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Abstract

An atomic snapshot memory is a shared data structure allowing concurrent

processes to store information in a collection of shared registers, all of which

may be read in a single atomic scan operation. This paper presents three

wait-free implementations of atomic snapshot memory. Two constructions

implement wait-free single-writer atomic snapshot memory from wait-free

atomic single-writer, n-reader registers. A third construction implements a

wait-free n-wricer atomic snapshot memory from n-writer, n-reader registers.

The first implementation uses unbounded (integer) fields in these registers.

while the other implementations use only bounded registers. Al] operations

require 0(n1) reads and writes to the component shared registers in the

worst Case.

Keywords: Distributed systems, shared memory, atomic snapshots, wait-

free algorithms, read/write atomic registers, serializability.
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1 Introduction

Obtaining an instantaneous g]obal picture of a system, from partial obser
vations made over a period of time as the system state evolves, is a fun
damental problem in distributed and concurrent computing. hdeed, much
of the difficulty in proving correctness of concurrent programs is due to
the need to argue based on “inconsistent” views of shared memory, ob
tained concurrently with other process’s modifications. Verification of con
carrent algorithms is thus complicated by the need for a “non-interference”
step [0wi75, 0G76]. By simplifying (or eliminating) the non-interference
step, atomic snapshot memories can greatly simplify the design and verifi
cation of many concurrent algorithms. Examples include exclusion problems
[K78. L86c, DGS8S], construction of atomic multi-writer multi-reader reg
isters [VA86, BIoS?, PB8T. S88, LTV89, concurrent time-stamp systems
[DS89]. randomized consensus [A88, A1189, ADSS9, \9O] and wait-free im
plementation of data structures A1190].

This paper introduces a genera) formulation of atomic snapshot mem
ory, shared memory partitioned into words written (updated) by individual
processes, or instantaneously read (scanned) in its entirety. It presents three
wait-free implementations of atomic snapshot memories, constructed from
wait-free atomic registers. (IlL [A89a, A89b, An9Dj, Anderson independently
introduces the same notion and presents bounded implementations. See
Section 6 for a discussion.) The first implementation uses unbounded (in
teger) fie’ds in these registers, and is particularly easy to understand. The
second implementation uses bounded registers. Its correctness proof follows
the ideas of the unbounded implementation. Both constructions implement
a single-writer snapshot memory, in which each word may be updated by
only one process, from single-writer, n-reader registers. The third algorithm
implements a multi-writer snapshot memory {A89b] from wait-free atomic
n-writer, u-reader registers, again echoing key ideas from the earlier con
structions. Each updote or scan operation requires 0(n2) reads and writes
to the relevant embedded atomic registers. in the worst case.

A related data structure, multiple assignment, allows processes to atom
ically update nontrivial and intersecting subsets of the memory words, and
to read one location at a time. However, multiple assignment ha rio wait-
free implementation from read/write registers [1188]. The fact that wait-free
atomic snapshot memories can be implemented from wait-free atomic regis
ters stands in contrast to the impossibility results in H88].

Section 2 of this paper defines single-writer and multi-writer atomic
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snapshot memories. Section 3 contains an implementation of single-writer
snapshot memories from unbounded single-writer multi-reader registers, Sec
tion 4 presents an implementation of single-writer snapshot memories from
bounded single-writer registers, and Section 5 presents an implementation
of multi-writer snapshot memories from bounded multi-writer, multi-reader
registers. Section 6 concludes with a discussion of the results, related work
and directions for future research.

2 Atomic Snapshot Memories

Consider a shared memory divided into words, where each word holds a
data value. In the single-writer case, there is one word for each process,
which only it writes (in its entirety) and the others read. In the multi-writer
case, any of the words may be read or written by any of the processes. An
n-process atomic snapshot memory supports two types of operations, scanj

and npdutej, that are available to each process P. Executions of scans and
updates can each be considered to have occurred as primitive atomic events
between the beginning and end of the corresponding operation execution
interval, so that the “serialization sequence” of such atomic events satisfies
the natural semantics. That is, each scan operation returns a vector ii
of values such that each vk is the argument of the last update to word Ac
that is serialized before that scan. (This variant of serializability is called
“linearizability” [HW87].) This intuition is made precise in the following
subsection.

Two further restrictions are imposed on implementations of atomic snap
shot memories. First, following e.g. [L86b, 1188], any snapshot implemen
tation is required to be constructed with single-writer, multi-reader atomic
registers as the only shared objects. The single-writer aigorithms in Sec
tions 3 and 4 satisfy this restriction directly, and the multi-writer algorithm
in Section 5 satisfies this restriction when the embedded multi-writer regis
ters are in turn implemented with one of the previously known constructions
from single-writer registers, e.g., [P1387. L.TV891.

The second restriction imposed on snapshot memory implementations is
that they satisfy the property of wait-freedom [L.86a, P83]- That is, every
snapshot operation by process F, will terminate in a bounded number of
atomic steps of F, regardless of the behavior of other processes, assuming
only that local steps of P1 and operations on embedded shared objects ter
minate in bounded time. (The reader is referred to [L86a, 1188, AGS8j for
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discussions and proposed definitions of wait-freedom.)

2.1 Formal Specification of Single-Writer Snapshot Memo
ries

Following [LT87, 1188], a single-writer atomic snapshot memory for n pro
cesses and a particular value set Value is an automaton with two types
of input Request actions: UpdateRequost(v) and Scanflequest1,and two
types of output Return actions: UpdateReturn and ScanReturiij(v,, ...,

for any i € {i..n}, and for all v,v1, ...,v € Value. These actions are called
the interface snapshot actions.

The formal specification of single-writer snapshot memory is based on a
particular automaton, SWS. In addition to the interface snapshot actions,
SWS has two types of internal actions, Update1(v), and Scan1(vi, ..., v,), for
any i € {1..n} and for all v, v1, ..., v,. € Value. The states of SWS contain
an n-entry array Mem of type Value and m interface variables H1. The
interface variables may hold as value any of the interface snapshot actions,
or a special value 1.

Process P1 interacts with SWS by issuing a request (an Updateaequest1(v)
or ScanRequest1action), The result is to store the input action in the vari
able H, enabling the appropriate internal action (Update(v) or Scan1(vi, ...,

The internal action in turn assigns an appropriate output action to H1,
and in the case of Update1(v), assigns v to Mem as well. The change to
the interface value H1 enables the appropriate output (UpdateReturnj or
ScanReturnj(vi, ..., v,) action). Initially, each H = I and Mem1 = C
Value.

The steps of SWS appear in Figure 1, with the convention that actions
without preconditions are always enabled (e.g., input actions), and that state
components not explicitly described in the effect of an action are presumed
to retain their old value. Note that, while requests and returns by different
processes may be interleaved, these actions only alter the interface variables
for the associated processes. The “real” work is done by the atomic internal
actions, formalizing the intuition that operations of atomic memories can
be assumed to have occurred at some instant between the invocation and
response. Accordingly, an operation of SWS in a is said to be serialized at
the point of its associated Update or Scan operation.

The well-formed behaviors of SWS are those in which the environment
never issues two Request1 inputs without waiting for an intervening, match
ing Return1 output. An automaton A implements a single-writer atomic
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UpdateRequest(v)

Effect: H, UpdateRequost(v)

Update(v)

Precondition: H = UpdateRequest(v)

Effect: Mem[i] v
H1 := UpdateReturn1

UpdateRoturn1

Precondition: H = UpdateRoturn

Effect: H1 := I

Scanaequest1

Effect; H := ScanRequest1

scan(vi,...,v)

Precondition: H1 = ScanRequest1
Mern=(vi,.,v)

Effect: H, := ScanReturnj(vi,...,v)

Scanaeturui(vi, ..,v)

Precondition: H1 = ScanRoturnj(v1,...,v)

Effect:

Figure 1: The SWS automaton.
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snapshot memory provided A has the interface snapshot actions as its input
and output actions, and provided every well-formed behavior of A is also a
behavior of SWS.

2.2 A Specification of Multi-Writer Snapshot Memories

Multi-writer snapshot memories are straightforward generalizations of single-
writer snapshot memories, and can he specified analagously. Specifically, a
multi-writer snapshot memory for ii processes, a particular value set Value
and m memory elements is an automaton with input actions: UpdateRequest1(k,v),
ScanRequest, and output actions: UpdateReturn, ScanReturn(v,, ...,

for alliE {1..n},ke {1,.. ., m}, and v, ...,Vm E Value.
Straightforward modifications of the automaton SWS of Figure 1 are

used to constrain implementations of multi-writer snapshot memories, just

as SWS constrained single-writer snapshot memories. (The details are left

to the reader.)

3 The Unbounded Single-Writer Algorithm

The algorithm is based on two observations:

Observation 1: Suppose every update leaves a unique, indelible mark
whenever it writes to the memory. If two sequential reads of the entire
memory return identical values, where one read started after the first com
pleted, then the values returned constitute a snapshot [PBS7].

This observation alone supports a simple unbounded algorithm, although
one which is not wait-free. The kth update by processor P1 simply writes
the update value v and a sequence number k to a shared register in a single
atomic write. Scanners repeatedly collect the values of all ii registers, until
two such collect operations return identical values. By Observation 1, such
a successful double eollect is a snapshot.

Because updates may occur between every two successive coUect opera
tions, this algorithm is not wait-free. However, the scanner may attribute
every unsuccessful double collect to a particular updating process, whose
sequence number was observed to change. Thus:

1Aiternative approaches to specifying concurrent objects are via their serial specilca—
tion UWS? or as a. set of axioms (cf. [L86a, M86]). Axiomatic specifications for snapshot
memories appear in [A89a, A89b, A0S89j.
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Observation 2: If a scan sees another process move (complete an update)
twice, that process executed a complete update operation within the interval
of the scan.

Suppose every update performs a scan and writes the snapshot value
atomically with the value and sequence number. Now a scanner who sees
two updates by the same process can borrow the snapshot valne written by
the second update.

A straightforward implementation uses the following shared data struc
tures. (See Figure 2.) Each process P1 has a single-writer, n-reader atomic
register, r1, that P1 writes and all processes read. The register has three
fields, value(r1) (of typo Value), seq(rj) (of type integer) and viw(r1) (a
vector of n Values). The value and view fields are initialized to vj,jt and

the seq fields are initialized to 0.
The value of seqI is stored (locally) across invocations of updatej. In

addition, each scan operation has a local vector moved, in which it records,
for each other process, whether it has performed an update operation that
overlapped the scan operation. The collect operation by any process i reads
each register rj, j £ {1..n}, in an arbitrary order, returning a vector of

records read, indexed by process id.

3.1 Correctness Proof

The proof strategy is to construct an explicit serialization. That is, given an

infinite or finite run of the system, calls aid returns from the updatej proce

dures are identified with the UpdateRequest1and UpdateRoturn1actions.

and cafls and returns from scanj procedures (unless caRed from within up
dates), are identified with the ScanRequest and ScanReturri actions. The

scan and update operations themselves consist of sequences of more primi

tive operations that are either reads and writes of atomic registers, or ma

nipulations of local data. The former are atomic by assumption; the latter
are trivially atomic. Hence, an arbitrary run of an ri-process system can be

considered to be a (possibly infinite) sequence of interface snapshot actions,

and atomic reads, writes or local data manipulations. Given this sequence,
Scan1 and Update1 actions are added so that the resulting sequence, pro

jected on the actions of SWS, is a schedule of that automaton. hence, the

algorithm is atomic.
Consider then auy sequence a = 7r11r2.., where each ‘r3 is either an ac

tion of SWS. a read rcad4r; = u) by P1 of atomic re&ster r returning v, a
write write1(r1= v) by P1 of u to r or a local computation event. Denote
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procedure scant
begin

0: forj= ito ndo moved :=Ood;
1: a := collect; /* (value,seq,view) triples /
2: b := collect; 1* (value, seq, view) triples /
3: if (Vj e {i..m}) (seq(a3)= seq(b3)) then
4: return (value(bi), ..., value(b)i); / Nobody moved. *1
5: forj=ltondo
6: ii seq(a3) 0 seq(b3) then f P moved /
7: if moved = 1 then / P.j moved once before! */

8: return (view(b));
9: else moved := moved3 + 1

or];
10: goto line 1;

end scani;

procedure update (value)
begin

1: i := scant; /* Embedded scan. *1
2: r := (value,seq-f1,S)

end update;

Figure 2: The unbounded single-writer algorithm.
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by k the k-length prefix of a. Ahhough the internal states of the atomic
register implementations are not known, for any such finite prefix a of a
it is natural to define the state of the shared memory after a, or state(ak),
to be the vector (aj, ...,a,), where a1 is the value of the last write by pro
cess F1 in k, or the initial value if F, has not yet written, If state(ak) =

(at, ..., an), then snapshot(ak) denotes (value(ar), ...,value(aj). The se
quence snapshot(ao),snapshot(aj),snapshot(o2)...serves as the basis for
the serialization of a.

The update operations are serialized at the same point in the run as their

embedded writes. A scan operation has a successful double collect when

the test in line 3 is passed; following the two collects a collect in line 1
and b collect in line 2, the sequence numbers in a and b are identical.

Scans with successful double collects are serialized between the end of the

collect inline land the hegnning of the second collect in line 2. Lemma 3.1

proves that the valu returned by such a scan constitute a snapshot during
this interval.

Lemma 3.1 Let a = ,rlx2... be a run of the unbounded algorithm in which

a particular scant operation has a successful double collect: a coUect in

line I and := collect in tine 2. Let 7r and ,r be the last read of the first

collect and the first read of the second collect, respectively. Then for every

prefix a, of a, u v to, snapshot(a) = (value(bj), ...,value(b)).

Proof: By contradiction, flat is, suppose that two successive reads by P
oft; iu lines I and 2 return the same sequence number, and that an update
by F; is serialized between the two reads. Since the update is serialized

with its embedded write, a write by P to r, also occurs between the two

reads. Furthermore, the sequence number in the second read must be strictly

greater than the sequence number in the first read, a contradiction. The

lemma follows.
The remaining scans return when they observe an updater move twice:

they will be serialized in the same interval as the embedded scan. The next
lemma guarantees that this interval is contained in the interval of the scan.

Lemma 3.2 Let a = ‘r1r2.. be a run of the unbounded algorithm in which a
particular scan operation observes changes in process F ‘s sequence number

field during two different double collects. Then the value oft; read during
the last collect was written by a scan; operation that began after the first of
the four collects.
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These two lemmas imply that all scans are correctly serialized somewhere
in their intervals.

Lemma 3.3 Leta = 1r1’r2... &e a run of the unbounded algorithm in which a
particular scan operation beginning in event ,r. returns (v1, .,v) in event
,r0. Then snapshot(a) = (vi, ...,v0) for 80meV, U V U’.

By the pigeon-hole principle, in ‘I + I double collects one must be suc
cessfu! or some updater must he observed moving twice. Hence scans are
wait-free. This in turn implies that updates are wait-free.

Lemma 3.4 Every scan or update operation by process F. returns after
0(n2) atomic steps of P, Vi € {1..n}.

This discussion is summarized in the following theorem.

Theorem 3,5 The unbounded algorithm implements a wait-free single-writer
snapshot memory.

4 The Bounded Single-Writer Algorithm

The sequence numbers in the unbounded algorithm enable scan operations
to detect changes to the memory due to concurrent updates- To achieve the
same effect with bounded registers, each scanner/updater pair of processes
communicates via two atomic bits, each written by one and read by the
other. Before performing a double collect, a scan operation sets its bit equal
to the value read in the other bit. If after the double collect, the bits are
observed by the scanner to be not equal, then the updater changed its bit
(moved) after the scanners first read of that bit.

Specifically, the hounded single-writer algorithm of Figure 3 replaces
the unbounded sequence number field of r with n pairs of handshake bits
[P83. L86b1. That is, for each process pair (J, Py) the register r contains

the bit field p1,. Additional atomic single-writer single-reader bits qj are
written by P and read by P,. The qj bits are written when P, scans, (to the
values read from the Pj,i bits) and the Pi.J bits are written when P1 updates,
(to the negations of the values read from the qj, bits). An additional toggle
bit, ioggle(r), is changed during every update, to ensure that each write
operation changes the register value.
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procedure scanj
begin

0: forj= ito m do moved3 :=Ood;
0.5: for j = 1 to vi do qçj pj,i(r3) oil; / Handshake. /
1: a := collect; /1 (value, bit vector, bit, view) tuples /
2: := collect; /* (value, bit vector, bit, view) tuples /
3: if (Vj E {1..n}), (pj,i(aj) = p,1(b5)= qij

and toggle(a3)= toggle(bj)) then / Nobody moved. /
4: return (value(bi),...,value(b));
5: elseforj=ltondo
6: ifp3,j(a3) orp3,(b3) /ê l moved /

or toggle(a3)0 toggle(b3)then
7: if moved3 1 then / P3 moved once before! *7
8: return (view(b3));
9: else moved3 := moved3 + 1

oil;
10: goto line 0.5

end scanj;

procedure update1 (value)
begin

0: for j = 1 to n do f := -‘q3j od;
/ CoUect handshake values. /

1: := scanj; / Embedded scan.
2: r1 := (value,J,—’toygle(r1),a)

end update1;

Figure 3: The bounded single-writer algorithm.
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4.1 Correctness Proof

For this algorithm, a successful double collect is a pair a := collect; 6
collect; with all handshake bits Pj,i = qjj and corresponding toggle bits in
a and 6 identical. The main issue that has to be argued is that the han&
shake and toggle bits guarantee that a successful double collect produces a
snapshot. This is proven in the foilowing lemma.

Lemma 4.1 Let a = r1r2... be a run of the bounded algorithm in which a
particular scan1 operation has a successful double collect: a := collect in line
I and b collect in line 2. Let ,r. and be the last read in ti,z I and the
first read of line 2, resptctiuely. Then for every prefix a of a, u v
snapshot(o) = (valae(bi),..., va1iie(b)).

Proof. AE in the proof of Lemma 3.1, the proof is by contradiction. That
is, suppose that two succsive reads by P1 of r in a collect pair produce
vajues of Pj:i03) that are equal to qjjs most recently written value, and
identical toggle(r)’s. Assume that a write by F: to r3 is seria]iied between
these two atomic read operations. Consider the last such write operation by
Pj; being last, it must write the same handshake bit 6 and toggle bit t read
by F. Since during an update P assigns to Pj,i the negation of the value
read in q13, that read of q must have preceded n’s most recent write to

of 6. This implies the following sequence of events:

read(q1,= /* update: handshake read /
write(q, = 6), scan: handshake write /
read1(pj1(r) = b, log gle(rj) = t) scan: first collect /
write(p(r) = b.toggle(r) = t) /‘ update: write /
read(p,1(r3)= b,Ioggle(r) = t). / second: second collect /

The first operation the read by F,, is a part of the same update as the
later write by Pj, which by assumption is the last write by ) serialized
between the two reads by P,. It follows that no other write operation by F
can be serialized between P’s two reads. Then the two reads by P1 of r
return values written by two successive writes by P3, yet the toggle hits ale
identical, a contradiction. (The first of these ‘rites by Fj does not appear in
the sequence above: it is Pfs most recent previous write, and must precede
the first event of the sequence. read3(q = —6).) Hence, no write operation
by Pj can be serialized between P1’s two reads, a.r.d the c]aim follows. •
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The serialization, remaining lemmas and theorem from the unbounded
algorithm translate directly to the bounded algorithm. (It is important that
each update operation changes the value, handshake and toggle fields in a
single atomic write operation.)

Lemma 4.2 Let a = 1K2... be a run of the bounded algorithm in which
a particular scant operation observes changes in process Pj’s handshake or
toggle bits during two differtnt double collects. Then the value of r read
during the last collect was written by a scanj operation that began after the
first of the four collects.

Lemma 4.3 Let a = be a run of the bounded algorithm in which a
particular scant operation beginning in event w, returns (v1, ...,v) in event
,r. Then snaphot(o0)= (ni,...,v) for 50mev, u v in.

Lemma 4.4 Every scan or update operation by process P returns after
0(n2) atomic steps of P, ViE {l..n}.

Theorem 4.5 The bounded algorithm implements a wait-free single-writer
snapshot memory.

5 The Bounded Multi-writer Algorithm

Because processes may now write to any memory location, the handshake
bits and view fields are uncoupled from the value fields. The tatter are stored
in multi-writer, multi-reader registers 7k, where now the index k is a memory
address not related to process indices. To ensure that each successive write
to these registers has an observable effect, an id field and toggle bit field are
also included: successive update operations by P to word k write i in the
id(rk) field and alternate values in the toggle field. (The id field also allows
a scan operation to attribute an observed change to a specific process.)

Because the handshake bits are not written atomically with the rj regis
ters, a scan may observe changes by the same update operation twice: once
changing the handshake bits, and once changing the value of a memory
word. Hence, a scan operation must observe process .Pj move three times
before the value in view3 can be borrowed.

Hence, the algorichni of Figure 4 reqilires a multi-writer multi-reader reg
ister 74 for every memory address k E {1,. ..,m}, holding fields value(rk),
id(r4) and toggle(r4)of type Value, {l..n}, arid hoolean. in addition, for
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every process F, there are 2n single-writer multi-reader boolean registers pj
and q,j, ViE {i..n}, and a single-writer multi-reader rester uiew. holding
a vector of m Values. The scan and update operations of a process i are
described in Figure 4.

5.1 Correctness Proof

The serialization is defined as in the previous algorithms, with updates se
rialized with the (atomic) writes to the value registers. For this algorithm,
a successful double collect occurs when the test in line 3 is passed. This
test depends on steps 0.5 through 2.5, recording the handshake bits and the
shared registers r twice: Step 0.5 implicitly collects the values of each pjj,
by storing pj in qjj. The next three lines explicitly record the values of
the Tk registers and the handshake bits in a, 6 and h, respectively. The test
is passed if the handshake bits and id, toggle fields of the registers contain
identical values in each pair of respective reads. Again, the main issue that
has to be argued is that a successful double collect produces a snapshot.

Lemma 5.1 Let a = 12 be a run of the bounded multi-writer algorithm
in which a particular scans operation has a successful double collect, includ
ing ii := collect in line 1 and 6 coUect in line 2. Let x and , 6€ the
last read of tine I and the first read of line 2, respectively. Then for every
prefix a, of a, it v w, snapshot(a,) = (value(bi), ...,value(bm)).

Proof: As in the proofs of Lemmas 4.1 and 3.1, the proof is by contradiction.
Suppose then that two successive reads by P1 of r, both produce the values
id(r.) = j and toggle(r) = t, and the two reads of Pu also produce the
same value, c. Assume that an update to word k and hence a write to tk is
serialized between the two atomic reads of rk in lines 1 and 2. Consider the
last such write operation: because the second read by P returned id(rk) = .1
this last write is by P. Since the first read by P1 also returned id(rk) = i
and the same toggle value t, there must be another intervening write by Pj
to r, with toggle value -,t, serialized between the two reads by P1. It follows
that the last write by P is part of an update that began after P’s first read
of r. Within that update, is set to -‘qj,,. Henceforth, the value ofpjj
cannot change until qjj does, so the last read by P1 of PJ,I recorded in h
must see it equal to -‘qjj, a contradiction. Hence, no writes can be serialized
between the two reads of r.

The full sequence of atomic events constructed in this argument is as
follows:

13



procedure scanj
begin

0: forj= ltondo moved3 :=Ood;
0.5: for j = 1 to n do qç := pj,i od; / Handshake. /
1: a := collect(rk : k e {1, . m}) / (vatue,id,bit) triples /
2: 6 collect(rk : k e {1, , m}) f’ (value, id,bit) triples /
2.5:/i collect(p5,1 j E {1..n}) ; / handshake bits /
3: if (ViE {l..n}) (qjj = h)

and (Vk E {l, . ., in)) (id(ak) = id(bk)) 7* Nobody moved. /
and (Vk € {l, m}) (toggle(ak) = toggle(bk)) then

4: return (value(bi), ...,value(bm));
5: elseforj= 1 ton do
6: if ( %) or ( (]k, id(bk) = i) 1* P moved /

(id(ak) id(b,) or toggle(ak) toggle(bk)) )) then
7: if moved5 = 2 then / P, moved twice before! *7
8: return (view3);
9: else moved3 := moved5 + 1

od;
10: goto line 1

end scanj;

procedure updatq (k,value) / Process P writes value to memory word k *7
begin

0: for j = 1 to n do P1,5 := —‘q1, ad; / Handshake. /
1: views := scanj; / Embedded scan: view1 is a single-writer register *1
1.5: t* : -‘ti; / local variable Isaved between calls /
2: r := (value, i, t,) / t•j is a multi-writer register /

end update1;

Figure 4: The bounded multi-writer algorithm.
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read1(p3,1= c), / Ij’s first handshake collect /
write(q1,= c), I’ P1’s handshake write /
readl(id(rk) = j,toggle(rk) = t) / Pis first r collect /
write(id(rk) = j, toggle(r) —it)) / P ‘s toggle bit write /
read3(qj = c) / Pj’s handshake read for second write ,/write(p1= -ic) /‘ Pj’s handshake write for second write 4/

wr:teJ(zd(rk) = j. toggle(r) = t)) / j’s assumed write */
readl(id(rk) = j, tog gle(rk) = t)) / F1’s second r collect /
read(p,1 = c), /4 P1’s second handshake collect /

It follows that a scanner with a successful double coflect can conclude
that no writes are serialized between the last read in line 2 and the first read
in line 3. Hence, the values read are a snapshot, and the lemma follows. •

The previous lemma says that the scans with successful double collects
can be serialized correctly. It remains to argue that the scans which return
borrowed values use values from scans that run entirely within their interval.
As discussed, the crucial embedded scan lemma must make concession to
the non-atomicity of writes to the handshake and value registers.

Lemma 5.2 Let a = 7rjr2... be a run of the bounded multi-writer algo
rithm in which a particular scan1 operation detects changes in process I ‘s
handshake bit or writes by Pj to value registers during three different dou
ble collects. Then the value of views read by F, after the last collect was
returned by a scaJ operation that began after the first of the six collects.

Proof: The proof of this lemma rests on the sequence of relevant atomic
write steps that Pj makes in successive updates:

write to p.j
write to -view,
write to rk1
write to
write to views
write to tk3
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Observing any three changes, in the Pji or value registers, means that
as’ intervening scan must have taken place and have been recorded in view1.
Either this scan or a more recent scan by Pj wifi be read by P.

These two lemmas imply:

Lemma 5.3 Let a = 1r11r2... be a run of the bounded multi-writer algorithm
in which a particular scan operation beginning in event ,r, returns (vi, ...,

in event ‘• Then snapshoMa) = (vi, ..., v,) for some v, u v w.

As before, the pigeon-hole principle impiles that in 2n + 1 double collects
one must be successful or some updater must be observed moving three
times. Hence scans are wait-free. This in turn implies that updates are
wait-free.

Theorem 5.4 The bounded multi-writer algorithm implements a wait-free
multi-writer snapshot memory.

6 Discussion and Directions for Further Research

The distributed snapshot of Chandy and Lamport [CL8SJ provides a simple
solution to the similar problem for message-passing systems. The distributed
snapshot algorithm has proven a useful tool in solving other distributed
problems (see, e.g., [G86, BT84j), and it is likely snapshot memories will
play a similar role in concurrent programming.

Interestingly, distributed snapshots are not true instantaneous images of
the global state, such as scans of snapshot memories produce. Mowever, dis
tributed snapshots are indistinguishable, within the system itself, from true
instantaneous images. By applying the emulators of [ABO] to the constnic
tions presented in this paper, implementations of atomic snapshot memory
are obtained in message-passing systems. Snapshots obtained this way are
true instantaneous images of the global state. In addition, these implemen
tations are resilient to process and link failures, as long as a majority of the
system remains connected.

Anderson [A89a, An9iJ] has obtained, independently, bounded implemen
tations of single-writer atomic snapshots. Memory operations in Anderson’s
implementation of the single-writer snapshot memory perform e(2) reads
and writes to atomic single-writer multi-reader registers, in the worst case.

Anderson originally posed the multi-writer snapshot problem, and uses
single-writer atomic snapshots to construct multi-writer atomic snapshots
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(A89b, An9Oj. Together with the bounded single-writer algorithm of this
paper, this provided the first polynomial construction of a shared memory
object that can be instantaneously checkpointed. The multi-writer algo
rithm of tins paper gives an alternative implementation, building instead on
multi-writer atomic registers. The efficiency of these constructions ma.y be
compared by considering two compound constructions, tracing back to oper
ations on single-writer atomic registers. Anderson’s multi-writer algorithm.
based on the bounded single-writer algorithm of this paper, requires 0(n4)
single-writer operations per update or scan operatkrn in the worst case. Otir
multi-writer algorIthm, based on multi-writer registers, in turn implemented
from single-writer registers, requires 0(n3) single-writer operations per up
date or scan operation in the worst case (using the most efficient known
construction of multi-writer registers from single-writer, due to Li, Tromp
and Vitanyi LTV89]). It is interesting to specu)ate whether other, more
efficient solutions can be found.

Indeed, an interesting open question is the inherent complexity of imple
menting atomic snapshots. in terms of both time and space. In all known
bounded algorithms the scanners write to the updaters—is this necessary?
The scans do a ‘arge number of reads—is this also necessary?

Another question is to find other applications for atomic snapshots, in
addition to the ones described.

The most challenging avenue of research seems to be the relation be
tween the power of unbounded and bounded wait-free algorithms. Can
auy primitive that is not syntactically unbounded2 be implemented using
bounded shared memory? Specifically, is there a uniform transformation of
any unbounded wait-free solution for some problem into a botmded wait-free
solution? Even a precise definition of this class of problems is not obvious.

Finally, snapshot memories, though apparently more powerful than reg
isters, nevertheless have bounded wait-free implementations from those sim
ple primitives. Herlihy showed that many interesting primitives do not have
wait-free implementations from registers II881. Is k possible to “close the
gap” further, and construct yet more powerful primitives from registers?
More ambitiously, is it possible to construct a hierarchy of objects imple
mentable from atomic registers, providing a theoretical basis for the intuition
that snapshot memories are more powerful single-writer registers?

‘Clearly, procedures that return integer or other unbounded values will not have
bounded implementations.
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