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.. replied the businessman. “I count them and recount them. It is
difficult but I am a man who is naturally interested in matters of
consequence.”

— Antoine de Saint-Exupéry, The Little Prince

Summary. The counting problem requires n asynchronous
processes to assign themselves successive values. A solu-
tion is linearizable if the order of the values assigned
reflects the real-time order in which they were requested.
Linearizable counting lies at the heart of concurrent time-
stamp generation, as well as concurrent implementations
of shared counters, FIFO buffers, and similar data struc-
tures. We consider solutions to the linearizable counting
problem in a multiprocessor architecture in which
processes communicate by applying read-modify-write
operations to a shared memory. Linearizable counting
algorithms can be judged by three criteria: the memory
contention produced, whether processes are required to
wait for one another, and how long it takes a process to
choose a value (the latency). A solution is ideal if it has low
contention, low latency, and it eschews waiting. The con-
ventional software solution, where processes synchronize
at a single variable, avoids waiting and has low latency,
but has high contention. In this paper we give two new
constructions based on counting networks, one with low
latency and low contention, but that requires processes to
wait for one another, and one with low contention and no
waiting, but that has high latency. Finally, we prove that
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these trade-offs are inescapable: an ideal linearizable
counting algorithm is impossible. Since ideal non-lineariz-
able counting algorithms exist, these results establish
a substantial complexity gap between linearizable and
non-linearizable counting,.
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1 Introduction

In the counting problem, n asynchronous concurrent pro-
cesses repeatedly assign themselves successive values, such
as integers or locations in memory. The linearizable count-
ing problem requires that the order of the values assigned
reflects the real-time order in which they were requested
[17,24]. For example, if k values are requested, then
values 0 ... k — 1 should be assigned, and if process P is
assigned a value before process Q requests one, then P’s
value must be less than Q’s. Linearizable counting lies at
the heart of a number of basic problems, such as concur-
rent time-stamp generation, concurrent implementations
of shared counters, FIFO buffers, and similar data struc-
tures (e.g. [8, 12,22, 32]).

The requirement that the values chosen reflect the
real-time order in which they were requested is called
linearizability [17]. The use of linearizable data abstrac-
tions greatly simplifies both the specification and the
proofs of multiple instruction/multiple data (MIMD)
shared memory algorithms. As discussed in more detail
elsewhere [17], the notion of linearizability generalizes
and unifies a number of ad-hoc correctness conditions in
the literature, and it is related to (but not identical with)
correctness criteria such as sequential consistency [23]
and strict serializability [28].

Linearizable counting algorithms can be judged by
three criteria:
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Fig. 1. A balancer

— Contention. Because of limitations on processor-to-
memory bandwidth, performance suffers when too many
processes attempt to access the same memory location at
the same time. Such “hot-spot” contention is well-
documented, and has been the subject of extensive re-
search both in hardware [2, 11, 12, 20, 29] and in software
[3,9, 10,27, 32].

— Latency. The time needed to choose a value is strongly
affected by the number of variables a process must access.
We will show that (not surprisingly) there is an inherent
(inverse) relationship between the maximum contention at
a variable and the number of variables accessed.

— Waiting. Algorithms that require later processes to wait
for earlier processes are not robust — the failure or delay of
a single process will result in halting or delays in non-
faulty processes. All else being equal, it is preferable to
choose algorithms that ensure that some processes make
progress even when others halt in arbitrary locations.
Moreover, the effect of a sequence of processes each wait-
ing for an action of the previous one is in some cases
similar to the effect of high latency protocols, at least for
the last processes in the sequence.

Informally speaking, a linearizable counting algorithm is
ideal if it has low contention, low latency, and it eschews
waiting. In this paper, we will show that no ideal lineariz-
able counting algorithm exists, but that it is possible to
satisfy any two out of the three criteria.

First, consider the naive solution in which all n pro-
cesses increment a single shared variable using a read-
modify-write! operation. This algorithm has low latency (a
single variable), it eschews waiting (the read-modify-write
is assumed to be atomic), but has very high contention.
(For more complete documentation of the performance
problems of the single-variable solution see Anderson et al.
[3] and Graunke and Thakkar [13].)

Elsewhere [4], Aspnes, Herlihy, and Shavit have pro-
posed low-contention solutions to the (non-linearizable)
counting problem based on a new class of data structures
called counting networks. In this paper, we show how
counting networks can be adapted to solve linearizable
counting. Each of our counting protocols consists of an
arbitrary nonlinearizable counting network coupled with
a linearizing data structure called a filter. The combined
construction has low contention provided that the count-
ing network component has low contention. We first de-
scribe a constant-depth filter that requires processes to

! A read-modify-write operation [12] atomically reads the value of
a memory location, modifies it, writes it back, and returns the
location’s old value
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Fig. 2. A sequential execution of an input sequence to a BITONIC [4]
network

wait for one another. We then give two alternative filter
constructions that do not require waiting. The first has
depth O(n), and it guarantees that some non-halted pro-
cess makes progress. The second employs a network of
depth O(n?), but it guarantees that every non-halted pro-
cess makes progress.

Finally, we prove that these trade-offs are a fundamental
aspect of linearizable counting: any low-contention net-
work that does not rely on waiting must have depth Q(n),
where n is the number of processes. Since non-linearizable
counting does have ideal solutions [4] with low conten-
tion, polylogarithmic depth, and no waiting, this result
establishes a substantial complexity gap between lineariz-
able and non-linearizable counting.

1.1 Background

A counting network, like a sorting network [6], is a di-
rected acyclic graph whose nodes are simple computing
elements called balancers, and whose edges are called
wires. Each token (input item) enters on one of the net-
work’s w < n input wires, traverses a sequence of bal-
ancers, and leaves on an output wire. Unlike a sorting
network, a w input counting network can count any num-
ber N > w of input tokens even if they arrive at arbitrary
times, are distributed unevenly among the input wires, and
propagate through the network asynchronously.

Figure 2 shows a four-input four-output counting net-
work. Intuitively, a balancer (see Fig. 1) is just a toggle
mechanism that repeatedly alternates in sending tokens
out on its output wires. Figure 2 shows an example com-
putation in which input tokens traverse the network se-
quentially, one after the other. For notational convenience,
tokens are labeled in arrival order, although these num-
bers are not used by the network. In this network, the first
input (numbered 1) enters on wire 2 and leaves on wire 1,



the second leaves on wire 2, and so on. (The reader is
encouraged to try this for her/himself.)) Thus, if on the i-th
output wire the network assigns to consecutive output
tokens the values i, i + 4, i +2-4, ... ,it is counting the
number of input tokens without ever passing them all
through a shared computing element.

Counting networks are constructed to achieve a high
level of throughput by decomposing interactions among
processes into pieces that can be performed in parallel,
effectively reducing memory contention.

In [4], Aspnes, Herlihy and Shavit introduced count-
ing networks and presented two O(log? n) depth counting
network designs. Aharonson and Attiya [1] and Busch
and Mavronicolas [26] proved several fan-in/out tradeoffs
and cyclicity properties of such networks. The effects of
high balancer fan-out were studied in [21]. Klugerman
and Plaxton {18] have shown an explicit network con-
struction of depth O(c'°* "log n) for some small constant c,
and an existential proof of a network of depth O(logn).
This result was recently improved by Klugerman [19] to
a constructive O(log n) network. Aiello, Venkatesan and
Yung have shown randomized O(logn) constructions, and
Shavit and Zemach have introduced highly efficient
O(log n) depth networks called diffracting trees O(log n).
Dwork, Herlihy, and Waarts [7] have recently devised
a theoretical model for multiprocessor contention and
used it to evaluate the properties of various counting
networks.

Unfortunately, all known counting network construc-
tions [1,4, 5, 18, 19, 21, 26, 31] are not linearizable. It is
even possible for a process to shepherd two tokens
through a network, one after the other, and by suitable
overtaking, have the second token receive the lesser value.
Can counting networks solve linearizable counting?

1.2 Overview

In this paper, we show that there are no linearizable
counting networks. Nevertheless, it is possible to use
counting networks to construct a number of interesting
counting algorithms. Each of these linearizable algorithms
is based on a two-part data structure. First, each token
traverses a (non-linearizable) counting network. Second,
the result is used as an index into a filter data structure
that enforces linearizability.

In Sect. 3, we introduce the WAITING network, which
combines a standard counting network with a WAITING-
FILTER data structure that forces later processes to wait for
earlier processes. This combined construction yields a low-
contention linearizable counting protocol that requires
that processes wait for one another.

In Sect. 4, we present two linearizable counting proto-
cols that do not require waiting. The Sxew network con-
struction combines a standard counting network with
a filter in which each token takes an average of O(n) steps,
although an individual token may take an infinite number
of steps if it is infinitely often overtaken. The REVERSE-SKEW
network combines a counting network with a filter in
which every token takes no more than O(n?) balancers,
hence starvation is impossible.

In Sect. 5, we prove that the tradeoffs among our
constructions is inherent. In any low-contention lineariz-
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able counting network, a token must traverse an average
of Q(n) gates before taking a value. In [18, 19] it was
shown that there exist width-n non-linearizable counting
networks in which each token traverses at most O(log n)
balancers. Our results therefore establish a substantial
complexity gap between linearizable and non-linearizable
data structures for counting. In other words, linearizability
comes at a cost.

2 A brief introduction to counting networks

This section introduces counting networks. Our model for
multiprocessor computation follows [17, 25]. The network
definitions and examples are taken from [4], where a more
complete discussion of the properties of counting networks
can be found.

The following discussion assumes an interleaving
model of computation [25], where there is no “global
clock,” and where the execution of an operation A is said
to precede that of operation B according to the real-time
order, if every atomic operation in the implementation of
A precedes every atomic operation in the implementation
of B [17, 24].

Counting networks belong to a larger class of networks
called balancing networks, constructed from wires and
computing elements called balancers.

A balancer. A balancer is a computing element with two
input wires, denoted as the north and south wires (and
indexed by 0 and 1), and two output wires, similarly
named. Tokens arrive on the balancer’s input wires at
arbitrary times and are output on its output wires. Intuit-
ively, one may think of a balancer as a toggle mechanism,
that given a stream of input tokens, repeatedly sends one
token to the left output wire and one to the right, effec-
tively balancing the number of tokens that have been
output on its output wires. We denote by x;, i€ {0, 1} the
number of input tokens ever received on the balancer’s i-th
input wire, and similarly by y;, i€ {0, 1} the number of
tokens ever sent on its i-th output wire. Throughout the
paper we will abuse this notation and use x; (y;) both as
the name of the i-th input (output) wire and a count of the
number of tokens received on the wire.

Let the state of a balancer at a given point in the
computation be defined as the collection of tokens on
its input and output wires. For the sake of clarity we
will assume that tokens are all distinct. We denote by
the pair (¢, b), the state transition is which the token
t passes from an input wire to an output wire of the
balancer b.

We can now formally state the safety and liveness
properties of a balancer:

1. In any state xq + x; = yo + y; (i.e. a balancer never
creates output tokens).

2. Given any finite number of input tokens m = xy + x; to
the balancer, it is guaranteed that within a finite number of
transitions, it will reach a quiescent state, that is, one in
which the sets of input and output tokens are the same. In
any quiescent state, xo + x; = yg + y;, = m.

3. In any quiescent state, yo = [m/27] and y, = | m/2 |.
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A balancing network. A balancing network of width w is
a collection of balancers, where output wires are connected
to input wires, having w designated input wires
Xg, X1, .-+ » Xw—1 (Which are not connected to output wires
of balancers), w designated output wires yo, V1, -+ 5 Yw—1
(also unconnected), and containing no cycles. Let the state
of a network at a given point in the computation be
defined as the union of the states of all its component
balancers. The safety and liveness of the network follows
naturally from the above network definition and the prop-
ertles of balancers namely, that it is always the case that
Zw 0o Xi =Y, ' i, and for any finite sequence of m input
tokens, within a finite number of state transitions, the
netgvlork reaches a quiescent state, i.e. one in which
Z:}:o Yi=m.

It is important to note that we make no assumptions
about the “timing” of token transitions from balancer to
balancer in the network — the network’s behavior is com-
pletely asynchronous. Although balancer transitions can
occur concurrently, it is convenient to model them using
an interleaving semantics in the style of Lynch and Tuttle
[25]. An execution of a network is a finite sequence
S0, €1, 51, --- ,€j, §; Or infinite sequence sg,ey,s;, ... of
alternating states and balancer transitions such that for
each (s;, e;4 1, S;+1), the transition e;,, carries state s; to
Si+1- A schedule is the subsequence of transitions occurring
in an execution. A schedule is valid if it is induced by some
execution, and complete if it is induced by an execution
which results in a quiescent state. A schedule s is sequential
if for any two transitions e; = (;, b;) and e; = (t;, b;), where
t; and t; are the same token, then all transitions between
them also involve that token. In other words, tokens
traverse the network one completely after the other.

In a MIMD shared memory multiprocessor, a balanc-
ing network is implemented as a data structure, where
balancers are records and wires are pointers from one
record to another. Each of the machine’s n asynchronous
processes runs a program that repeatedly traverses the
data structure, each time shepherding a new token
through the network (see the following Sect. 2.1). The
limitation on the number of concurrent processes trans-
lates into a limitation on the number of tokens concur-
rently traversing the network:

w—1 w—1
Z X; — Z yisn
i=0 i=0

We define the depth of a balancing network to be
the maximal depth of any wire, where the depth of a
wire is defined as 0 for a network input wire, and
MaX;e (o, 1 (depth(x ) + 1) for the output wires of a balancer
havmg 1nput wires x;,i€{0..1}.

A counting network. A counting network of width® w is
a balancing network whose outputs y,, ... ,y,, - have the
step property is quiescent states:

0<y;—y;<1 foranyi<j.

2 Note that the width and depth of the network do not need to
depend on the number of concurrent processes

To illustrate this property, consider an execution in which
tokens traverse the network sequentially, one completely
after another. Figure 2 shows such an execution on the
Brronic [4] network defined in [4]. As can be seen, the
network moves input tokens to output wires in increasing
order modulo w. A balancing network having this pro-
perty is called a counting network, because it can easily
be adapted to count the number of tokens that have
entered the network. Counting is done by adding a “local
counter” to each output wire i, so that tokens coming out
of that wire are consecutively assigned the numbers i,
i+w,i+2w,...,i+(y;— 1)w. The number i + w-k as-
signed by the counter at the end of output wire i to the k-th
token exiting on it, is called the token’s value. We can now
state the following simple yet useful lemma:

Lemma 2.1. When a token takes a value v, then there are at
most n — 1 values less than v that have not yet been taken.

Proof. Suppose otherwise. A value is missing if no token
has taken it. If we let the network quiesce, then all values
less than v will be taken. Therefore every missing value
corresponds to a token traversing the network, and the
claim follows because there are at most n tokens in the
network. [

Note that when a token takes v, it may not yet be deter-
mined which token will take which of the lower values.

Define the traversal interval of a token through the
network to be the time interval [Z, e, texi | from the mo-
ment in which it entered the balancing network and until it
exited it.

A counting network is linearizable if for any two to-
kens a and b with traversal intervals [t5,.,, t5x; ] and
[tgntera t:xil]: lf t:xi! < tebmer then value(a) < value(b).

Though outside the scope of this paper, this definition can
easily be shown to meet the linearizability definition of
[17].3

2.1 Implementing a counting network

In this paper, we assume that counting networks are im-
plemented on a multiprocessor in which processes com-
municate by applying read-modify-write operations to
a shared memory. The counting network is implemented
as a data structure in memory. A balancer is represented as
a record with the following fields: toggle is a boolean value
(initially True) and north and south are pointers which
reference either other balancers, or counter cells. Processes
shepherd tokens through the network by executing the
code shown in Fig. 3. Each process toggles the balancer’s
state by calling fetch&complement, which atomically
complements the toggle field and returns the old value.
Based on the toggle state, it goes to the north or south
successor. When it encounters a counter, it atomically
increments it by w and returns the old value. Note that

3 Informally, this would amount to showing that the history of all
process’s requests (of values) and replies is equivalent to a sequential
history which is consistent with all non-concurrent pairs of request-
reply events



balancer = [toggle: boolean, north, south: pointer]
traverse(b: pointer) returns(integer)
loop until counter(b)
state ;= fetch&complement(b.toggle)
if not state
then b := b.north
else b ;= b.south
end if
end loop
v = fetch&add(b.state,w)
return v
end traverse

Fig. 3. Code for traversing a counting network of width w

balancers use only bounded size memory, but counters, by
definition, do not.

3 The waiting network

The WAITING network is a data structure with low conten-
tion and low latency, but that requires processes to wait
for one another. As mentioned above, this data structure
has two components: tokens first traverse a (non-lineariz-
able) counting network component, and then they traverse
a linearizing data structure called a WAITING-FILTER. The
key idea behind this filter is simple: each token exiting the
network waits for a token to take the next lower value.
This solution is therefore not robust, since a failure or
delay by one process will force other, non-faulty processes
to balt or delay. Nevertheless, on a cache-coherent bus-
based multiprocessor, the WAITING network was observed
to have contention and latency not much higher than that
of its counting network component alone [16], probably
because the serializing effect of the bus masks the serializ-
ing effects of the filter. On a distributed memory architec-
ture, however, the WAITING network had substantially
lower throughput than its counting network component
alone [15].

The WAITING-FILTER is similar to a barrier. After
traversing the counting network, the WAITING-FILTER for-
ces tokens with lower values to “catch up.” A token leaves
the filter only when all lower values have been assigned,
guaranteeing that every token that enters the network
later will receive a higher value. More precisely, a WAITING-
FILTER is an n-element array of boolean values, called phase
bits, where indexing starts from 0. Define the function
phase(v) to be | (v/n) | mod 2. We construct the new net-
work by having tokens first traverse the counting network
and then access the WAITING-FILTER. When a token exits
the non-linearizable counting network with value v, it
awaits its predecessor by going to location (v — 1) (mod n)
in the array, and waiting for that location to be set to
phase(v — 1). When this event occurs, it notifies its suc-
cessor by setting location v to phase(v), and then it returns
its value.

Lemma 3.1. When token p with value v sets its phase
bit, every token that takes a lesser value has also set its phase

bit.
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Proof. Assume by way of contradiction that p is the token
of lowest value v to violate this property. It must have seen
location v — 1 mod n in the array set of phase(v — 1),
a value that could only have been written by the token
with value v — 2kn — 1, for some k > 0. In particular,
a token with value v — n — 1 could not yet have written its
phase bit, and thus by assumption, neither could any token
with one of the n values v — n ... v — 1. By the step pro-
perty of the non-linearizable counting network com-
ponent, since a token with value v exited the network,
there must be at least n + 1 tokens currently traversing the
network or past the network and before the phase change,
that will take on the values v—n—1, v —n, ...,v — L.
Since there can be at most n tokens concurrently in the
construct, we have a contradiction. []

Corollary 3.2. The WAITING network is a linearizable
counter.

4 Linearizable counting without waiting

In this section, we present two linearizable, low-contention
counting protocols that do not require processes to wait
for one another. Just as in the WAITING network given in
the previous section, each token traverses a non-lineariz-
able counting network followed by a “filter” data struc-
ture. The resulting combined network has low contention
provided that the initial counting network has low conten-
tion. The first protocol is non-blocking: it guarantees that
some token always emerges after the system as a whole has
taken a bounded number of steps, but it allows individual
tokens to run forever without taking a value (starvation).
The second construction is wait-free: it guarantees that
every token emerges after taking a fixed number of steps
(no starvation). Both networks have high latency, with
depth Q(n).

4.1 The Skew network

The SKEW-FILTER is an infinite balancing network illus-
trated in the left-hand-side of Fig. 4 (for now, ignore the
empty balancers and the numeric labels). A SKEW-LAYER
network is an unbounded size balancing network consist-
ing of a sequence of balancers b;, for 0 £ i. For by, both
input wires are network input wires. For all b;, the north
output wire is a network output wire, and the south output
wire is the north input wire for b;,;. A SKEW-FILTER with
layer depth* d is constructed by layering d SKEW-LAYER
networks so that the i-th output wire of one is the i-th
input wire to the next.

This filter is combined with a non-linearizable count-
ing network as follows. Each token first traverses the
non-linearizable counting network, and then uses the re-
sulting value as the index of its input wire into the infinite
Skew-FILTER. The correctness of our constructions is based
on the following technical lemma, easily proved by induc-
tion on the number of balancers in a balancing network.

4 Layer depth should not be confused with depth, which is infinite for
the SKEW-FILTER
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Skew Filter

Fig. 4. Skew filter and folding

Lemma 4.1. For any balancing network, if exactly c tokens
enter on each input wire, then exactly c tokens will arrive at
each input wire of each balancer.

Corollary 4.2. In any execution where no more than c to-
kens enter on any input wire, there are never more than
¢ tokens on any wire.

The capacity ¢ of an execution in which n tokens concur-
rently traverse a network is defined to be the maximal
number of tokens that arrive on any input wire. Let the
capacity ¢ of a network be the maximum capacity over all
executions. Corollary 4.2 implies that in a network with
capacity ¢, no more than ¢ tokens arrive on any internal or
output wire during an execution involving n concurrent
tokens.

In the Skew-FILTER, when coupled with a counting
network, the capacity c is 1, and thus at most one token
enters or exits on each of a balancer’s input/output wires.
We can thus define the toggle state of a balancer to be the
number of tokens it has output. Let a northwest barrier
starting in balancer b, be a sequence of balancers
b, ... ,bg, all in toggle state 2, where the north input wire
of every b; is the south output wire of b; _, and where by’s
north input is wire 0. (In other words, the ‘northwest
barrier’ is simply a partial network in some skew layer
starting at balancer b, and ending in the first balancer in
this layer.) It immediately follows from Corollary 4.2 that
any token that approaches a balancer in a northwest
barrier will be diverted below the barrier, effectively pro-
tecting all wires behind the barrier from late-arriving
tokens.

Lemma 4.3. If a token p exits a balancer b of the SKEW-
FILTER on its south wire, then there is a northwest barrier
starting from b.

Proof. By induction on i, the number of the wire on which
p exited south from a balancer b. For i = 1 the result is
immediate. Otherwise, assume the claim for i — 1. Since
p exited on the b’s south wire, another token must already
have visited b. By Corollary 4.2, one of the two tokens
must have come from b’s north input wire, the south

Y, Y.,

q v, ¥,

121> vy,

14 _':::_3_:5::* 16> v, v,

Folded Skew Filter

output wire of a preceding balancer, hence it must have
exited south on wire i — 1. The result now follows from the
induction hypothesis. []

Lemma 4.4. Let q be a token that enters the SKEW-FILTER
after token p has taken a value. If q traverses a higher
numbered wire than p at layer k, then it does so at all layers
greater than k.

Proof. Assume otherwise. Then, p’s path and ¢'s must
cross. The only way two paths can cross in the SKEW-FILTER
is if they traverse a common balancer. By Corollary 4.2,
each balancer is visited by at most two tokens and since
p got there first (i.e., in toggle state 0), p must exit on the
north wire, and g on the south. []

Corollary 4.5. Let g be a token that enters the SKEW-FILTER
after token p has taken a value. If p and q pass through
a common balancer, then q will take a higher value than p.

Lemma 4.6. The outputs of the SKEW network have the step
property in any quiescent state.

Proof. In a quiescent state, all 0 < k tokens entering the
combined network must have exited. The outputs of the
counting network component already have the step pro-
perty, implying that exactly k tokens have arrived on the
k lower-numbered input wires of the SKEw-FILTER. By
simple induction on the layers of the Skew-FILTER, if k
tokens enter on the k lower input wires, they will exit on
the k lower output wires. []

Lemma 4.7. If processes use a non-linearizable counting
network to choose their input wires, then for a SKEW-FILTER
of layer depth d, where d = n — 1, for any two tokens a and
b with traversal intervals [toye,, o] and [tie, 2], if
t8 < ti e, then value(a) < value(b).

Proof. We argue inductively that this property is preser-
ved among all tokens that have entered the SKEW-FILTER
on wires less than or equal to k. When k = 0, the result
is immediate, so assume the result for wires less than
k>0.



We prove the result for wires less than or equal to k by
way of contradiction. Assume that token p exits the Skew
network, and token g then enters the Skew network and
exits with a value less than p’s. Lemma 4.4 implies that
g entered the filter on a lower numbered wire than p. The
inductive hypothesis implies therefore that p enters the
filter on wire k. There are two cases to consider: (1) p leaves
some balancer b on its south wire, and (2) p leaves every
balancer on its north wire.

In the first case, Lemma 4.3 implies that there is
a northwest barrier extending from b to wire 0, and the
token g must be diverted south (below the barrier) to
higher numbered lines. Lemma 4.4 implies therefore that
g will take a value greater than p’s, a contradiction.

In the second case, if k £ n — 1 = d, then p goes north
until it reaches wire 0, and the result is immediate. Other-
wise, if k > n — 1, then p goes north on n — 1 balancers,
and hence gets value k — n + 1. Since k > n — 1, Lemma
2.1 applied to the non-linearizable counting network im-
plies that at least k — n + 1 tokens must have entered the
SKEW-FILTER on lines less than k and left it before p entered
it. Therefore, since by Lemma 4.1 only one token can exit
on a given output wire of the filter, there exists a token
r that exited the network before p entered the filter, and
took a value = k — n. It follows that r exits the network
before g entered it, and by the induction hypothesis, it took
a lesser value than g, since otherwise we would have
a linearizability violation among the first k — 1 lines.
But in this case, g’s value must be smaller than p’s
value =2k —n+ 1 and greater than r's value of k — n,
a con-tradiction. []

Theorem 4.8. The Skew network solves lineraizable count-
ing if the SKEW-FILTER component has layer depth greater
than or equal ton — 1.

Proof. The outputs of the SKEw-FILTER satisfy the step
property in quiescent states (Lemma 4.6). The proof that
the Skew network is linearizable follows from Lemma 4.7
since for any token entering the Skew network, its traversal
interval through the Skew-filter is a subinterval of its
traversal interval through the whole network. [

Although the SKEW network permits starvation, the aver-
age traversal path length is O(n).

Lemma 4.9. The average number of balancers traversed by
any token in the SKEW-FILTER with layer depth n— 1 is
2n — 2.

Proof. In any quiescent state, k tokens have entered and
exited the filter on the lower numbered k wires. There are
k wires of 2n — 2 balancers each, yielding an average path
length of 2n — 2. O

4.2 The Reverse-skew network

Our second construction is the REVERSE-SKEW network.
A REVERSE-SKEW network is the mirror image of the SKEw-
LAYER. It consists of a sequence of balancers b;, for 0 £ i.
For by, both output wires are network output wires. For
all b;, i > 0, the south output wire is a network output
wire, and the north output wire is the south input wire for
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b; . A REVERSE-SKEW-FILTER of layer depth d is construc-
ted by layering d REVERSE-LAYER networks so that the i-th
output wire of one is the i-th input wire to the next. The
protocol is the same as before: each token traverses the
non-linearizable counting network, and uses its output
value to choose the input wire into the REVERSE-SKEW-
FILTER.

Theorem 4.10. The REVERSED-SKEW network solves lineariz-
able counting if the non-linearizable counting network has
width w and the REVERSESKEW-FILTER has layer depth
greater than or equal to [ (n — 1)/27Tw — 1.

The proof of this theorem is omitted because it is
nearly identical to that of Theorem 4.8. It uses one addi-
tional observation, which is: Lemma 2.1 implies that there
is no violation of linearizability between any two tokens
that enter the filter on input wires that are of distance
greater than [(n — 1)/2']w — 1. Therefore, the northwest
barrier created when some token exits the network, need
only protect against tokens that entered on input wires
that are less than [ (n — 1)/27]w apart from its filter input
wire.

The following lemma shows that the REVERSE-SKEW
network is wait-free.

Lemma 4.11. The number of balancers traversed by any
token in the REVERSE-SKEW-FILTER with layer depth
[(n—1)/2w — 1 is at most 2[ (n — 1)/2w + n — 3.

Proof. Note that a token can exit on the south end of at
most [ (n — 1)/27lw — 1 balancers. The number of the out-
put wire on which a token exits is at most n — 1 smaller
than the number of the token’s input wire in the filter, and
therefore, a token can exit on the north end of at
most n — 1 + [(n — 1)/27]w — 1 balancers, and the claim
follows. [

As in Lemma 4.9, the average number of balancers
traversed by any token in the REVERSE-SKEW-FILTER i
2[(n—1)/2']w — 2. To optimize the contention of the
non-linearizable counting network, one may want to take
w = n; in this case, the layer depth of the REVERSED-SKEW
network is O(n?).

4.3 Implementing an infinite network

We now show how to represent the infinite SKEW-FILTER
using a finite data structure. (The construction for the
REVERSE-SKEW-FILTER is omitted, since it is nearly identical.)
We first define a coordinate system for identifying bal-
ancers. Each balancer is denoted b; ;, where i ranges from
0 to infinity and j ranges from 0 to d — 1 in a network of
layer depth d. Balancer b;  is the first balancer whose
north output wire is on row i, b; ,_, is the last balancer on
row i (equivalently, whose north output wire is on row i),
and b; ; is balancer on layer j and on row i.

A folded SKEw-FILTER is a w width by d depth array of
multi-balancers c; ;. The multi-balancer ¢, o has two input-
wires, each ¢; o, i > 0, has one input wire, and each ¢; 4,
has one output wire. For0 £i £ wand 0 £j < d, there is
one wire from ¢; ; to ¢;, 1 j, where index arithmetic is mod
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w;and for 0 <i<wand 0<j<d— 1, there is also one
wire from c; ; to ¢; ;+1. The multi-balancer ¢; ; simulates
each of the balancers b;_; ;, b;—j+w.j» bi—j+ 2w j» ---- The
folding of a Skew-FILTER of layer depth d = 4 into a folded
network with w = 4 and d = 4 is illustrated in Fig. 4.

Like a balancer, a multi-balancer can also be repre-
sented as a record with toggle, north, and south fields. The
north and south fields are still pointers to the neighboring
multibalancers or counters, but the toggle component is
more complex, since it encodes the toggle states of an
infinite number of balancers. The following theorem shows
that this infinite sequence has a simple structure.

Theorem 4.12. Let 54,51, ... be the toggle states of b;_; ;,
bi—j+w.j, -.- In the SKEW-FILTER (the ones represented by
a multi-balancer c; ;). If there are m < n tokens traversing
the SKEW-FILTER, then there are at most 2m + 2 values of
k such that s; # S+ 1-

Proof. We argue by iduction on m, the number of tokens
concurrently traversing the filter. Let N be the total num-
ber of tokens that are traversing or have completed
traversing the filter. If m = 0, the SKEW-FILTER is quiescent,
implying that the first | N/2 | balancers have been visited
by 2 tokens, the next by N mod 2 tokens, and the rest by
no tokens. Assume the result for m — 1 tokens concur-
rently traversing the filter, and consider the situation
where there are m tokens traversing it. Choose any travers-
ing token, run it to completion, and let s, be the new toggle
state of balancer b;_ ;i ;. By the induction hypothesis,
there are at most 2m values of k such that s; # s;. ;. The
result follows because with the addition of one more token,
there are at most two k values such that s, # s,., and

Sk = Sk+1- [

Since the number of concurrently traversing tokens
m is always bounded by n, we have that:

Corollary 4.13. There are at most 2n + 2 values of k such
that Sk # Sk+1-

The toggle component of the multi-balancer ¢; ; can
therefore be treated as a set containing (at most) 2n + 2
pairs (k,s;) such that b;_ ;4. ; # i jr@-1yw.j» and an
additional pair of (0, sq). This set could be implemented
with a short critical section (which introduces a small
likelihood of blocking) or it could be implemented without
blocking using read-modify-write operations as discussed
elsewhere [14].

5 Lower bounds

We now show that it is impossible to construct an ideal
linearizable counting algorithm, one with low contention,
low latency, and without waiting. We give two results. The
first concerns counting networks: first, any non-trivial®
non-waiting linearizable counting network must have an
infinite number of balancers, implying that the “folding”

5 The trivial counting network consists of a single balancer

structure employed in the previous section’s filter con-
structions is, in a sense, inescapable. The second concerns
linearizable counting in general: in any non-waiting proto-
col, whether based on counting networks or not, conten-
tion and latency are inversely related.

The lower bound on the number of balancers is not as
alarming as it sounds, since we have shown it is possible to
“fold” an infinite number of balancers into a simple finite
data structure. The time bound is more significant: in
a low-contention non-waiting network, any process must
traverse an average of Q(n) balancers before choosing
a value. There exist non-linearizable counting networks
with polylogarithmic depth [1, 4, 18], and therefore non-
waiting linearizable counting networks will always have
lower latency than their non-waiting non-lincarizable
counterparts.

5.1 Lower bounds on size

We first show that the only non-blocking linearizable
counting network of finite width is the trivial one consist-
ing of a single balancer. Given a nontrivial finite counting
network, we construct an execution in which a later token
overtakes an earlier token, resulting in non-linearizable
behavior.

Theorem 5.1. There is no non-blocking finite-width lineariz-
able counting network of width greater than two.

Proof. We assume such a network of width w and derive
a contradiction. Let b be the last balancer on wire w — 1.
Send w tokens pg, ... ,p.— sequentially through the net-
work, where each p; enters on input wire i. If a token
arrives at balancer b, halt it on b’s input wire, otherwise let
it proceed until it takes a value. Lemma 4.1 implies that
there is exactly one token on each input wire of b.

One of the halted tokens on b’s input wires is p,,_ ;. To
see why, consider the state of the network before p,
enters. At least one token is halted before b. If all halted
tokens resume their traversals, then the step property
implies that exactly one token will have emerged on each
of the wires 0, ... ,w — 2, and none on w — 1. Thus p,,_;
must exit on wire w — 1 and therefore is halted on one of
b’s input wires.

Now let p,,_, resume its traversal, taking a value less
than w — 1 (since there is at least one more halted token on
the input wires to b), and send w more tokens g, ... ,qw—1
sequentially through the network, where each g; enters on
input wire i. As before, if a token arrives at balancer b, halt
it on b’s input wire, otherwise let it proceed until it takes
a value. Each g; follows the same path as p;, and by similar
reasoning, two g; are halted before b, one being q,,_,. The
remaining w — 2 > 0 tokens g; will each take values
greater than w — 1. If g,,_ | resumes its traversal, it will be
the second token to visit b, hence it will take w — 1,
violating linearizability. [

Note that we have actually proved a slightly stronger
result. In the execution we constructed, no token overtakes
another on a single wire, and therefore there is no non-
trivial finite linearizable counting network even under the
additional constraint that the wires between balancers are



first-in-first-out. The theorem applies not only to strict
counting networks but also to filter networks. The limita-
tions implied by the theorem apply to combined network
constructions in which each token traverses a non-lineariz-
able counting network as an index into a linearizing filter
network.

Corollary 5.2. Any input wire of a linearizable filter network
can be used only a bounded number of times.

Proof. Suppose otherwise. Theorem 5.1 implies that the
network has infinite width. The step property requires that
each output wire of an infinite-width network be traversed
no more than once in any finite execution. Consider a se-
quential execution in which token p enters on input wire i,
runs uninterruptedly through the network, and emerges
after d steps on output wire j. If we run 2¢ additional
tokens sequentially from input wire i, then the last token
will follow exactly the same path as p, since the state of
each balancer along the path will have been reset. Now
two tokens have traversed output wire j, violating the step

property. []

5.2 Lower bounds on time

In this section, we prove some fundamental lower bounds
for any linearizable counting protocol that does not use
waiting, whether or not it relies on counting networks.
A protocol is defined as follows: each process applies read-
modify-write operations to a sequence of variables and
then chooses a value. A process may choose the next
variable based on the values of earlier variables, but some
process must decide after a finite number of steps (no
waiting). The protocol’s latency is the maximum number of
variables any process visits before choosing its value.
A protocol is quiescent if no process is in the process of
choosing a value. In the protocols given so far, the vari-
ables correspond to balancers, and the latency corres-
ponds to the network depth.

A path is a sequence of variables. In any protocol state,
process p has preferred path u if p would traverse u if it were
run in isolation until choosing a value. If p would choose
value v, then v is its preferred value. Define the capacity ¢ of
the protocol to be the maximal number of processes that
access any particular variable in any execution. If ¢ is high,
so is the potential maximum number of concurrent ac-
cesses to a variable, so capacity is a measure of potential
contention.

Consider a linearizable counting protocol for n pro-
cesses with capacity c.

Lemma 5.3. In any quiescent state, the preferred path
for any token p must traverse at least [ (n — 1)/(c — 1)
variables.

Proof. Consider the following execution. Suppose the pro-
tocol is in a quiescent state, and i — 1 is the last value
taken. For each process g distinct from p, run g in isolation
until either.

1. g is about to choose value k.
2. g is about to access a variable in p’s preferred path.
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We claim the first case cannot occur. Since the protocol is
in a quiescent state, all values less than i have been taken,
and therefore any process that starts the protocol and runs
uninterruptedly must choose i. If p and g can both run to
completion without accessing a common variable, they
will both choose i, a contradiction. Therefore g’s path must
eventually intersect p’s preferred path.

By hypothesis, no more than ¢ — 1 processes can ac-
cess any variable along p’s path. Since every process’s path
must intersect p’s path somewhere, the path must include
[ (n — 1)/(c — 1)7] distinct variables. [

Theorem 5.4. Any linearizable counting protocol for n pro-
cesses and capacity ¢ has latency Q(n/c).

Proof. 1t is enough to show that in any sequential execu-
tion, every process traverses at least [(n— 1)/(c — 1)]
variables. Initially, the protocol is quiescent, and Lemma
5.3 implies that the first process traverses at least
[ n/c’] — 1 variables. After each process chooses a value,
the protocol returns to a quiescent state, and the same
argument applies. []

If we define a low-contention algorithm to be one
where ¢ is constant, then any low-contention linearizable
counting protocol has linear latency.

This theorem has further implications for counting
networks. Elsewhere, [4] we have shown that the set of
balancers traversed by a set of tokens in a counting net-
work does not depend on how transitions are interleaved,
which implies:

Corollary 5.5. In any execution of a counting network, the

average number of balancers traversed by every token is
Q(n/c).

5.3 Modeling contention

In this paper we approximate contention by capacity. Low
capacity clearly implies low contention, but not vice versa.
Subsequent to our work, Dwork, Herlihy and Waarts
provided a more detailed complexity model for contention
in multiprocessors [7]. Our notion of capacity is closely
related to their notion of variable-contention, defined as the
worst case number of concurrent accesses to any single
variable occurring during an execution of the algorithm.
Variable-contention can also be viewed as the contribu-
tion of a single variable to the overall contention of the
algorithm. [7] consider a model in which simultaneous
accesses to a single memory location are serialized: only
one operation succeeds at a time, and other pending op-
erations must stall. The contention of a concurrent object
with concurrency n is defined as the worst case, over all
executions of at most n concurrent processes, of the ratio
of delays occurring over multiple (possibly concurrent)
accesses to the object, divided by the number of accesses to
the object.

Since we model executions by sequences of read-
modify-write operations, ¢ concurrent accesses could be
transformed in our model into a sequence of ¢ successive
read-modify-write operations performed by ¢ distinct pro-
cesses on the same variable. With this in mind, the proof of
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Lemma 5.3 holds as stated for variable-contention c.
Consequently Lemma 5.3, Theorem 5.4, and Corollary 5.5
also hold when ¢ is the variable-contention. It follows
that in any non-waiting protocol, whether based on
a counting network or not, variable-contention and
latency are inversely related. For more details the reader is
referred to [7].

6 Conclusion
The following joke circulated in Italy during the 1920%.

Mussolini claims that the ideal citizen is intelligent,
honest, and Fascist. Unfortunately, no one is perfect,
which explains why everyone is either intelligent
and Fascist but not honest; honest and Fascist but
not intelligent; or honest and intelligent but not
Fascist.

The ideal linearizable counting algorithm has low conten-
tion, low latency, and does not require waiting. Unfortu-
nately, Theorem 5.4 shows that no ideal algorithms exist.
The best algorithms one can devise either have low latency
and no waiting but high contention (like the single shared
variable), low contention and low latency but require wait-
ing (like the WAITING-FILTER), or low contention and
no waiting but high latency (like the SKEw-FILTER and
REVERSE-SKEW-FILTER constructions).
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