
Distrib Comput (1996) 9:193-203 

�9 Springer-Verlag 1996 

Linearizable counting networks 
Maurice Herlihy 1'*, Nir Shavit 2'**, Orli Waarts 3'*** 

i Computer Science Department, Brown University, Providence, RI 02912, USA, e-mail: herlihy@cs.brown.edu 
2 Tel-Aviv University, Tel Aviv, Israel 69978, e-mail: shanir@cs.tau.ac.il 
3 Computer Science Division, University of California at Berkeley, Berkeley, CA, USA, e-mail: waarts@cs.berkeley.edu 

Received: November 1991 / Accepted: July 1995 

... replied the businessman. "I count them and recount them. It is 
difficult but I am a man who is naturally interested in matters of 
consequence." 

- -  Antoine de Saint-Exup~ry, The Little Prince 

Summary, The counting problem requires n asynchronous 
processes to assign themselves successive values. A solu- 
tion is linearizable if the order of the values assigned 
reflects the real-time order in which they were requested. 
Linearizable counting lies at the heart of concurrent time- 
stamp generation, as well as concurrent implementations 
of shared counters, F I F O  buffers, and similar data struc- 
tures. We consider solutions to the linearizable counting 
problem in a multiprocessor architecture in which 
processes communicate by applying read-modify-write 
operations to a shared memory. Linearizable counting 
algorithms can be judged by three criteria: the memory 
contention produced, whether processes are required to 
wait for one another, and how long it takes a process to 
choose a value (the latency). A solution is ideal if it has low 
contention, low latency, and it eschews waiting. The con- 
ventional software solution, where processes synchronize 
at a single variable, avoids waiting and has low latency, 
but has high contention. In this paper we give two new 
constructions based on counting networks, one with low 
latency and low contention, but that requires processes to 
wait for one another, and one with low contention and no 
waiting, but that has high latency. Finally, we prove that 
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these trade-offs are inescapable: an ideal linearizable 
counting algorithm is impossible. Since ideal non-lineariz- 
able counting algorithms exist, these results establish 
a substantial complexity gap between linearizable and 
non-linearizable counting. 
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1 Introduction 

In the counting problem, n asynchronous concurrent pro- 
cesses repeatedly assign themselves successive values, such 
as integers or locations in memory. The linearizable count- 
ing problem requires that the order of the values assigned 
reflects the real-time order in which they were requested 
[17,24]. For  example, if k values are requested, then 
values 0 ... k - 1 should be assigned, and if process P is 
assigned a value before process Q requests one, then P 's  
value must be less than Q's. Linearizable counting lies at 
the heart of a number of basic problems, such as concur- 
rent t ime-stamp generation, concurrent implementations 
of shared counters, F I F O  buffers, and similar data struc- 
tures (e.g. [8, 12, 22, 32]). 

The requirement that the values chosen reflect the 
real-time order in which they were requested is called 
linearizability [17]. The use of linearizable data abstrac- 
tions greatly simplifies both the specification and the 
proofs of multiple instruction/multiple data (MIMD) 
shared memory algorithms. As discussed in more detail 
elsewhere [17], the notion of linearizability generalizes 
and unifies a number of ad-hoc correctness conditions in 
the literature, and it is related to (but not identical with) 
correctness criteria such as sequential consistency [23] 
and strict serializability [28]. 

Linearizable counting algorithms can be judged by 
three criteria: 
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Fig. 1. A balancer 

- C o n t e n t i o n .  Because of limitations on processor-to- 
memory bandwidth, performance suffers when too many 
processes attempt to access the same memory location at 
the same time. Such "hot-spot" contention is well- 
documented, and has been the subject of extensive re- 
search both in hardware [2, 11, 12, 20, 29] and in software 
[3, 9, 10, 27, 32]. 
- Latency. The time needed to choose a value is strongly 
affected by the number of variables a process must access. 
We will show that (not surprisingly) there is an inherent 
(inverse) relationship between the maximum contention at 
a variable and the number of variables accessed. 
- Waiting. Algorithms that require later processes to wait 
for earlier processes are not robust - the failure or delay of 
a single process will result in halting or delays in non- 
faulty processes. All else being equal, it is preferable to 
choose algorithms that ensure that some processes make 
progress even when others halt in arbitrary locations. 
Moreover, the effect of a sequence of processes each wait- 
ing for an action of the previous one is in some cases 
similar to the effect of high latency protocols, at least for 
the last processes in the sequence. 

Informally speaking, a linearizable counting algorithm is 
ideal if it has low contention, low latency, and it eschews 
waiting. In this paper, we will show that no ideal lineariz- 
able counting algorithm exists, but that it is possible to 
satisfy any two out of the three criteria. 

First, consider the naive solution in which all n pro- 
cesses increment a single shared variable using a read- 
modify-write 1 operation. This algorithm has low latency (a 
single variable), it eschews waiting (the read-modify-write 
is assumed to be atomic), but has very high contention. 
(For more complete documentation of the performance 
problems of the single-variable solution see Anderson et al. 
[3] and Graunke and Thakkar  [13].) 

Elsewhere [4], Aspnes, Herlihy, and Shavit have pro- 
posed low-contention solutions to the (non-linearizable) 
counting problem based on a new class of data structures 
called counting networks. In this paper, we show how 
counting networks can be adapted to solve linearizable 
counting. Each of our counting protocols consists of an 
arbitrary nonlinearizable counting network coupled with 
a linearizing data structure called a filter. The combined 
construction has low contention provided that the count- 
ing network component has low contention. We first de- 
scribe a constant-depth filter that requires processes to 

i A read-modify-write operation [12] atomically reads the value of 
a memory location, modifies it, writes it back, and returns the 
location's old value 

Fig. 2. A sequential execution of an input sequence to a BITONIC [4] 
network 

wait for one another. We then give two alternative filter 
constructions that do not require waiting. The first has 
depth O(n), and it guarantees that some non-halted pro- 
cess makes progress. The second employs a network of 
depth O(n2), but it guarantees that every non-halted pro- 
cess makes progress. 

Finally, we prove that these trade-offs are a fundamental 
aspect of linearizable counting: any low-contention net- 
work that does not rely on waiting must have depth f2(n), 
where n is the number of processes. Since non-linearizable 
counting does have ideal solutions [4] with low conten- 
tion, polylogarithmic depth, and no waiting, this result 
establishes a substantial complexity gap between lineariz- 
able and non-linearizable counting. 

1.1 Background 

A counting network, like a sorting network [6], is a di- 
rected acyclic graph whose nodes are simple computing 
elements called balaneers, and whose edges are called 
wires. Each token (input item) enters on one of the net- 
work's w < n input wires, traverses a sequence of bal- 
ancers, and leaves on an output wire. Unlike a sorting 
network, a w input counting network can count any num- 
ber N ~> w of input tokens even if they arrive at arbitrary 
times, are distributed unevenly among the input wires, and 
propagate through the network asynchronously. 

Figure 2 shows a four-input four-output counting net- 
work. Intuitively, a balancer (see Fig. 1) is just a toggle 
mechanism that repeatedly alternates in sending tokens 
out on its output wires. Figure 2 shows an example com- 
putation in which input tokens traverse the network se- 
quentially, one after the other. For notational convenience, 
tokens are labeled in arrival order, although these num- 
bers are not used by the network. In this network, the first 
input (numbered 1) enters on wire 2 and leaves on wire 1, 



the second leaves on wire 2, and so on. (The reader is 
encouraged to try this for her/himself.) Thus, if on the i-th 
output wire the network assigns to consecutive output 
tokens the values i, i + 4, i + 2.4,  ... ,it is counting the 
number of input tokens without ever passing them all 
through a shared computing element. 

Counting networks are constructed to achieve a high 
level of throughput by decomposing interactions among 
processes into pieces that can be performed in parallel, 
effectively reducing memory contention. 

In [4], Aspnes, Herlihy and Shavit introduced count- 
ing networks and presented two O(log 2 n) depth counting 
network designs. Aharonson and Attiya [1] and Busch 
and Mavronicolas [26] proved several fan-in/out tradeoffs 
and cyclicity properties of such networks. The effects of 
high balancer fan-out were studied in [-21]. Klugerman 
and Plaxton [18] have shown an explicit network con- 
struction of depth O(c ~~ log n) for some small constant c, 
and an existential proof of a network of depth O(logn). 
This result was recently improved by Klugerman [19] to 
a constructive O(log n) network. Aiello, Venkatesan and 
Yung have shown randomized O(log n) constructions, and 
Shavit and Zemach have introduced highly efficient 
O(log n) depth networks called diffracting trees O(log n). 
Dwork, Herlihy, and Waarts [7] have recently devised 
a theoretical model for multiprocessor contention and 
used it to evaluate the properties of various counting 
networks. 

Unfortunately, all known counting network construc- 
tions l-l, 4, 5, 18, 19, 21, 26, 31] are not linearizable. It is 
even possible for a process to shepherd two tokens 
through a network, one after the other, and by suitable 
overtaking, have the second token receive the lesser value. 
Can counting networks solve linearizable counting? 

1.2 Overview 

In this paper, we show that there are no linearizable 
counting networks. Nevertheless, it is possible to use 
counting networks to construct a number of interesting 
counting algorithms. Each of these linearizable algorithms 
is based on a two-part data structure. First, each token 
traverses a (non-linearizable) counting network. Second, 
the result is used as an index into a filter data structure 
that enforces linearizability. 

In Sect. 3, we introduce the WAITING network, which 
combines a standard counting network with a WAmNG- 
FILTER data structure that forces later processes to wait for 
earlier processes. This combined construction yields a low- 
contention linearizable counting protocol that requires 
that processes wait for one another. 

In Sect. 4, we present two linearizable counting proto- 
cols that do not require waiting. The S~EW network con- 
struction combines a standard counting network with 
a filter in which each token takes an average of O(n) steps, 
although an individual token may take an infinite number 
of steps if it is infinitely often overtaken. The REVERSE-SKEW 
network combines a counting network with a filter in 
which every token takes no more than O(n 2) balancers, 
hence starvation is impossible. 

In Sect. 5, we prove that the tradeoffs among our 
constructions is inherent. In any low-contention lineariz- 
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able counting network, a token must traverse an average 
of t~(n) gates before taking a value. In [18, 19] it was 
shown that there exist width-n non-linearizable counting 
networks in which each token traverses at most O(log n) 
balancers. Our results therefore establish a substantial 
complexity gap between linearizable and non-linearizable 
data structures for counting. In other words, linearizability 
comes at a cost. 

2 A brief introduction to counting networks 

This section introduces counting networks. Our model for 
multiprocessor computation follows [17, 25]. The network 
definitions and examples are taken from [4], where a more 
complete discussion of the properties of counting networks 
can be found. 

The following discussion assumes an interleaving 
model of computation [25], where there is no "global 
clock," and where the execution of an operation A is said 
to precede that of operation B according to the real-time 
order, if every atomic operation in the implementation of 
A precedes every atomic operation in the implementation 
of B [17, 24]. 

Counting networks belong to a larger class of networks 
called balancing networks, constructed from wires and 
computing elements called balancers. 

A balancer. A balancer is a computing element with two 
input wires, denoted as the north and south wires (and 
indexed by 0 and 1), and two output wires, similarly 
named. Tokens arrive on the balancer's input wires at 
arbitrary times and are output on its output wires. Intuit- 
ively, one may think of a balancer as a toggle mechanism, 
that given a stream of input tokens, repeatedly sends one 
token to the left output wire and one to the right, effec- 
tively balancing the number of tokens that have been 
output on its output wires. We denote by x;, ie {0, 1} the 
number of input tokens ever received on the balancer's i-th 
input wire, and similarly by Yi, ie{0, 1} the number of 
tokens ever sent on its i-th output wire. Throughout the 
paper we will abuse this notation and use xi (y~) both as 
the name of the i-th input (output) wire and a count of the 
number of tokens received on the wire. 

Let the state of a balancer at a given point in the 
computation be defined as the collection of tokens on 
its input and output wires. For the sake of clarity we 
will assume that tokens are all distinct. We denote by 
the pair (t,b), the state transition is which the token 
t passes from an input wire to an output wire of the 
balancer b. 

We can now formally state the safety and liveness 
properties of a balancer: 

1. In any state Xo + xl > Yo + Yl (i.e. a balancer never 
creates output tokens). 
2. Given any finite number of input tokens m = Xo + xl to 
the balancer, it is guaranteed that within a finite number of 
transitions, it will reach a quiescent state, that is, one in 
which the sets of input and output tokens are the same. In 
any quiescent state, Xo + xl = Yo + Yl = m. 
3. In any quiescent state, Yo = Fm/2-] and yl = [_m/2J. 
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A balancing network. A balancing network of width w is 
a collection of balancers, where output wires are connected 
to input wires, having w designated input wires 
xo, xl . . . . .  xw 1 (which are not connected to output wires 
of balancers), w designated output wires Yo, Yl, ...,Yw 1 
(also unconnected), and containing no cycles. Let the state 
of a network at a given point in the computation be 
defined as the union of the states of all its component 
balancers. The safety and liveness of the network follows 
naturally from the above network definition and the prop- 
erties of balancers, namely, that it is always the case that 

w 1 w - 1  
~i=0 xi > ~i=o Yi, and for any finite sequence ofm input 
tokens, within a finite number of state transitions, the 
network reaches a quiescent state, i.e. one in which 

w - - 1  
~i=0 Yi : m. 

It is important to note that we make no assumptions 
about the "timing" of token transitions from balancer to 
balancer in the network the network's behavior is com- 
pletely asynchronous. Although balancer transitions can 
occur concurrently, it is convenient to model them using 
an interleaving semantics in the style of Lynch and Tuttle 
[253. An execution of a network is a finite sequence 
so ,e l , s1 ,  ... ,ej, sj or infinite sequence so , e l , s1 ,  ... of 
alternating states and balancer transitions such that for 
each (si, el+l, Si+l), the transition ei+l carries state si to 
si+ 1. A schedule is the subsequence of transitions occurring 
in an execution. A schedule is valid if it is induced by some 
execution, and complete if it is induced by an execution 
which results in a quiescent state. A schedule s is sequential 
if for any two transitions e i : ( t i ,  b i )  and ej = (tj, b j), where 
ti and tj are the same token, then all transitions between 
them also involve that token. In other words, tokens 
traverse the network one completely after the other. 

In a MIMD shared memory multiprocessor, a balanc- 
ing network is implemented as a data structure, where 
balancers are records and wires are pointers from one 
record to another. Each of the machine's n asynchronous 
processes runs a program that repeatedly traverses the 
data structure, each time shepherding a new token 
through the network (see the following Sect. 2.1). The 
limitation on the number of concurrent processes trans- 
lates into a limitation on the number of tokens concur- 
rently traversing the network: 

w - 1  w - 1  

x i - -  ~., yi < n. 
i = 0  i = 0  

We define the depth of a balancing network to be 
the maximal depth of any wire, where the depth of a 
wire is defined as 0 for a network input wire, and 
maxi~{o. 1}(depth(x~) + 1) for the output wires ofa  balancer 
having input wires xi, i s  {0.. 1}. 

A counting network. A counting network of width 2 w is 
a balancing network whose outputs Yo, -.-, Y~- ~ have the 
step property is quiescent states: 

0 ~ Yi -- Yj ~ 1 for any i < j. 

2 Note that the width and depth of the network do not need to 
depend on the number of concurrent processes 

To illustrate this property, consider an execution in which 
tokens traverse the network sequentially, one completely 
after another. Figure 2 shows such an execution on the 
BITONIC [43 network defined in [4]. As can be seen, the 
network moves input tokens to output wires in increasing 
order modulo w. A balancing network having this pro- 
perty is called a counting network, because it can easily 
be adapted to count the number of tokens that have 
entered the network. Counting is done by adding a "local 
counter" to each output wire i, so that tokens coming out 
of that wire are consecutively assigned the numbers i, 
i + w, i + 2w, ... ,i + ( y ~ -  1)w. The number i + w . k  as- 
signed by the counter at the end of output wire i to the k-th 
token exiting on it, is called the token's value. We can now 
state the following simple yet useful lemma: 

Lemma 2.1. When a token takes a value v, then there are at 
most n - 1 values less than v that have not yet been taken. 

Proof. Suppose otherwise. A value is missing if no token 
has taken it. If we let the network quiesce, then all values 
less than v will be taken. Therefore every missing value 
corresponds to a token traversing the network, and the 
claim follows because there are at most n tokens in the 
network. [] 

Note that when a token takes v, it may not yet be deter- 
mined which token will take which of the lower values. 

Define the traversal interval of a token through the 
network to be the time interval [tente,, tex~t] from the mo- 
ment in which it entered the balancing network and until it 
exited it. 

A counting network is linearizable if for any two to- 
kens a and b with traversal intervals [t~nte,, t~xit3 and 

b b a b t~xi,3, if < then value(a) < value(b). tenter, texit tenter 

Though outside the scope of this paper, this definition can 
easily be shown to meet the linearizability definition of 
[173. 3 

2.1 Implementing a counting network 

In this paper, we assume that counting networks are im- 
plemented on a multiprocessor in which processes com- 
municate by applying read-modify-write operations to 
a shared memory. The counting network is implemented 
as a data structure in memory. A balancer is represented as 
a record with the following fields: toggle is a boolean value 
(initially True) and north and south are pointers which 
reference either other balancers, or counter cells. Processes 
shepherd tokens through the network by executing the 
code shown in Fig. 3. Each process toggles the balancer's 
state by calling fetch&complement,  which atomically 
complements the toggle field and returns the old value. 
Based on the toggle state, it goes to the north or south 
successor. When it encounters a counter, it atomically 
increments it by w and returns the old value. Note that 

3 Informally, this would amount to showing that the history of all 
process's requests (of values) and replies is equivalent to a sequential 
history which is consistent with all non-concurrent pairs of request- 
reply events 



balancer = [toggle: boolean, north, south: pointer] 
traverse(b: pointer) returns(integer) 

loop until counter(b) 
state := fetch&complement(b.toggle) 
if not state 

then b := b .nor th  
else b := b.south 
end if 

end loop 
v := fetch&add(b.state,w) 
return v 
end traverse 

Fig. 3. Code for traversing a counting network of width w 

balancers use only bounded size memory, but counters, by 
definition, do not. 
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Proof. Assume by way of contradiction that p is the token 
of lowest value v to violate this property. It must have seen 
location v -  1 mod n in the array set of phase (v -  1), 
a value that could only have been written by the token 
with value v -  2 k n -  1, for some k > O. In particular, 
a token with value v - n - 1 could not yet have written its 
phase bit, and thus by assumption, neither could any token 
with one of the n values v - n ... v - 1. By the step pro- 
perty of the non-linearizable counting network com- 
ponent, since a token with value v exited the network, 
there must be at least n + 1 tokens currently traversing the 
network or past the network and before the phase change, 
that will take on the values v -  n -  1, v -  n . . . .  ,v - 1. 
Since there can be at most n tokens concurrently in the 
construct, we have a contradiction. [] 

Corollary 3.2. The WAITING network is a linearizable 
counter. 

3 The waiting network 

The WAITING network is a data structure with low conten- 
tion and low latency, but that requires processes to wait 
for one another. As mentioned above, this data structure 
has two components: tokens first traverse a (non-lineariz- 
able) counting network component, and then they traverse 
a linearizing data structure called a WAITING-FILTER. The 
key idea behind this filter is simple: each token exiting the 
network waits for a token to take the next lower value. 
This solution is therefore not robust, since a failure or 
delay by one process will force other, non-faulty processes 
to balt or delay. Nevertheless, on a cache-coherent bus- 
based multiprocessor, the WAITING network was observed 
to have contention and latency not much higher than that 
of its counting network component alone [-16], probably 
because the serializing effect of the bus masks the serializ- 
ing effects of the filter. On a distributed memory architec- 
ture, however, the WAITING network had substantially 
lower throughput than its counting network component 
alone [,15]. 

The WAITING-FILTER is similar to a barrier. After 
traversing the counting network, the WAITING-FILTER for- 
ces tokens with lower values to "catch up." A token leaves 
the filter only when all lower values have been assigned, 
guaranteeing that every token that enters the network 
later will receive a higher value. More precisely, a WAITING- 
FILTER is an n-element array of boolean values, called phase 
bits, where indexing starts from 0. Define the function 
phase(v) to be l_(v/n)J mod 2. We construct the new net- 
work by having tokens first traverse the counting network 
and then access the WAITING-FILTER. When a token exits 
the non-linearizable counting network with value v, it 
awaits its predecessor by going to location (v - 1) (rood n) 
in the array, and waiting for that location to be set to 
phase(v - 1). When this event occurs, it notifies its suc- 
cessor by setting location v to phase(v), and then it returns 
its value. 

Lemma 3.1. When token p with value v sets its phase 
bit, every token that takes a lesser value has also set its phase 
bit. 

4 Linearizable counting without waiting 

In this section, we present two linearizable, low-contention 
counting protocols that do not require processes to wait 
for one another. Just as in the WAITING network given in 
the previous section, each token traverses a non-lineariz- 
able counting network followed by a "filter" data struc- 
ture. The resulting combined network has low contention 
provided that the initial counting network has low conten- 
tion. The first protocol is non-blocking: it guarantees that 
some token always emerges after the system as a whole has 
taken a bounded number of steps, but it allows individual 
tokens to run forever without taking a value (starvation). 
The second construction is wait-free: it guarantees that 
every token emerges after taking a fixed number of steps 
(no starvation). Both networks have high latency, with 
depth 12(n). 

4.1 The Skew network 

The SKEW-FILTER is an infinite balancing network illus- 
trated in the left-hand-side of Fig. 4 (for now, ignore the 
empty balancers and the numeric labels). A SKEW-LAVER 
network is an unbounded size balancing network consist- 
ing of a sequence of balancers hi, for 0 < i. For  bo, both 
input wires are network input wires. For  all bi, the north 
output wire is a network output wire, and the south output 
wire is the north input wire for b~+l. A SKEW-FILTER with 
layer depth 4 d is constructed by layering d SKEW-LAVER 
networks so that the i-th output wire of one is the i-th 
input wire to the next. 

This filter is combined with a non-linearizable count- 
ing network as follows. Each token first traverses the 
non-linearizable counting network, and then uses the re- 
sulting value as the index of its input wire into the infinite 
SKEW-FILTER. The correctness of our constructions is based 
on the following technical lemma, easily proved by induc- 
tion on the number of balancers in a balancing network. 

4 Layer depth should not be confused with depth, which is infinite for 
the SKEW-FILTER 
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Fig. 4. Skew filter and folding 

Lemma 4.1. For any balancing network, i f  exactly c tokens 
enter on each input wire, then exactly c tokens will arrive at 
each input wire of each balancer. 

Corollary 4.2. In any execution where no more than c to- 
kens enter on any input wire, there are never more than 
c tokens on any wire. 

The capacity c of an execution in which n tokens concur- 
rently traverse a network is defined to be the maximal 
number of tokens that arrive on any input wire. Let the 
capacity c of a network be the maximum capacity over all 
executions. Corollary 4.2 implies that in a network with 
capacity c, no more than c tokens arrive on any internal or 
output wire during an execution involving n concurrent 
tokens. 

In the SKEW-FILTER, when coupled with a counting 
network, the capacity c is 1, and thus at most one token 
enters or exits on each of a balancer's input/output wires. 
We can thus define the toggle state of a balancer to be the 
number of tokens it has output. Let a northwest barrier 
starting in balancer bk be a sequence of balancers 
bk, . . . ,  bo, all in toggle state 2, where the north input wire 
of every bi is the south output wire of bi- 1, and where bo's 
north input is wire 0. (In other words, the 'northwest 
barrier' is simply a partial network in some skew layer 
starting at balancer bk and ending in the first balancer in 
this layer.) It immediately follows from Corollary 4.2 that 
any token that approaches a balancer in a northwest 
barrier will be diverted below the barrier, effectively pro- 
tecting all wires behind the barrier from late-arriving 
tokens. 

Lemma 4.3. I f  a token p exits a balancer b of  the SKEW- 
FILTER on its south wire, then there is a northwest barrier 
starting from b. 

Proof. By induction on i, the number of the wire on which 
p exited south from a balancer b. For  i = 1 the result is 
immediate. Otherwise, assume the claim for i -  1. Since 
p exited on the b's south wire, another token must already 
have visited b. By Corollary 4.2, one of the two tokens 
must have come from b's north input wire, the south 

output wire of a preceding balancer, hence it must have 
exited south on wire i - 1. The result now follows from the 
induction hypothesis. [] 

Lemma 4.4. Let q be a token that enters the SKEW-FILTER 
after token p has taken a value. I f  q traverses a higher 
numbered wire than p at layer k, then it does so at all layers 
greater than k. 

Proof. Assume otherwise. Then, p's path and q's must 
cross. The only way two paths can cross in the SKEW-FILTER 
is if they traverse a common balancer. By Corollary 4.2, 
each balancer is visited by at most two tokens and since 
p got there first (i.e., in toggle state 0), p must exit on the 
north wire, and q on the south. [] 

Corollary 4.5. Let q be a token that enters the SKEW-FILTER 
after token p has taken a value. I f  p and q pass through 
a common balancer, then q will take a higher value than p. 

Lemma 4.6. The outputs of the SKEW network have the step 
property in any quiescent state. 

Proof. In a quiescent state, all 0 < k tokens entering the 
combined network must have exited. The outputs of the 
counting network component already have the step pro- 
perty, implying that exactly k tokens have arrived on the 
k lower-numbered input wires of the SKEW-FILTER. By 
simple induction on the layers of the SKEW-FILTER, if k 
tokens enter on the k lower input wires, they will exit on 
the k lower output wires. []  

Lemma 4.7. I f  processes use a non-linearizable counting 
network to choose their input wires, then for a SKEW-FILTER 
of layer depth d, where d > n - 1,for any two tokens a and 
b with traversal intervals [te~te,, t~xit] and b b [te~,~,, t~xi,], if 

a b texi, < t~n,e, then value(a) < value(b). 

Proof. We argue inductively that this property is preser- 
ved among all tokens that have entered the SKEW-FILTER 
on wires less than or equal to k. When k = 0, the result 
is immediate, so assume the result for wires less than 
k > 0 .  



We prove the result for wires less than or equal to k by 
way of contradiction. Assume that token p exits the SKEW 
network, and token q then enters the Skew network and 
exits with a value less than p's. Lemma 4.4 implies that 
q entered the filter on a lower numbered wire than p. The 
inductive hypothesis implies therefore that p enters the 
filter on wire k. There are two cases to consider: (1) p leaves 
some balancer b on its south wire, and (2) p leaves every 
balancer on its north wire. 

In the first case, Lemma 4.3 implies that there is 
a northwest barrier extending from b to wire 0, and the 
token q must be diverted south (below the barrier) to 
higher numbered lines. Lemma 4.4 implies therefore that 
q will take a value greater than p's, a contradiction. 

In the second case, if k < n - 1 = d, then p goes north 
until it reaches wire 0, and the result is immediate. Other- 
wise, if k > n - 1, then p goes north on n - 1 balancers, 
and hence gets value k - n + 1. Since k > n - 1, Lemma 
2.1 applied to the non-linearizable counting network im- 
plies that at least k - n + 1 tokens must have entered the 
SKEW-FILTER on lines less than k and left it before p entered 
it. Therefore, since by Lemma 4.1 only one token can exit 
on a given output wire of the filter, there exists a token 
r that exited the network before p entered the filter, and 
took a value > k - n. It follows that r exits the network 
before q entered it, and by the induction hypothesis, it took 
a lesser value than q, since otherwise we would have 
a linearizability violation among the first k -  1 lines. 
But in this case, q's value must be smaller than p's 
value > k - n + l  and greater than r's value of k - n ,  
a con-tradiction. [] 

Theorem 4.8. The SKEW network solves lineraizable count- 
ing if the SKEW-FILTER component has layer depth greater 
than or equal to n - 1. 

Proof The outputs of the SKEW-FILTER satisfy the step 
property in quiescent states (Lemma 4.6). The proof that 
the Skew network is linearizable follows from Lemma 4.7 
since for any token entering the Skew network, its traversal 
interval through the Skew-filter is a subinterval of its 
traversal interval through the whole network. [] 

Although the SKEW network permits starvation, the aver- 
age traversal path length is O(n). 

Lemma 4.9. The average number of balancers traversed by 
any token in the SKEW-FILTER with layer depth n -  1 is 
2n - 2. 

Proof In any quiescent state, k tokens have entered and 
exited the filter on the lower numbered k wires. There are 
k wires of 2n - 2 balancers each, yielding an average path 
length of 2 n -  2. []  

4.2 The Reverse-skew network 

Our second construction is the REVERSE-SKEW network. 
A REVERSE-SKEW network is the mirror  image of the SKEW- 
LAVER. It consists of a sequence of balancers bi, for 0 < i. 
For  bo, both output wires are network output wires. For  
all b~, i > 0, the south output wire is a network output 
wire, and the north output wire is the south input wire for 
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b,_ 1. A REVERSE-SKEW-FILTER of layer depth d is construc- 
ted by layering d REVERSE-LAYER networks so that the i-th 
output wire of one is the i-th input wire to the next. The 
protocol is the same as before: each token traverses the 
non-linearizable counting network, and uses its output 
value to choose the input wire into the REVERSE-SKEW- 
FILTER. 

Theorem 4.10. The REVERSED-SKEW network solves lineariz- 
able counting if the non-linearizable counting network has 
width w and the REVERSE-SKEW-FILTER has layer depth 
greater than or equal to F(n - 1)/2~w - 1. 

The proof  of this theorem is omitted because it is 
nearly identical to that of Theorem 4.8. It uses one addi- 
tional observation, which is: Lemma 2.1 implies that there 
is no violation of linearizability between any two tokens 
that enter the filter on input wires that are of distance 
greater than F ( n -  1)/2~w - 1. Therefore, the northwest 
barrier created when some token exits the network, need 
only protect against tokens that entered on input wires 
that are less than F(n - 1)/2-]w apart  from its filter input 
wire. 

The following lemma shows that the REVERSE-SKEW 
network is wait-free. 

Lemma 4.11. The number of balancers traversed by any 
token in the REVERSE-SKEW-FILTER with layer depth 
[-(n - 1)/2]w - 1 is at most 2[-(n - 1)/2]w + n - 3. 

Proof Note that a token can exit on the south end of at 
most F(n - 1)/27w - 1 balancers. The number  of the out- 
put wire on which a token exits is at most n - 1 smaller 
than the number of the token's input wire in the filter, and 
therefore, a token can exit on the north end of at 
most n - 1 + [-(n - 1)/27w - 1 balancers, and the claim 
follows. [] 

As in Lemma 4.9, the average number of balancers 
traversed by any token in the REVERSE-SKEW-FILTER is 
2 [ - ( n -  1 ) / 2 7 w -  2. To optimize the contention of the 
non-linearizable counting network, one may want to take 
w = n; in this case, the layer depth of the REVERSED-SKEW 
network is O(n2). 

4.3 Implementing an infinite network 

We now show how to represent the infinite SKEW-FILTER 
using a finite data structure. (The construction for the 
REVERSE-SKEW-FmTER is omitted, since it is nearly identical.) 
We first define a coordinate system for identifying bal- 
ancers. Each balancer is denoted bi, j, where i ranges from 
0 to infinity and j ranges from 0 to d - 1 in a network of 
layer depth d. Balancer bi.0 is the first balancer whose 
north output wire is on row i, bi,d- 1 is the last balancer on 
row i (equivalently, whose north output wire is on row i), 
and bi, j is balancer on layer j and on row i. 

A folded SKEW-FILTER is a w width by d depth array of 
multi-balancers c~,~. The multi-balancer Co, o has two input- 
wires, each C;o, i > 0, has one input wire, and each c~,a- 
has one output wire. For 0 _< i _< w and 0 < j < d, there is 
one wire from c~,j to ci+ 1,i, where index arithmetic is mod 
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w; and for 0 < i < w and 0 < j  < d -  1, there is also one 
wire from ci.j to ci, j+~. The multi-balancer ci,j simulates 
each of the balancers b~_j,j, b i j + w , j ,  b i - j + 2 w ,  j ,  . . .  �9 The 
folding of a SKEW-FILTER of layer depth d = 4 into a folded 
network with w = 4 and d = 4 is illustrated in Fig. 4. 

Like a balancer, a multi-balancer can also be repre- 
sented as a record with toggle, north, and south fields. The 
north and south fields are still pointers to the neighboring 
multibalancers or counters, but the toggle component  is 
more complex, since it encodes the toggle states of an 
infinite number of balancers. The following theorem shows 
that this infinite sequence has a simple structure. 

Theorem 4.12. Let So, sl,  ... be the toggle states ofb~_j,j, 
b~_j+w,j, ... in the SKEW-FILTER (the ones represented by 
a multi-balancer ci,j). I f  there are m <= n tokens traversing 
the SKEW-VILTER, then there are at most 2m + 2 values of 
k such that Sk ~ Sk + 1. 

Proof. We argue by iduction on m, the number  of tokens 
concurrently traversing the filter. Let N be the total num- 
ber of tokens that are traversing or have completed 
traversing the filter. If m = 0, the SKEW-FILTER is quiescent, 
implying that the first [_N/2_J balancers have been visited 
by 2 tokens, the next by N mod 2 tokens, and the rest by 
no tokens. Assume the result for m - 1 tokens concur- 
rently traversing the filter, and consider the situation 
where there are m tokens traversing it. Choose any travers- 
ing token, run it to completion, and let s~ be the new toggle 
state of balancer b~-j+k~,j. By the induction hypothesis, 
there are at most 2m values of k such that s~, r s~+ 1. The 
result follows because with the addition of one more token, 
there are at most two k values such that Sk r Sk+ 1 and 

t ! 
Sk z Sk + 1. [ ]  

Since the number of concurrently traversing tokens 
m is always bounded by n, we have that: 

Corollary 4.13. There are at most 2n + 2 values of k such 
that S k ~ S k + 1 "  

The toggle component  of the multi-balancer c~,j can 
therefore be treated as a set containing (at most) 2n + 2 
pairs (k, Sk) such that b i _ j + k w , j  =/: b i _ j + ( k - 1 ) w , j ,  and an 
additional pair of (0, So). This set could be implemented 
with a short critical section (which introduces a small 
likelihood of blocking) or it could be implemented without 
blocking using read-modify-write operations as discussed 
elsewhere 1-14]. 

5 Lower bounds 

We now show that it is impossible to construct an ideal 
linearizable counting algorithm, one with low contention, 
low latency, and without waiting. We give two results. The 
first concerns counting networks: first, any non-trivial s 
non-waiting linearizable counting network must have an 
infinite number of balancers, implying that the "folding" 

5 The trivial counting network consists of a single balancer 

structure employed in the previous section's filter con- 
structions is, in a sense, inescapable. The second concerns 
linearizable counting in general: in any non-waiting proto- 
col, whether based on counting networks or not, conten- 
tion and latency are inversely related. 

The lower bound on the number  of balancers is not as 
alarming as it sounds, since we have shown it is possible to 
"fold" an infinite number of balancers into a simple finite 
data structure. The time bound is more significant: in 
a low-contention non-waiting network, any process must 
traverse an average of t2(n) balancers before choosing 
a value. There exist non-linearizable counting networks 
with polylogarithmic depth [1, 4, 18], and therefore non- 
waiting linearizable counting networks will always have 
lower latency than their non-waiting non-linearizable 
counterparts. 

5.1 Lower bounds on size 

We first show that the only non-blocking linearizable 
counting network of finite width is the trivial one consist- 
ing of a single balancer. Given a nontrivial finite counting 
network, we construct an execution in which a later token 
overtakes an earlier token, resulting in non-linearizable 
behavior. 

Theorem 5.1. There is no non-blocking finite-width lineariz- 
able counting network of width greater than two. 

Proof. We assume such a network of width w and derive 
a contradiction. Let b be the last balancer on wire w - 1. 
Send w tokens Po, ..- ,Pw-1 sequentially through the net- 
work, where each Pi enters on input wire i. If a token 
arrives at balancer b, halt it on b's input wire, otherwise let 
it proceed until it takes a value. Lemma 4.1 implies that 
there is exactly one token on each input wire of b. 

One of the halted tokens on b's input wires is Pw 1. To 
see why, consider the state of the network before pw-i 
enters. At least one token is halted before b. If all halted 
tokens resume their traversals, then the step property 
implies that exactly one token will have emerged on each 
of the wires 0, ... ,w - 2, and none on w - 1. Thus pw 1 
must exit on wire w - 1 and therefore is halted on one of 
b's input wires. 

Now let p~ 1 resume its traversal, taking a value less 
than w - 1 (since there is at least one more halted token on 
the input wires to b), and send w more tokens qo, ---, q , -  1 
sequentially through the network, where each qi enters on 
input wire i. As before, if a token arrives at balancer b, halt 
it on b's input wire, otherwise let it proceed until it takes 
a value. Each q~ follows the same path as p~, and by similar 
reasoning, two q~ are halted before b, one being qw- 1. The 
remaining w -  2 > 0 tokens q~ will each take values 
greater than w - 1. If q~ 1 resumes its traversal, it will be 
the second token to visit b, hence it will take w -  1, 
violating linearizability. [] 

Note that we have actually proved a slightly stronger 
result. In the execution we constructed, no token overtakes 
another on a single wire, and therefore there is no non- 
trivial finite linearizable counting network even under the 
additional constraint that the wires between balancers are 



first-in-first-out. The theorem applies not only to strict 
counting networks but also to filter networks. The limita- 
tions implied by the theorem apply to combined network 
constructions in which each token traverses a non-lineariz- 
able counting network as an index into a linearizing filter 
network. 

Corollary 5.2. Any input wire of a linearizable filter network 
can be used only a bounded number of times. 

Proof Suppose otherwise. Theorem 5.1 implies that the 
network has infinite width. The step property requires that 
each output wire of an infinite-width network be traversed 
no more than once in any finite execution. Consider a se- 
quential execution in which token p enters on input wire i, 
runs uninterruptedly through the network, and emerges 
after d steps on output wire j. If we run 2 d additional 
tokens sequentially from input wire i, then the last token 
will follow exactly the same path as p, since the state of 
each balancer along the path will have been reset. Now 
two tokens have traversed output wire j, violating the step 
property. [] 

5.2 Lower bounds on time 

In this section, we prove some fundamental lower bounds 
for any linearizable counting protocol that does not use 
waiting, whether or not it relies on counting networks. 
A protocol is defined as follows: each process applies read- 
modify-write operations to a sequence of variables and 
then chooses a value. A process may choose the next 
variable based on the values of earlier variables, but some 
process must decide after a finite number of steps (no 
waiting). The protocol's latency is the maximum number of 
variables any process visits before choosing its value. 
A protocol is quiescent if no process is in the process of 
choosing a value. In the protocols given so far, the vari- 
ables correspond to balancers, and the latency corres- 
ponds to the network depth. 

A path is a sequence of variables. In any protocol state, 
process p has preferred path u ifp would traverse u if it were 
run in isolation until choosing a value. If p would choose 
value v, then v is its preferred value. Define the capacity c of 
the protocol to be the maximal number of processes that 
access any particular variable in any execution. If c is high, 
so is the potential maximum number of concurrent ac- 
cesses to a variable, so capacity is a measure of potential 
contention. 

Consider a linearizable counting protocol for n pro- 
cesses with capacity c. 

Lemma 5.3. In any quiescent state, the preferred path 
for any token p must traverse at least [ - ( n -  1)/(c - 1)] 
variables. 

Proof Consider the following execution. Suppose the pro- 
tocol is in a quiescent state, and i -  1 is the last value 
taken. For each process q distinct from p, run q in isolation 
until either. 

1. q is about to choose value k. 
2. q is about to access a variable in p's preferred path. 
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We claim the first case cannot occur. Since the protocol is 
in a quiescent state, all values less than i have been taken, 
and therefore any process that starts the protocol and runs 
uninterruptedly must choose i. If p and q can both run to 
completion without accessing a common variable, they 
will both choose i, a contradiction. Therefore q's path must 
eventually intersect p's preferred path. 

By hypothesis, no more than c - 1 processes can ac- 
cess any variable along p's path. Since every process's path 
must intersect p's path somewhere, the path must include 
[-(n - 1)/(c - 1)7 distinct variables. []  

Theorem 5.4. Any linearizable counting protocol for n pro- 
cesses and capacity c has latency t2(n/c). 

Proof It is enough to show that in any sequential execu- 
tion, every process traverses at least [ - ( n -  1 ) / ( c -  1)-] 
variables. Initially, the protocol is quiescent, and Lemma 
5.3 implies that the first process traverses at least 
Fn/c7 - 1 variables. After each process chooses a value, 
the protocol returns to a quiescent state, and the same 
argument applies. []  

If we define a low-contention algorithm to be one 
where c is constant, then any low-contention linearizable 
counting protocol has linear latency. 

This theorem has further implications for counting 
networks. Elsewhere, [4] we have shown that the set of 
balancers traversed by a set of tokens in a counting net- 
work does not depend on how transitions are interleaved, 
which implies: 

Corollary 5.5. In any execution of a counting network, the 
average number of balancers traversed by every token is 
I2(n/c). 

5.3 Modeling contention 

In this paper we approximate contention by capacity. Low 
capacity clearly implies low contention, but not vice versa. 
Subsequent to our work, Dwork, Herlihy and Waarts 
provided a more detailed complexity model for contention 
in multiprocessors [7]. Our notion of capacity is closely 
related to their notion of variable-contention, defined as the 
worst case number of concurrent accesses to any single 
variable occurring during an execution of the algorithm. 
Variable-contention can also be viewed as the contribu- 
tion of a single variable to the overall contention of the 
algorithm. [7] consider a model in which simultaneous 
accesses to a single memory location are serialized: only 
one operation succeeds at a time, and other pending op- 
erations must stall. The contention of a concurrent object 
with concurrency n is defined as the worst case, over all 
executions of at most n concurrent processes, of the ratio 
of delays occurring over multiple (possibly concurrent) 
accesses to the object, divided by the number of accesses to 
the object. 

Since we model executions by sequences of read- 
modify-write operations, c concurrent accesses could be 
transformed in our model into a sequence of c successive 
read-modify-write operations performed by c distinct pro- 
cesses on the same variable. With this in mind, the proof of 
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Lemma 5.3 holds as stated for variable-content ion c. 
Consequent ly  Lemma 5.3, Theorem 5.4, and Corol lary  5.5 
also hold when c is the variable-contention. It follows 
that  in any non-wait ing protocol ,  whether based on 
a count ing network or  not, variable-contention and 
latency are inversely related. F o r  more  details the reader is 
referred to [7]. 

6 Conclusion 

The following joke  circulated in Italy during the 1920's. 

Mussolini claims that  the ideal citizen is intelligent, 
honest,  and Fascist. Unfortunately,  no one is perfect, 
which explains why everyone is either intelligent 
and Fascist but  not  honest; honest and Fascist but  
not  intelligent; or  honest  and intelligent but not  
Fascist. 

The ideal linearizable count ing  algori thm has low conten- 
tion, low latency, and does not  require waiting. Unfor tu-  
nately, Theorem 5.4 shows that no ideal algori thms exist. 
The best algori thms one can devise either have low latency 
and no waiting but high content ion (like the single shared 
variable), low content ion and low latency but require wait- 
ing (like the WAITING-FILTER), or low content ion and 
no waiting but high latency (like the SKEW-FILTER and 
REVERSE-SKEW-FILTER constructions). 
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