R. In addition, let {a[t]}3°, be a sequence of
positive stepsizes. We will specify the choice of a[t] in our statement of theorem. Note that the only
difference between Algorithm 4 and Algorithm 3 is that in steps 14, 15 and 16, a subgradient is
computed and added to the local value z. One importantly, the local estimate x is updated using
dual averaging update.

For ease of exposition, let g;[r] = 0 for each virtual agent i € {n+1,--- ;m} and r > 0. Similar
to (14) and (15), we have

t—1 n n
Zilt] =D gl ®y(rt), and wilt] = ¥;,(11).
r=0 j=1 J=1

Let z[t] = L 3" | 2[t]. We have

m t—1 n
Al =23 all= > el (21)
i=1 r=0 1=1

Let {a[t]};2, be a sequence of non-increasing stepsizes. For each agent i € V, we define the running
average of z;[t], denoted by #;[T], as follows:

1 T
#[T) = Tin[t].
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Algorithm 4: RPSDA

1 Initialization: z[0] = z;[0] = 0:[0] = 0 € R?, 54[0] = 0 € R, w;[0] =1 € R, p;[0] = 0 € R? and $;;[0] =0 € R
for each incoming link, i.e., j € Z;.

2 fort>1do

3 +[t]<—a[t—1]—|—z;0t+11],

a Gt « Gilt — 1] + w@;gfl,

5 Broadcast (o} [t],&;" [t}) to outgoing neighbors;
6 for each incoming link (], /) do

7 if message (O'J [t], &} T1t]) is received then
8 psilt] < o [t],

9 pyilt] « & [t];

10 else

1 piilt] = pjilt — 1],

12 pyilt] <= pislt — 15

13 end

14 1t S+ X ez, (pailt] = piilt — 1)),
15 w [t] + w;f[le + 2 jez, (Pyalt] = pislt — 1))
16 end

17 oilt] « o [t] + ZOE,

18 al[th—(r []—|—:O+[tl],

19 zi[t] ﬂ,
20 w;[t] + doil]
21 Compute a subgradient g;[t — 1] € dh; (z;[t — 1]);
22 zi[t] < zi[t] + gs[t — 1];
2 | @l e Iy (20, ot - 1);
24 end
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Theorem 2. Let z* € X*, and suppose that (z*) < R%. Let {aft] = %};ﬁl with a[0] = A be the
sequence of stepsizes used in Algorithm /J for some positive constant A. Then, for T > nB + 1, we
have for all j € V,

h@IT) — by < A VT4 1)+

R2 3L2A VT +1
T .

nB

+
AT BnB+1(1 — Wﬁﬂ)ym T

The proof of Theorem 2 can be found in Appendix C. Therefore, the algorithm will converge, and
the convergence rate is O( %) Note that Theorem 2 holds for any positive constant A. Optimizing

over A, the constant hidden in O(—=) can be improved.

VT
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A Proof of Equation (12)
By (7), we have

zn[t] = ojt] — pslt]

2t
= o [t] ojim — (Bgialtlof [t] + (1 = B [t pjilt — 1]
dj +1
2t — ZJ.r t
— (1-Bgolt) <aj 1)+ H) - (=B elt 1+ -
Tt 2t
= (1= Bl en,lt — 1]+ (1~ By [t])zjg - d;; o
_ 1 L= Byl it —1] LU B
IO R T cre
Pl 1+ (L Bt 2o~ 1
keZ;, I

B Proof of Theorem 1

In this subsection, we investigate the convergence behavior of W(r,t) (where r < t) using ergodic
coefficients and some celebrated results obtained by Hajnal [11].
Given a row stochastic matrix A, coefficients of ergodicity d(A) and A\(A) are defined as:

§(A) £ max max |A;; — Ajjl, (22)
i iz

MA) =1 — mlnz min{A; ;, Ai,j}. (23)
i1,i2

Informally speaking, the coefficients of ergodicity defined in (22) and (23) characterize the “dif-
ference” between any pair of rows of the given row-stochastic matrix A. It is easy to see that
0<6(A) <1,0<A(A) <1, and that the rows of A are identical if and only if 6(A) =0 = A(A).
In addition, the ergodic coefficients d(-) and A(-) have the following connection.

Proposition 1. [11] For any p square row stochastic matrices Q[1], Q[2], ... Q[p], it holds that
J(QMIQE]...Qlp)) < II}_, NQ[k]). (24)

Proposition 1 implies that if A(Q[k]) < 1 — ¢ for some ¢ > 0 and for all 1 < k < p, then
I(Q[1], Q[2]--- Q[p]) goes to zero exponentially fast as p increases. Next we show that, for suffi-
ciently large ¢, it holds that A\(¥(1,t)) < 1 — "B, where 3 £ m To prove this claim,
we need the following lemma, whose proof is rather standard and is omitted.
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Lemma 1. Suppose thatt —r+1 > nB + 1 and B > 1. Then every entry in ®(r,t) is lower
bounded by "B

By Proposition 1 and Lemma 1, we are able to show Lemma 2, which says that the difference
between any pair of rows in W(r,t) goes to 0 exponentially fast.

Lemma 2. Forr <t, it holds that § (®(r,t)) < LiEt) ) wh =1-pnB+!
. <t, 1) <~y , where v = B .

The proof of Lemma 13 is a straightforward application of Proposition 1 and Lemma 1; thus is
omitted.

Theorem 3. Under Algorithm 3, at each agent i €V ={1,--- ,n},

2[t] lzka > k1 Yk 1)

wilt] 7 — BB+
where ||-|| is the £y norm.
Proof.
2 t] j=1Yj W;i(1,t)
wil] H ST (L) nzyk

nY 5y (Lt) = D 2h vk >y (1, t)
ny i ¥ia(l,t)
szﬂ Y 2p=1 (W5(1,1) — ‘I’k,z‘(l,t))H
) W (1)
Z?:l yj”VL"%“J
Ty Pa(Lt)”
Zk 1Yk |

n@rB+ —anB+1 |

by Lemma 2

nBt+1J, by Lemma 1,

and the proof is complete.

C Proof of Theorem 2

The proof of Theorem 2 relies on a couple of auxiliary lemmas, stated and proved next. We need
the sequence {y(t)}72, that is defined by the projection of Z[t]:

ylt) 2 [T, Gltl.aft — 1)) (25)

Using the standard convexity arguments as in [19], the following lemma holds. Note that the
summation on the RHS is over all agents in the original graph G(V, £) rather than the augmented
graph G*(V*,&%).

Lemma 3. For any x* € X, it holds that

N 2 & 1 . 2L il Alt]
h(#;[T]) — h(z") < — T t:1a[t_1] Ih[ﬂw(x>+n;i:1a[t 1] (|21 wz[t]H
L 2]
+ 7 3zele= 1ot - 2]
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Proof. Adding and subtracting h (g[T])

h(2[T]) — h(z") = h (§[T]) — h(z") + h (2;[T]) — h (9[T])
< h(g[T]) = h(z”) + L |2 [T] — g[T]]|
1 T T
< TZ(h(y[t ZH%

t=1
The first inequality holds from L—Lipschitz contunity; and the second inequality is true due to the

convexity of h as well as the definition of the running averages #;[T] and gy[T]. Now we add and

subtract Zt L 25" by (2[t]) and use convexity and L-Lipschitz continuity of the component
functions h;(z) to get

A . 1 T 1 n 1 T 1 n .
BGTD) — b < 135S (halylt) — haa ) + 2 D0 S (hilasft) — )
. t;l i=1 t=1 =1
+ 7 ; [l [t] =yt
Im1 & Iem1 &
SR DD DY [0 R S Sy >l
t=1 i=1 t=1 i=1
< LS apoyy |2l —zm\ e LSS (el - )
- IniH = llwilt] =3 g
L& zi[t]
+ 7 ;a[t —1] wfj[ﬂ —z[1]||, (26)
For the second term in (26), we have
Y lailtlwilt] =) = Aailtlylt] — 2% + Y (gilt], zilt] - ylt])
i=1 i=1 i=1
= < gilt *> + Z (gilt], xil ylt]) -
i=1
Let g[t] = 13" | g;[t]. It holds that
t—1 n
=33 alr (21)
r=0 i=1
and that
oit) =TT Gl ale— 1) =TT (ng,a[t - 1])
=1
Thus,

L1/ d L 1
> - <Z gilt], ylt] — $*> = (glt]ylt] — 2*) = - > aft—1]+ mw@c*% (28)
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where the last inequality holds since ||g[r]|| < L for all » > 0. In addition,

n

> (ot o) < £3ale— )| 28z, (29)
i=1 i=1 !
Plugging (28) and (29) back to (26), we get
) B A 1 o 2L I
h(&;[T]) — h(z") < — ;O&[T -1+ Ta[T]w(x )+ T ; 2 aft — 1] ||2]t] — il H
L _ zi[t]
+ T;a[t —1] ||z[t] - wﬂj[ﬂ ,

proving the proposition.

zZi [t]
w; [t}
i and any iteration ¢t > 1. Our analysis is different from that in [19], due to MJt]’s dependency on
time ¢.

To complete the convergence analysis, we need to bound each term HZ [t] — H for any agent

Lemma 4. When t > nB + 1, for each i € V, it holds that

1] H L

wif || = :

Z[t] - — nB *
5nB+1(1 — ynB+1 )fynB+l

Proof. Similar to the proof of Theorem 1, it can be shown that

g Al || _ EH & ‘T_Zf;% i1 95 (r, 1)
- 2] = |2 S e S (L)
Sors0 2 95l Yk (Wii(1,8) — W5, 1))
n) i1 ¥5(1,t)
|2 S gl s (i (1) — ()|
= nnﬁnB-l—l

-1
LY X X 1 (11) — 5(r 1)
= n2BnB+1

r=0 j=1

We know that

m
||‘Ilk7i(17t) - ‘Iljﬂ'(ra t)” = Z ‘I’k,p(lvr - 1)\Ilp,i(rv t) - ‘I’j:i(r> t)
p=1

m
<N W, (1, = 1) [y t) — By, 1)
p=1

< lwBrl,

Thus, we have

N

Zi[t] H L
T BrBH(L - yEE)yRE
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Now we are ready to finish the proof of Theorem 2.

Proof (Proof of Theorem 2). By the assumption that 1(z*) < R? and Lemmas 3 and 4, we have

h(i;[T]) — h(z*) < I;ia[tl]JrTl R2+3L2T:a[t1] L - —. (30)
pot a[T) T~ BnBH1(1 — 4 7BFT )ynB+1
For the chosen step-sizes a[t] = % for t > 1 and «[0] = A, we have
T-1 4
daft—1]= %+A§2\/TA+A. (31)

t= 1

—_

t

Plugging the above upper bound on the step-sizes (31) back to (30), the bound in the statement
of Theorem 2 is obtained.
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