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Abstract

Randomization is an exceptional tool for the design of distributed algorithms� sometimes yield�
ing e�cient solutions to problems that are inherently complex� or even unsolvable� in the setting
of deterministic algorithms	 However� this tool has a price
 even simple randomized algorithms
can be extremely hard to verify and analyze	

This thesis addresses the problem of veri�cation of randomized distributed algorithms	 We
consider the problem both from the theoretical and the practical perspective	 Our theoretical
work builds a new mathematical model of randomized distributed computation� our practical
work develops techniques to be used for the actual veri�cation of randomized systems	 Our
analysis involves both untimed and timed systems� so that real�time properties can be investi�
gated	

Our model for randomized distributed computation is an extension of labeled transition
systems	 A probabilistic automaton is a state machine with transitions� where� unlike for labeled
transition systems� a transition from a state leads to a discrete probability distribution over pairs
consisting of a label and a state� rather than to a single label and a single state	 A probabilistic
automaton contains pure nondeterministic behavior since from each state there can be several
transitions� and probabilistic behavior since once a transition is chosen the label that occurs and
the state that is reached are determined by a probability distribution	 The resolution of pure
nondeterminism leads to probabilistic executions � which are Markov chain like structures	 Once
the pure nondeterminism is resolved� the probabilistic behavior of a probabilistic automaton
can be studied	

The properties of a randomized algorithm are stated in terms of satisfying some other prop�
erty with a minimal or maximal probability no matter how the nondeterminism is resolved	
In stating the properties of an algorithm we also account for the possibility of imposing re�
strictions on the ways in which the nondeterminism is resolved �e	g	� fair scheduling� oblivious
scheduling�� � �
	 We develop techniques to prove the correctness of some property by reducing
the problem to the veri�cation of properties of non�randomized systems	 One technique is
based on coin lemmas � which state lower bounds on the probability that some chosen random
draws give some chosen outcomes no matter how the nondeterminism is resolved	 We identify
a collection of progress statements which can be used to prove upper bounds to the expected
running time of an algorithm	 The methods are applied to prove that the randomized dining
philosophers algorithm of Lehmann and Rabin guarantees progress in expected constant time
and that the randomized algorithm for agreement of Ben�Or guarantees agreement in expected
exponential time	

To ensure that our new model has strong mathematical foundations� we extend some of the
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common semantics for labeled transition systems to the probabilistic framework	 We de�ne a
compositional trace semantics where a trace is replaced by a probability distribution over traces�
called a trace distribution� and we extend the classical bisimulation and simulation relations in
both their strong and weak version	 Furthermore� we de�ne probabilistic forward simulations �
where a state is related to a probability distribution over states	 All the simulation relations
are shown to be sound for the trace distribution semantics	

In summary� we obtain a framework that accounts for the classical theoretical results of
concurrent systems and that at the same time proves to be suitable for the actual veri�cation
of randomized distributed real�time systems	 This double feature should lead eventually to the
easy extension of several veri�cation techniques that are currently available for non�randomized
distributed systems� thus rendering the analysis of randomized systems easier and more reliable	
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Chapter �

Introduction

��� The Challenge of Randomization

In ���� Rabin published a paper titled Probabilistic Algorithms �Rab��� where he presented
e�cient algorithms for two well�known problems
 Nearest Neighbors � a problem in computa�
tional geometry� and Primality Testing � the problem of determining whether a number is prime	
The surprising aspect of Rabin�s paper was that the algorithms for Nearest Neighbors and for
Primality Testing were e�cient� and the key insight was the use of randomized algorithms�
i	e	� algorithms that can �ip fair coins	 Rabin�s paper was the beginning of a new trend of
research aimed at using randomization to improve the complexity of existing algorithms	 It is
currently conjectured that there are no e�cient deterministic algorithms for Nearest Neighbors
and Primality Testing	

Another considerable achievement came in ����� when Rabin �Rab��� proposed a solution
to a problem in distributed computing which was known to be unsolvable without random�
ization	 Speci�cally� Rabin proposed a randomized distributed algorithm for mutual exclusion
between n processes that guarantees no�lockout �some process eventually gets to the critical
region whenever some process tries to get to the critical region
 and uses a test�and�set shared
variable with O�logn
 values	 On the other hand� Burns� Fisher� Jackson� Lynch and Patter�
son �BFJ���� showed that ��n
 values are necessary for a deterministic distributed algorithm	
Since then� several other randomized distributed algorithms were proposed in the literature�
each one breaking impossibility results proved for deterministic distributed algorithms	 Several
surveys of randomized algorithms are currently available� among those we cite �Kar��� GSB���	

The bottom line is that randomization has proved to be exceptionally useful for problems in
distributed computation� and it is slowly making its way into practical applications	 However�
randomization in distributed computation leaves us with a challenge whose importance increases
as the complexity of algorithms increases


�How can we analyze randomized distributed algorithms� In particular� how can we
convince ourselves that a randomized distributed algorithm works correctly��

The analysis of non�randomized distributed systems is challenging already� due to a phenomenon
called nondeterminism	 Speci�cally� whenever two systems run concurrently� the relative speeds
of the two systems are not known in general� and thus it is not possible to establish a priori
the order in which the systems complete their tasks	 On the other hand� the ordering of the

��



completion of di�erent tasks may be fundamental for the global correctness of a system� since�
for example� a process that completes a task may prevent another process from completing
its task	 The structure of the possible evolutions of a system can become intricate quickly�
justifying the statement �there is rather a large body of sad experience to indicate that a
concurrent program can withstand very careful scrutiny without revealing its errors� �OL���	

The introduction of randomization makes the problem even more challenging since two
kinds of nondeterminism arise	 We call them pure nondeterminism and probabilistic nondeter�
minism	 Pure nondeterminism is the nondeterminism due to the relative speeds of di�erent
processes� probabilistic nondeterminism is the nondeterminism due to the result of some ran�
dom draw	 Alternatively� we refer to pure nondeterminism as the nondeterministic behavior of
a system and to probabilistic nondeterminism as the probabilistic behavior of a system	 The
main di�culty with randomized distributed algorithms is that the interplay between probabil�
ity and nondeterminism can create subtle and unexpected dependencies between probabilistic
events� the experience with randomized distributed algorithms shows that �intuition often fails
to grasp the full intricacy of the algorithm� �PZ���� and �proofs of correctness for probabilistic
distributed systems are extremely slippery� �LR���	

In order to meet the challenge it is necessary to address two main problems	

� Modeling
 How do we represent a randomized distributed system�

� Veri�cation
 Given the model� how do we verify the properties of a system�

The main objective of this thesis is to make progress towards answering these two questions	

����� Modeling

First of all we need a collection of mathematical objects that describe a randomized algorithm
and its behavior� i	e	� we need a formal model for randomized distributed computation	 The
model needs to be su�ciently expressive to be able to describe the crucial aspects of randomized
distributed computation	 Since the interplay between probability and nondeterminism is one
of the main sources of problems for the analysis of an algorithm� a �rst principle guiding our
theory is the following


�	 The model should distinguish clearly between probability and nondeterminism	

That is� if either Alice or Bob is allowed to �ip a coin� the choice of who is �ipping a coin is
nondeterministic� while the outcome of the coin �ip is probabilistic	

Since the model is to be used for the actual analysis of algorithms� the model should allow
the description of randomized systems in a natural way	 Thus� our second guiding principle is
the following


�	 The model should correspond to our natural intuition of a randomized system	

That is� mathematical elegance is undoubtedly important� but since part of the veri�cation
process for an algorithm involves the representation of the algorithm itself within the formal
model� the chance of making errors is reduced if the model corresponds closely to our view of
a randomized algorithm	 A reasonable tradeo� between theory and practice is necessary	
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Our main intuition for a computer system� distributed or not� is as a state machine that
computes by moving from one state to another state	 This intuition leads to the idea of Labeled
Transition Systems �LTS
 �Kel��� Plo���	 A labeled transition system is a state machine with
labels associated with the transitions �the moves from one state to another state
	 Labeled
transition systems have been used successfully for the modeling of ordinary distributed systems
�Mil��� Jon��� LV��� LT��� GSSL���� and for their veri�cation �WLL��� SLL��� SGG����
BPV���� in this case the labels are used to model communication between several systems	 Due
to the wide use of labeled transition systems� the extensive collection of veri�cation techniques
available� and the way in which labeled transition systems correspond to our intuition of a
distributed system� two other guiding principles for the thesis are the following


�	 The new model should extend labeled transition systems	

�	 The extension of labeled transition systems should be conservative� i	e	� whenever a system
does not contain any random choices� our new system should reduce to an ordinary labeled
transition system	

In other words our model is an extension of the labeled transition system model so that ordinary
non�randomized systems turn out to be a special case of randomized systems	 Similarly� all the
concepts that we de�ne on randomized systems are generalizations of corresponding concepts
of ordinary non�randomized systems	 In this way all the techniques available should generalize
easily without the need to develop completely new and independent techniques	 Throughout
the thesis we refer to labeled transition systems as automata and to their probabilistic extension
as probabilistic automata	

����� Veri�cation

Once the model is built� our primary goal is to use the model to describe the properties that
a generic randomized algorithm should satisfy	 If the model is well designed� the properties
should be easy to state	 Then� our second goal is to develop general techniques that can be
used for veri�cation	

We investigate veri�cation techniques from two perspectives	 On one hand we formalize
some of the kinds of the informal arguments that usually appear in existing papers� on the
other hand we extend existing abstract veri�cation techniques for labeled transition systems
to the probabilistic framework	 Examples of abstract techniques include the analysis of traces
�Hoa���� which are ordered sequences of labels that can occur during the evolution of a system�
and of simulation relations �Mil��� Jon��� LV���� which are relations between the states of
two systems such that one system can simulate the transitions of the other via the simulation
relation	 To provide some intuition for traces and simulations� Figure ��� represents three
labeled transition systems� denoted by A�� A�� and A�	 The empty sequence and the sequences
a and ab are the traces of A�� A�� and A�	 For example� a computation that leads to ab is the
one that starts from s�� moves to s�� and then to s�	 The dotted lines from one state to another
state �the arrows identify the from�to property
 are examples of simulation relations from one
automaton to the other	 For example� consider the simulation relation from A� to A�	 State s�
of A� is related to state s� of A�� states s� and s� of A� are related to state s� of A�� state s�
of A� is related to state s� of A�	 The transition of A� from s� to s� with action a is simulated
in A� by the transition from s� to s� with label a	 There is a strong simulation also from A�
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Figure ���
 Simulation relations for automata	

to A� �each state si of A� is related to state si of A�
� from A� to A�� and from A� to A�	
There is an even stronger relation between A� and A�� which is called a bisimulation and is
represented by the double�arrow dotted lines between the states of A� and A�	 A bisimulation
is an equivalence relation between the states of two automata	 In this case each automaton can
simulate the transitions of the other via the bisimulation relation	

Direct Veri�cation

In the description of a randomized distributed algorithm pure nondeterminism represents the
undetermined part of its behavior� namely� in what order the processes are scheduled	 Schedul�
ing processes is the activity of removing the nondeterminism� and the object that does the
scheduling is usually referred to as a scheduler or an adversary 	 The intuition behind the name
�adversary� is in proving the correctness of an algorithm a scheduler is viewed as a malicious
entity that degrades the performance of the system as much as possible	

Once the nondeterminism is removed� a system looks like a Markov chain� and thus it is
possible to reason about probabilities	 A common argument is then

�no matter how the scheduler acts� the probability that some good property holds is
at least p��

Actually� in most of the existing work p is �� since the proofs are easier to carry out in this case	
In this thesis we are interested in every p since we are concerned also with the time complexity
of an algorithm	 Throughout the thesis it will become clear why we need every p for the study
of time complexity	

One of our major goals is to remove from the informal arguments of correctness all �danger�
ous� statements� i	e	� all statements that rely solely on intuition rather than on actual deduc�
tions� and yet keep the structure of a proof simple	 In other words� we want to provide tools
that allow people to argue as before with a signi�cantly higher con�dence that what they say is
correct	 Then� we want to develop techniques that allow us to decompose the veri�cation task
of complex properties into simpler veri�cation tasks	 This feature is important for scalability	
Here we give examples of two issues that we believe to be important	

� Make sure that you know what probability space you are working in� Or� at least� make
sure that you are working in a probability space	 This is a rule of thumb that is valid in
other �elds like Information Theory and Detection Theory	 Probability is very tricky	 The
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fact that a speci�c probability space was not identi�ed was the reason for a bug discovered
by Saias �Sai��� in the original algorithm of Rabin �Rab���� later �xed by Kushilevitz and
Rabin �KR���	 Of course� in order to make sure we know what probability spaces we are
working in� we need some easy mechanisms to identify those probability spaces	 Such
mechanisms were not available in ����	

� Avoid arguments of the kind �now the worst thing that can happen is the following��
These arguments are usually based on the intuition that the designers have about their
own algorithm	 Speci�cally� as has happened in the past� the designers argue based on
worst cases they can think of rather than the actual worst case	 What is missing is a
proof showing that the worst case has been identi�ed	 A much better statement would
be �no matter what happens� something else will happen�� since it does not require us to
identify the worst scenario	 Using our methodology� Aggarwal �Agg��� discovered a bug
in an algorithm designed by himself and Kutten �AK��� which was due to an argument of
the kind cited above	 Similarly� we discovered a bug in the timing analysis of the mutual
exclusion algorithm of Pnueli and Zuck �PZ���	 This bug arose for the same reason	

The reader familiar with existing work� and in particular familiar with model checking� may
be a bit puzzled at this point	 There is a considerable amount of work on model checking
of randomized distributed systems� and yet we are introducing new techniques	 Furthermore�
although there is some ongoing work on automating part of the proof methods developed in this
thesis �PS���� we do not address any decidability issue here	 Our favorite analogy to justify our
approach is that we view model checking as the program �Mathematica�� a popular program
for symbolic manipulation of analytic expressions	 If we are given a simple analytical problem�
we can use Mathematica to get the solution from a computer	 On the other hand� if we have
a complex analytical problem� say a complex function that we have de�ned� and we want to
verify that it respects some speci�c constraints� or maybe we want to �nd the constraints� then
things are very di�erent� since the problem in general is undecidable� i	e	� not solvable by a
computer	 We can plot part of the given function using Mathematica and have a rough idea of
whether it satis�es the desired constraints	 If the plot shows that the function violates some
of the constraints� then we have to change either the function or the constraints� if the plot
shows that the function does not violate the constraints� then we can start to use all the tools
of analysis to prove that the given function satis�es the constraints	 In this way Mathematica
saves us a lot of time	 In using the analytical tools we need to use our creativity and our
intuition about the problem so that we can solve its undecidable part	 We view our research as
building the analytical tools	

Simulations

The study of traces and simulations carried out in the thesis contributes more directly to theory
than to practice	 In particular� we do not give any examples of veri�cation using simulations	
However� due to the success that simulation relations have had for the veri�cation of ordinary
labeled transition systems� it is likely that the same methods will also work for randomized
systems	

A considerable amount of research has been carried out in extending trace semantics and
simulation relations to the probabilistic case� especially within process algebras �Hoa��� Mil���
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BW���� however� most of the existing literature does not address pure nondeterminism� and
thus it has limited practical applicability	 We believe it is important to have a model that is
both useful for realistic problems and accounts for the existing theoretical work	 In particu�
lar� based on some of the interpretations that are given to nondeterminism within ordinary
automata� we realize that� also in the probabilistic case� pure nondeterminism can be used to
express much more than just the relative speeds of processes running concurrently	 Speci�cally�
nondeterminism can be used to model the following phenomena	

�	 Scheduling freedom	 This is the classical use of nondeterminism� where several processes
run in parallel and there is freedom in the choice of which process performs the next
transition	

�	 External environment 	 Some of the labels can represent communication events due to the
action of some external user� or more generally� to the action of an external environment 	
In this case nondeterminism models the arbitrary behavior of the external environment�
which is chosen by an adversary	

�	 Implementation Freedom	 A probabilistic automaton is viewed as a speci�cation� and
nondeterminism represents implementation freedom	 That is� if from some state there
are two transitions that can be chosen nondeterministically� then an implementation can
have just one of the two transitions	 In this case an adversary chooses the implementation
that is used	

It is important to recognize that� in the labeled transition system model� the three uses of
nondeterminism described above can coexist within the same automaton	 It is the speci�c
interpretation that is given to the labels that determines what is expressed by nondeterminism
at each point	

��� Organization of the Thesis

The thesis is divided in two main parts
 the �rst part deals with the untimed model and the
second part deals with the timed model	 The second part relies heavily on the �rst part and
adds a collection of results that are speci�c to the analysis of real�time properties	 We describe
the technical contributions of the thesis chapter by chapter	

An Overview of Related Work
 Chapter � gives an extensive overview of existing work
on modeling and veri�cation of randomized distributed systems	

Preliminaries
 Chapter � gives the basics of probability theory that are necessary to under�
stand the thesis and gives an overview of the labeled transition systems model	 All the topics
covered are standard� but some of the notation is speci�c to this thesis	

Probabilistic Automata
 Chapter � presents the basic probabilistic model	 A probabilistic
automaton is a state machine whose transitions lead to a probability distribution over the labels
that can occur and the new state that is reached	 Thus� a transition describes the probabilistic
behavior of a probabilistic automaton� while the choice of which transition to perform describes
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the nondeterministic behavior of a probabilistic automaton	 A computation of a probabilistic
automaton� called a probabilistic execution� is the result of resolving the nondeterminism in a
probabilistic automaton� i	e	� the result of choosing a transition� possibly using randomization�
from every point	 A probabilistic execution is described essentially by an in�nite tree with
probabilities associated with its edges	 On such a tree it is possible to de�ne a probability
space� which is the object through which the probabilistic properties of the computation can
be studied	 We extend the notions of �niteness� pre�x and su�x of ordinary executions to
the probabilistic framework and we extend the parallel composition operator	 Finally� we show
how to project a probabilistic execution of a compound probabilistic automaton onto one of
its components and we show that the result is a probabilistic execution of the component	
Essentially� we show that the properties of ordinary automata are preserved in the probabilistic
framework	 The probabilistic model is an extension of ordinary automata since an ordinary
automaton can be viewed as a probabilistic automaton where each transition leads just to one
action and one state	

Direct Veri�cation� Stating a Property
 Chapter � shows how to formalize commonly
used statements about randomized algorithms and shows how such formal statements can be
manipulated	 We start by formalizing the idea of an adversary � i	e	� the entity that resolves
the nondeterminism of a system in a malicious way	 An adversary is a function that� given
the past history of a system� chooses the next transition to be scheduled� possibly using ran�
domization	 The result of the interaction between an adversary and a probabilistic automaton
is a probabilistic execution� on which it is possible to study probabilistic properties	 Thus�
given a collection of adversaries and a speci�c property� it is possible to establish a bound on
the probability that the given property is satis�ed under any of the given adversaries	 We call
such bound statements probabilistic statements 	 We show how probabilistic statements can be
combined together to yield more complex statements� thus allowing for some form of compo�
sitional veri�cation	 We introduce a special kind of probabilistic statement� called a progress
statement � which is a probabilistic extension of the leads�to operator of UNITY �CM���	 Infor�
mally� a progress statement says that if a system is started from some state in a set of states
U � then� no matter what adversary is used� a state in some other set of states U � is reached
with some minimum probability p	 Progress statements can be combined together under some
general conditions on the class of adversaries that can be used	

Finally� we investigate the relationship between deterministic adversaries �i	e	� adversaries
that cannot use randomness in their choices
 and general adversaries	 We show that for a large
class of collections of adversaries and for a large class of properties it is su�cient to analyze
only deterministic adversaries in order to derive statements that concern general adversaries	
This result is useful in simplifying the analysis of a randomized algorithm	

Direct Veri�cation� Proving a Property
 Chapter � shows how to prove the validity
of a probabilistic statement from scratch	 We introduce a collection of coin lemmas � which
capture a common informal argument on probabilistic algorithms	 Speci�cally� for many proofs
in the literature the intuition behind the correctness of an algorithm is based on the following
fact
 if some speci�c random draws give some speci�c results� then the algorithm guarantees
success	 Then� the problem is reduced to showing that� no matter what the adversary does�
the speci�c random draws give the speci�c results with some minimum probability	 The coin

��



lemmas can be used to show that the speci�c random draws satisfy the minimum probability
requirement� then� the problem is reduced to verifying properties of a system that does not
contain probability at all	 Factoring out the probability from a problem helps considerably in
removing errors due to unexpected dependencies	

We illustrate the method by verifying the correctness of the randomized dining philosophers
algorithm of Lehmann and Rabin �LR��� and the algorithm for randomized agreement with
stopping faults of Ben�Or �BO���	 In both cases the correctness proof is carried out by proving
a collection of progress statements using some coin lemmas	

Finally� we suggest another technique� called the partition technique� that departs consid�
erably from the coin lemmas and that appears to be useful in some cases	 We illustrate the
partition technique on a toy resource allocation protocol� which is one of the guiding examples
throughout Chapters � and �	

Hierarchical Veri�cation� Trace Distributions
 Chapter � extends the trace�based se�
mantics of ordinary automata �Hoa��� to the probabilistic framework	 A trace is a ordered
sequence of labels that occur in an execution� a trace distribution is the probability distribu�
tion on traces induced by a probabilistic execution	 We extend the trace preorder of ordinary
automata �inclusion of traces
 to the probabilistic framework by de�ning the trace distribution
preorder 	 However� the trace distribution preorder is not preserved by the parallel composition
operator� i	e	� it is not a precongruence	 Thus� we de�ne the trace distribution precongruence
as the coarsest precongruence that is contained in the trace distribution preorder	 Finally� we
show that there is an elementary probabilistic automaton called the principal context that dis�
tinguishes all the probabilistic automata that are not in the trace distribution precongruence
relation	 This leads us to an alternative characterization of the trace distribution precongruence
as inclusion of principal trace distributions 	

Hierarchical Veri�cation� Simulations
 Chapter � extends the veri�cation method based
on simulation relations to the probabilistic framework	 Informally� a simulation relation from
one automaton to another automaton is a relation between the states of the two automata that
allows us to embed the transition relation of one automaton in the other automaton	 In the
probabilistic framework a simulation relation is still a relation between states� however� since
a transition leads to a probability distribution over states� in order to say that a simulation
relation embeds the transition relation of a probabilistic automaton into another probabilistic
automaton we need to extend a relation de�ned over states to a relation de�ned over probabil�
ity distributions over states	 We generalize the strong and weak bisimulation and simulation
relations of Milner� Jonsson� Lynch and Vaandrager �Mil��� Jon��� LV��� to the probabilistic
framework	 Then� we introduce a coarser simulation relation� called a probabilistic forward
simulation� where a state is related to a probability distribution over states rather than to a
single state	 We prove an execution correspondence theorem which� given a simulation relation
from one probabilistic automaton to another probabilistic automaton� establishes a strong cor�
respondence between each probabilistic execution of the �rst probabilistic automaton and one
of the probabilistic executions of the second automaton	 Based on the execution correspon�
dence theorem� we show that each of the relations presented in the chapter is sound for the
trace distribution precongruence	 Thus� simulation relations can be used as a sound technique
to prove principal trace distribution inclusion	

��



Probabilistic Timed Automata
 Chapter � starts the second part of the thesis	 We extend
probabilistic automata with time following the approach of Lynch and Vaandrager �LV���� where
passage of time is modeled by means of transitions labeled with positive real numbers	 In order
to use most of the untimed theory� we force time�passage transition not to be probabilistic	
We extend probabilistic executions to the timed framework� leading to probabilistic timed
executions� and we show the relationship between probabilistic executions and probabilistic
timed executions	 The main idea is that in several circumstances it is su�cient to analyze the
probabilistic executions of a system in order to study its real�time behavior	

Direct Veri�cation� Time Complexity
 Chapter �� introduces new techniques for the
veri�cation of real�time properties of a randomized algorithm	 The techniques of Chapter �
still apply� however� due to the presence of time� it is possible to study the time complexity
of an algorithm	 We augment the progress statements of Chapter � with an upper bound t to
state the following
 if a system is started from some state in a set of states U � then� no matter
what adversary is used� a state of some other set of states U � is reached within time t with
some minimum probability p	 Based on these timed progress statements � we show how to derive
upper bounds on the expected time to reach some set of states	 We illustrate the technique
by showing that the randomized dining philosophers algorithm of Lehmann and Rabin �LR���
guarantees progress within expected constant time	

By extending the technique for the analysis of expected time� we show how to derive bounds
on more abstract notions of complexity	 In particular� we consider the algorithm for randomized
agreement of Ben�Or as an example	 The algorithm of Ben�Or runs in stages	 From the way
the algorithm is structured� it is not possible to give meaningful bounds on the time it takes
to make progress from any reachable state	 However� using abstract complexities� it is easy
to prove an upper bound on the expected number of stages that are necessary before reaching
agreement	 Once an upper bound on the expected number of stages is derived� it is easy to
derive an upper bound on the expected time to reach agreement	

Hierarchical Veri�cation� Timed Trace Distributions and Timed Simulations
 Chap�
ters �� and �� extend the trace distribution precongruence and the simulation relations of the
untimed framework to the timed framework	 A trace is replaced by a timed trace� where a
timed trace is a sequence of labels paired with their time of occurrence plus a limit time	 The
timed trace distribution precongruence is characterized by a timed principal context � which is
the principal context augmented with arbitrary time�passage transitions	 All the timed simu�
lation relations are shown to be sound for the timed trace distribution precongruence	 All the
results are proved by reducing the problem to the untimed framework	

Conclusion
 Chapter �� gives some concluding remarks and several suggestions for further
work	 Although this thesis builds a model for randomized computation and shows that it is
su�ciently powerful for the analysis of randomized distributed real�time algorithms� it just
discovers the tip of the iceberg	 We propose a methodology for the analysis of randomization�
and we give several examples of the application of such methodology� however� there are several
other ways to apply our methodology	 It is very likely that new probabilistic statements� new
results to combine probabilistic statements� and new coin lemmas can be developed based on the
study of other algorithms� similarly� the fundamental idea behind the trace semantics that we
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present can be used also for other kinds of observational semantics like failures �Hoa��� DH���	
We give hints on how it is possible to handle liveness within our model and state what we know
already	 Furthermore� we give ideas of what is possible within restricted models where some
form of I�O distinction like in the work of Lynch and Tuttle �LT��� or some timing restriction
like in the work of Merritt� Modugno and Tuttle �MMT��� is imposed	 Finally� we address the
issue of relaxing some of the restrictions that we impose on the timed model	

��� Reading the Thesis

The two parts of the thesis� the untimed and the timed part� proceed in parallel
 each chapter of
the untimed part is a prerequisite for the corresponding chapter in the timed part	 Each part is
subdivided further into two parts
 the direct veri�cation and the hierarchical veri�cation	 The
two parts can be read almost independently� although some knowledge of the direct veri�cation
method can be of help in reading the hierarchical method	 The direct method is focused mainly
on veri�cation of algorithms� while the hierarchical method is focused mainly on the theoretical
aspects of the problem	 Further research should show how the hierarchical method can be of
signi�cant help for the analysis of randomized algorithms	

Each chapter starts with an introductory section that gives the main motivations and an
overview of the content of the chapter	 Usually� the more technical discussion is concentrated
at the end	 The same structure is used for each section
 the main result and short proofs are
at the beginning of each section� while the long proofs and the more technical details are given
at the end	 A reader can skip the proofs and the most technical details on a �rst reading in
order to have a better global picture	 It is also possible to read just Chapter � and the �rst
section �including subsections
 of Chapters � to ��� and have a global view of the results of
the thesis	 In a second reading� the interested reader can concentrate on the proofs and on the
technical de�nitions that are necessary for the proofs	 The reader should keep in mind that
several proofs in the thesis are based on similar techniques	 Such techniques are explained in
full detail only the �rst time they are used	

A reader interested only in the techniques for the direct veri�cation of algorithms and not
interested in the arguments that show the foundations of the model can avoid reading the proofs	
Moreover� such a reader can just glance over Section �	�	�� and skip Sections �	�	�� �	�� and �	�	
In the timed framework the reader interested just in the techniques for the direct veri�cation
of algorithms can skip all the comparison between the di�erent types of probabilistic timed
executions and concentrate more on the intuition behind the de�nition of a probabilistic timed
execution	
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Chapter �

An Overview of Related Work

In this chapter we give an extensive overview of existing work on modeling and veri�cation of
randomized distributed systems	 We defer the comparison of our work with the existing work
to the end of each chapter	 Some of the descriptions include technical terminology which may
be di�cult to understand for a reader not familiar with concurrency theory	 Such a reader
should focus mainly on the high level ideas and not worry about the technical details	 The rest
of the thesis presents our research without assuming any knowledge of concurrency theory	 We
advise the reader not familiar with concurrency theory to read this chapter again after reading
the thesis	

There have been twomain research directions in the �eld of randomized distributed real�time
systems
 one focused mainly on modeling issues using process algebras �Hoa��� Mil��� BW���
and labeled transition systems �Kel��� Plo��� as the basic mathematical objects� the other
focused mainly on veri�cation using Markov chains as the basic model and temporal logic
arguments �Pnu��� and model checking �EC��� CES��� as the basic veri�cation technique	 Most
of the results of the �rst of the research directions fail to model pure nondeterminism� while
the results of the second of the research directions model pure nondeterminism successfully� but
not in its full generality	 As expressed at the end of Section �	�	�� pure nondeterminism arises
only in the choice of what process is performing the next instruction at each moment	 Below
we summarize the results achieved in both of the research directions	 Furthermore� at the end
of each chapter we add a section where we explain how the results described in this section are
related to our research	

��� Reactive� Generative and Strati�ed Models

We present some of the existing work on modeling which is based on a classi�cation due to van
Glabbeek� Smolka� Ste�en and Tofts �GSST���	 They de�ne three types of processes
 reactive�
generative� and strati�ed 	

� Reactive model	 Reactive processes consist of states and labeled transitions associated
with probabilities	 The restriction imposed on a reactive process is that for each state the
sum of the probabilities of the transitions with the same label is �	

� Generative model	 Generative processes consist of states and labeled transitions associated
with probabilities	 The restriction imposed on a generative process is that for each state
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Figure ���
 Reactive� generative and strati�ed processes� from left to right	

either there are no outgoing transitions� or the sum of the probabilities of all the outgoing
transitions is �	

� Strati�ed model	 Strati�ed processes consist of states� unlabeled transitions associated
with probabilities� and labeled transitions	 The restriction imposed on a strati�ed process
is that for each state either there is exactly one outgoing labeled transition� or all the
outgoing transitions are unlabeled and the sum of their probabilities is �	

Figure ��� gives an example of a reactive� a generative� and a strati�ed process	 Informally�
reactive processes specify for each label �also called action
 the probability of reaching other
states� generative processes also give additional information concerning the relative probabili�
ties of the di�erent actions� strati�ed processes add some probabilistic structure to generative
processes	 Observe that among the three models above only the reactive model has a struc�
ture that can be used to express some form of pure nondeterminism �what action to perform
�
although in van Glabbeek et al	 �GSST��� this issue is not considered	

����� Reactive Model

Rabin �Rab��� studies the theory of probabilistic automata� which are an instance of the reactive
model	 He de�nes a notion of a language accepted by a probabilistic automaton relative to a
cut point � and shows that there are �nite state probabilistic automata that de�ne non�regular
languages	

Larsen and Skou �LS��� LS��� de�ne a bisimulation type semantics� called probabilistic
bisimulation� and a logic� called probabilistic model logic �PML
� for reactive processes� and
they introduce a notion of testing based on sequential tests and a copying facility	 They show
that two processes that satisfy the minimal probability assumption are probabilistically bisim�
ilar if and only if they satisfy exactly the same PML formulas� and that two processes that
satisfy the minimal probability assumption and that are not probabilistically bisimilar can be
distinguished through testing with a probability arbitrarily close to �	 The minimum proba�
bility assumption states that for every state the probability of each transition is either � or is
above some minimal value	 This condition corresponds to the image��niteness condition for
non�probabilistic processes	 Bloom and Meyer �BM��� relate the notions of probabilistic and
non�probabilistic bisimilarity by showing that two non�probabilistic �nitely branching processes
P and Q are bisimilar if and only if there exists an assignment of probabilities to the transi�
tions of P and Q such that the corresponding reactive processes P � and Q� are probabilistically
bisimilar	

Larsen and Skou �LS��� introduce a synchronous calculus for reactive processes where the
probabilistic behavior is obtained through a binary choice operator parameterized by a prob�
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ability p	 They de�ne a bisimulation relation on the new calculus� and they introduce a new
extended probabilistic logic �EPL
 which extends PML in order to support decomposition with
respect to parallel composition	 Both the probabilistic bisimulation and the extended proba�
bilistic logic are axiomatized	

����� Generative and Strati�ed Models

Giacalone� Jou and Smolka �GJS��� de�ne a process algebra for generative processes� called
PCCS� which can be seen as a probabilistic extension of Milner�s SCCS �Mil���	 In PCCS two
processes synchronize at every transition regardless of the action that they perform	 That is� if
one process performs a transition labeled with action a with probability pa and another process
performs a transition labeled with b with probability pb� then the two processes together can
perform a transition labeled with ab with probability papb	 The authors provide an equational
theory for PCCS based on the probabilistic bisimulation of Larsen and Skou �LS���� and provide
an axiomatization for probabilistic bisimulation �the axiomatization is shown to be sound and
complete in �JS���
	 Furthermore� the authors de�ne a notion of ��bisimulation� where two
processes can simulate each other�s transition with a probability di�erence at most �	 Based on
��bisimulation� the authors de�ne a metric on generative processes	

Jou and Smolka �JS��� de�ne trace and failure equivalence for generative processes	 They
show that� unlike for nondeterministic transition systems� maximality of traces and failures does
not increase the distinguishing power of trace and failure equivalence� where by maximality of
a trace we mean the probability to produce a speci�c trace and then terminate	 More precisely�
knowing the probability of each �nite trace of a generative process gives enough information to
determine the probability that a �nite trace occurs leading to termination� similarly� knowing
the probability of every failure of a generative process gives enough information to determine
the probability of each maximal failure	 Jou and Smolka show also that the trace and failure
equivalences are not congruences	 Our probabilistic executions are essentially generative pro�
ceses� and our trace distributions are essentially the trace semantics of Jou and Smolka	 In our
case the properties shown by Jou and Smolka follow directly from measure theory	

Van Glabbeek et al	 �GSST��� state that the generative model is more general than the
reactive model in the sense that generative processes� in addition to the relative probabilities
of transitions with the same label� contain information about the relative probabilities of tran�
sitions with di�erent labels	 They show also that the strati�ed model is a generalization of the
generative model in the sense that a probabilistic choice in the generative model is re�ned by
a structure of probabilistic choices in the strati�ed model	 Formally� the authors give three
operational semantics to PCCS� one reactive� one generative� and one strati�ed� and show how
to project a strati�ed process into a generative process and how to project a generative process
into a reactive process� so that the operational semantics of PCCS commute with the projec�
tions	 The reactive and generative processes of Figure ��� are the result of the projection of
the generative and strati�ed processes� respectively� of Figure ���	 Finally� the authors de�ne
probabilistic bisimulation for the generative and for the strati�ed models and show that bisim�
ulation is a congruence in all the models and that bisimulation is preserved under projection
from one model to the other	 The results of van Glabbeek et al	 �GSST���� however� are based
on the fact that parallel composition is synchronous	

Tofts �Tof��� introduces a weighted synchronous calculus whose operational semantics resem�
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bles the strati�ed model	 The main di�erence is that the weights associated with the transitions
are not probabilities� but rather frequencies � and thus their sums are not required to be �	 Tofts
de�nes two bisimulation relations that are shown to be congruences	 The �rst relation is sensi�
tive to the actual frequencies of the transitions leaving from a state� while the second relation
is sensitive only to the relative frequencies of the transitions leaving from a state	 In particular�
the second relation coincides with the strati�ed bisimulation of van Glabbeek et al	 �GSST���
after normalizing to � the frequencies of the transitions that leave from every state	 The ad�
vantage of Tofts� calculus is that it is not necessary to restrict the syntax of the expressions so
that the weights of the choices at any point sum to � �such a restriction is imposed in PCCS
	
Moreover� it is possible to de�ne a special weight � that expresses in�nite frequency and can
be used to express priorities	 A similar idea to express priorities is used by Smolka and Ste�en
in �SS���� where the strati�ed semantics of PCCS is extended with ��probability transitions	

Baeten� Bergstra and Smolka �BBS��� de�ne an algebra� prACP�I � which is an extension
of ACP �BW��� with generative probabilities	 The authors show that prACP�I and a weaker
version of ACP �ACP�I 
 are correlated in the sense that ACP�I is the homomorphic image
of prACP�I in which the probabilities are forgotten	 The authors also provide a sound and
complete axiomatization of probabilistic bisimulation	

Wu� Smolka and Stark �WSS��� augment the I�O automaton model of Lynch and Tuttle
�LT��� with probability and they study a compositional behavioral semantics which is also
shown to be fully abstract with respect to probabilistic testing	 A test is a probabilistic I�O
automaton with a success action w	 The model is reactive for the input actions and generative
for the output actions	 This allows the authors to de�ne a meaningful parallel composition
operator� where two probabilistic I�O automata synchronize on their common actions and
evolve independently on the others	 In order to deal with the nondeterminism that arises from
parallel composition� the authors attach a delay parameter to each state of a probabilistic I�O
automaton� which can be seen as the parameter of an exponential probability distribution on
the time of occurrence of the next local �i	e	� output or internal
 action	 Whenever there is a
con�ict for the occurrence of two local actions of di�erent probabilistic I�O automata� the delay
parameters associated with the states are used to determine the probability with which each
action occurs	 The behavior of a probabilistic I�O automaton A is a function EA that associates
a functional EA� with each �nite trace � 	 If the length of � is n� then EA� takes a function f

that given n�� delay parameters computes an actual delay� and returns the expected value of
f applied to the delay parameters of the computations of A that lead to �	

��� Models based on Testing

Research on modeling has also focused on extending the testing preorders of De Nicola and
Hennessy �DH��� to probabilistic processes	 To de�ne a testing preorder it is necessary to
de�ne a notion of a test and of how a test interacts with a process	 The interaction between
a test and a process may lead to success or failure	 Then� based on the success or failure of
the interactions between a process and a test� a preorder relation between processes is de�ned	
Informally� a test checks whether a process has some speci�c features
 if the interaction between
a test and a process is successful� then the process has the desired feature	

Ivan Christo� �Chr��b� Chr��a� analyzes generative processes by means of testing	 A test
is a nondeterministic �nite�state process� and the interaction between a process and a test is
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obtained by performing only those actions that both the processes o�er and by keeping the
relative probability of each transition unchanged	 Four testing preorders are de�ned� each one
based on the probability of the traces of the interaction between a process and a test	 Christo�
also provides a fully abstract denotational semantics for each one of the testing preorders
 each
process is denoted by a mapping that given an o
ering and a trace returns a probability	 An
o�ering is a �nite sequence of non�empty sets of actions� and� informally� describes the actions
that the environment o�ers to a process during the interaction between the process and a test	

Linda Christo� �Chr��� builds on the work of Ivan Christo� and de�nes three linear se�
mantics for generative processes
 the trace semantics� the broom semantics� and the barbed
semantics	 The relations are de�ned in a style similar to the denotational models of Ivan
Christo�� and� in particular� the trace and barbed semantics coincide with two of the semantics
of �Chr��b�	 Linda Christo� also de�nes three linear�time temporal logics that characterize her
three semantics and provides e�cient model checking algorithms for the recursion�free version
of the logics	

Testing preorders that are more in the style of De Nicola and Hennessy �DH��� are presented
by Yi and Larsen in �YL���� where they de�ne a process algebra with all the operators of CCS
plus a binary probabilistic choice operator parameterized by a probability p	 Thus� the calculus
of Yi and Larsen allows for nondeterminism	 A test is a process of their calculus with an
additional label w	 Depending on how the nondeterminism is resolved� w occurs with di�erent
probabilities in the interaction between a process and a test	 Then� Yi and Larsen de�ne a may
preorder� which is based on the highest probability of occurrence of w� and a must preorder�
which is based on the lowest probability of occurrence of w	 The two preorders are shown to
coincide with the testing preorders of De Nicola and Hennessy �DH��� when no probability is
present	 In more recent work Jonsson� Ho�Stuart and Yi �JHY��� give a characterization of
the may preorder based on tests that are not probabilistic� while Jonsson and Yi �JY��� give a
characterization of the may and must preorders based on general tests	

Cleaveland� Smolka and Zwarico �CSZ��� introduce a testing preorder on reactive processes	
A test is a reactive process with a collection of successful states and a non�observable action	
The interaction between a test and a process allows an observable action to occur only if
the two processes allow it to occur� and allows the non�observable action to occur if the test
allows it to occur	 The result is a generative process� where each of the actions that occur is
chosen according to a uniform distribution �thus the formalism works only for �nitely many
actions
	 Two processes are compared based on the probability of reaching a successful state in
the interaction between a process and a test	 The authors show that their testing preorder is
closely connected to the testing preorders of De Nicola and Hennessy �DH��� in the sense that
if a process passes a test with some non�zero probability� then the non�probabilistic version
of the process �the result of removing the probabilities from the transition relation of the
process
 may pass the non�probabilistic version of the test� and if a process passes a test with
probability �� then the non�probabilistic version of the process must pass the non�probabilistic
version of the test	 An alternative characterization of the testing preorder of Cleaveland et al	
�CSZ��� is provided by Yuen� Cleaveland� Dayar and Smolka �YCDS���	 A process is represented
as a mapping from probabilistic traces to ��� ��� where a probabilistic trace is an alternating
sequence of actions and probability distributions over actions	 Yuen et al	 use the alternative
characterization to show that the testing preorder of Cleaveland et al	 �CSZ��� is an equivalence
relation	
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��� Models with Nondeterminism and Denotational Models

����� Transitions with Sets of Probabilities

Jonsson and Larsen �JL��� introduce a new kind of probabilistic transition system where the
transitions are labeled by sets of allowed probabilities	 The idea is to model speci�cations where
the probabilities associated with the transitions are not completely speci�ed	 They extend the
bisimulation of Larsen and Skou �LS��� to the new framework and they propose two criteria for
re�nement between speci�cations	 One criterion is analogous to the de�nition of simulations
between non�probabilistic processes� the other criterion is weaker and regards a speci�cation
as a set of probabilistic processes	 Re�nement is then de�ned as inclusion of probabilistic
processes	 Finally� Jonsson and Larsen present a complete method for verifying containment
between speci�cations	

����� Alternating Models

Hansson and Jonsson �HJ��� HJ��� develop a probabilistic process algebra based on an alternat�
ing model 	 The model of Hansson and Jonsson� which is derived from the Concurrent Markov
Chains of Vardi �Var���� is a model in which there are two kinds of states
 probabilistic states �
whose outgoing transitions are unlabeled and lead to nondeterministic states� and nondetermin�
istic states � whose outgoing transitions are labeled and lead to probabilistic states	 Only the
transitions leaving from probabilistic states are probabilistic� and for each probabilistic state
the probabilities of the outgoing transitions add to �	 The authors de�ne a strong bisimulation
semantics in the style of Larsen and Skou �LS��� for which they provide a sound and complete
axiomatization	 The model of Hansson and Jonsson �HJ��� di�ers substantially from the models
of van Glabbeek et al	 �GSST��� in that there is a clear distinction between pure nondeterminism
and probability	 The model could be viewed as an instance of the reactive model� however� the
parallel composition operation de�ned by Hansson and Jonsson �HJ��� is asynchronous� while
the classi�cation of van Glabbeek et al	 �GSST��� works only for synchronous composition	 A
complete presentation of the work of Hansson and Jonsson �HJ��� HJ��� appears in Hansson�s
PhD thesis �Han���� later published as a book �Han���	 Our simple probabilistic automata are
very similar in style to the objects of Hansson�s book	

����� Denotational Semantics

Seidel �Sei��� extends CSP �Hoa��� with probability	 The extension is carried out in two steps	
In the �rst step a process is a probability distribution over traces� in the second step� in order
to account for the nondeterministic behavior of the environment� a process is a conditional
probability measure� i	e	� an object that given a trace� which is meant to be produced by the
external environment� returns a probability distribution over traces	

Jones and Plotkin �JP��� use a category theoretic approach to de�ne a probabilistic pow�
erdomain� and they use it to give a semantics to a language with probabilistic concurrency	
It is not known yet how the semantics of Jones and Plotkin compares to existing operational
semantics	
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��	 Models with Real Time

There are basically two models that address real time issues	 One model is the model of Hansson
and Jonsson �Han���� where special � actions can appear in the transitions	 The occurrence of
an action � means that time has elapsed� and the amount of time that elapses in a computation
is given by the number of occurrences of action �	 Thus� the time domain of Hansson and
Jonsson�s model is discrete	

The other model is based on stochastic process algebras and is used in the �eld of performance
analysis	 In particular� actions are associated with durations� and the durations are expressed
by random variables	 In order to simplify the analysis� the random variables are assumed to have
an exponential probability distribution� which is memoryless	 Research in this area includes
work from G otz� Herzog and Rettelbach �GHR���� from Hillston �Hil���� and from Bernardo�
Donatiello and Gorrieri �BDG���	

��
 Veri�cation� Qualitative and Quantitative Methods

Most of the research on the veri�cation of randomized distributed systems is concerned with
properties that hold with probability �	 The advantage of such properties is that for �nite
state processes they do not depend on the actual probabilities of the transitions� but rather on
whether those transitions have probability � or probability di�erent from �	 Thus� the problem
of checking whether a system satis�es a property with probability � is reduced to the problem
of checking whether a non�randomized system satis�es some other property	 This method is
called qualitative� as opposed to the quantitative method� where probabilities di�erent from �
also matter	

The rationale behind the qualitative method is that a randomized process� rather than
always guaranteeing success� usually guarantees success with probability �� which is practically
the same as guaranteeing success always	 The quantitative method becomes relevant whenever
a system has in�nitely many states or the complexity of an algorithm needs to be studied	

Almost all the papers that we describe in this section are based on a model where n Markov
chains evolve concurrently	 Each Markov chain represents a process� and the pure nondeter�
minism arises from the choice of what Markov chain performs the next transition �what process
is scheduled next
	 The object that resolves the nondeterminism is called a scheduler or adver�
sary � and the result of a scheduler on a collection of concurrent Markov chains is a new Markov
chain that describes one of the possible evolutions of the global system	 Usually a scheduler is
required to be fair in the sense that each process should be scheduled in�nitely many times	

����� Qualitative Method	 Proof Techniques

Huart� Sharir and Pnueli �HSP��� consider n �nite state asynchronous randomized processes
that run in parallel� and provide two necessary and su�cient conditions to guarantee that a
given set of goal states is reached with probability � under any fair scheduler	 A scheduler is
the entity that at any point chooses the next process that performs a transition	 The result
of the action of a scheduler on n processes is a Markov chain� on which it is possible to study
probabilities	 A scheduler is fair if and only if� for each path in the corresponding Markov
chain� each process is scheduled in�nitely many times	 The authors show that in their model
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each property described by reaching a collection of states has either probability � or probability
�	 Then� they describe a decision procedure for the almost sure reachability of a set of goal
states	 The procedure either constructs a decomposition of the state space into a sequence of
components with the property that any fair execution of the program must move down the
sequence with probability � until it reaches the goal states �goal states reached with probability
�
� or �nds an ergodic set of states through which the program can loop forever with probability
� �goal states reached with probability �
	 Finally the authors give some examples of problems
where the use of randomization does not provide any extra power over pure nondeterminism	
The proof principle of �HSP��� is generalized to the in�nite state case by Hart and Sharir
�HS���	

Lehmann and Shelah �LS��� extend the temporal logic of linear time of Pnueli �Pnu��� to
account for properties that hold with probability �� and they provide three complete axioma�
tizations of the logic
 one axiomatization is for general models� one is for �nite models� and
one is for models with bounded transition probabilities �same as the minimum probability re�
quirement of Larsen and Skou �LS���
	 A model of the logic is essentially a Markov chain�
or alternatively an unlabeled generative process	 The logic of Lehmann and Shelah �LS��� is
obtained from the logic of Pnueli �Pnu��� by adding a new modal operator O whose meaning
is that the argument formula is satis�ed with probability �	

Pnueli �Pnu��� introduces the notion of extreme fairness and shows that a property that
holds for all extreme fair executions holds with probability �	 Furthermore� Pnueli presents a
sound proof rule based on extreme fairness and linear temporal logic	 The model consists of n
randomized processes in parallel	 Each process is a state machine where each state enables a
probabilistic transition� which lead to several modes 	 Resolving the nondeterminism leads to a
Markov chain	 However� only those Markov chains that originate from fair scheduling policies
are considered	 Then� an execution �a path in the Markov chain
 is extremely fair relative
to a property � �� is a property that is satis�ed by states
 if and only if for each transition
that occurs in�nitely many times from states that satisfy �� each mode of the transition occurs
in�nitely many times	 An execution is extremely fair if and only if it is extremely fair relative
to any formula � expressed in the logic used in �Pnu���	 The proof rule of Pnueli �Pnu����
along with some other new rules� is used by Pnueli and Zuck �PZ��� to verify two non�trivial
randomized algorithms� including the Randomized Dining Philosophers algorithm of Lehmann
and Rabin �LR���	 Zuck �Zuc��� introduces the notion of 	�fairness and shows that 	�fairness
is complete for temporal logic properties that hold with probability �	

Rao �Rao��� extends UNITY �CM��� to account for randomized systems and properties
that hold with probability �	 The main emphasis is on properties rather than states	 A new
notion of weak probabilistic precondition is introduced that� together with the extreme fairness
of Pnueli� generalizes weakest preconditions	 Finally� based on the work of Huart et al	 �HSP����
Rao argues that his new logic is complete for �nite state programs	

����� Qualitative Method	 Model Checking

Vardi �Var��� presents a method for deciding whether a probabilistic concurrent �nite state
program satis�es a linear temporal logic speci�cation� where satisfaction means that a formula
is satis�ed with probability � whenever the scheduler is fair	 A program is given as a Concurrent
Markov Chain� which is a transition system with nondeterministic and probabilistic states	 A
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subset F of the nondeterministic states is called the set of fair states	 A scheduler is a function
that� based on the past history of a program� chooses the next transition to perform from
a nondeterministic state	 The result of the action of a scheduler on a program is a Markov
chain on which it is possible to study the probability that some linear temporal logic formula
is satis�ed	 A path in the Markov chain is fair if for each fair state that occurs in�nitely many
times each one of the possible nondeterministic choices from that state occurs in�nitely many
times� a scheduler is fair if the fair paths have probability � in the corresponding Markov chain	
The model checking algorithm of Vardi works in time polynomial in the size of the program and
doubly exponential in the size of the speci�cation	 By considering a slightly restricted logic�
Vardi and Wolper �VW��� reduce the complexity of the model checking algorithm to only one
exponent in the size of the formula	

Courcoubetis and Yannakakis �CY��� CY��� investigate the complexity of model checking
linear time propositional temporal logic of sequential and concurrent probabilistic processes	 A
sequential process is a Markov chain and a concurrent process is a Concurrent Markov Chain	
They give a model checking algorithm that runs in time linear in the size of the program and
exponential in the size of the formula� and they show that the problem is in PSPACE	 Moreover�
they give an algorithm for computing the exact probability with which a sequential program
satis�es a formula	

Alur� Courcoubetis and Dill �ACD��a� ACD��b� develop a model checking algorithm for
probabilistic real�time systems	 Processes are modeled as a generalized semi�Markov process �
which are studied in �Whi��� She���	 Essentially a process is a �nite state transition system
with timing constraints expressed by probability distributions on the delays	 They impose the
restriction that every distribution is either discrete� or exponential� or has a density function
which is di�erent from � only on a �nite collection of intervals �in �ACD��a� only this last case
is studied
	 The temporal logic� called TCTL� is an extension of the branching�time temporal
logic of Emerson and Clarke �EC��� where time delays are added to the modal operators	 TCTL
can detect only whether a formula is satis�ed with probability �� or with a positive probability�
or with probability �	 The model checking algorithm transforms a process into a �nite state
process without probabilities and real�time� thus allowing the use of other existing algorithms	
The problem of model�checking for TCTL is PSPACE�hard	

����� Quantitative Method	 Model Checking

Hansson �Han��� Han��� de�nes a model checking algorithm for his Labeled Concurrent Markov
Chain model and his branching�time temporal logic TPCTL	 Time is discrete in Hansson�s
model� but the logic improves on previous work because probabilities can be quanti�ed �i	e	�
probabilities can be between � and �
	 The previous model checking algorithms relied heavily
on the fact that probabilities were not quanti�ed	 The algorithm is based on the algorithm
for model checking of Clarke� Emerson and Sistla �CES���� and on previous work of Hansson
and Jonsson �HJ��� where a model checking algorithm for PCTL �TPCTL without time
 is
presented	 In order to deal with quanti�ed probabilities� the algorithm reduces the computation
of the probability of an event to a collection of �nitely many linear recursive equations	 The
algorithm has an exponential complexity� however� Hansson shows that for a large class of
interesting problems the algorithm is polynomial	
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Chapter �

Preliminaries

��� Probability Theory

The rigorous study of randomized algorithms requires the use of several probability measures	
This section introduces the basic concepts of measure theory that are necessary	 Most of the
results are taken directly from Halmos �Hal��� and Rudin �Rud���� and the proofs can be found
in the same books or in any other good book on measure theory or probability theory	

����� Measurable Spaces

Consider a set �	 A �eld on �� denoted by F � is a family of subsets of � that contains �� and
that is closed under complementation and �nite union	 A 
��eld on �� denoted by F � is a �eld
on � that is closed under countable union	 The elements of a 
��eld are called measurable sets 	
The pair ���F
 is called a measurable space	

A �eld generated by a family of sets C� denoted by F �C
� is the smallest �eld that contains
C	 The 
��eld generated by a family of sets C� denoted by 
�C
� is the smallest 
��eld that
contains C	 The family C is called a generator for 
�C
	 A trivial property of a generator C is

�C
 ! 
�F �C

	

The �eld generated by a family of sets can be obtained following a simple procedure	

Proposition �
�
� Let C be a family of subsets of ��

�� Let F��C
 be the family containing �� �� and all C � � such that C � C or ��� C
 � C�

�� Let F��C
 be the family containing all �nite intersections of elements of F��C
�


� Let F��C
 be the family containing all �nite unions of disjoint elements of F��C
�

Then F �C
 ! F��C
�

����� Probability Measures and Probability Spaces

Let C be a family of subsets of �	 A measure � on C is a function that assigns a non�negative
real value �possibly �
 to each element of C� such that

�	 if � is an element of C� then ���
 ! �	
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�	 if �Ci
i�N forms a sequence of pairwise disjoint elements of C� and �iCi is an element of
C� then ���iCi
 !

P
i ��Ci
	

The last property is called 
�additivity 	 If ���F
 is a measurable space� then a measure on F
as called a measure on ���F
	

A measure on a family of sets C is �nite if the measure of each element of C is �nite	
A measure space is a triple ���F � �
� where ���F
 is a measurable space� and � is a measure

on ���F
	 A measure space ���F � �
 is complete i� for each element C of F such that ��C
 ! ��
each subset of C is measurable and has measure �� i	e	� for each C� � C� C� � F and ��C�
 ! �	
A measure space is discrete if F is the power set of � and the measure of each measurable set
is the sum of the measures of its points	 Discrete spaces will play a fundamental role in our
theory	

A probability space is a triple ���F � P 
� where ���F
 is a measurable space� and P is a
measure on ���F
 such that P ��
 ! �	 The measure P is also referred to as a probability
measure or a probability distribution	 The set � is called the sample space� and the elements
of F are called events 	 We denote a generic event by E� possibly decorated with primes and
indices	 A standard convention with probability measures and event is that the measure of an
event is denoted by P �E� rather than by P �E
	

����� Extensions of a Measure

The following two theorems shows methods to extend a measure de�ned on a collection of sets	
The �rst theorem says that it is possible to de�ne a probability measure P on a measurable
space ���F
 by specifying P only on a generator of F � the second theorem states that every
measure space can be extended to a complete measure space	

Thus� from the �rst theorem we derive that in order to check the equality of two probability
measures P� and P� on ���F
� it is enough to compare the two measures on a �eld that generates
F 	

Theorem �
�
� �Extension theorem� A �nite measure � on a �eld F has a unique exten�
sion to the 
��eld generated by F � That is� there exists a unique measure "� on 
�F 
 such that
for each element C of F � "��C
 ! ��C
�

Theorem �
�
� Let ���F � �
 be a measure space� Let F � be the set of subsets of � of the form
C �N such that C � F and N is a subset of a set of measure � in F � Then� F � is a 
��eld�
Furthermore� the function �� de�ned by ���C � N
 ! ��C
 is a complete measure on F �� We
denote the measure space ���F �� ��
 by completion����F � �

�

����
 Measurable Functions

Let ���F
 and ����F �
 be two measurable spaces	 A function f 
 � 	 �� is said to be a
measurable function from ���F
 to ����F �
 if for each set C of F � the inverse image of C�
denoted by f���C
� is an element of F 	 The next proposition shows that the measurability of
f can be checked just by analyzing a generator of F �	

Proposition �
�
� Let ���F
 and ����F �
 be two measurable spaces� and let C be a generator
of F �� Let f be a function form � to ��� Then f is measurable i
 for each element C of C� the
inverse image f���C
 is an element of F �
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Another property that we need is the closure of measurable functions under composition	

Proposition �
�
� Let f be a measurable function from ����F�
 to ����F�
� and let g be a
measurable function from ����F�
 to ����F�
� Then f 
g is a measurable function from ����F�

to ����F�
�

����� Induced Measures and Induced Measure Spaces

Proposition �
�
	 Let f be a measurable function from ���F
 to ����F �
� and let � be a
measure on ���F
� Let �� be de�ned on F � as follows	 for each element C of F �� ���C
 !
��f���C

� Then �� is a measure on ����F �
� The measure �� is called the measure induced by
f � and is denoted by f��
�

Based on the result above� it is possible to transform a measure space using a function f 	
Let ���F � �
 be a measure space� and let f be a function de�ned on �	 Let �� be f��
� and
let F � be the set of subsets C of �� such that f���C
 � F 	 Then� F � is a 
��eld� and f is a
measurable function from ���F
 to ����F �
	 Thus� the space ����F �� f��

 is a measure space	
We call such a space the space induced by f � and we denote it by f����F � �

	 Observe that
if ���F � �
 is a probability space� then f����F � �

 is a probability space as well� and that
induced measure spaces preserve discreteness and completeness	

����� Product of Measure Spaces

Let ����F�
 and ����F�
 be two measurable spaces	 Denote by F� � F� the 
��eld generated
by the set of rectangles fC� � C� j C� � F�� C� � F�g	 The product space of ����F�
 and
����F�
� denoted by ����F�
� ����F�
� is the measurable space ��� � ���F� �F�
	

Proposition �
�
� Let ����F�� ��
 and ����F�� ��
 be two measure spaces where �� and ��
are �nite measures� Then there is a unique measure� denoted by �� � ��� on F��F� such that
for each C� � F� and C� � F�� �� � ���C� � C�
 ! ���C�
���C�
�

The product measure space of two measure spaces ����F�� ��
 and ����F�� ��
� denoted by
����F�� ��
� ����F�� ��
� is the measure space �������F��F�� ��� ��
	 It is easy to check
that if ����F�� ��
 and ����F�� ��
 are probability spaces� then their product is a probability
space as well	

The product of two measure spaces is invertible	 Let ���F � �
 ! ����F�� ��
� ����F�� ��
�
and let �i� i ! �� �� be a projection function from �� � �� to �i� that maps each pair �x�� x�

to xi	 Let ��

i ! �i��i
� and let F �
i ! fC j ���i �C
 � Fig	 Then ���

i�F
�
i
 ! ��i�Fi
� and �i is

a measurable function from ���F
 to ���
i�F

�
i
	 The measure �i��
 coincides with �i� since for

each C � F�� �
��
� �C
 ! C � ��� and for each C � F�� �

��
� �C
 ! �� � C	 Thus� the projection

of ���F � �
 onto its ith component is ��i�Fi� �i
	

����� Combination of Discrete Probability Spaces

In our theory there are several situations in which a discrete probability space is chosen accord�
ing to some probability distribution� and then an element from the chosen probability space
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is chosen according to the corresponding probability distribution	 The whole process can be
described by a unique probability space	

Let f��i�Fi� Pi
gi�� be a family of discrete probability spaces� and let fpigi�� be a family
of real numbers between � and � such that

P
i�� pi ! �	 De�ne

P
i����i�Fi� Pi
 to be the triple

���F � P 
� where � ! �i���i� F ! ��� and� for each x � �� P �x� !
P

i��jx��i
piPi�x�	 It is easy

to verify that ���F � P 
 is a probability space	
The process described by ���F � P 
 is the following
 a probability space ��i�Fi� Pi
 is drawn

from f��i�Fi� Pi
gi�� with probability pi� and then an element x is drawn drom �i with prob�
ability Pi�x�	

����
 Conditional Probability

Let ���F � P 
 be a probability space� and let E be an element of F 	 Frequently� we need to
study the probability of an event E� of F knowing that event E has occurred	 For example� we
may want to study the probability that a dice rolled � knowing that it rolled a number greater
than �	 The probability of a conditional event is expressed by P �E�jE�	 If P �E� ! �� then
P �E�jE� is unde�ned� if P �E� 
 �� then P �E�jE� is de�ned to be P �E 
E���P �E�	

Suppose that P �E� 
 �� and consider the triple ��jE�FjE�P jE
 where �jE ! E� FjE !
fE� 
E j E� � Fg� and for each event E� of FjE� P jE�E�� ! P �E�jE�	 Then it is easy to show
that ��jE�FjE�P jE
 is a probability space	 We call this space a conditional probability space	

Conditional measures give us an alternative way to express the probability of the intersection
of several events	 That is�

P �E� 
 � � � 
En� ! P �E��P �E�jE�� � � �P �EnjE� 
 � � � 
 En����

If P �E�� ! P �E�jE�� then P �E 
E �� ! P �E�P �E��	 In this case the events E and E� are said
to be independent 	

����� Expected Values

Let ���F
 be a measurable space� and let ���R
 be the measurable space where � is the set
of real numbers� and R is the 
��eld generated by the open sets of the real line	 A random
variable on ���F
� denoted by X � is a measurable function from ���F
 to ���R
	

We use random variables to deal with timed systems	 An example of a random variable is
the function that� given a computation of a system� returns the time it takes to the system to
achieve a goal in the given computation	 In our case� the computations of a system are chosen
at random� and thus� a natural estimate of the performance of the system is the average time
it takes to the system to achieve the given goal	

The above idea is expressed formally by the expected value of a random variable� which is a
weighted average of X 	 Speci�cally� let ���F � P 
 be a probability space� and let X be a random
variable on ���F
	 Then the expected value of X � denoted by E�X �� is the weighted average
of X based on the probability distribution P 	 We do not show how to compute the expected
value of a random variable in general� and we refer the interested reader to �Hal���	 Here we
just mention that if � can be partitioned in a countable collection of measurable sets �Ci
i��

such that for each set Ci� X�Ci
 is a singleton� then E�X � !
P

i�� P �Ci�X�ci
� where for each i
ci is an element of Fi	
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������ Notation

Throughout the thesis we adopt some conventional notation concerning probability spaces	 We
use the notation P � possibly decorated with indexes and primes� to denote a generic probability
space	 Thus� the expression P �

i stands for the probability space ���
i�F

�
i� P

�
i 
	 Furthermore� if

a generic expression exp denotes a probability space ���F � P 
� we use �exp �Fexp � and Pexp to
denote ��F � and P � respectively	

If ���F � P 
 is a probability space� and E is a generic set� we use P �E� to denote P �E 
 ��	
If E 
 � is not an element of F � then P �E� is unde�ned	

A special kind of probability space is a probability space with a unique element in its sample
set	 The corresponding measure is called a Dirac distribution	 We use the notation D�x
 to
denote a probability space ���F � P 
 where � ! fxg	

Another important kind of probability space is a space with �nitely many elements� each
one with the same probability	 The corresponding measure is called a uniform distribution	
We use the notation U�x�� � � � � xn
 to denote a discrete probability space ���F � P 
 where � !
fx�� � � � � xng and� for each element xi of �� P �xi� ! ��n	

In the thesis we use heavily discrete probability spaces with no ��probability elements	 It
is easy to verify that the sample set of these probability spaces is at most countable	 If C is
any set� then we denote by Probs�C
 the set of discrete probability spaces ���F � P 
 with no
��probability elements such that � � C	

��� Labeled Transition Systems

A Labeled Transition System �Kel��� Plo��� is a state machine with labeled transitions	 The
labels� also called actions � are used to model communication between a system and its external
environment	 Labeled transition systems have been used successfully for the analysis of con�
current and distributed systems �DH��� Mil��� LT��� LV��a�� for this reason we choose them
as our basic model	

Currently there are several de�nitions of labeled transition systems� each one best suited
for the kind of application it is meant for	 In this section we present a de�nition of labeled
transition systems in the style of �LV��a�	

����� Automata

An automaton A consists of four components


�	 a set states�A
 of states	

�	 a nonempty set start�A
 � states�A
 of start states	

�	 an action signature sig�A
 ! �ext�A
� int�A

� where ext�A
 and int�A
 are disjoint sets
of external and internal actions� respectively	 Denote by acts�A
 the set ext�A
� int�A

of actions	

�	 a transition relation trans�A
 � states�A
�acts�A
�states�A
	 The elements of trans�A

are referred to as transitions or steps 	

��



insert(i) extract(i)

Figure ���
 The Bu
er automaton	

Thus� an automaton is a labeled transition system� possibly with multiple start states� whose
actions are partitioned into external and internal actions	 The external actions model com�
munication with the external environment� the internal actions model internal communication�
not visible from the external environment	

We use s to denote a generic state� and a and b to denote a generic action	 We also use � to
denote a generic internal action	 All our conventional symbols may be decorated with primes
and indexes	 We say that an action a is enabled from a state s in A if there exists a state s� of
A such that �s� a� s�
 is a transition of A	

A standard alternative notation for transitions is s
a
�	 s�	 This notation can be extended to

�nite sequences of actions as follows
 s
a����an�	 s� i� there exists a sequence of states s�� � � � � sn��

such that s
a��	 s�

a��	 � � �sn��
an�	 sn	 To abstract from internal computation� there is another

standard notion of weak transition� denoted by s
a

!� s�	 The action a must be external� and
the meaning of s

a
!� s� is that there are two �nite sequences ��� �� of internal actions such that

s
��a���	 s�	 As for ordinary transitions� weak transitions can be generalized to �nite sequences

of external actions	 A special case is given by the empty sequence
 s !� s� i� either s� ! s or

there exists a �nite sequence � of internal actions such that s
�
�	 s�	

Example �
�
� A classic example of an automaton is an unbounded ordered bu�er that stores
natural numbers �see Figure ���
	 An external user sends natural numbers to the bu�er� and
the bu�er sends back to the external environment the ordered sequence of numbers it receives
from the user	

The automaton Bu
er of Figure ��� can be described as follows	 All the actions of Bu
er
are external and are of the form insert�i
 and extract�i
� where i is a natural number� i	e	� the
actions of Bu
er are given by the in�nite set �i�Nfinsert�i
� extract�i
g	 The states of Bu
er
are the �nite sequences of natural numbers� and the start state of Bu
er is the empty sequence	
The actions of the form insert�i
 are enabled from every state of Bu
er � i	e	� for each state
s and each natural number i there is a transition �s� insert�i
� is
 in Bu
er � where is denotes
the sequence obtained by appending i to the left of s	 The actions of the form extract�i
 are
enabled only from those states where i is the rightmost element in the corresponding sequence
of numbers� i	e	� for each state s and each natural number i there is a transition �si� extract�i
� s

of Bu
er 	 No other transitions are de�ned for Bu
er 	

Observe that from every state of Bu
er there are in�nitely many actions enabled	 The
way to choose among those actions is not speci�ed in Bu
er 	 In other words� the choice of the
transition to perform is nondeterministic	 In this case the nondeterminism models the arbitrary
behavior of the environment	
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Figure ���
 Concatenation of two bu�ers	

The role of internal actions becomes clear when we concatenate two bu�ers as in Figure ���	
The communication that occurs between the two bu�ers is internal in the sense that it does not
a�ect directly the external environment	 Another useful observation about the concatenation
of the two bu�ers in Figure ��� is that nondeterminism expresses two di�erent phenomena
 the
arbitrary behavior of the environment� and the arbitrary scheduling policy that can be adopted
in choosing whether Bu
er� or Bu
er � performs the next transition	 In general nondeterminism
can express even a third phenomenon� namely� the fact that an arbitrary state can be reached
after the occurrence of an action	 Such a form of nondeterminism would arise if we assume that
a bu�er may lose data by failing to modify its state during an insertion operation	

����� Executions

The evolution of an automaton can be described by means of its executions	 An execution
fragment 	 of an automaton A is a ��nite or in�nite
 sequence of alternating states and actions
starting with a state and� if the execution fragment is �nite� ending in a state

	 ! s�a�s�a�s� � � �

where for each i� �si� ai��� si��
 is a transition of A	 Thus� an execution fragment represents a
possible way to resolve the nondeterminism in an automaton	

Denote by fstate�	
 the �rst state of 	 and� if 	 is �nite� denote by lstate�	
 the last state of
		 Furthermore� denote by frag��A
 and frag�A
 the sets of �nite and all execution fragments
of A� respectively	

An execution is an execution fragment whose �rst state is a start state	 Denote by exec��A

and exec�A
 the sets of �nite and all execution of A� respectively	 A state s of A is reachable if
there exists a �nite execution of A that ends in s	

The length of an execution fragment 	� denoted by j	j� is the number of actions that occur
in 		 If 	 is in�nite� then j	j !�	

A �nite execution fragment 	� ! s�a�s� � � �ansn of A and an execution fragment 	� !
snan��sn�� � � � of A can be concatenated 	 In this case the concatenation� written 	�

a 	�� is
the execution fragment s�a�s� � � �ansnan��sn�� � � �	 If 	 ! 	�

a 	�� then we denote 	� by 	�	�
�read �	 after 	��
	

An execution fragment 	� of A is a pre�x of an execution fragment 	� of A� written 	� � 	��
if either 	� ! 	� or 	� is �nite and there exists an execution fragment 	�� of A such that
	� ! 	�

a 	��	 The execution fragment 	�� is also called a su�x of 	� and is denoted by 	��	�	
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����� Traces

The executions of an automaton contain a lot of information that is irrelevant to the environ�
ment� since the interaction between an automaton and its environment occurs through external
actions only	 The trace of an execution is the object that represents the actual interaction that
occurs between an automaton and its environment during an execution	

The trace of an execution �fragment
 	 of an automaton A� written traceA�	
� or just
trace�	
 when A is clear� is the list obtained by restricting 	 to the set of external actions of
A� i	e	� trace�	
 ! 	 � ext�A
	 We say that � is a trace of an automaton A if there exists an
execution 	 of A with trace�	
 ! �	 Denote by traces��A
 and traces�A
 the sets of �nite and
all traces of A� respectively	 Note� that a �nite trace can be the trace of an in�nite execution	

����
 Trace Semantics

In �LV��a� automata are compared based on traces	 Speci�cally� a preorder relation is de�ned
between automata based on inclusion of their traces


A� vT A� i� traces�A�
 � traces�A�
�

The trace preorder can express a notion of implementation� usually referred to as a safe imple�
mentation	 That is� A�� the implementation� cannot do anything that is forbidden by A�� the
speci�cation	 For example� no implementation of the bu�er of Figure ��� can return natural
numbers that were never entered or natural numbers in the wrong order	

Although the trace preorder is weak as a notion of implementation� and so �ner relations
could be more appropriate �DeN��� Gla��� Gla���� there are several situations where a trace
based semantics is su�cient �LT��� Dil��� AL��� GSSL���	 The advantage of a trace based
semantics is that it is easy to handle	

In this thesis we concentrate mainly on trace based semantics� however� the techniques that
we develop can be extended to other semantic notions as well	

����� Parallel Composition

Parallel composition is the operator on automata that identi�es how automata communicate
and synchronize	 There are two main synchronization mechanisms for labeled transition sys�
tems� better known as the CCS synchronization style �Mil���� and the CSP synchronization
style �Hoa���	 In the CCS synchronization style the external actions are grouped in pairs of
complementary actions� a synchronization occurs between two automata that perform comple�
mentary actions� and becomes invisible to the external environment� i	e	� a synchronization is
an internal action	 Unless speci�cally stated through an additional restriction operator� an
automaton is allowed not to synchronize with another automaton even though a synchroniza�
tion is possible	 In the CSP synchronization style two automata must synchronize on their
common actions and evolve independently on the others	 Both in the CCS and CSP styles�
communication is achieved through synchronization	

In this thesis we adopt the CSP synchronization style� which is essentially the style adopted
in �LT��� Dil��� LV��a�	 A technical problem that arises in our framework is that automata
may communicate through their internal actions� while internal actions are not supposed to be
visible	 To avoid these unwanted communications� we de�ne a notion of compatibility between
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automata	 Two automata A�� A� are compatible i� int�A�
 
 acts�A�
 ! � and acts�A�
 

int�A�
 ! �	

The parallel composition of two compatible automata A�� A�� denoted by A�kA�� is the
automaton A such that

�	 states�A
 ! states�A�
� states�A�
	

�	 start�A
 ! start�A�
� start�A�
	

�	 sig�A
 ! �ext�A�
� ext�A�
� int�A�
 � int�A�

	

�	 ��s�� s�
� a� �s
�
�� s

�
�

 � trans�A
 i�

�a
 if a � acts�A�
� then �s�� a� s
�
�
 � trans�A�
� else s

�
� ! s�� and

�b
 if a � acts�A�
� then �s�� a� s
�
�
 � trans�A�
� else s

�
� ! s�	

If two automata are incompatible and we want to compose them in parallel� the problem
can be solved easily by renaming the internal actions of one of the automata	 The renaming
operation is simple
 just rename each occurrence of each action in the action signature and the
transition relation of the given argument automaton	 At this point it is possible to understand
how to build a system like the one described in Figure ���	 Bu
er � is obtained from Bu
er by
renaming the actions extract�i
 into ��i
� and Bu
er� is obtained from Bu
er by renaming the
actions insert�i
 into ��i
	 Then� Bu
er� and Bu
er� are composed in parallel� and �nally the
actions ��i
 are made internal	 This last step is achieved through a Hide operation� whose only
e�ect is to change the signature of an automaton	

We conclude by presenting two important properties of parallel composition	 The �rst
property concerns projections of executions	 Let A ! A�kA�� and let �s�� s�
 be a state of A	
Let i be either � or �	 The projection of �s�� s�
 onto Ai� denoted by �s�� s�
dAi� is si	 Let
	 ! s�a�s� � � � be an execution of A	 The projection of 	 onto Ai� denoted by 	dAi is the
sequence obtained from 	 by projecting all the states onto Ai� and by removing all the actions
not in acts�Ai
 together with their subsequent states	

Proposition �
�
� Let A ! A�kA�� and let 	 be an execution of A� Then 	dA� is an execution
of A� and 	dA� is an execution of A��

The projection of an execution of A onto one of the components Ai is essentially the view of
Ai of the execution 		 In other words the projection represents what Ai does in order for A to
produce 		 Proposition �	�	� states that the view of Ai is indeed something that Ai can do	

The second property concerns the trace preorder	

Proposition �
�
� Let A� vT A�
�� Then� for each A� compatible with both A� and A�

��
A�kA� vT A�

�kA��

The property expressed in Proposition �	�	� is better known as substitutivity or compositionality 	
In other words vT is a precongruence with respect to parallel composition	 Substitutivity is one
of the most important properties that an implementation relation should satisfy	 Informally�
substitutivity says that an implementation A� of a system A�

� works correctly in any context
where A�

� works correctly	 Substitutivity is also the key idea at the base of modular veri�cation
techniques	
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Chapter �

Probabilistic Automata

	�� What we Need to Model

Our main goal is to analyze objects that at any point can evolve according to a probability
distribution	 The simplest example of a random computation is the process of �ipping a coin	
Thus� a program may contain an instruction like

x 
! �ip

whose meaning is to assign to x the result of a coin �ip	 From the state�machine point of view�
the transition relation of the corresponding automaton should be speci�ed by giving the states
reachable after the coin �ip� together with their probability	 Thus� the coin �ipping process
can be represented by the labeled transition system of Figure ���	 The edges joining two states
are associated with an action and a weight� where the weight of an edge is the probability of
choosing that speci�c edge	 Thus� we require that for each state that has some outgoing edges�
the sum of the weights of the outgoing edges is �	

However� we also need to deal with nondeterminism	 Consider a more complicated process
where a coin is �ipped� but where the coin can be either fair� i	e	� it yields head with probability
���� or unfair by yielding head with probability ���	 Furthermore� suppose that the process
emits a beep if the result of the coin �ip is head 	 In this case� the choice of which coin to �ip
is nondeterministic� while the outcome of the coin �ip is probabilistic	 The start state should
enable two separate transitions� each one corresponding to the �ip of a speci�c coin	 Figure ��
� represents the nondeterministic coin �ipping process	 The start state enables two separate
groups of weighted edges� each group is identi�ed by an arc joining all of its edges� and the
edges of each group form a probability distribution	

At this point we may be tempted to ask the following question
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Figure ���
 The coin �ipping process	
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 The nondeterministic coin �ipping process	

�What is the probability that the nondeterministic coin �ipper beeps��

The correct answer is

�It depends on which coin is �ipped 	�

Although this observation may appear to be silly� the lesson that we learn is that it is not
possible to talk about the probability of some event until the nondeterminism is resolved	
Perhaps we could give a more accurate answer as follows


�The probability that the nondeterministic coin �ipper beeps is either ��� or ����
depending on which coin is �ipped 	�

However� there are two possible objections	 The �rst objection concerns the way a coin is
chosen	 What happens if the coin to be �ipped is chosen at random� After all� in the de�nition
of the nondeterministic coin �ipper there are no limitations to the way a coin is chosen	 In this
case� the correct answer would be

�The probability that the nondeterministic coin �ipper beeps is between ��� and ����
depending on how the coin to be �ipped is chosen	�

The second objection concerns the possibility of scheduling a transition	 What happens if the
scheduler does not schedule the beep transition even though it is enabled� In this case the
correct answer would be

�Under the hypothesis that some transition is scheduled whenever some transition is
enabled� the probability that the nondeterministic coin �ipper beeps is between ���
and ���� depending on how the coin to be �ipped is chosen	�

There is also another statement that can be formulated in relation to the question


�The nondeterministic coin �ipper does not beep with any probability greater than
���	�

This last property is better known as a safety property �AS��� for ordinary labeled transition
systems	

Let us go back to the scheduling problem	 There are actual cases where it is natural to allow
a scheduler not to schedule any transition even though some transition is enabled	 Consider a
new nondeterministic coin �ipper with two buttons� marked fair and unfair � respectively	 The
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 A computation of the triggered coin �ipping process	

buttons can be pressed by an external user	 Suppose that pressing one button disables the
other button� and suppose that the fair coin is �ipped if the button marked fair is pressed�
and that the unfair coin is �ipped if the button marked unfair is pressed	 The new process
is represented in Figure ���	 In this case the scheduler models the external environment� and
a user may decide not to press any button� thus not scheduling any transition from s� even
though some transition is enabled	 An external user may even decide to �ip a coin and press
a button only if the coin gives head � or �ip a coin and press fair if the coin gives head and
press unfair if the coin gives tail 	 That is� an external user acts like a scheduler that can use
randomization for its choices	 If we ask again the question about the probability of beeping� a
correct answer would be

�Assuming that beep is scheduled whenever it is enabled� the probability that the
triggered coin �ipper beeps� conditional to the occurrence of a coin �ip� is between
��� and ���	�

Suppose now that we resolve all the nondeterminism in the triggered coin �ipper of Figure ����
and consider the case where the external user presses fair with probability ��� and unfair
with probability ���	 In this case it is possible to study the exact probability that the process
beeps� which is ����	 Figure ��� gives a representation of the outcome of the user we have just
described	 Note that the result of resolving the nondeterminism is not a linear structure as is
the case for standard automata� but rather a tree�like structure	 This structure is our notion
of a probabilistic execution and is studied in more detail in Section �	�	
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	�� The Basic Model

In this section we introduce the basic probabilistic model that is used in the thesis	 We formalize
the informal ideas presented in Section �	�� and we extend the parallel composition operator
of ordinary automata to the new framework	 We also introduce several notational conventions
that are used throughout the thesis	


���� Probabilistic Automata

A probabilistic automaton M consists of four components


�	 A set states�M
 of states	

�	 A nonempty set start�M
 � states�M
 of start states	

�	 An action signature sig�M
 ! �ext�M
� int�M

� where ext�M
 and int�M
 are disjoint
sets of external and internal actions� respectively	 Denote by acts�M
 the set ext�M
 �
int�M
 of actions	

�	 A transition relation trans�M
 � states�M
�Probs��acts�M
�states�M

�f�g
	 Recall
from Section �	�	�� that for each set C� Probs�C
 denotes the set of discrete probability
spaces ���F � P 
 with no ��probability elements such that � � C	 The elements of
trans�M
 are referred to as transitions or steps 	

A probabilistic automaton di�ers from an ordinary automaton only in the transition relation	
Each transition represents what in the �gures of Section �	� is represented by a group of edges
joined by an arc	 From each state s� once a transition is chosen nondeterministically� the
action that is performed and the state that is reached are determined by a discrete probability
distribution	 Each transition �s�P
 may contain a special symbol �� which represents the
possibility for the system not to complete the transition� i	e	� to remain in s without being able
to engage in any other transition	

Example �
�
� �Meaning of �� To give an idea of the meaning of �� suppose thatM models
a person sitting on a chair that stands up with probability ���	 That is� from the start state s�
there is a transition of M where one outcome describes the fact that the person stands up and
the other outcome describes the fact that the person does not stand up �this is �
	 The point
is that there is no instant in time where the person decides not to stand up
 there are only
instants where the person stands up	 What the transition leaving s� represents is that overall
the probability that the person does the action of standing up is ���	 The need for � is clari�ed
further in Section �	�	�� where we study probabilistic executions� and in Section �	�� where we
study parallel composition	

The requirement that the probability space associated with a transition be discrete is imposed
to simplify the measure theoretical analysis of probabilistic automata	 In this thesis we work
with discrete probability spaces only� and we defer to further work the extension of the theory
to more general probability spaces	 The requirement that each transition does not lead to any
place with probability � is imposed to simplify the analysis of probabilistic automata	 All the
results of this thesis would be valid even without such a restriction� although the proofs would

��



contain a lot of uninteresting details	 The requirement becomes necessary for the study of live
probabilistic automata� which we do not study here	

There are two classes of probabilistic automata that are especially important for our analysis

simple probabilistic automata� and fully probabilistic automata	

A probabilistic automaton M is simple if for each transition �s�P
 of trans�M
 there is an
action a of M such that � � fag � states�M
	 In such a case� a transition can be represented
alternatively as �s� a�P �
� where P � � Probs�states�M

� and it is called a simple transition with
action a	 The probabilistic automata of Figures ��� and ��� are simple	 In a simple probabilistic
automaton each transition is associated with a single action and it always completes	 The idea
is that once a transition is chosen� then only the next state is chosen probabilistically	 In
this thesis we deal mainly with simple probabilistic automata for a reason that is made clear
in Section �	�	 We use general probabilistic automata to analyze the computations of simple
probabilistic automata	

A probabilistic automaton M is fully probabilistic if M has a unique start state� and from
each state of M there is at most one transition enabled	 Thus� a fully probabilistic automaton
does not contain any nondeterminism	 Fully probabilistic automata play a crucial role in the
de�nition of probabilistic executions	

Example �
�
� �Probabilistic automata� A probabilistic Turing Machine is a Turing ma�
chine with an additional random tape	 The content of the random tape is instantiated by
assigning each cell the result of an independent fair coin �ip �say � if the coin gives head and
� if the coin gives tail
	 If we assume that each cell of the random tape is instantiated only
when it is reached by the head of the machine� then a probabilistic Turing machine can be
represented as a simple probabilistic automaton	 The probabilistic automaton� denoted by M �
has a unique internal action � � and its states are the instantaneous descriptions of the given
probabilistic Turing machine� each time the Turing machine moves the head of its random tape
on a cell for the �rst time� M has a probabilistic transition that represents the result of reaching
a cell whose content is � with probability ��� and � with probability ���	

An algorithm that at some point can �ip a coin or roll a dice can be represented as a simple
probabilistic automaton where the �ipping and rolling operations are simple transitions	 If the
outcome of a coin �ip or dice roll a�ects the external behavior of the automaton� then the
�ip and roll actions can be followed by simple transitions whose actions represent the outcome
of the random choice	 Another possibility is to represent the outcome of the random choice
directly in the transition where the random choice is made by performing di�erent actions	 In
this case the resulting probabilistic automaton would not be simple	 Later in the chapter we
show why we prefer to represent systems as simple probabilistic automata when possible	


���� Combined Transitions

In Section �	� we argued that a scheduler may resolve the nondeterminism using randomization�
i	e	� a scheduler can generate a new transition by combining several transitions of a probabilistic
automatonM 	 We call the result of the combination of several transitions a combined transition	
Formally� let M be a probabilistic automaton� and let s be a state of M 	 Consider a �nite or
countable set f�s�Pi
gi�I of transitions of M leaving from s� and a family of non�negative
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weights fpigi�I such that
P

i pi � �	 Let

P
�

!

�
� X
i�Ijpi��

piPi

�
A�

�
��

X
i�I

pi

�
D��
� ��	�


i	e	� P is a combination of discrete probability spaces as described in Section �	�	�	 The
pair �s�P
 is called a combined transition of M and is denoted by

P
i�I pi�s�Pi
	 Denote

by ctrans�M
 the set of combined transitions of M 	 Note that trans�M
 � ctrans�M
	
Thus� the combination of transitions can be viewed as a weighted sum of transitions where

the sum of the weights is at most �	 If the sum of the weights is not �� then nothing is
scheduled by default	 The reason for � by default will become clear when we analyze parallel
composition in Section �	�	 Note that all the transitions �s�Pi
 where pi ! � are discarded in
Expression ��	�
� since otherwise P would contain elements whose probability is �	 We do not
impose the restriction that each pi is not � for notational convenience
 in several parts of the
thesis the pi�s are given by complex expression that sometimes may evaluate to �	

Proposition �
�
� The combination of combined transitions of a probabilistic automaton M

is a combined transition of M �

Proof
 Follows trivially from the de�nition of a combined transition	


���� Probabilistic Executions

If we resolve both the nondeterministic and probabilistic choices of a probabilistic automaton�
then we obtain an ordinary execution like those usually de�ned for ordinary automata	 Thus� an
execution fragment of a probabilistic automatonM is a ��nite or in�nite
 sequence of alternating
states and actions starting with a state and� if the execution fragment is �nite� ending in a state�

	 ! s�a�s�a�s� � � � �

where for each i there is a transition �si�Pi��
 of M such that �ai��� si��
 � �i��	 Executions�
concatenations of executions� and pre�xes can be de�ned as for ordinary automata	

In order to study the probabilistic behavior of a probabilistic automaton� we need a mech�
anism to resolve only the nondeterminism� and leave the rest unchanged	 That is� we need a
structure that describes the result of choosing a transition� possibly using randomization� at
any point in history� i	e	� at any point during a computation	 In Figure ��� we have given an
example of such a structure� and we have claimed that it should look like a tree	 Here we give
a more signi�cant example to justify such a claim	

Example �
�
� �History in a probabilistic execution� Consider a new triggered coin �ip�
per� described in Figure ���� that can decide nondeterministically to beep or boo if the coin �ip
yields head � and consider a computation� described in Figure ���� that beeps if the user chooses
to �ip the fair coin� and boos if the user chooses to �ip the unfair coin	 Then� it is evident that
we cannot identify the two states head of Figure ��� without reintroducing nondeterminism	 In
other words� the transition that is scheduled at each point depends on the past history of the
system� which is represented by the position of a state in the tree	 For a formal de�nition of a
structure like the one of Figure ���� however� we need to refer explicitly to the past history of
a system	
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Figure ���
 A computation of the triggered coin �ipper with a boo sound	

Let 	 be a �nite execution fragment of a probabilistic automaton M 	 De�ne a function 	a

that applied to a pair �a� s
 returns the pair �a� 	as
� and applied to � returns �	 Recall from
Section �	�	� that the function 	a can be extended to probability spaces	 Informally� if �s�P
 is
a combined transition of M and 	 is a �nite execution fragment of M such that lstate�	
 ! s�
then the pair �	� 	 a P
 denotes a transition of a structure that in its states remembers part of
the past history	 A probabilistic execution fragment of a probabilistic automaton M � is a fully
probabilistic automaton� denoted by H � such that

�	 states�H
 � frag��M
	 Let q range over states of probabilistic execution fragments	

�	 for each transition �q�P
 of H there is a combined transition �lstate�q
�P �
 of M � called
the corresponding combined transition� such that P ! q a P �	

�	 each state q of H is reachable in H and enables one transition� possibly �q�D��

	

A probabilistic execution is a probabilistic execution fragment whose start state is a start state of
M 	 Denote by prfrag�M
 the set of probabilistic execution fragments of M � and by prexec�M

the set of probabilistic executions of M 	 Also� denote by qH� the start state of a generic
probabilistic execution fragment H 	

Thus� by de�nition� a probabilistic execution fragment is a probabilistic automaton itself	
Condition � is technical
 reachability is imposed to avoid useless states in a probabilistic exe�
cution fragment� the fact that each state enables one transition is imposed to treat uniformly
all the points where it is possible not to schedule anything	 Figures ��� and ��� represent
two probabilistic executions of the triggered coin �ipper of Figure ���	 The occurrence of �
is represented by a dashed line labeled with �	 The states of the probabilistic executions are
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 A probabilistic execution of the triggered coin �ipper	

not represented as �nite execution fragments since their position in the diagrams gives enough
information	 Similarly� we omit writing explicitly all the transitions that lead to D��
 �e	g	�
states s� and s� in Figure ���
	

We now have enough structure to understand better the role of �	 In ordinary automata a
scheduler has the possibility not to schedule anything at any point� leading to a �nite execution	
Such assumption is meaningful if the actions enabled from a given state model some input
that comes from the external environment	 In the probabilistic framework it is also possible to
schedule no transition from some point	 Since a scheduler may use randomization in its choices�
it is also possible that from some speci�c state nothing is scheduled only with some probability
p� say ���	

Example �
�
� �The role of �� In the triggered coin �ipper of Figure ��� a user can �ip
a fair coin to decide whether to push a button� and then� if the coin �ip yields head� �ip
another coin to decide which button to press	 In the transition that leaves from s� we need
some structure that represents the fact that nothing is scheduled from s� with probability ���

we use � for this purpose	 Figure ��� represents the probabilistic execution that we have just
described	

Since a probabilistic execution fragment is itself a probabilistic automaton� it is possible to
talk about the executions of a probabilistic execution fragment� that is� the ways in which the
probabilistic choices can be resolved in a probabilistic execution fragment	 However� since at
any point q it is possible not to schedule anything� if we want to be able to study the probabilistic
behavior of a probabilistic execution fragment then we need to distinguish between being in q
with the possibility to proceed and being in q without any possibility to proceed	 For example�
in the probabilistic execution of Figure ��� we need to distinguish between being in s� before
performing the transition enabled from s� and being in s� after performing the transition	 We
represent this second condition by writing s��	 In general� we introduce a notion of an extended
execution fragment� which is used in Section �	�	� to study the probability space associated with
a probabilistic execution	

An extended execution �fragment
 of a probabilistic automaton M � denoted by 	� is either
an execution �fragment
 of M � or a sequence 	��� where 	� is a �nite execution �fragment
 of
M 	 The sequences s�� and s� fair s�� are examples of extended executions of the probabilistic
execution of Figure ���	

There is a close relationship between the extended executions of a probabilistic automaton
and the extended executions of one of its probabilistic execution fragments	 Here we de�ne
two operators that make such a relationship explicit	 Let M be a probabilistic automaton and
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let H be a probabilistic execution fragment of M 	 Let q� be the start state of H 	 For each
extended execution 	 ! q�a�q� � � � of H � let

	�
�

!

�
q�

a lstate�q�
a�lstate�q�
a� � � � if 	 does not end in ��
q�

a lstate�q�
a�lstate�q�
a� � � �anlstate�qn
� if 	 ! q�a�q� � � �anqn�	
��	�


It is immediate to observe that 	� is an extended execution fragment of M 	 For each extended
execution fragment 	 of M such that q� � 	� i	e	� 	 ! q�

a s�a�s� � � �� let

	�q�
�

!

�
q�a��q�

a s�a�s�
a��q�
a s�a�s�a�s�
 � � � if 	 does not end in ��

q�a��q�
a s�a�s�
 � � ��q� a s�a�s� � � �ansn
� if 	 ! q�

a s�a�s� � � �ansn�	
��	�


It is immediate to observe that 	�q� is an extended execution of some probabilistic execution
fragment of M 	 Moreover� the following proposition holds	

Proposition �
�
� Let H be a probabilistic execution fragment of a probabilistic automaton
M � and let q� be the start state of H� Then� for each extended execution 	 of H�

�	�
�q� ! 	� ��	�


and for each extended execution fragment 	 of M starting with q��

�	�q�
� ! 	� ��	�


Proof
 Simple analysis of the de�nitions	

The bottom line is that it is possible to talk about extended executions of H by analyzing only
extended execution fragments of M 	


���
 Notational Conventions

For the analysis of probabilistic automata and of probabilistic executions we need to refer to
explicit objects like transitions or probability spaces associated with transitions	 In this section
we give a collection of notational conventions that ease the identi�cation of each object	

Transitions

We denote a generic transition of a probabilistic automaton by tr � possibly decorated with
primes and indices	 For each transition tr ! �s�P
� we denote P alternatively by Ptr 	 If tr is a
simple transition� represented by �s� a�P
� we abuse notation by denoting P by Ptr as well	 The
context will always clarify the probability space that we denote	 If �s�P
 is a transition� we use
any set of actions V to denote the event f�a� s�
 � � j a � V g that expresses the occurrence of
an action from V in P � and we use any set of states U to denote the event f�a� s�
 � � j s� � Ug
that expresses the occurrence of a state from U in P 	 We drop the set notation for singletons	
Thus� P �a� is the probability that action a occurs in the transition �s�P
	

If M is a fully probabilistic automaton and s is a state of M � then we denote the unique
transition enabled from s in M by trMs � and we denote the probability space that appears in
trMs by PM

s 	 Thus� trMs ! �s�PM
s 
	 We drop M from the notation whenever it is clear from

the context	 This notation is important to handle probabilistic execution fragments	
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Transition Pre�xing and Su�xing

Throughout the thesis we use transitions of probabilistic automata and transitions of proba�
bilistic execution fragments interchangeably	 If H is a probabilistic execution fragment of a
probabilistic automaton M � then there is a strong relation between the transitions of H and
some of the combined transitions of M 	 We exploit such a correspondence through two oper�
ations on transitions	 The �rst operation is called transition pre�xing and adds some partial
history to the states of a transition� the second operation is called transition su�xing and re�
moves some partial history from the states of a transition	 These operations are used mainly
in the proofs of the results of this thesis	

Let tr ! �s�P
 be a combined transition of a probabilistic automaton M � and let 	 be a
�nite execution fragment of M such that lstate�	
 ! s	 Then the transition 	 a tr is de�ned to
be �	� 	 a P
	 We call the operation 	a transition pre�xing 	

Let tr ! �q�P
 be a transition of a probabilistic execution fragment H � and let q� � q	 Let
�q� be a function that applied to a pair �a� q��
 of � returns �a� q���q�
� and applied to � returns
�	 Let P�q� denote the result of applying �q� to P 	 Then the transition tr�q� is de�ned to be
�q�q��P�q�
	 We call the operation �q� transition su�xing 	

The following properties concern distributivity of transition pre�xing and su�xing with
respect to combination of transitions	

Proposition �
�
� LetM be a probabilistic automaton� and let q be a �nite execution fragment
of M �

�� q a
P

i pitr i !
P

i pi�q
a tr i
� where each tr i is a transition of M �

��
P

i pitr i�q !
P

i pi�tr i�q
� where each tr i is a transition of some probabilistic execution
fragment of M �

Proof
 Simple manipulation of the de�nitions	


���� Events

At this point we need to de�ne formally how to compute the probability of some event in
a probabilistic execution	 Although it is intuitively simple to understand the probability of
a �nite execution to occur� it is not as intuitive to understand how to deal with arbitrary
properties	 A probabilistic execution can be countably branching� and can have uncountably
many executions	 As an example� consider a probabilistic execution that at any point draws a
natural number n 
 � with probability ���n	 What is measurable� What is the probability of
a generic event�

In this section we de�ne a suitable probability space for a generic probabilistic execution
fragment H of a probabilistic automaton M 	 Speci�cally� given a probabilistic execution frag�
ment H we de�ne a probability space PH as the completion of another probability space P �

H

which is de�ned as follows	 De�ne an extended execution 	 of H to be complete i� either 	
is in�nite or 	 ! 	�� and � � �H

lstate����	 Then� the sample space ��
H is the set of extended

executions of M that originate from complete extended executions of H � i	e	�

��
H

�

! f	� j 	 is a complete extended execution of Hg� ��	�


��



The occurrence of a �nite extended execution 	 of M can be expressed by the set

CH
�

�

! f	� � ��
H j 	 � 	�g� ��	�


called a cone	 We drop H from CH
� whenever it is clear from the context	 Let CH be the set of

cones of H 	 Then de�ne F �
H to be the 
��eld generated by CH � i	e	�

F �
H

�

! 
�CH
� ��	�


To de�ne a probability measure on F �
H � we start by de�ning a measure �H on CH such that

�H��H
 ! �	 Then we show that �H can be extended uniquely to a measure "�H on F �CH
�
where F �CH
 is built according to Proposition �	�	�	 Finally we use the extension theorem
�Theorem �	�	�
 to show that �H can be extended uniquely to a probability measure P �

H on

�F �CH

 ! 
�CH
	

The measure �H�CH
� 
 of a cone CH

� is the product of the probabilities associated with each
edge that generates 	 in H 	 Formally� let q� be the start state of H 	 If 	 � q�� then

�H�CH
� 


�

! �� ��	�


if 	 ! q�
a s�a�s� � � �sn��ansn� then

�H�CH
� 


�

! PH
q� ��a�� q�
� � � �P

H
qn�� ��an� qn
�� ��	��


where for each i� � � i � n� qi ! q�
a s�a�s� � � �si��aisi� if 	 ! q�

a s�a�s� � � �sn��ansn�� then

�H�CH
� 


�

! PH
q� ��a�� q�
� � � �P

H
qn�� ��an� qn
�Pqn ���� ��	��


where for each i� � � i � n� qi ! q�
a s�a�s� � � �si��aisi	

Example �
�
� �Some commonly used events� Before proving that the construction of
P �
H is correct� we give some examples of events	 The set describing the occurrence of an action

a �eventually a occurs
 can be expressed as a union of cones of the form C� such that a appears
in 		 Moreover� any union of cones can be described as a union of disjoint cones �follows from
Lemma �	�	� below
	 Since a probabilistic execution fragment is at most countably branching�
the number of distinct cones in CH is at most countable� and thus the occurrence of a can be
expressed as a countable union of disjoint cones� i	e	� it is an event of F �

H 	 More generally� any
arbitrary union of cones is an event	 We call such events �nitely satis�able	 The reason for the
word �satis�able� is that it is possible to determine whether an execution 	 of ��

H is within a
�nitely satis�able event by observing just a �nite pre�x of 		 That �nite pre�x is su�cient to
determine that the property represented by the given event is satis�ed	

The set describing the non�occurrence of an action a is also an event� since it is the comple�
ment of a �nitely satis�able event	 Similarly� the occurrence� or non�occurrence� of any �nite
sequence of actions is an event	 For each natural number n� the occurrence of exactly n a�s is
an event
 it is the intersection of the event expressing the occurrence of at least n a�s and the
event expressing the non�occurrence of n� � a�s	 Finally� the occurrence of in�nitely many a�s
is an event
 it is the countable intersection of the events expressing the occurrence of at least i
a�s� i � �	
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We now move to the proof that P �
H is well de�ned	 First we use ordinal induction to show that

the function �H de�ned on CH is 
�additive� and thus that �H is a measure on CH �Lemma �	�	�
�
then we show that there is a unique extension of �H to F �CH
 �Lemmas �	�	�� �	�	�� and �	�	�
	
Finally� we use the extension theorem to conclude that P �

H is well de�ned	

Lemma �
�
� Let C��� C�� � �H � If 	� � 	� then C�� � C��� If 	� � 	� and 	� � 	� then
C�� 
 C�� ! ��

Proof
 Simple analysis of the de�nitions	

Lemma �
�
� Let H be a probabilistic execution of a probabilistic automaton M � and let q be
a state of H� Suppose that there is a transition enabled from q in H� Then

�H�Cq
 !

� P
�a�q����Hq

�H�Cq�
 if � �� �H
qP

�a�q����Hq
�H�Cq�
 � �H�Cq�
 if � � �H

q �
��	��


Proof
 Simple analysis of the de�nitions	

Lemma �
�
	 The function �H is 
�additive on CH � and �H��H
 ! ��

Proof
 By de�nition �H���
H
 ! �� hence it is su�cient to show 
�additivity	 Let q be an

extended execution of M � and let # be a set of incomparable extended executions of M such
that Cq ! �q��	Cq� 	 If q ends in �� then # contains only one element and 
�additivity is
trivially satis�ed	 Thus� assume that q does not end in �� and hence q is a state of H � and that
# contains at least two elements	 From Lemma �	�	�� q is a pre�x of each extended execution
of #	 For each state q� of H � let #q� be the set fq�� � # j q� � q��g	 We show 
�additivity
in two steps
 �rst we assign an ordinal depth to some of the states of H and we show that q
is assigned a depth� then we show that �H�Cq
 !

P
q��	 �H�Cq�
 by ordinal induction on the

depth assigned to q	
The depth of each state q� within some cone Cq�� �q

�� � q�
� where q�� � #� is �� and the depth
of each state q� with no successors is �	 For each other state q� such that each of its successors
has a depth� if fdepth�q��
 j �a�a� q��
 � �H

q� g has a maximum� then

depth�q�
 ! max �fdepth�q��
 j �a�a� q
��
 � �H

q� g
 � �� ��	��


otherwise� if fdepth�q��
 j �a�a� q��
 � �q�g does not have a maximum� then

depth�q�
 ! sup�fdepth�q��
 j �a�a� q
��
 � �H

q� g
� ��	��


Consider a maximal assignment to the states of H � i	e	� an assignment that cannot be extended
using the rules above� and suppose by contradiction that q is not assigned a depth	 Then
consider the following sequence of states of H 	 Let q� ! q� and� for each i 
 �� let qi be a state
of H such that �ai� qi
 � �qi�� � and qi is not assigned a depth	 For each i� the state qi exists
since otherwise� if there exists an i such that for each �ai� qi
 � �qi�� � qi is assigned a depth�
then qi�� would be assigned a depth	 Note that the qi�s form a chain under pre�x ordering� i	e	�
for each i� j� if i � j then qi � qj 	 Consider the execution 	� ! limi qi	 From its de�nition� 	�
is an execution of Cq	 Then� from hypothesis� 	� is an execution of �q��	Cq� � and therefore
	� is an execution of some Cq� such that q� � #	 By de�nition of a cone� q� is a pre�x of 	�	
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Thus� q� ! qk for some k � �	 But then qk is within the cone Cq� � and thus it is assigned depth
�	 This contradicts the fact that qk is not assigned any depth	

Let � be the ordinal depth assigned to q	 We show that �H�Cq
 !
P

q��	 �H�Cq�
 by
ordinal induction on �	 If � ! �� then # is either fqg or fq�g� and the result is trivial	 Let
� be a successor ordinal or a limit ordinal	 From Lemma �	�	�� �H�Cq
 !

P
�a�q����q �H�Cq�


if � �� �q� and �H �Cq
 !
P

�a�q����q �H�Cq�
 � �H�Cq�
 if � � �q	 For each �a� q�
 � �q�
Cq� ! �q���	q�

Cq�� 	 Moreover� for each �a� q�
 � �q� the depth of q� is less than �	 By induction�
�H�Cq�
 !

P
q���	q�

�H�Cq��
	 Thus� �H�Cq
 !
P

�a�q����q

P
q���	q�

�H�Cq��
 !
P

q��	 �H�Cq�
 if

� �� �q� and �H�Cq
 !
P

�a�q����q

P
q���	q�

�H�Cq��
 � �H �Cq�
 !
P

q��	 �H�Cq�
 if � � �q	

Lemma �
�
� There exists a unique extension ��H of �H to F��CH
�

Proof
 There is a unique way to extend the measure of the cones to their complements since
for each 	� �H�C�
 � �H��H � C�
 ! �	 Therefore ��H coincides with �H on the cones and
is de�ned to be � � �H�C�
 for the complement of any cone C�	 Since� by the countably
branching structure of H � the complement of a cone is a countable union of cones� 
�additivity
is preserved	

Lemma �
�
� There exists a unique extension ���H of ��H to F��CH
�

Proof
 The intersection of �nitely many sets of F��CH
 is a countable union of cones	 Therefore

�additivity enforces a unique measure on the new sets of F��CH
	

Lemma �
�
� There exists a unique extension ����H of ���H to F��CH
�

Proof
 There is a unique way of assigning a measure to the �nite union of disjoint sets whose
measure is known� i	e	� adding up their measures	 Since all the sets of F��CH
 are countable
unions of cones� 
�additivity is preserved	

Theorem �
�
�
 There exists a unique extension P �
H of �H to the 
�algebra F �

H�

Proof
 By Theorem �	�	�� de�ne P �
H to be the unique extension of ����H to F �

H 	


���� Finite Probabilistic Executions� Pre�xes� Conditionals� and Su�xes

We extend the notions of �niteness� pre�x and su�x to the probabilistic framework	 Here we
add also a notion of conditional probabilistic execution which is not meaningful in the non�
probabilistic case and which plays a crucial role in some of the proofs of Chapter �	

Finite Probabilistic Executions

Informally� �niteness means that the tree representation of a probabilistic execution fragment
has a �nite depth	 Thus� a probabilistic execution fragment H is �nite i� there exists a natural
number n such that the length of each state of H is at most n	
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Figure ���
 Examples of the pre�x relation	

Pre�xes

The idea of a pre�x of a probabilistic execution fragment is more complicated than the de�nition
of pre�x for ordinary automata	 To get a better understanding of the problem� consider the
de�nition of pre�x for ordinary execution fragments
 	 � 	� i� either 	 ! 	�� or 	 is �nite and
there is an execution fragment 	�� such that 	� ! 	a	��	 Another way to interpret this de�nition
is to observe that if 	 is �nite� then there is exactly one point in 	� which we call a point of
extension� from which nothing is scheduled� and in that case 	� is obtained by extending 	 from
its unique point of extension	 With the word �extending� we mean �adding transitions�	 In
other words� an execution fragment 	 is a pre�x of an execution fragment 	� i� 	� is obtained
from 	 by adding transitions� possibly none� from all the points of extension of 	� i	e	� from
all the points of 	 where nothing is scheduled	 We apply the same observation to probabilistic
execution fragments� where a point of extension is any point where � occurs	

Example �
�
	 �Pre�xes� Consider the probabilistic execution fragment H of Figure ���	
It is easy to see that s� and s� are points of extension in H 	 However� also s� is a point
of extension since in H nothing is scheduled from s� with probability ���	 The probabilistic
execution fragment H � of Figure ��� is an extension of H 	 States s� and s� are extended with
transitions labeled with c� and half of the extendible part of s� is extended with the transition
s�

a
�	 s�� i	e	� we have added the transition �s��U��a� s�
� �

 to the extendible part of s�	 Since

the extension from s� overlaps with one of the edges leaving s� in H � the e�ect that we observe
in H � is that s� is reached with a higher probability	

Consider now the probabilistic execution fragment H �� of Figure ���	 H �� is an extension
of H �� but this time something counterintuitive has happened� namely� the edge labeled with
action c that leaves from state s� has a lower probability in H �� than in H �	 The reason for this

di�erence is that the extendible part of s� is extended with a transition s�
b
�	 s� followed by

s�
c
�	 s�	 Thus� half of the transition leaving from s� in H �� is due to the previous behavior of

H �� and half of the transition leaving from s� in H �� is due to the extension from s�	 However�
the probability of the cone Cs�bs�cs is the same in H � and in H ��	

A formal de�nition of a pre�x works as follows	 A probabilistic execution fragmentH is a pre�x
of a probabilistic execution fragment H �� denoted by H � H �� i�

�	 H and H � have the same start state� and

�	 for each state q of H � PH �Cq� � PH � �Cq�	

Observe that the de�nition of a pre�x for ordinary executions is a special case of the de�nition
we have just given	

��



c

1/2

1/2d

c

1/2

1/2d

s bs

s bs ds

s bs cs s2

s ds

s cs0 2 0 2

0 2 ’

2

2 ’

H : H :1 2

Figure ���
 Conditionals and su�xes	

Conditionals

Let H be a probabilistic execution fragment of a probabilistic automatonM � and let q be either
a state of H or a pre�x of the start state of H 	 We want to identify the part of H that describes
what happens conditional to the occurrence of q	 The new structure� which we denote by H jq�
is a new probabilistic execution fragment de�ned as follows


�	 states�H jq
 ! fq� � states�H
 j q � q�g�

�	 start�H jq
 ! min�states�H jq

� where the minimum is taken under pre�x ordering�

�	 for each state q� of H jq� tr
Hjq
q� ! trHq� 	

H jq is called a conditional probabilistic execution fragment	

Example �
�
� �Conditionals� The probabilistic execution fragment H� of Figure ��� is an
example of a conditional probabilistic execution fragment	 Speci�cally� H� ! H ��j�s�as�
� where
H �� is represented in Figure ���	 In Figure ��� we represent explicitly the states ofH� for clarity	
The conditional operation essentially extracts the subtree of H �� that starts with s�as�	

It is easy to check that ��Hjq�FHjq� PHjq
 and ��H jCq�FH jCq� PH jCq
 are the same probability
space �cf	 Section �	�	�
	 Indeed� the sample sets are the same� the generators are the same� and
the probability measures coincide on the generators	 Thus� the following proposition� which is
used in Chapter �� is true	

Proposition �
�
�� Let H be a probabilistic execution fragment of a probabilistic automaton
M � and let q be either a state of H� or a pre�x of the start state of H� Then� for each subset
E of �Hjq�

�� E � FHjq i
 E � FH �

�� If E is an event� then PH �E� ! PH �Cq�PHjq�E��

Su�xes

The de�nition of a su�x is similar to the de�nition of a conditional� the di�erence is that in
the de�nition of H�q we drop q from each state of H � i	e	� we forget part of the past history	
Formally� let H be a probabilistic execution fragment of a probabilistic automaton M � and let
q be either a state of H or a pre�x of the start state of H 	 Then H�q is a new probabilistic
execution fragment de�ned as follows


�	 states�H�q
 ! fq��q j q� � states�H
� q � q�g�

��



�	 start�H�q
 ! min�states�H�q

� where the minimum is taken under pre�x ordering�

�	 for each state q� of H �� trH�q
q� ! trH

qaq�
�q	

H�q is called a su�x of H 	 It is a simple inductive argument to show that H�q is indeed
a probabilistic execution fragment of M 	 Observe that the de�nition of a su�x for ordinary
executions is a special case of the de�nition we have just given	

Example �
�
� �Su�xes� The probabilistic execution fragment H� of Figure ��� is an ex�
ample of a su�x	 Speci�cally� H� ! H ����s�as�
� where H

�� is represented in Figure ���	 The
su�xing operation essentially extracts the subtree of H �� that starts with s�as� and removes
from each state the pre�x s�as�	

It is easy to check that the probability spaces PH�q and PHjq are in a one�to�one correspondence

through the measurable function f 
 �H�q 	 �H jq such that for each 	 � �H�q� f�	
 ! q a 		
The inverse of f is also measurable and associates 	�q with each execution 	 of �H jq	 Thus�
directly from Proposition �	�	��� we get the following proposition	

Proposition �
�
�� Let H be a probabilistic execution fragment of a probabilistic automaton
M � and let q be either a state of H� or a pre�x of the start state of H� Then� for each subset
E of �H�q�

�� E � FH�q i
 �q a E
 � FH �

�� If E is an event� then PH �q a E� ! PH �Cq�PH�q�E��


���� Notation for Transitions

In this section we extend the arrow notation for transitions that is used for ordinary automata	
The extension that we present is meaningful for simple transitions only	

An alternative representation for a simple transition �s� a�P
 of a probabilistic automatonM
is s

a
�	 P 	 Thus� di�erently from the non�probabilistic case� a transition leads to a distribution

over states	 If P is a Dirac distribution� say D�s�
� then we can represent the corresponding
transition by s

a
�	 s�	 Thus� the notation for ordinary automata becomes a special case of the

notation for probabilistic automata	 If �s� a�P
 is a simple combined transition of M � then we
represent the transition alternatively by s

a
�	C P � where the letter C stands for �combined�	

The extension of weak transitions is more complicated	 The expression s
a

!� P means
that P is reached from s through a sequence of transitions of M � some of which are internal	
The main di�erence from the non�probabilistic case is that in the probabilistic framework the
transitions involved form a tree rather than a linear chain	 Formally� s

a
!� P � where a is either

an external action or the empty sequence and P is a probability distribution over states� i�
there is a probabilistic execution fragment H such that

�	 the start state of H is s�

�	 PH �f	� j 	� � �Hg� ! �� i	e	� the probability of termination in H is ��

�	 for each 	� � �H � trace�	
 ! a�

��
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 A weak transition of a probabilistic automaton with cycles	

�	 P ! lstate���strip�PH

� where ��strip�PH
 is the probability space P � such that �� !
f	 j 	� � �Hg� and for each 	 � ��� P ��	� ! PH �C����

�	 for each state q of H � either trHq is the pair �lstate�q
�D��

� or the transition that corre�

sponds to trHq is a transition of M 	

A weak combined transition� s
a

!�C P � is de�ned as a weak transition by dropping Condition �	
Throughout the thesis we also the extend the function ��strip to extended execution fragment�
its action is to remove the symbol � at the end of each extended execution fragment	

Example �
�
� �Weak transitions� Figure ���� represents a weak transition with action
a that leads to state s� with probability ���� and to state s� with probability ����	 The
action � represents any internal action	 From the formal de�nition of a weak transition� a tree
that represents a weak transition may have an in�nite branching structure� i	e	� it may have
transitions that lead to countably many states� and may have some in�nite paths� however� the
set of in�nite paths has probability �	

Figure ���� represents a weak transition of a probabilistic automaton with cycles in its
transition relation	 Speci�cally� H represents the weak transition s� !� P � where P �s�� ! ���
and P �s�� ! ���	 If we extend H inde�nitely on its right� then we obtain a new probabilistic
execution fragment that represents the weak transition s� !� D�s�
	 Observe that the new
probabilistic execution fragment has an in�nite path that occurs with probability �	 Further�
more� observe that there is no other way to reach state s� with probability �	

Remark �
�
�
 According to our de�nition� a weak transition can be obtained by concatenat�
ing together in�nitely many transitions of a probabilistic automaton	 A reasonable objection
to this de�nition is that sometimes scheduling in�nitely many transitions is unfeasible	 In the

��



timed framework this problem is even more important since it is feasible to assume that there
is some limit to the number of transitions that can be scheduled in a �nite time	 Thus� a more
reasonable and intuitive de�nition of a weak transition would require the probabilistic execution
fragment H that represent a weak transition not to have any in�nite path	 All the results that
we prove in this thesis are valid for the more general de�nition where H can have in�nite paths
as well as for the stricter de�nition where H does not have any in�nite path	 Therefore� we use
the more general de�nition throughout	 The reader is free to think of the simpler de�nition to
get a better intuition of what happens	

An alternative way to represent a weak transition� which is used to prove the theorems of
Chapter �� is by means of a generator 	 If H represents a weak combined transition� then a
generator can be seen as an object that chooses the combined transitions of M that lead to H
�in Chapter � this object is also called an adversary
	 More precisely� a generator is a function
O that associates a weak combined transition of M with each �nite execution fragment of
M 	 Before stating the formal properties that a generator satis�es� we give an example of the
generator for the weak transition of Figure ����	

Example �
�
�� �Generators� Recall from Section �	�	�� that U�x� y
 denotes the probabil�
ity space that assigns x and y probability ��� each	 Then� the generator for the weak transition
of Figure ���� is the function O where

O�s�s��as
�
�
 ! �s��� ��U�s�� s�



O�s�s��
 ! �s��� a�U�s
�
�� s

�



 O�s�s��as

�


 ! �s�
� ��D�s�



O�s
 ! �s� ��U�s��� s
�
�

 O�s�s��
 ! �s��� ��D�s

�
�

 O�s�s���s

�
�
 ! �s��� a�U�s�� s�



and O�	
 ! �lstate�	
�D��

 for each 	 that is not considered above	 The layout of the
de�nition above re�ects the shape of the probabilistic execution fragment of Figure ����	

Thus� if we denote the probabilistic execution fragment of Figure ���� byH � O is the function
that for each state q ofH gives the combined transition ofM that corresponds to trHq 	 Function
O is also minimal in the sense that it returns a transition di�erent from �lstate�q
�D��

 only
from those states q that are relevant for the construction of H 	 We call active all the states of
H that enable some transition� we call reachable all the reachable states of H � we call terminal
all the states q of H such that � � �H

q 	

Let M be a probabilistic automaton and let s be a state of M 	 A generator for a weak

�combined
 transition s
a�ext�M�
!� P of M is a function O that associates a �combined
 transition

of M with each �nite execution fragment of M such that the following conditions are satis�ed	

�	 If O�	
 ! �s��P
� then s� ! lstate�	
	 Call 	 active if P �! D��
	

�	 If 	bs� is active� then fstate�	
 ! s and �b� s�
 � �O���	

�	 Call 	 reachable i� either 	 ! s or 	 ! 	�bs� and �b� s�
 � �O����	 Call 	 terminal i� 	 is
reachable and PO��as����� 
 �	 Then� for each terminal 	� the trace of 	 is a � ext�M
	

�	 For each reachable execution fragment 	 ! sa�s�a�s� � � �aksk � let

PO
�

�

!
Y

��i�k

PO�sa�s����aisi���ai��si��
��

��



Then�

� ! flstate�	
 j terminal�	
g�

and for each s� � ��

P �s�� !
X

�jlstate����s��terminal���

PO
� PO�������

Condition � says that the transition that O�	
 returns is a legal transition ofM from lstate�	
�
Condition � guarantees that the active execution fragments are exactly those that are relevant
for the weak transition denoted by O� Condition � ensures that the weak transition represented
by O has action a � ext�M
� Condition � computes the probability space reached in the tran�
sition represented by O� which must coincide with P 	 The term PO

� represents the probability
of performing 	 if O resolves the nondeterminism in M 	 Observe that terminal execution frag�
ments must be reachable with probability � if we want the structure computed in Condition �
to be a probability space	

Proposition �
�
�� There is a weak combined transition s
a

!� P of M i
 there is a function
O that satis�es the �ve conditions of the de�nition of a generator�

Proof
 Simple analysis of the de�nitions	

	�� Parallel Composition

In this section we extend to the probabilistic framework the parallel composition operator and
the notion of a projection of ordinary automata	 The parallel composition of simple probabilistic
automata can be de�ned easily by enforcing synchronization on the common actions as in the
non�probabilistic case� for general probabilistic automata� however� it is not clear how to give
a synchronization rule	 We discuss the problems involved at the end of the section	


���� Parallel Composition of Simple Probabilistic Automata

Two probabilistic automata M� and M� are compatible i�

int�M�
 
 acts�M�
 ! � and acts�M�
 
 int�M�
 ! �	

The parallel composition of two compatible simple probabilistic automataM� and M�� denoted
by M�kM�� is the simple probabilistic automaton M such that

�	 states�M
 ! states�M�
� states�M�
	

�	 start�M
 ! start�M�
� start�M�
	

�	 sig�M
 ! �ext�M�
� ext�M�
� int�M�
 � int�M�

	

�	 ��s�� s�
� a�P
 � trans�M
 i� P ! P� � P� where

��
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 A probabilistic execution fragment of M�kM�	
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�a
 if a � acts�M�
 then �s�� a�P�
 � trans�M�
� else P� ! D�s�
� and

�b
 if a � acts�M�
 then �s�� a�P�
 � trans�M�
� else P� ! D�s�
	

Similar to the non�probabilistic case� two simple probabilistic automata synchronize on their
common actions and evolve independently on the others	 Whenever a synchronization occurs�
the state that is reached is obtained by choosing a state independently for each of the proba�
bilistic automata involved	


���� Projection of Probabilistic Executions

The Structure of the Problem

Let M ! M�kM�� and let H be a probabilistic execution fragment of M 	 We want to determine
the view that M� has of H � or� in other words� what probabilistic execution M� performs in
order for M�kM� to produce H 	 To understand the complexity of the problem� consider the
probabilistic execution fragment of Figure ����� and consider its projection ontoM�� represented
in Figure ����	 Actions a� b and c are actions of M�� while action d is an action of M�	 Thus�
there is no communication between M� and M�	 Denote the probabilistic execution fragment
of Figure ���� by H � and denote the probabilistic execution fragment of Figure ���� by H�	
The projections of the states are ordinary projections of pairs onto their �rst component	 The
transitions� however� are harder to understand	 We analyze them one by one	

s	�
 The transition leaving s��� is obtained directly from the transition leaving �s���� s���
 in
H by projecting onto M� the target states	

s	�� The transition leaving s��� is obtained by combining the transitions leaving states �s���� s���

and �s���� s���
� each one with probability ���	 The two transitions leaving �s���� s���
 and

��



�s���� s���
 have the same projection onto M�� and thus the transition leaving s��� in H�

is s���
a
�	 s��
	 From the point of view of M�� there is just a transition s���

a
�	 s��
�

nothing is visible about the behavior of M�	

To give a better idea of what we mean by �visible�� suppose that M� is a student who
has to write a report and suppose that the report can be written using a pen �action
c
 or using a pencil �action b
	 Suppose that the teacher may be able to get a pencil
eraser �action d
 and possibly erase the report written by the student once it is ready for
grading	 Then the scheduler is an arbiter who gives the student a pen if the teacher gets
an eraser	 If the student starts in state s���� then from the point of view of the student
the material for the report is prepared �action a
� and then the arbiter gives the student
a pen with probability ��� and a pencil with probability ���� nothing is known about the
time the the arbiter made the choice and the reason for which the choice was made	 We
can also think of the student as being alone in a room and the arbiter as being a person
who brings to the student either a pen or a pencil once the material for the report is
ready	

The detailed computation of the transition leaving from s��� in H� works as follows
 we
start from state �s���� s���
� which is the �rst state reached in H where M� is in s���� and
we analyze its outgoing edges	 We include directly all the edges labeled with actions of
M� in the transition leaving s���� for the other edges� we move to the states that they
lead to� in our case �s���� s���
� and we repeat the same procedure keeping in mind that
the probability of the new edges must be multiplied by the probability of reaching the
state under consideration	 Thus� the edge labeled with a that leaves �s���� s���
 is given
probability ��� since its probability is ���� and the edge that leaves �s���� s���
 is given
probability ��� since the probability of reaching �s���� s���
 from �s���� s���
 is ���	

s	�� For the transition leaving s��
� we observe that inH there are two states� namely �s��
� s���

and �s��
� s���
� that can be reached separately and whose �rst component is s��
	 Each
one of the two states is reached in H with probability ���	 The di�erence between the
case for state s��� and this case is that in the case for s��� state �s���� s���
 occurs before
�s���� s���
� while in this case there is no relationship between the occurrences of �s��
� s���
�
and �s��
� s���
	 The transition leaving s��
 depends on the state of M� which� conditional
on M� being in s��
� is ��� for s��� and ��� for s���	 Thus� from the point of view of M��
since the state of M� is unknown� there is a transition from s��
 that with probability ���
leads to the occurrence of action b and with probability ��� leads to the occurrence of
action c	 Essentially we have normalized to � the probabilities of states �s��
� s���
 and
�s��
� s���
 before considering their e�ect on M�	

s	�	 The transition leaving s��� shows why we need the symbol � in the transitions of a proba�
bilistic automaton	 From state �s���� s���
 there is a transition where action b occurs with
probability ��� and action � occurs with probability ���	 After � is performed� nothing
is scheduled	 Thus� from the point of view of M�� nothing is scheduled from s��� with
probability ���� the transition of M� is not visible by M�	

��



Action Restricted Transitions

The formal de�nition of a projection relies on a new operation on transitions� called action
restriction� which is used also in several other parts of the thesis	 The action restriction op�
eration allows us to consider only those edges of a transition that are labeled with actions
from a designated set V 	 For example� V could be the set of actions of a speci�c probabilistic
automaton	

Formally� let M be a probabilistic automaton� V be a set of actions of M � and tr ! �s�P

be a transition of M 	 The transition tr restricted to actions from V � denoted by tr � V � is
the pair �s�P �
 where P � is obtained from P by considering only the edges labeled with actions
from V and by normalizing their probability to �� i	e	�

� �� !

�
f�a� s�
 � � j a � V g if P �V � 
 �
f�g otherwise

� if P �V � 
 �� then for each �a� s�
 � ��� P ���a� s�
� ! P ��a� s�
��P �V �	

Two properties of action restriction concern commutativity with transition pre�xing� and dis�
tributivity with respect to combination of transitions	 These properties are used in the proofs
of other important results of this thesis	 The reader may skip the formal statements for the
moment and refer back to them when they are used	

Proposition �
�
� For each q and tr such that one of the expressions below is de�ned�

q a �tr � V 
 ! �q a tr 
 � V�

Proof
 Simple manipulation of the de�nitions	

Proposition �
�
� Let ftigi�I be a collection of transitions leaving from a given state s� and
let fpigi�I be a collection of real numbers between � and � such that

P
i�I pi � �� Let V be a

set of actions� Then

�
X
i

pitr i
 � V !
X
i

piPtr i �V �P
i piPtr i �V �

�tr i � V 
�

where we use the convention that ��� ! ��

Proof
 Let

�s�P

�

!
X
i

pitr i� ��	��


�s�P �

�

! �
X
i

pitr i
 � V� ��	��


�s�P ��

�

!
X
i

piPtr i �V �P
i piPtri �V �

�tr i � V 
� ��	��


We need to show that P � and P �� are the same probability space	

��



If P �V � ! �� then both P � and P �� are D��
 and we are done	 Otherwise� observe that
neither �� nor ��� contain �	 Consider any pair �a� s�
	 Then�

�a� s�
 � ��

i� �a� s�
 � � and a � V from ��	��
 and ��	��

i� �i�a� s�
 � �tr i � pi 
 �� and a � V from ��	��

i� �i�a� s

�
 � �tr i�V and pi 
 � from the de�nition of tr i � V
i� �a� s�
 � ��� from ��	��
	

Consider now a pair �a� s�
 of ��	 From the de�nition of action restriction and ��	��
�

P ���a� s�
� ! P ��a� s�
��P �V �� ��	��


From the de�nition of P �Equation ��	��

� the right side of Equation �	�� can be rewritten
into X

i

piP
i piPtr i �V �

Ptr i ��a� s
�
�� ��	��


where
P

i piPtri �V � is an alternative expression of P �V � that follows directly from ��	��
	 By
multiplying and dividing each ith summand of Expression �	�� by Ptri �V �� we obtain

X
i

piPtr i �V �P
i piPtr i �V �

�Ptri ��a� s
�
��Ptri �V �
� ��	��


Since Ptri ��a� s
�
��Ptri �V � ! Ptr i�V ��a� s

�
�� from the de�nition of P �� �Equation ��	��

� Expres�
sion �	�� can be rewritten into P ����a� s�
�	 Thus� P ���a� s�
� ! P ����a� s�
�	 This is enough to
show that P � ! P ��	

De�nition of Projection

We give �rst the formal de�nition of a projection� and then we illustrate its critical parts by
analyzing the example of Figures ���� and ����	 It is very important to understand Expres�
sions ��	��
 and ��	��
 since similar expressions will be used in several other parts of the thesis
without any further explanation except for formal proofs	

Let M ! M�kM�� and let H be a probabilistic execution fragment of M 	
Let tr ! �q�P
 be an action restricted transition of H such that only actions ofMi� i ! �� ��

appear in tr 	 De�ne the projection operator on the elements of � as follows
 �a� q�
dMi !
�a� q�dMi
� and �dMi ! �	 Recall from Section �	�	� that the projection can be extended
to discrete probability spaces	 The projection of tr onto Mi� denoted by trdMi� is the pair
�qdMi�PdMi
	

The projection of H onto Mi� denoted by HdMi� is the fully probabilistic automaton H �

such that

�	 states�H �
 ! fqdMi j q � states�H
g�

�	 start�H �
 ! fqdMi j q � start�H
g�

�	 sig�H �
 ! sig�Mi
�

��



�	 for each state q of H �� let qeH be the set of states of H that projected onto Mi give q�
and let min�qeH
 be the set of minimal states of qeH under pre�x ordering	 For each
q� � �qeH
� let

"p
qeH
q�

�

!
PH �C
q�P

q���min�qeH� PH �Cq���
� ��	��


The transition enabled from q in H � is

trH
�

q
�

!
X

q��qeH

"p
qeH
q� PH

q� �acts�Mi
��tr
H
q� � acts�Mi

dMi� ��	��


Each summand of Expression �	�� corresponds to the analysis of one of the states of H that can
in�uence the transition enabled from q in H �	 The subexpression �trHq� � acts�Mi

dMi selects
the part of the transition leaving from q� where Mi is active� and projects onto Mi the target

states of the selected part� the subexpression "p
qeH
q� PH

q� �acts�Mi
� expresses the probability with

which q� in�uences the transition enabled from q	 PH
q� �acts�Mi
� is the probability that trHq� does

something visible byMi� and "p
qeH
q� is the probability of being in q� conditional on Mi being in q	

Its value is given by Expression �	�� and can be understood as follows	 The state q� is either a
minimal state of qeH or is reached from a minimal state through a sequence of edges with actions
not in acts�Mi
	 The probability of being in q�� conditional on Mi being in q� is the normalized
probability of being in the minimal state of qeH that precedes q� multiplied by the probability
of reaching q� from that minimal state	 We encourage the reader to apply Expression ��	��
 to
the states s���� s���� s���� and s��
 of Figure ���� to familiarize with the de�nition	 As examples�
observe that min��s���bs���
eH
 ! f�s���� s���
b�s���� s���
g and that min��s���bs���as��

eH
 !
f�s���� s���
b�s���� s���
a�s��
� s���
� �s���� s���
b�s���� s���
d�s���� s���
a�s��
� s���
g	

If we analyze the state s��� of Figure ���� and we use Expression �	�� to compute the
transition leaving s���� then we discover that the sum of the probabilities involved is not �	
This is because there is a part of the transition leaving �s���� s���
 where no action of M� ever
occurs	 From the point of view of M� nothing is scheduled� this is the reason of our choice of
deadlock by default in the de�nition of the combination of transitions �cf	 Section �	�	�
	

We now move to Proposition �	�	�� which is the equivalent of Proposition �	�	� for the
probabilistic framework	 Speci�cally� we show that the projection of a probabilistic execution
fragment H of M�kM� onto one of its components Mi is a probabilistic execution fragment
of Mi	 Proposition �	�	� is important because it shows that every computation of a parallel
composition is the result of some computation of each of the components	 One of the reasons
for our use of randomized schedulers in the model is to make sure that Proposition �	�	� is
valid	 Before proving this result� we show that its converse does not hold� i	e	� that there are
structures that look like a probabilistic execution� that projected onto each component give a
probabilistic execution of a component� but that are not probabilistic executions themselves	

Example �
�
� �Failure of the converse of Proposition �
�
�� Consider the probabilis�
tic automata of Figure ����	a� and consider a potential probabilistic execution of the composi�
tion as represented in Figure ����	b	 Denote the two probabilistic automata of Figure ����	a by
M� andM�� and denote the structure of Figure ����	b by H 	 The projections of H ontoM� and
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a) Two compatible simple probabilistic automata.

b) A potential probabilistic execution of the composition.

Figure ����
 A counterexample to the converse of the projection proposition	

M� give a probabilistic execution of M� and M�� respectively	 The diagrams of Figure ����	a
can be viewed as the projections of H as well	 However� H is not a probabilistic execution of
M�kM� since in no place of M� it is possible to have a Dirac transition to s� or s�	

The rest of this section is dedicated to the proof of the proposition that corresponds to Propo�
sition �	�	� and to the proof of an additional result �Proposition �	�	�
 that gives a meaning to
the denominator of Expression ��	��
	 We �rst state two preliminary properties of projection
of transitions �Proposition �	�	�
	

Proposition �
�
� Let M ! M�kM�� Then� for i ! �� ��

�� �
P

j pjtr j
dMi !
P

j pj�tr jdMi
�

�� �q a tr
dMi ! �qdMi

a trdMi�

Proof
 Simple manipulation of the de�nitions	

Proposition �
�
� Let M ! M�kM�� and let H be a probabilistic execution fragment of M �
Then HdM� � prexec�M�
 and HdM� � prexec�M�
�

Proof
 We show that HdM� � prexec�M�
� the other statement follows from a symmetric
argument	 Let H� denote HdM�	 From Proposition �	�	�� the states of H� are execution
fragments of M�	

Consider now a state q of H�	 We need to show that there is a combined transition tr of
M� that corresponds to trH�

q � i	e	� such that trH�
q ! q a tr 	 From Propositions �	�	� and �	�	��

it is su�cient to show that for each state q� of qeH � there is a combined transition tr�q�
 of M�

such that

�trHq� � acts�M�

dM� ! q a tr�q�
� ��	��


��



Then� the transition tr would be

tr !
X

q��qeH

"p
qeH
q� PH

q� �acts�Mi
�tr�q
�
� ��	��


Proposition �	�	� is used to show that tr is a combined transition of M�� Proposition �	�	� is
used to show that q a tr ! trH�

q 	 Since H is a probabilistic execution fragment of M � for each
state q� of qeH there exists a combined transition tr ��q�
 of M such that

trHq� ! q� a tr ��q�
� ��	��


From the de�nition of a combined transition� there is a collection of transitions ftr ��q�� i
gi�I
of M � and a collection of probabilities fpigi�I � such that

tr ��q�
 !
X
i

pitr
��q�� i
� ��	��


Note that each transition tr ��q�� i
 is a simple transition	 From the de�nition of action restriction
and ��	��
� there is a subset J of I � and a collection of non�zero probabilities fp�jgj�J � such that

tr ��q�
 � acts�M�
 !
X
j

p�jtr
��q�� j
� ��	��


If we apply transition pre�x with q� to both sides of Equation �	��� we use commutativity
of action restriction with respect to transition pre�xing �Proposition �	�	�
 and ��	��
 on the
left expression� and we use distributivity of transition pre�xing with respect to combination of
transitions �Proposition �	�	�
 on the right expression� then we obtain

trHq� � acts�M�
 !
X
j

p�j

�
q� a tr ��q�� j


	
� ��	��


By projecting buth sides of ��	��
 ontoM�� and using distributivity of projection with respect to
combination of transitions �Proposition �	�	�
 and commutativity of projection and transition
pre�xing �Proposition �	�	�
 on the right expression� we obtain

�trHq� � acts�M�

dM� !
X
j

p�j

�
q a �tr ��q�� j
dM�


	
� ��	��


From the distributivity of transition pre�xing with respect to combination of transitions �Propo�
sition �	�	�
� Equation �	�� becomes

�trHq� � acts�M�

dM� ! q a
X
j

p�j�tr
��q�� j
dM�
� ��	��


From standard properties of the projection of product probability distributions �cf	 Sec�
tion �	�	�
 and the de�nition of parallel composition� each tr ��q�� j
dM� is a transition of M�	
Thus�

P
j p

�
j tr

��q�� j
dM� is the combined transition of M� that satis�es Equation �	��	
Finally� we need to show that each state q of H� is reachable	 This is shown by induction

on the length of q� where the base case is the start state of H�	 The start state of H� is
trivially reachable	 Consider a state qas of H�	 By induction� q is reachable	 Let q� be a
minimal state of �qas
eH 	 Then� q� ! q��a�s� s�
� where q�� is a state of qeH and s� is a state

��



of M�	 Moreover� �a� q�
 � �trH
q��
� and thus� �a� qas
 � ��trH

q��
�acts�M���dM�

	 Since no edges with

probability � are allowed in a probabilistic automaton� the term "p
qeH
q�� PH

q�� �acts�Mi
� is not ��

and thus �a� qas
 � �H�
q 	 This means that qas is reachable	

We conclude this section with another property of projections that gives a meaning to the
denominator of Expression ��	��
	 Speci�cally� the proposition below allows us to compute the
probability of a �nitely satis�able event of the projection of a probabilistic execution fragment
H by computing the probability of a �nitely satis�able event of H 	 Observe that the right
expression of ��	��
 is indeed the denominator of ��	��
	

Proposition �
�
� Let M ! M�kM�� and let H be a probabilistic execution fragment of M �
Let Hi be HdMi� i ! �� �� Let q be a state of Hi� Then�

PHi
�Cq� !

X
q��min�qeH�

PH �Cq��� ��	��


Proof
 The proof is by induction on the length of q� where the base case is for the start state
of Hi	 If q is the start state of Hi� then the start state of H is the only minimal state of qeH 	
Both the cones denoted by the two states have probability �	

Consider now the case for qas	 From the de�nition of the probability of a cone�

PH� �Cqas� ! PH� �Cq�P
H�
q ��a� qas
�� ��	��


By using Expression �	�� and the de�nitions of action restriction and projection� the term
PH�
q ��a� qas
� can be rewritten into

X
q��qeH

"p
qeH
q� PH

q� �acts�Mi
�

�
B� X
q����qas�eHj�a�q�����H

q�

PH
q� ��a� q

��
��PH
q� �acts�Mi
�

�
CA � ��	��


which becomes

X
q��qeH

"pqeHq�

�
B� X
q����qas�eHj�a�q�����H

q�

PH
q� ��a� q

��
�

�
CA � ��	��


after simplifying the term PH
q� �acts�Mi
�	 The case when PH

q� �acts�Mi
� ! � is not a problem

since the innermost sum of Expression �	�� would be empty	 By expanding "pqeHq� in Expres�
sion �	�� with its de�nition �Equation �	��
� applying induction to PH� �Cq� in Expression �	���
and simplifying algebraically� Equation �	�� can be rewritten into

PH� �Cqas� !
X

q��qeH

X
q����qas�eH j�a�q�����H

q�

PH �Cq��P
H
q� ��a� q

��
�� ��	��


Indeed� the denominator of the expansion of "p
qeH
q� coincides with the expansion of PH� �Cq�	

From the de�nition of the probability of a cone� the terms PH �Cq��P
H
q� ��a� q

��
� that appear
in Equation �	�� can be rewritten into PH �Cq���	

��



Consider now one of the states q�� of the right side of Equation �	��	 Then q��dMi ! qas� and
there exists a state q� of qeH such that �a� q��
 � �q� 	 This means that q�� can be expressed as
q�as� for some state s� ofM 	 Since q�dMi ! q� then q�� is a minimal state of �qas
eH 	 Conversely�
let q�� be a minimal state of �qas
eH 	 Then q�� can be expressed as q�as� for some state q� of H
and some state s� of M �otherwise q�� would not be minimal
	 Moreover� q� is a state of qeH
and �a� q��
 � �H

q� 	 Thus� q�� is considered in Equation �	��	 Finally� each minimal state q�� of
�qas
eH is considered at most once in Equation �	��� since there is at most one state q� in H

such that �a� q��
 � �H
q� 	 Thus� Equation �	�� can be rewritten into

PH� �Cqas� !
X

q���min��qas�eH�

PH �Cq���� ��	��


which is what we needed to show	


���� Parallel Composition for General Probabilistic Automata

In this section we give an idea of the problems that arise in de�ning parallel composition for
general probabilistic automata	 The discussion is rather informal
 we want to give just an idea
of why our intuition does not work in this case	

The main problem that needs to be addressed is to choose when two transitions should
synchronize and how the synchronization would occur	 We analyze the problem through some
toy examples	 Consider two probabilistic automata M��M� with no internal actions and such
that ext�M�
 ! fa� b� c� dg and ext�M�
 ! fa� b� c� eg	 Let �s�� s�
 be a reachable state ofM�kM��
and consider the following cases	

�	 Suppose that from state s� of M� there is a transition tr� giving actions a� b probability
��� to occur� and suppose that from state s� of M� there is a transition tr� giving actions
a� b probability ��� to occur	

tr :
1 1/2

1/2

b

a

s1
1/2

1/2

b

a

str :
2 2

If we choose not to synchronize tr� and tr�� then the only transitions that can be syn�
chronized are the simple transitions� leading to a trivial parallel composition operator
that does not handle any kind of transition with probabilistic choices over actions	 The
transitions tr� and tr� cannot be scheduled even independently� since otherwise the CSP
synchronization style would be violated	

If we choose to synchronize tr� and tr�� then both M� and M� choose an action between
a and b	 If the actions coincide� then there is a synchronization� otherwise we have two
possible choices in our de�nition
 either the system deadlocks� or the random draws are
repeated	 The �rst approach coincides with viewing each probabilistic automaton as de�
ciding its next action probabilistically independently of the other interacting automaton�
the second approach is the one outlined in �GSST���� where essentially deadlock is not
allowed� and assumes some dependence between the involved probabilistic automata	

For the rest of the discussion we assume that the transitions tr� and tr� do synchronize�
however� we leave unspeci�ed the way in which tr� and tr� synchronize	

��



�	 Suppose that from state s� of M� there is a transition tr� giving actions a� b probability
��� to occur� and suppose that from state s� of M� there is a transition tr� giving actions
a� c probability ��� to occur	

tr :
1 1/2

1/2

b

a

s1
1/2

1/2
a

str :
2 2

c

Note that actions a� b and c are all in common between M� and M�	 If we choose not
to synchronize tr� and tr�� then only transitions involving the same sets of actions can
synchronize	 However� we have the same problem outlined in Case �� where neither tr ��
nor tr� can be scheduled independently	

If we choose to synchronize tr� and tr�� then� since a is the only action that is in common
between tr� and tr�� the only action that can occur is a	 Its probability is either � or ���
depending on how the synchronization in Case � is resolved	 However� in both cases the
only action that appears in the sample space of the composite transition is a	

For the rest of the discussion we assume that the transitions tr� and tr� do synchronize	
Once again� we leave unspeci�ed the way in which tr� and tr� synchronize	

�	 Suppose that from state s� ofM� there is a transition tr� giving actions a� b� d probability
��� to occur� and suppose that from state s� of M� there is a transition tr� giving actions
a� b� e probability ��� to occur	

a
1/3

1/3

1/3

d

b
s1

a
1/3

1/3

1/3

b
s2

e

In this case each transition has some actions that are in common between M� and M��
and some actions that are not in common	

If we choose not to synchronize tr� and tr�� then� beside the fact that tr� and tr� could not
be scheduled independently� the parallel composition operator would not be associative	
Consider two new probabilistic automata M �

��M
�
� with the same actions as M� and M��

respectively	 Suppose that from state s�� of M �
� there is a transition tr �� giving actions a� b

probability ��� to occur� and suppose that from state s�� of M �
� there is a transition tr ��

giving actions a� b probability ��� to occur	

1/2

1/2

b

a

11
tr : s

1/2

1/2

b

a

2 2tr : s’ ’ ’ ’

If we consider �M �
�kM�
k�M�kM �

�
� then in state ��s��� s�
� �s�� s
�
�

 tr � would synchronize

with tr �� leading to a transition that involves actions a and b only� tr� would synchronize
with tr �� leading to a transition that involves actions a and b only� and the two new

��



transitions would synchronize because of Case �� leading to a transition that involves
actions a and b	 If we consider �M �

�k�M�kM�

kM �
�� then in state ��s��� �s�� s�

� s

�
�
 tr�

and tr� would not synchronize� and thus associativity is broken	

If we choose to synchronize tr� and tr�� then problems arise due to the presence of actions
that are not in common between M� and M�	 In particular we do not know what to do if
M� draws action d and M� draws action e� or if M� draws action d and M� draws action
a	 Since we do not want to assume anything about the respective probabilistic behaviors
of M� and M�� at least the �rst case is an evident case of nondeterminism	

However� even by dealing with the �rst case above by means of nondeterminism� only
one of actions d� e can be performed	 Suppose that d is chosen� and thus M� performs a
transition while M� does not	 What happens to M�� Is action e supposed to be chosen
already after d is performed� Otherwise� what is the probability for e to occur� At this
point we do not see any choice that would coincide with any reasonable intuition about
the involved systems	

In the second case we are sure that action a cannot occur	 Does this mean that action d

occurs for sure� Or does this mean that a deadlock can occur� With what probabilities�
Once again� intuition does not help in this case	

The main problem� which is evident especially from Case �� is that we do not know who is in
control of a system� and thus� whenever there is a con�ict that is not solved by nondeterminism
alone� we do not know what probability distribution to use to resolve the con�ict	 However�
if we decorate probabilistic automata with some additional structure that clari�es who is in
control of what actions �LT���� then parallel composition can be extended safely to some forms
of general probabilistic automata� where the external actions are partitioned into input and
output actions� the transitions that contain some input action are simple transitions� and input
actions are enabled from every state �cf	 Section ��	�	�
	 An observation along this line appears
in �WSS���	

	�	 Other Useful Operators

There are two other operators on probabilistic automata that should be mentioned� since they
are used in general on ordinary automata	 In this section we provide a short description of
those operators	 Since the relative theory is simple� this is the only point where we mention
these operators during the development of the probabilistic model	


�
�� Action Renaming

Let � be a one�to�one function whose domain is acts�M
	 De�ne Rename
�M
 to be the
probabilistic automaton M � such that

�	 states�M �
 ! states�M
	

�	 start�M �
 ! start�M
	

�	 sig�M �
 ! ���ext�M

� ��int�M


	

��



�	 �s�P
 � trans�M �
 i� there exists a transition �s�P �
 of M such that P ! ���P �
� where
����a� s�

 ! ���a
� s�
 for each �a� s�
 � ��� and ����
 ! �	

Thus� the e�ect of Rename
 is to change the action names of M 	 The restriction on � to be
one�to�one can be relaxed as long as internal and external actions are not mixed� i	e	� there is
no pair of actions a� b where a is an external action� b is an internal action� and ��a
 ! ��b
	


�
�� Action Hiding

Let M be a probabilistic automaton� and let I be a set of actions	 Then HideI�M
 is de�ned
to be a probabilistic automaton M � that is the same as M � except that

sig�M �
 ! �ext�M
� I� int�M
 � I
�

That is� the actions in the set I are hidden from the external environment	

	�
 Discussion

The generative model of probabilistic processes of van Glabbeek et al	 �GSST��� is a special
case of a fully probabilistic automaton� simple probabilistic automata are partially captured
by the reactive model of �GSST��� in the sense that the reactive model assumes some form
of nondeterminism between di�erent actions	 However� the reactive model does not allow
nondeterministic choices between transitions involving the same action	 By restricting simple
probabilistic automata to have �nitely many states� we obtain objects with a structure similar to
that of the Concurrent Labeled Markov Chains of �Han���� however� in our model we do not need
to distinguish between nondeterministic and probabilistic states	 In our model nondeterminism
is obtained by means of the structure of the transition relation	 This allows us to retain most
of the traditional notation that is used for automata	

Our parallel composition operator is de�ned only for simple probabilistic automata� and thus
a natural objection is that after all we are dealing just with the reactive model	 Furthermore�
the reactive model is the least general according to �GSST���	 Although we recognize that our
simple probabilistic automata constitute a restricted model and that it would be desirable to
extend the parallel composition operator to general probabilistic automata� we do not think that
it is possible to use the classi�cation of �GSST��� to judge the expressivity of simple probabilistic
automata	 The classi�cation of �GSST��� is based on a synchronous parallel composition� while
our parallel composition is based on a conservative extension of the parallel composition of CSP
�Hoa���	 Furthermore� in the classi�cation of �GSST��� a model is more general if it contains
less nondeterminism� while in our model nondeterminism is one of the key features	
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Chapter �

Direct Veri�cation� Stating a

Property

This chapter presents a method to study the properties that a probabilistic automaton satis�es	
We describe how an informally stated property can be made rigorous� and we show how simple
statements can be combined together to give more complex statements	 In Chapter � we develop
techniques to prove from scratch that a probabilistic automaton satis�es a given property	

Part of this chapter is based on discussion with Isaac Saias who provided us with the
motivations for the de�nition of progress statements �Section �	�
 and for the statement of the
concatenation theorem �Theorem �	�	�
	


�� The Method of Analysis

If we read through the papers on randomized algorithms and we look at the statements of
correctness� we see claims like

�Whenever the algorithm X starts in a condition Y � no matter what the adversary
does� the algorithm X achieves the goal Z with probability at least p	�

For convenience� denote the statement above by S	 A possible concrete instantiation of S is
the following


�Consider a distributed system X� composed of n processors� that provides services
under request and suppose that some request R comes� Then� independently of the
relative order in which the n processors complete their operations �no matter what
the adversary does�� a response to R is given eventually �the goal Z� with probability
at least ���	

Let us try to understand the meaning of the statement S	 First of all� in S there is an entity�
called adversary � that a�ects the performance of algorithm X 	 The adversary is seen as a
malicious entity that degrades the performance of X as much as possible	

If X is a distributed algorithm that runs on n separate processes� then the adversary is the
entity that chooses what process performs the next transition� and possibly what the external
environment does	 To account for all the possible ways to schedule processes� the adversary
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Figure ���
 A toy resource allocation protocol	

bases its choices on a complete knowledge of the state of a system� including its past history	 If
the algorithm is represented as a probabilistic automaton� then an adversary is the object that
resolves the nondeterminism	 In other words� an adversary is a scheduler seen as a malicious
entity	

However� not all the schedulers guarantee in general that some speci�c property is satis�ed	
For example� an adversary is usually required to be fair to all the processes of a system in
order to guarantee progress	 In other cases� an adversary is not allowed to base its choices on a
complete knowledge of the history of a system
 the correctness of an algorithm may rely on the
adversary not to use the results of previous random draws in choosing the next process to be
scheduled	 Thus� in the statement S there is usually an implicit assumption that an adversary
has some limitations	

Example �
�
� �A toy resource allocation protocol� Figure ��� illustrates a toy scenario
where correctness is guaranteed only for adversaries that do not know the outcome of the random
draws of the processes	 Two processes M� and M� compete for two resources R� and R�	 Each
process continuously runs through the following cycle


�	 �ip a coin to choose a resource�

�	 if the chosen resource is free� then get it�

�	 if you hold the resource� then return it	

That is� each process continuously tries to get a randomly chosen resource and then returns it�
possibly after using the resource	 Of course this is a stupid protocol� but it highlights several
aspects of randomized distributed algorithms	 Suppose every adversary to be fair� meaning
that both processes perform in�nitely many transitions	 A malicious adversary can create a
situation where M� never succeeds in obtaining a resource with an arbitrarily high probability	
The adversary works as follows	 Fix an arbitrary probability p such that � � p � �� and consider
a collection of probabilities fpigi�N such that

Q
i pi ! p	 We know that such a collection

of probabilities exists	 Then the adversary works in rounds� where at round i the following
happens


a	 M� is scheduled until it �ips its coin�

b	 M� is scheduled for su�ciently many times so that it gets the resource chosen by M�

with probability at least pi ��nitely many times are su�cient
	 As soon as M� gets the
resource chosen by M� the control goes to c�

��



c	 M� is scheduled to check its resource and fails to get it	

In this case M� fails to obtain a resource with probability at least p	 On the other hand� if
an adversary is not allowed to base its choices on the outcome of the coin �ips� or better�
if an adversary chooses the next process that performs a transition based only on the order
in which processes were scheduled in the past� then each process eventually gets a resource
with probability � �this fact is proved in Section �	�
	 Such an adversary is called an oblivious
adversary or an o
�line scheduler 	

Let us move back to the problem of understanding the statement S	 Consider a valid adversary
A� i	e	� an adversary that satis�es the limitations that are implicitly assumed for S	 Let M
be a probabilistic automaton that describes algorithm X � and consider an arbitrary starting
point q for M � i	e	� q is a �nite execution fragment of M that describes a partial evolution of
M 	 If we let A resolve the nondeterminism in M starting from the knowledge that q occurred�
then we obtain a probabilistic execution fragment of M � which we denote by prexec�M�A� q
	
According to S� if q satis�es condition Y � then prexec�M�A� q
 should satisfy property Z with
probability at least p	 However� Z is a property of M � and not a property of prexec�M�A� q
	
Thus� we need a way to associate with prexec�M�A� q
 the event that expresses Z	 The object
that does this operation is called an event schema	 At this point it is possible to formalize S
by stating the following


�For each valid adversary A and each valid starting condition q� the probability of
the event associated with prexec�M�A� q
 is at least p	�

This is an example of what we call a probabilistic statement 	
A probabilistic statement that plays an important role in our analysis is denoted by

U �	
p Advs U

�� ��	�


where U and U � are sets of states� p is a probability� and Advs is a set of adversaries	 We call
such a statement a progress statement 	 Its meaning is that if a protocol starts from a state of
U � then� no matter what adversary of Advs is used to resolve the nondeterminism� some state of
U � is reached with probability at least p	 A progress statement is a probabilistic generalization
of the leads�to operator of UNITY �CM���	

Example �
�
� It is possible to show �cf	 Section �	�
 that the toy resource allocation protocol
satis�es R �	

���
Advs M�� where R is the set of reachable states ofM�kM��M� is the set of states

of M�kM� where M� holds a resource� and Advs is the set of fair oblivious and adversaries for
M�kM�� i	e	� the set of adversaries that are fair to each process and that do not base their
choices on the outcomes of the coin �ips �cf	 Example �	�	� for a formal de�nition of a fair
oblivious adversary
	

Progress statements are important because� under some general conditions� they can be com�
bined together to obtain more complex progress statements� thus allowing the decomposition
of a complex problem into simpler problems	

��



Example �
�
� Suppose that in some system M whenever a request is pending �M is in a
state of some set P � a token is given eventually with probability at least ��� �reaching a state
of some set T 
� and suppose that whenever a token is given a response is given eventually with
probability at least ��� �reaching a state of some set G
	 That is�

P �	
���

Advs T and T �	
���

Advs G� ��	�


Then� it is reasonable to conclude that whenever a request is pending a response is given
eventually with probability at least ���� i	e	�

P �	
���

Advs G� ��	�


This result is a consequence of the concatenation theorem �cf	 Theorem �	�	�
	

Example �
�
� Consider the toy resource allocation protocol again	 We know from Exam�
ple �	�	� that

R �	
���

Advs M�� ��	�


It is also possible to show that

R� RUnlessM�� ��	�


where R � RUnlessM� is a UNITY �CM��� expression stating that whenever a system is in a
state of R the system remains in a state of R unless a state of M� is reached	 This means that
��	�
 is applicable from any point in the evolution of the toy resource allocation protocol� and
this fact� together with the condition that every adversary is fair� is succicient to guarrantee
that

R �	
�

Advs M� ��	�


�cf	 Proposition �	�	�
	 The reader familiar with UNITY may note that the combination of
��	�
 and ��	�
 is a probabilistic generalization of the ensures operator of Chandy and Misra
�CM���	

To see more signi�cative applications of progress statements the reader is referred to Chapter ��
where we prove the correctness of the randomized Dining Philosophers algorithm of Lehmann
and Rabin �LR���� and we prove the correctness of the randomized algorithm of Ben�Or for
agreement in asynchronous networks in the presence of stopping faults �BO���	 Instead� the �nal
part of this chapter concentrates on standard methods to specify event schemas and adversary
schemas� and on the relationship between deterministic and general �randomized
 adversaries	
The main lesson that we learn is that for a large class of probabilistic statements it is possible
to prove their validity by considering only deterministic adversaries� i	e	� adversaries that do
not use randomization in their choices	 The reader who is reading only the �rst section of each
chapter should move to Chapter � at this point and skip the rest of this section	

We said already that an event schema is a rule to associate an event with each probabilistic
execution fragment	 More formally� an event schema is a function that given a probabilistic
execution fragment H returns an event of FH 	 However� we have not given any method to
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specify an event schema	 Our de�nition of an event schema is very general since it allows for
any kind of rule to be used in determining the event associated with a probabilistic execution
fragment	 On the other hand� there is a speci�c rule which is used in most of the existing
literature on randomized algorithms	 Namely� given a probabilistic automaton M � a set # of
execution fragments of M is �xed� and then� given a probabilistic execution fragment H of M �
the event associated with H is #
�H 	 We call such an event schema an execution�based event
schema	 Since the start state of a probabilistic execution fragment contains part of the history of
M � and since in general we are interested in what happens only after the probabilistic execution
fragment starts� we re�ne the de�nition of an execution�based event schema by associating a
probabilistic execution fragment H with the event #
 ��H�q

H
� 
� where qH� is the start state of

H 	 In this way a progress statement can be stated in terms of execution�based event schemas�
where # is the set of execution fragments of M that contain at least one occurrence of a state
from U �	

To specify an adversary schema there are two main restrictions that are usually imposed	
One possibility is to restrict the kind of choices that an adversary can make� and the other
possibility is to restrict the on�line information that an adversary can use in making its choices	
The �rst kind of restriction is usually achieved by �xing a set # of execution fragments before�
hand and requiring that all the probabilistic execution fragments H generated by an adversary
satisfy �H � #	 We call the corresponding adversary schema an execution�based adversary
schema	 The second kind of restriction is achieved by imposing a correlation on the choices of
an adversary on di�erent inputs	 We call the corresponding adversary schema an adversaries
schema with partial on�line information	

Example �
�
� An example of an execution�based adversary schema is the set of fair adver�
saries for n processes running in parallel	 In this case # is the set of execution fragments of
the composite system where each process performs in�nitely many transitions	 An example of
an adversary schema with partial on�line information is the set of oblivious adversaries for the
toy resource allocation protocol	 Execution�based adversary schemas and adversary schemas
with partial on�line information can be combined together	 An example of an execution�based
adversary schema with partial on�line information is the set of fair and oblivious adversaries
for the toy resource protocol �cf	 Example �	�	�
	

Exacution�based adversaries and event schemas give us a good basis to study the relationship
between deterministic and general adversaries	 Roughly speaking� and adversary is determin�
istic if it does not use randomness in its choices	 Then the question is the following
 �does
randomness add power to an adversary�� The answer in general is �yes�� however� there are
several situations of practical relevance where randomness does not add any power to an ad�
versary	 In particular� we show that randomization does not add any power when dealing with
�nitely satis�able execution�based event schemas in two scenarios
 execution�based adversary
schemas and adversary schemas with partial on�line information	


�� Adversaries and Adversary Schemas

An adversary � also called a scheduler � for a probabilistic automaton M is a function A that
takes a �nite execution fragment 	 of M and returns a combined transition of M that leaves

��



from lstate�	
	 Formally�

A 
 frag��M
	 Probs�ctrans�M



such that if A�	
 ! �s�P
� then s ! lstate�	
	
An adversary is deterministic if it returns either transitions of M or pairs of the form

�s�D��

� i	e	� the next transition is chosen deterministically	 Denote the set of adversaries
and deterministic adversaries for a probabilistic automaton M by Advs�M
 and DAdvs�M
�
respectively	 We introduce deterministic adversaries explicitly because most of the existing
randomized algorithms are analized against deterministic adversaries	 In Section �	� we study
the connections between deterministic adversaries and general adversaries	

As we have noted already� the correctness of an algorithm may be based on some speci�c
assumptions on the scheduling policy that is used	 Thus� in general� we are interested only in
some of the adversaries of Advs�M
	 We call a subset of Advs�M
 an adversary schema� and
we use Advs to denote a generic adversary schema	 Section �	� describes in more detail possible
ways to specify an adversary schema	

����� Application of an Adversary to a Finite Execution Fragment

The interaction of an adversary A with a probabilistic automaton M leads to a probabilistic
execution fragment� where the transition enabled from each state is the transition chosen by
A	 Given a �nite execution fragment 	 of M � the probabilistic execution of M under A with
starting condition 	� denoted by prexec�M�A� 	
� is the unique probabilistic execution fragment
H of M such that

�	 start�H
 ! f	g� and

�	 for each state q of H � the transition trHq is q a A�q
	

Condition � ensures that the transition enabled from every state q of H is the transition chosen
by A	 It is a simple inductive argument to show that H is well de�ned	

����� Application of an Adversary to a Finite Probabilistic Execution Frag�
ment

From the theoretical point of view� we can generalize the idea of the interaction between an
adversary and a probabilistic automaton by assuming that the start condition is a �nite prob�
abilistic execution fragment of M 	 In this case the adversary works from all the points of
extension of the starting condition	 The resulting probabilistic execution fragment should be
an extension of the starting condition	 Formally� if H is a �nite probabilistic execution fragment
of M � then the probabilistic execution of M under A with starting condition H � denoted by
prexec�M�A� H
� is the unique probabilistic execution fragment H � of M such that

�	 start�H �
 ! start�H
� and

�	 for each state q of H �� if q is a state of H � then trH
�

q is

p
�
trHq � acts�H


	
� ��� p


�
q a A�q


	
�

��
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Figure ���
 An example of the action of an adversary on a probabilistic execution fragment	

where

p !
PH �Cq�

PH � �Cq�
PH
q �acts�H
��

and if q is not a state of H � then trH
�

q is q a A�q
	

Once again� it is a simple inductive argument to show that H � is well de�ned	

Example �
�
� �Extension of a �nite probabilistic execution fragment� Before prov�
ing that H � is an extension of H � we describe in more detail how the de�nition above works	
The di�cult case is for those states q of H � that are also states of H 	 Consider the example of

Figure ���	 Let A choose q�
a
�	 q on input q�� choose q

b
�	 q� on input q� and choose � on all

other inputs	 The probabilistic execution fragment H � of Figure ��� is the result of the action
of A on the probabilistic execution fragment H of Figure ���	 In H � there are two ways to reach
q
 one way is by means of transitions of H � and the other way is by means of transitions due
to A that originate from q�	 Thus� a fraction of the probability of reaching q in H � is due to
H � while another fraction is due to the e�ect of A on H 	 The weight with which the transition
trHq is considered in H � is the �rst fraction of the probability of reaching q� which is expressed
by PH �Cq��PH � �Cq�	 In our example the fraction is ���	 However� in our example the transition
trHq may also leads to � with probability ���� and the part of trHq that leads to � should be

handled by A	 For this reason in the left term of the de�nition of trH
�

q we discard � from trHq
and we add a multiplicative factor PH

q �acts�H
� to the weight	 Thus� in our example� three
quarters of the transition leaving from q in H � are controlled by A	 Note that the probability
of reaching q� from q� is the same in H and H �	

Proposition �
�
� Let M be a probabilistic automaton� and let A be an adversary for M �
Then� for each �nite probabilistic execution fragment H of M � the probabilistic execution frag�
ment generated by A from H is an extension of H� i�e��

H � prexec�M�A� H
�

Proof
 Denote prexec�M�A� H
 by H �	 We need to prove that for each state q of H �

PH �Cq� � PH � �Cq�� ��	�


If q is the start state of H � then q is also the start state of H �� and ��	�
 is satis�ed trivially	
Consider now a state qas of H that is not the start state of H 	 Then q is a state of H 	

From the de�nition of the probability of a cone�

PH � �Cqas� ! PH � �Cq�P
H �

q ��a� qas
�� ��	�


��



From the de�nition of trH
�

q �

PH �

q ��a� qas
� !
PH �Cq�

PH � �Cq�
PH
q ��a� qas
� �

�
��

PH �Cq�

PH � �Cq�
PH
q �acts�H
�

�
PA�q���a� qas
�� ��	�


Here we have also simpli�ed the expression PH
q �acts�H
� in the �rst term as we did in the proof

of Proposition �	�	� �Expressions ��	��
 and ��	��

	 We will not mention this simpli�cation
any more in the thesis	

If we remove the second term from the right expression of Equation ��	�
� turning Equa�
tion ��	�
 into an inequality� we obtain

PH �

q ��a� qas
� �
PH �Cq�

PH � �Cq�
PH
q ��a� qas
�� ��	��


By using ��	��
 in ��	�
� and simplifying the factor PH � �Cq�� we obtain

PH � �Cqas� � PH �Cq�P
H
q ��a� qas
�� ��	��


The right part of ��	��
 is PH �Cqas�	 Thus� we conclude

PH � �Cqas� � PH �Cqas�� ��	��



�� Event Schemas

In the informal description of a probabilistic statement we said that we need a rule to associate
an event with each probabilistic execution fragment	 This is the purpose of an event schema	
An event schema for a probabilistic automatonM � denoted by e� is a function that associates an
event of FH with each probabilistic execution fragment H of M 	 An event schema e is �nitely
satis�able i� for each probabilistic execution fragment H the event e�H
 is �nitely satis�able	
Union� intersection and complementation of event schemas are de�ned pointwise	 Similarly�
conditional event schemas are de�ned pointwise	

The best way to think of an event schema is just as a rule to associate an event with
each probabilistic execution fragment	 Although in most of the practical cases the rule can be
speci�ed by a set of executions �cf	 Section �	�	�
� part of our results do not depend on the
actual rule� and thus they would hold even if for some reason in the future we need to study
di�erent rules	 Moreover� event schemas allow us to simplify the notation all over	

����� Concatenation of Event Schemas

If e is a �nitely satis�able event schema� i	e	� for each probabilistic execution fragment H the
event e�H
 can be expressed as a union of cones� then it means that in every execution of e�H

it is possible to identify a �nite point where the property denoted by e is satis�ed	 Sometimes
we may be interested in checking whether a di�erent property� expressed by another event
schema� is satis�ed eventually once the property expressed by e is satis�ed	 That is� we want
to concatenate two event schemas	

��



Formally� let e�� e� be two event schemas for a probabilistic automatonM where e� is �nitely
satis�able� and let Cones be a function that associates a set Cones�H
 with each probabilistic
execution fragment H of M such that Cones�H
 is a characterization of e��H
 as a union of
disjoint cones� i	e	� e��H
 ! �q�Cones�H�Cq� and for each q�� q� � Cones�H
� if q� �! q�� then
Cq� 
Cq� ! �	 Informally� Cones�H
 identi�es the points where the event denoted by e��H
 is
satis�ed� also called points of satisfaction	

The concatenation e� 
Cones e� of e� and e� via Cones is the function e such that� for each
probabilistic execution fragment H of M �

e�H

�

!



q�Cones�H�

e��H jq
� ��	��


Proposition �
�
� The concatenation of two event schemas is an event schema� That is� if
e ! e� 
Cones e�� then e is an event schema�

Proof
 Consider a probabilistic execution fragment H 	 From Proposition �	�	�� each set
e��H jq
 is an event of FH 	 From the closure of a 
��eld under countable union� e�H
 is an
event of FH 	

Proposition �
�
� PH �e� 
Cones e��H
� !
P

q�Cones�H� PH �Cq�PHjq�e��H jq
��

Proof
 Since Cones�H
 represents a collection of disjoint cones� from ��	��
 we obtain

PH �e� 
Cones e��H
� !
X

q�Cones�H�

PH �e��H jq
�� ��	��


From Proposition �	�	��� for each q � Cones�H


PH �e��H jq
� ! PH �Cq�PH jq�e��H jq
�� ��	��


By substituting ��	��
 in ��	��
 we obtain the desired result	

����� Execution�Based Event Schemas

Our de�nition of an event schema is very general� on the other hand� most of the existing
work on randomized algorithms is based on a very simple rule to associate an event with each
probabilistic execution	 Namely� a set # of execution fragments ofM is chosen beforehand� and
then� given a probabilistic execution fragment H � the event associated with H is the # a �H 	
We call this class of event schemas execution�based 	 We have chosen to give a more general
de�nition of an event schema for two main reasons


�	 The concatenation Theorem of Section �	�	� �Theorem �	�	�
 does not rely on the fact that
an event schema is execution�based� but rather on the fact that it is �nitely satis�able	
Thus� if in the future some di�erent kinds of event schemas will become relevant� here we
have already the machinery to deal with them	

�	 The event schemas that we use later to de�ne a progress statement �cf	 Section �	�
 are
not execution�based according to the informal description given above	 Speci�cally� the
start state of a probabilistic execution fragment of M is a �nite execution fragment of

��



M � i	e	� it contains some history of M � and such history is not considered in determining
whether there is some progress	 On the other hand� it is plausible that sometimes we
want to consider also the history encoded in the start state of a probabilistic execution
fragment	 Thus� the more general de�nition of an event schema still helps	

Nevertheless� execution�based adversary schemas are easier to understand and enjoy properties
that do not hold for general adversary schemas �cf	 Section �	�
	 For this reason we give
a formal de�nition of an execution�based adversary schema� where we also assume that the
history encoded in the start state of a probabilistic execution fragment is eliminated	

Let # be a set of extended execution fragments of M 	 An event schema e for a probabilistic
automaton M is #�based i� for each probabilistic execution fragment H of M � e�H
 ! # 

��H�q

H
� 
	 An event schema e for a probabilistic automatonM is execution�based i� there exists

a set # of extended execution fragments of M such that e is #�based	


�	 Probabilistic Statements

Given a probabilistic automatonM � an event schema e� an adversary A� and a �nite execution
fragment 	� it is possible to compute the probability Pprexec�M�A����e�prexec�M�A� 	

� of the
event denoted by e when M starts from 	 and interacts with A	 As a notational convention�
we abbreviate the expression above by PM�A���e�	 Moreover� when M is clear from the context
we write PA���e�� and we write PA�e� if M has a unique start state and 	 is chosen to be the
start state of M 	

We now have all the machincery necessary to de�ne a probabilistic statement	 A probabilistic
statement for a probabilistic automaton M is an expression of the form PrAdvs�	�e
 R p� where
Advs is an adversary schema ofM � # is a set of starting conditions� i	e	� a set of �nite execution
fragments of M � e is an event schema for M � and R is a relation among !� �� and �	 A
probabilistic statement PrAdvs �	�e
 R p is valid forM i� for each adversary A of Advs and each
starting condition 	 of #� PA���e� R p� i	e	�

PrAdvs �	�e
 R p i� �A�Advs���	PA���e� R p� ��	��


Proposition �
�
� Some trivial properties of probabilistic statements are the following�

�� If p� R p� then PrAdvs �	�e
 R p� implies PrAdvs�	�e
 R p��

�� If Advs� � Advs� and #� � #�� then PrAdvs��	��e
 R p implies PrAdvs� �	��e
 R p�

��
�� The Concatenation Theorem

We now study an important property of probabilistic statements applied to the concatenation
of event schemas	 Informally� we would like to derive properties of the concatenation of two
event schemas from properties of the event schemas themselves	 The idea that we want to
capture is expressed by the sentence below and is formalized in Theorem �	�	�	

�If e� is satis�ed with probability at least p�� and from every point of satisfaction of
e�� e� is satis�ed with probability at least p�� then the concatenation of e� and e� is
satis�ed with probability at least p�p�	�

��



Theorem �
�
� Consider a probabilistic automaton M � Let

�� PrAdvs �	�e�
 R p� and�

�� for each A � Advs� q � #� let PrAdvs �Cones�prexec�M�A�q���e�
 R p��

Then� PrAdvs �	�e� 
Cones e�
 R p�p��

Proof
 Consider an adversary A � Advs and any �nite execution fragment q � #	 Let
H ! prexec�M�A� q
	 From Proposition �	�	��

PH �e� 
Cones e��H
� !
X

q��Cones�H�

PH �Cq��PHjq��e��H jq
�
�� ��	��


Consider an element q� of Cones�H
	 It is a simple inductive argument to show that

H jq� ! prexec�M�A� q�
� ��	��


Thus� from our second hypothesis�

PH jq��e��H jq
�
� R p�� ��	��


By substituting ��	��
 in ��	��
� we obtain

PH �e� 
Cones e��H
�R p�
X

q��Cones�e��H��

PH �Cq��� ��	��


By using the fact that Cones�H
 is a characterization of e��H
 as a disjoint union of cones�
Equation ��	��
 can be rewritten into

PH �e� 
Cones e��H
�R p�PH �e��H
�� ��	��


From the �rst hypothesis� PH �e��H
� R p�� therefore� from Proposition �	�	��

PH �e� 
Cones e��H
�R p�p�� ��	��


This completes the proof	


�
 Progress Statements

In this section we give examples of probabilistic statements� which we call progress statements�
that play an important role in the analysis of algorithms	 Progress statements are formaliza�
tions of statements that are used generally for the informal analysis of randomized algorithms�
however� many other statements can be de�ned depending on speci�c applications	 We show
also how to derive complex statements by concatenating several simple statements	

��



����� Progress Statements with States

Let U and U � be sets of states of a probabilistic automaton M 	 A common informal statement
is the following	

�Whenever the system is in a state of U � then� under any adversary A of Advs� the
probability that a state of U � is reached is at least p	�

The probability p is usually �	 In this thesis we consider the more general statement where p
is required only to be greater than �	 We represent the statement concisely by writing

U �	
p Advs U

�� ��	��


where Advs is an adversary schema	 We call ��	��
 a progress statement since� if we view U � as
a better condition than U � then ��	��
 states that from U it is possible to have some progress
with probability at least p	 The reader familiar with UNITY �CM��� may note that a progress
statement is a probabilistic generalization of the leads�to operator of UNITY	

Let us concentrate on the formal meaning of ��	��
	 Let eU � be an event schema that given
a probabilistic execution fragment H returns the set of extended executions 	 of �H such that
a state of U � is reached in 	�qH� �recall that qH� is the start state of H
	 Then ��	��
 is the
probabilistic statement

PrAdvs �U�eU �
 � p� ��	��


Note that the starting conditions of statement ��	��
 are just states of M � i	e	� they do not
contain any past history of M except for the current state	 This is because when we reason
informally about algorithms we do not talk usually about the past history of a system	 However�
if we want to concatenate two progress statements according to Theorem �	�	�� then we need to
consider the past history explicitly� and thus a better probabilistic statement for ��	��
 would
be

PrAdvs �	U
�eU �
 � p� ��	��


where #U is the set of �nite execution fragments of M whose last state is a state of U 	 So� why
can we� and indeed do people� avoid to deal with the past history explicitly� The point is that
��	��
 and ��	��
 are equivalent for most of the adversary schemas that are normally used	

����� Finite History Insensitivity

An adversary schema Advs for a probabilistic automaton M is �nite�history�insensitive i�
for each adversary A of Advs and each �nite execution fragment 	 of M � there exists an
adversary A� of Advs such that for each execution fragment 	� ofM with fstate�	�
 ! lstate�	
�
A��	�
 ! A�	a 	�
	 In other words� A� does even though A� does not know the �nite history 		

Lemma �
�
� Let Advs be a �nite�history�insensitive adversary schema for a probabilistic au�
tomaton M � Then ������ and ������ are equivalent probabilistic statements�

��



Proof
 From Proposition �	�	�� since U � #U � Statement ��	��
 implies Statement ��	��

trivially	 Conversely� suppose that Statement ��	��
 is valid	 Consider an adversary A of Advs�
and consider an element q of #U 	 Let Aq be an adversary of Advs such that for each execution
fragment q� of M with fstate�q�
 ! lstate�q
� Aq�q�
 ! A�q a q�
	 We know that Aq exists since
Advs is �nite�history�insensitive	 It is a simple inductive argument to show that

prexec�M�Aq� lstate�q

 ! prexec�M�A� q
�q� ��	��


Moreover�

Pprexec�M�A�q��Cq� ! �� ��	��


From the de�nition of eU �� since the start state of prexec�M�A� q
 is q�

eU ��prexec�M�Aq� lstate�q


 ! eU ��prexec�M�A� q

�q� ��	��


Thus� from Proposition �	�	�� and ��	��
�

PA�q�eU �� ! PAq�lstate�q��eU ��� ��	��


From hypothesis�

PAq�lstate�q��eU �� � p� ��	��


and thus� from ��	��
� PA�q �eU �� � p	 This shows that Statement ��	��
 is valid	

����� The Concatenation Theorem

We now start to compose �simple
 progress statements to derive other �more complex
 progress
statements	 This allows us to decompose a complex problems into simpler problems that can be
solved separately	 The examples of Chapter � contain explicit use of the concatenation theorem
of this section	

Suppose that from U we can reach U � with probability at least p� and that from U � we
can reach U �� with probability at least p�	 Then� it is reasonable that from U we can reach U ��

with probability at least pp�	 This result is an instantiation of the concatenation theorem of
Section �	�	�	

Theorem �
�
� Let Advs be a �nite�history�insensitive adversary schema� Then�

U �	
p Advs U � and U � �	

p�
Advs U �� imply U �	

pp�
Advs U ���

Proof
 Consider the event schemas eU � and eU �� 	 Let Cones be the function that associates
with each probabilistic execution fragment H the set

Cones�H

�

! fq j lstate�q�q�
 � U �� � �q���q�q�� lstate�q
�
 � U �g� ��	��


It is easy to check that Cones�H
 is a characterization of eU � as a disjoint union of cones	 Then�
directly from the de�nitions� for each execution fragment H �

eU � 
Cones eU ���H
 � eU ���H
� ��	��


��



Informally� the left expression represents the property of reaching a state of U �� passing through
a state of U �� while the right expression represents the property of reaching a state of U �� without
passing necessarily through a state of U �	

From Lemma �	�	�� for each probabilistic execution fragment H � each adversary A of Advs�
and each element q of Cones�H
� since lstate�q
 � U ��

PA�q�eU ��� � p�� ��	��


From hypothesis� ��	��
� and Theorem �	�	� �concatenation of two event schemas
�

PrAdvs �U�eU � 
Cones eU ��
 � pp�� ��	��


From ��	��
 and ��	��
�

PrAdvs �U�eU ��
 � pp�� ��	��


This shows that U �	
pp�

Advs U ��	

Proposition �
�
� Other trivial properties of progress statements are the following�

�� U �	
�

U �

�� If U� �	p�
U �
� and U� �	p�

U �
�� then U� � U� �	

min�p��p��
U �
� � U �

��

����
 Progress Statements with Actions

Progress statements can be formulated also in terms of actions rather than states	 Thus� if V
is a set of actions� we could write

U �	
p Advs V ��	��


meaning that starting from any state of U and under any adversary of Advs� with probability at
least p an action from V occurs	 Formally� let eV be an event schema that given a probabilistic
execution fragment H returns the set of executions 	 of �H such that an action from V occurs
in 	�qH� 	 Then ��	��
 is the probabilistic statement

PrAdvs �U�eV 
 � p� ��	��


Similarly� we can change the left side of a progress statement	 Thus� we can write

V �	
p Advs U ��	��


meaning that starting from any point where an action from V occurred and no state of U is
reached after the last occurrence of an action from V � a state of U is reached with probability
at least p	 In other words� after an action from V occurs� no matter what the system has
done� a state of U is reached with probability at least p	 Formally� let #V�U be the set of �nite
execution fragments of M where an action from V occurs and no state of U occurs after the
last occurrence of an action from V 	 Then ��	��
 is the probabilistic statement

PrAdvs �	V�U
�eU
 � p� ��	��


��



Finally� we can consider statements involving only sets of actions	 Thus� the meaning of
V �	

p Advs V � would be the probabilistic statement

PrAdvs �	V�V �
�eV 
 � p� ��	��


where #V�V � is the set of �nite execution fragments of M where an action from V occurs and
no action from V � occurs after the last occurrence of an action from V 	

The concatenation theorem extendeds easily to the new kinds of progress statements	

Theorem �
�
� Let Advs be a �nite�history�insensitive adversary schema� and let X�X � and
X �� be three sets� each one consisting either of actions of M only or states of M only� Then�

X �	
p�

Advs X � and X � �	
p�

Advs X �� imply X �	
p�p�

Advs X ���

Proof
 This proof is similar to the proof of Theorem �	�	�� and thus it is left to the reader	
Observe that �nite�history�insensitivity is not necessary if X � is a set of actions	

����� Progress Statements with Probability �

Usually we are interested in progress properties that hold with probability �	 A useful result is
that in most cases progress with probability � can be derived from progress with any probability
p such that � � p � �	 Speci�cally� under the condition that an adversary never chooses � when
the left side of a given progress statement is satis�ed and the right side of the same progress
statement is not satis�ed�

�	 if the left element of the progress statement is a set of actions� then progress is achieved
with probability ��

�	 if the left element of the progress statement is a set of states U � the adversary schema is
�nite�history�insensitive� and the system remains in a state of U unless the right side of
the statement is satis�ed� then progress is achieved with probability �	

Proposition �
�
� Suppose that V �	
p Advs X� and suppose that � �� �A�q� for each adversary

A of Advs and each element q of #V�X� Then V �	
�

Advs X�

Proof
 We give the proof for the case where X is a set of states	 The other proof is similar	
Denote X by U 	

Consider an element q� of #V�U and an adversary A of Advs	 Let H be prexec�M�A� q�
�
and let p� ! PH �eU�H
�	 We know from hypothesis that p� � p	 Suppose by contradiction that
p� � �	 Let # be the set of �nite execution fragments q of M such that q� � q� lstate�q
 � U �
and no state of U occurs in any proper pre�x of q�q�	 Then # is a characterization of eU�H

as a union of disjoint cones	 Thus�

PH �eU �H
� !
X
q�	

PH �Cq�� ��	��


Let � be any real number such that � � � � p�	 Then� from ��	��
 and the de�nition of p�� it is
possible to �nd a natural number k� such that	X

q�	jjqj�k�

PH �Cq� � �p� � �
� ��	��


��



Let #� be the set of states q of H such that jqj ! k� and no pre�x of q is in #	 That is� #� is
the set of states of H of length k� that are not within any cone Cq of eU �H
 where jqj � k�	
Equation ��	��
 can be rewritten as

PH �eU �H
� !

�
� X
q�	jjqj�k�

PH �Cq�

�
A�

�
�X
q�	�

PH �Cq�PH �eU�H
jCq�

�
A � ��	��


Observe that for each state q of #�� since a state of U
� is not reached yet� q is an element of #V�U 	

Moreover� prexec�M�A� q
 ! H jq �simple inductive argument
	 Thus� from Proposition �	�	��
and hypothesis� PH �eU�H
jCq� � p� and ��	��
 can be rewritten into

PH �eU �H
� �

�
� X
q�	jjqj�k�

PH �Cq�

�
A�

�
�X
q�	�

PH �Cq�p

�
A � ��	��


Observe that
P

q�	jjqj�k� PH �Cq� �
P

q�	�
PH �Cq� ! �	 This follows from the fact that if a state

q of H does not have any pre�x in #� then q � #V�X � which in turn means that � �� �H
q 	 In

other words� in H it is not possible to stop before reaching either a state of fq � # j jqj � k�g
or a state of #�	 Thus� by using ��	��
 in ��	��
 we obtain

PH �eU �H
� � �p� � �
 � ��� �p� � �

p� ��	��


After simple algebraic manipulations� Equation ��	��
 can be rewritten into

PH �eU �H
� � p� � p��� p�
� ���� p
� ��	��


If we choose � such that � � � � p���p�
����p
� which exists since p� � �� then Equation ��	��

shows that PH �eU�H
� 
 p�	 This contradicts the fact that p� � �	 Thus� PH �eU�H
� ! �	

For the next proposition we de�ne the statement U UnlessX � where U is a set of states and X

is either a set of states only or a set of actions only	 The statement is true for a probabilistic
automaton M i� for each transition �s�P
 of M � if s � U �X then for each �a� s�
 � � either
a � X � or s� � U �X 	 That is� once in U � the probabilistic automaton M remains in U until
the condition expressed by X is satis�ed	

Proposition �
�
	 Suppose that U �	
p Advs X� U Unless X� Advs is �nite�history�insensitive�

and � �� �A�s
 for each adversary A of Advs and each state s of U � Then� U �	
�

Advs X�

Proof
 This proof is similar to the proof of Proposition �	�	�	 The main di�erence is that the
passage from Equation ��	��
 to Equation ��	��
 is justi�ed by using �nite�history�insensitivity
as in the proof of Proposition �	�	�	


�� Adversaries with Restricted Power

In Section �	� we have de�ned adversary schemas to reduce the power of an adversary� however�
we have not described any method to specify how the power of an adversary is reduced	 In
this section we show two methods to reduce the power of an adversary	 The �rst method�
which is the most commonly used� reduces the kind of choices that an adversary can make�
the second method� which is used in informal arguments but is rarely formalized� reduces the
on�line information used by an adversary to make a choice	 The two speci�cation methods are
used in Section �	� to study the relationship between deterministic and randomized adversaries	

��



����� Execution�Based Adversary Schemas

If n processes run in parallel� then a common requirement of a scheduler is to be fair to all the
processes	 This means that whenever an adversary resolves the nondeterminism and leads to
a probabilistic execution fragment H � in all the executions of �H each one of the n processes
performs in�nitely many transitions	 More generally� a set # of extended execution fragments
ofM is set beforehand� and then an adversary is required to lead only to probabilistic execution
fragments whose corresponding sample space is a subset of #	

Formally� let # be a set of extended execution fragments of M 	 Let Advs	 be the set of
adversaries A such that for each �nite execution fragment q of M � �prexec�M�A�q� � #	 Then
Advs	 is called #�based	 An adversary schema Advs is execution�based i� there exists a set #
of extended execution fragments of M such that Advs is #�based	

The notion of �nite�history�insensitivity can be reformulated easily for execution�based ad�
versary schemas	 De�ne # to be �nite�history�insensitive i� for each extended execution frag�
ment 	 of M and each �nite execution fragment 	� of M such that lstate�	�
 ! fstate�	
� if
	� a 	 � # then 	 � #	 It is easy to verify that if # is �nite�history�insensitive� then Advs	 is
�nite�history�insensitive	

����� Adversaries with Partial On�Line Information

Sometimes� like in the case of the toy resource allocation protocol� an adversary cannot base
its choices on the whole history of a system if we want to guarantee progress	 In other words�
some part of the history is not visible to the adversary	

Example �
	
� �O��line scheduler� The simplest kind of adversary for n processes that run
in parallel is an adversary that �xes in advance the order in which the processes are scheduled	
This is usually called an o
�line scheduler or an oblivious adversary 	 Thus� at each point 	
the next transition to be scheduled depends only on the ordered sequence of processes that are
scheduled in 		

To be more precise� the transition scheduled by the adversary depends also on the state that
is reached by 	� i	e	� lstate�	
� since a speci�c process may enable di�erent transitions from
di�erent states	 This means that if 	� and 	� are equivalent in terms of the ordered sequence
of processes that are scheduled� the oblivious constraint says only that the transitions chosen
by the adversary in 	� and 	� must be correlated� i	e	� they must be transitions of the same
process	

The formal de�nition of an adversary with partial on�line information for a probabilistic au�
tomaton M is given by specifying two objects


�	 an equivalence relation that speci�es for what �nite execution fragments of M the choices
of an adversary must be correlated�

�	 a collection of correlation functions that specify how the transitions chosen by an adver�
sary must be correlated	

Let � be an equivalence relation between �nite execution fragments of M � and let F be a
family of functions parameterized over pairs of equivalent execution fragments	 Each function

��



f��� takes a combined transition of M leaving from lstate�	
 and returns a combined transition
of M leaving from lstate�	�
 such that

�	 f����f����tr

 ! tr �

�	 f����
P

i�I pitr i
 !
P

i�I pif����tr i
	

The pair ��� F 
 is called an oblivious relation	 An adversary A is oblivious relative to ��� F 
 i�
for each pair of equivalent execution fragments ofM � 	 � 	�� A�	�
 ! f����A�	

	 An adversary
schema Advs is said to be with partial on�line information i� there exists an oblivious relation
��� F 
 such that Advs is the set of adversaries for M that are oblivious relative to ��� F 
	

Condition � is used to guarantee that there are oblivious adversaries relative to ��� F 
�
Condition � is more technical and is used to guarantee that there are oblivious adversaries
relative to ��� F 
 that do not use randomization in their choices	 Condition � is needed mainly
to prove some of the results of Section �	�	

Adversaries with partial on�line information and execution�based adversaries can be com�
bined together easily	 Thus� an adversary schema Advs is said to be execution�based and with
partial on�line information i� there exists an execution�based adversary schema Advs� and a
pair ��� F 
 such that Advs is the set of adversaries of Advs� that are oblivious relative to ��� F 
	

Example �
	
� �Adversaries for the toy�resource allocation protocol� The fair obliv�
ious adversaries for the toy resource allocation protocol are an example of an execution�based
adversary schema with partial on�line information	 The set # is the set of executions of M�kM�

where both M� and M� perform in�nitely many transitions	 Two �nite execution fragments
	� and 	� are equivalent i� the ordered sequences of the processes that perform a transition
in 	� and 	� are the same	 Let 	� � 	�� and let� for i ! �� �� tr i�� and tr i�� be the tran�
sitions of M� and M�� respectively� enabled from lstate�	i
	 Then f�����tr���
 ! tr��� and
f�����tr���
 ! tr���	

Another execution�based adversary schema with partial on�line information that works for
the toy resource allocation protocol is obtained by weakening the equivalence relation so that
an adversary cannot see only those coins that have not been used yet� i	e	� those coins that have
been �ipped but have not been used yet to check whether the chosen resource is free	


�
 Deterministic versus Randomized Adversaries

In our de�nition of an adversary we have allowed the use of randomness for the resolution of
the nondeterminism in a probabilistic automaton M 	 This power that we give to an adversary
corresponds to the possibility of combining transitions of M in the de�nition of a probabilistic
execution fragment	 From the formal point of view� randomized adversaries allow us to model a
randomized environment and to state and prove the closure of probabilistic execution fragments
under projection �Proposition �	�	�
	 However� one question is still open


Are randomized adversaries more powerful than deterministic adversaries�

That is� if an algorithm performs well under any deterministic adversary� does it perform well
under any adversary as well� or are there any randomized adversaries that can degrade the
performance of the algorithm� In this section we want to show that in practice randomization

��



does not add any power to an adversary	 We say �in practice� because it is easy to build
examples where randomized adversaries are more powerful than deterministic adversaries� but
those examples do not seem to be relevant in practice	

Example �
�
� �Randomization adds power� Consider an event schema e that applied to
a probabilistic execution fragment H returns �H if H can be generated by a deterministic
adversary� and returns � otherwise	 Clearly� if M is a nontrivial probabilistic automaton� the
probability of e is at least � under any deterministic adversary� while the probability of e can
be � under some randomized adversary� thus� randomization adds power to the adversaries	
However� it is unlikely that a realistic event schema has the structure of e	 Another less
pathological example appears in Section �	�	� �cf	 Example �	�	�
	

We consider the class of execution�based event schemas� and we restrict our attention to the
subclass of �nitely satis�able� execution�based event schemas	 We show that randomization does
not add any power for �nitely satis�able� execution�based event schemas under two scenarios

execution�based adversary schemas� and execution�based adversary schemas with partial on�line
information	 In the second case we need to be careful �cf	 Example �	�	�
	

Informally� a randomized adversary can be seen as a convex combination of deterministic
adversaries� and thus a randomized adversary satis�es the same probability bounds of a deter�
ministic adversary	 However� there are uncountably many deterministic adversaries� and thus
from the formal point of view some more careful analysis is necessary	

����� Execution�Based Adversary Schemas

Proposition �
�
� Let Advs be an execution�based adversary schema for M � and let AdvsD
be the set of deterministic adversaries of Advs� Let e be a �nitely�satis�able� execution�based�
event schema for M � Then� for every set # of �nite execution fragments of M � every probability
p� and every relation R among �� !� �� PrAdvs�	�e
 R p i
 PrAdvsD�	�e
 R p�

In the rest of this section we prove Proposition �	�	�	 Informally� we show that each probabilistic
execution fragment H generated by an adversary of Advs can be converted into two other
probabilistic execution fragments H � and H ��� each one generated by some adversary of AdvsD�
such that PH � �e�H �
� � PH �e�H
� � PH �� �e�H ��
�	 Then� if R is � we use H ��� and if R is � we
use H �	

An operation that is used heavily in the proof is called deterministic reduction	 Let H be a
probabilistic execution fragment of a probabilistic automaton M � and let q be a state of H 	 A
probabilistic execution fragment H � is said to be obtained from H by deterministic reduction
of the transition enabled from q if H � is obtained from H through the following two operations


�	 Let trHq ! q a �
P

i�I pitr i
 where each pi is non�zero and each tr i is a transition of M 	

Then replace trHq either with �q�D��

 or with q a tr j � under the restriction that �q�D��


can be chosen only if

P
i�I pi � �	

�	 Remove all the states of H that become unreachable after trHq is replaced	

Throughout the rest of this section we assume implicitly that whenever a probabilistic execution
fragment is transformed� all the states that become unreachable are removed	

��



Lemma �
�
� Let Advs be an execution�based adversary schema for a probabilistic automaton
M � and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs� Let e be an execution�based event schema such that PH �e�H
� ! p� Let q be a state
of H� Then there exist two probabilistic execution fragments Hq

low � H
q
high� each one generated

by an adversary of Advs� that are obtained from H by deterministic reduction of the transition
enabled from q� and such that PHq

low
�e�Hq

low
� � p� and PHq

high
�e�Hq

high
� � p�

Proof
 Let trHq be q a �
P

i�I pitr i
� where each tr i is either a transition of M or the pair
�lstate�q
�D��

� each pi is greater than �� and

P
i�I pi ! �	 For each transition tr i� i � I � let

Htri be obtained from H by replacing trHq with q a tr i	 Observe that� since Advs is execution�
based and H is generated by an adversary of Advs� Htri is generated by an adversary of Advs	
The probability of e�H
 can be written as

PH �e�H
� ! PH �Cq�PH �e�H
jCq� � ��� PH �Cq�
PH �e�H
jCq�� ��	��


Observe that for each i � I � since H and Htri di�er only in the states having q as a pre�x�
PH �Cq� ! PHtri

�Cq�	 Since e is execution�based� e�H

Cq ! e�Htri

Cq� and PH �e�H

Cq� !

PHtri
�e�Htri
 
 Cq� �use conditional probability spaces and Theorem �	�	�
	 Moreover� as it is

shown below� PH �e�H

 Cq� !
P

i�I piPHtri
�e�Htri
 
 Cq�	 In fact�

PH �e�H

Cq� ! PH �Cq�

�
B�PH

q ���PH �e�H
jCq�� �
X

�a�q����Hq

PH
q ��a� q�
�PH �e�H
jCq��

�
CA ���	��


where we assume that PH �e�H
jCq�� is � whenever it is unde�ned	 For each �a� q�
 of �H
q �

PH
q ��q� a�
� !

P
i�I piP

Htri
q ��a� q�
�� and for each i such that �a� q�
 � �

Htri
q � PH �e�H
jCq�� !

PHtri
�e�Htri
jCq�� �simply observe that H�q� ! Htri�q

�
	 Similarly� if � � �H
q � then PH

q ��� !P
i�I piP

Htri
q ���� and for each i such that � � �

Htri
q � PH �e�H
jCq�� ! PHtri

�e�Htri
jCq��	 Thus�
from ��	��
�

PH �e�H
 
 Cq� !
X
i�I

piPHtri
�Cq�

�
BB�PHtri

q ���PHtri
�e�Htri
jCq�� �

X
�a�q����

Htri
q

P
Htri
q ��a� q�
�PHtri

�e�Htri
jCq��

�
CCA � ��	��


which gives the desired equality

PH �e�H
 
 Cq� !
X
i�I

piPHtri
�e�Htri
 
 Cq�� ��	��


Thus� ��	��
 can be rewritten into

PH �e�H
� !
X
i�I

pi
�
PHtri

�Cq�PHtri
�e�Htri
jCq� � ��� PHtri

�Cq�
PHtri
�e�Htri
jCq�

	
� ��	��


which becomes

PH �e�H
� !
X
i�I

piPHtri
�e�Htri
�� ��	��


��



If there exists an element i of I such that PHtri
�e�Htri
� ! p� then �x Hq

low and Hq
high to be Htri 	

If there is no element i of I such that PHtrq
�e�Htri
� ! p� then it is enough to show that there

are two elements i�� i� of I such that PHtri�
�e�Htri�


� � p and PHtri�
�e�Htri�


� 
 p� respectively	

Assume by contradiction that for each element i of I � PHtri
�e�Htri
� � p	 Then� from ��	��
�P

i�I piPHtri
�e�Htri
� � p� which contradicts PH �e�H
� ! p	 Similarly� assume by contradiction

that for each element i of I � PHtri
�e�Htri
� 
 p	 Then� from ��	��
�

P
i�I piPHtri

�e�Htri
� 
 p�
which contradicts PH �e�H
� ! p again	

Lemma �
�
� Let Advs be an execution�based adversary schema for a probabilistic automaton
M � and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs� Let e be an execution�based event schema such that PH �e�H
� ! p� Let d be a natural
number� and let Ud be the set of states q of H such that jqj ! d� Then there exist two probabilistic
execution fragments Hlow � Hhigh� each one generated by an adversary of Advs� that are obtained
from H by deterministic reduction of the transitions enabled from the states of Ud� and such
that PHlow

�e�Hlow
� � p� and PHhigh
�e�Hhigh
� � p�

Proof
 From Lemma �	�	� we know that for each state q of Ud there are two probabilistic exe�
cution fragments Hq

low and Hq
high � obtained from H by deterministic reduction of the transition

enabled from q� such that PHq

low
�e�Hq

low
� � p� and PHq

high
�e�Hq

high
� � p	 Let Hlow be obtained

from H by replacing the transition enabled from each state q of Ud with the transition enabled
from q in Hq

low � and let Hhigh be obtained from H by replacing the transition enabled from each
state q of Ud with the transition enabled from q in Hq

high 	 Since Advs is execution�based and
all the involved probabilistic execution fragments are generated by an adversary of Advs� then
Hhigh and Hlow are generated by an adversary of Advs	 Since e is execution�based� for each
state q of Ud� PHlow

�e�Hlow
 
 Cq� ! PHq

low
�e�Hq

low
 
 Cq�	 Thus�

PHlow
�e�Hlow
� !

X
q�Ud

PHlow
�Cq�PHq

low
�e�Hq

low
jCq�� ��	��


Observe that� for each state q of Ud� the di�erence between the probability of e�H
 and the
probability of e�Hq

low 
 is determined by the subcones of Cq	 Thus�

PHlow
�e�Hlow
� �

X
q�Ud

PH �Cq�PH �e�H
jCq�� ��	��


The right side of ��	��
 is PH �e�H
�� which is p	 In a similar way it is possible to show that
PHhigh

�e�Hhigh
� � p	

Now we use the fact that e is �nitely satis�able	 For each probabilistic execution fragment H
of M � let Can�e�H

 the set of minimal elements of fq � states�H
 j Cq � e�H
g � fq� j q �
states�H
� Cq� � e�H
g	 Then� Can�e�H

 is a characterization of e�H
 as a union of disjoint
cones	 For each natural number d� let e�d be the function that given a probabilistic execution
fragment H returns the set �q�Can�e�H��jjqj�dC

H
q 	

Lemma �
�
� Let e be an execution�based� �nitely satis�able� event schema for a probabilistic
automaton M � and let d� d� be two natural numbers such that d � d�� Then� for each probabilistic
execution fragment H� PH �e�d�H
� � PH �e�d��H
� � PH �e�H
��

��



Proof
 Follows trivially from the de�nitions	

Lemma �
�
� Let e be an execution�based� �nitely satis�able� event schema for a probabilistic
automaton M � and let d be a natural number� Let H be a probabilistic execution fragment H
of M � and let H � be obtained from H by reducing deterministically any collection of states of
length greater than d� Then� PH �e�d�H
� � PH � �e�d�H �
��

Proof
 Just observe that for each q � Can�e�H

 such that jqj � d there is a q� � Can�e�H �


such that q� � q� and that for each state q of H such that jqj � d� PH �Cq� ! PH � �Cq�	

Lemma �
�
	 Let Advs be an execution�based adversary schema for a probabilistic automaton
M � and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs� Let e be an execution�based� �nitely satis�able event schema such that PH �e�H
� ! p�
Then there exists a probabilistic execution fragment H �� generated by a deterministic adversary
of Advs� such that PH � �e�H �
� � p�

Proof
 From Lemma �	�	� it is possible to �nd a sequence of probabilistic execution fragments
�Hi
i��� where H� ! H � each Hi�� is obtained from Hi by deterministically reducing all its
transitions leaving from states of length i� and for each i� PHi�� �e�Hi��
� � PHi

�e�Hi
�	 Let H
�

be obtained from H by replacing the transition enabled from each state q with the transition
enabled from q in any Hi such that jqj � i	 It is immediate to check that H � is generated by
some deterministic adversary of Advs �every extended execution of �H � is an extended execution
of �H
	

Suppose by contradiction that PH � �e�H �
� 
 p	 Then there exists a level d such that

PH � �e�d�H �
� 
 p� ��	��


For each d� � d� let Ed� be

Ed�
�

!



q�Can�e�d��Hd���j	q��Can�e�d�H���q
��q

CH �

q � ��	��


Then� the following properties are valid	

�	 for each d� � d� E�
d is an element of FH � 	

Ed� is a union of cones of FH �	

�	 if d� � d��� then Ed� � Ed��

Consider an element q � Can�e�d��Hd�

 such that there exists a q� � Can�e�d�H �

 such
that q� � q	 Observe that� since Hd�� is obtained from Hd� by deterministic reduction of
states of length greater than d�� there exists a q�� � Can�e�d���Hd��

 such that q�� � q	
Moreover� from the construction of H �� q� � q��	 Thus� from ��	��
� CH �

q�� � Ed�� 	 Since

q�� � q� CH �

q � Ed�� � and therefore� Ed� � Ed�� 	

�	 e�d�H �
 � �d��dEd� 	

Consider an element 	 of e�d�H �
	 Then� for each d�� 	 � e�Hd�
	 Let q� � Can�e�Hd


such that q� � 	� and let d� be jq�j	 Then� there exists a q�� � Can�e�d��Hd�

 such that
q�� � q� � 	� and thus 	 � Ed� 	

��



�	 for each d� � d� PHd�
�e�d��Hd�
� � PH � �Ed� �	

From the construction of H �� for each q such that jqj � d�� PHd�
�C

Hd�
q � ! PH � �CH �

q �	

Moreover� if CH �

q is used in the de�nition of Ed� � then q � Can�e�d��Hd�

	

From � and �� and from ��	��
� there exists a value d� such that PH � �Ed� � 
 p	 From ��
PHd�

�e�d��Hd�
� 
 p	 From Lemma �	�	�� PHd�
�e�Hd�
� 
 p	 This contradicts the fact that

PHd�
�e�d��Hd�
� � p	

To build a probabilistic execution fragment H �� generated by an adversary of AdvsD� such that
PH � �e�H �
� � p� we need to extend part of Lemmas �	�	� and �	�	�	

Lemma �
�
� Let Advs be an execution�based adversary schema for a probabilistic automaton
M � and let H be a probabilistic execution fragment of M that is generated by some adversary of
Advs� Let e be an execution�based� �nitely�satis�able� event schema� Let q be a state of H� and
let d be a natural number such that PH �e�d�H
� ! p� Then there exist a probabilistic execution
fragment Hq

high � generated by an adversary of Advs� that is obtained from H by deterministic

reduction of the transition enabled from q� such that PHq

high
�e�d�Hq

high
� � p�

Proof
 This proof is similar to the proof of Lemma �	�	�� with the di�erence that the ! sign
of Equations ��	��
� ��	��
� ��	��
� and ��	��
� is changed into a �	 In fact� in each one of the
Htri some new cone of length at most d may appear	

Lemma �
�
� Let Advs be an execution�based adversary schema for a probabilistic automaton
M � and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs� Let e be an execution�based� �nitely�satis�able� event schema� and let d be a natural
number such that PH �e�d�H
� ! p� Let d� be a natural number� and let Ud� be the set of states q
of H such that jqj ! d�� Then there exist a probabilistic execution fragment Hhigh � generated by
an adversary of Advs� that di
ers from H only in that the transitions enabled from the states
of Ud are deterministically reduced� such that PHhigh

�e�d�Hhigh
� � p�

Proof
 This proof is similar to the proof of Lemma �	�	�	 In this case the arguments for the
equation corresponding to Equation ��	��
 is justi�ed from the additional fact that Hhigh may
have more cone of depth at most d than H 	

Lemma �
�
� Let Advs be an execution�based adversary schema for a probabilistic automaton
M � and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs� Let e be an execution�based� �nitely�satis�able� event schema such that PH �e�H
� 
 p�
Then� there exists a probabilistic execution fragment H � of M � generated by a deterministic
adversary of Advs� such that PH �e�H �
� 
 p�

Proof
 Since PH �e�H
�
 p and e�H
 is a union of cones� there exists a natural number d such
that PH �e�d�H
� 
 p	 From repeated applications of Lemma �	�	�� one for each level d� � d�
there exists a probabilistic execution fragment H ��� obtained from H by deterministic reduction
of the transitions enabled from every state q with jqj � d� such that PH �� �e�d�H ��
� 
 p	 From
Lemma �	�	�� PH �� �e�H ��
� 
 p	 Moreover� any probabilistic execution fragment H ��� obtained

��



from H �� by reducing deterministically transitions at depth greater than d �jqj 
 d
 satis�es
PH ��� �e�d�H ���
� 
 p� and thus PH ��� �e�H ���
� 
 p	 Hence� H � can be any probabilistic execution
fragment obtained from H �� by reducing deterministically all the transitions at depth greater
than d in any arbitrary way	 It is easy to check thatH � is generated by a deterministic adversary
of Advs	

Lemma �
�
�
 Let Advs be an execution�based adversary schema for a probabilistic automaton
M � and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs� Let e be an execution�based� �nitely�satis�able� event schema such that PH �e�H
� � p�
Then� there exists a probabilistic execution fragment H � of M � generated by a deterministic
adversary of Advs� such that PH �e�H �
� � p�

Proof
 If PH �e�H
� 
 p� then Lemma �	�	� su�ces	 If PH �e�H
� ! p� then by Lemma �	�	�
it is possible to �nd a sequence of probabilistic execution fragments �Hi
i��� where H� ! H �
each Hi�� is obtained from Hi by deterministically reducing all its i�level transitions� and
for each i� PHi�� �e�Hi��
� � PHi

�e�Hi
�	 If there exists a sequence �Hi
i�� such that for
some i� PHi

�e�Hi
� 
 p� then Lemma �	�	� su�ces	 Otherwise� consider the sequence of
probabilistic execution fragments de�ned as follows
 H� ! H and� for each i� let di be
the level of Hi such that PHi

�e�di�Hi
� � p
P

j�i����

j��	 Let Hi�� be obtained from re�

peated applications of Lemma �	�	�� till level di� so that PHi�� �e�di�Hi��
� � p
P

j�i����

j��	

Note that PHi�� �e�Hi��
� ! p� otherwise we can �nd a sequence �Hi
i�� and an i such that
PHi�� �e�Hi��
� 
 p �simple argument by contradiction
	 Let H � be obtained from H by replac�
ing the transition enabled from each state q with the transition enabled from q in any Hi such
that jqj � di��	 It is easy to check that H � is generated by an adversary of Advs	 Suppose by
contradiction that PH � �e�H �
� ! p� � p	 Then� from the construction of the Hi�s� there exists an
i such that p

P
j�i����


j�� 
 p�� and thus PHi�� �e�di�Hi��
� 
 p�	 However� from the de�nition
of H �� PHi�� �e�di�Hi��
� ! PH � �e�di�H

�
�� and thus p� � PH � �e�H �
�� which contradicts the fact
that PH � �e�H �
� ! p�	

Proof of Proposition �
�
�
 Since AdvsD � Advs� PrAdvs �	�e
 R p implies PrAdvsD�	�e
 R p

trivially	 Conversely� suppose that PrAdvsD�	�e
 R p� and let H be a probabilistic execution
fragment� generated by an adversary of Advs� whose start state is in #	 We distinguish the
following cases	

�	 R is �	

From Lemma �	�	�� there is a probabilistic execution fragment H �� generated by an ad�
versary of AdvsD� whose start state is in #� and such that PH � �e�H �
� � PH �e�H
�	 From
hypothesis� PH � �e�H �
� � p	 Thus� PH �e�H
� � p	

�	 R is �	

From Lemma �	�	��� there is a probabilistic execution fragment H �� generated by an
adversary of AdvsD� whose start state is in #� and such that PH � �e�H �
� � PH �e�H
�	
From hypothesis� PH � �e�H �
� � p	 Thus� PH �e�H
� � p	

�	 R is !	

This follows by combining Items � and �	

��



����� Execution�Based Adversary Schemas with Partial On�Line Informa�
tion

Proposition �	�	� can be extended to adversary schemas that do not know all the past history
of a system� i	e	� to execution�based adversary schemas with partial on�line information	 We
need to impose a technical restriction� though� which is that an adversary should always be
able to distinguish two execution fragments with a di�erent length �cf	 Example �	�	�
	 The
proof of the new result is a simple modi�cation of the proof of Proposition �	�	�	

Proposition �
�
�� Let ��� F 
 be an oblivious relation such that for each pair 	� � 	� of
equivalent execution fragment� 	� and 	� have the same length� Let Advs be an execution�
based adversary schema with partial on�line information such that each adversary of Advs is
oblivious relative to ��� F 
� and let AdvsD be the set of deterministic adversaries of Advs�
Let e be a �nitely�satis�able� execution�based� event schema for M � Then� for every set # of
�nite execution fragments of M � every probability p� and every relation R among �� !� ��
PrAdvs �	�e
 R p i
 PrAdvsD�	�e
 R p�

Proof
 The proof is similar to the proof of Proposition �	�	�	 The main di�erence is in the
proofs of Lemmas �	�	�� �	�	� and �	�	�� where equivalence classes of states rather than single
states only must be considered	 In these two proofs we use also the fact that equivalent execution
fragments have the same length	 The details of the proof are left to the reader	

Example �
�
� �Why length sensitivity� The requirement that an adversary should al�
ways see the length of a probabilistic execution fragment seems to be arti�cial� however� ran�
domized adversaries have more power in general if they cannot see the length of a probabilistic
execution	 Consider the probabilistic automaton M of Figure ���� and suppose that all the
executions of M that end in states s�� s�� s�� and s� are equivalent	 Since for each state si there
is exactly one execution of M that ends in si� we denote such an execution by qi	 Let # be the
set of extended executions 	� of M such that lstate�	
 does not enable any transition in M 	
For each state si that enables some transition� let tr i�u be the transition that leaves from si and
goes upward� and let tr i�d be the transition that leaves from si and goes downward	 Then� for
each pair i� j � f�� �� �� �g� i �! j� let fqiqj�tr i�u
 ! tr j�u� and let fqiqj�tr i�d
 ! tr j�d	

Let Advs be the set of #�based adversaries for M that are oblivious relative to ��� F 
� and
let AdvsD be the set of deterministic adversaries of Advs	 Then� the statement fs�g �	

���
AdvsD

fs�� s��g is valid� whereas the statement fs�g �	
���

Advs fs�� s��g is not valid� i	e	� an adversary can

use randomization to reduce the probability to reach states fs�� s��g	 In fact� the probabilistic
executions H� and H� of Figure ��� are the only probabilistic executions of M that can be
generated by the adversaries of AdvsD� while H� is generated by an adversary of Advs	 The
probability of reaching fs�� s��g in H� and H� is ���� whereas the probability of reaching
fs�� s��g in H� is ���	


�� Probabilistic Statements without Adversaries

The current literature on randomized distributed algorithms relies on the notion of an adversary�
and for this reason all the de�nitions given in this chapter are based on adversaries	 However�
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Figure ���
 Randomization adds power for some adversaries with partial on�line information	

the key objects of the theory that we have presented are the probabilistic execution fragments of
a probabilistic automaton� and not its adversaries	 An adversary schema can be replaced by an
arbitrary set of probabilistic execution fragments in the de�nition of a probabilistic statement�
namely� the set of probabilistic execution fragments that the adversary schema can generate	 In
other words� an adversary schema can be seen as a useful tool to express a set of probabilistic
execution fragments	


�� Discussion

Two objects that we have de�ned in this chapter and that do not appear anywhere in the
literature are adversary schemas and event schemas	 Both the objects are needed because�
di�erently from existing work� in this thesis we identify several di�erent rules to limit the
power of an adversary and several di�erent rules to associate an event with a probabilistic
execution fragment� and thus we need some way to identify each rule	 The best way to think
of an adversary schema and of an event schema is as a way to denote the rule that is used to
limit the power of an adversary and denote the rule that is used to associate an event with each
probabilistic execution fragment	

We have de�ned the classes of execution�based adversary schemas and execution�based
event schemas� and we have proved that for �nitely satis�able execution�based event schemas
randomization does not increase the power of an execution�based adversary schema� or of a
class of execution�based adversary schemas with partial on�line information	 These results are
of practical importance because most of the known event schemas and adversary schemas of
practical interest are execution�based	 As a result� it is possible to verify the correctness of
a randomized distributed algorithm by analyzing only the e�ect of deterministic adversaries�

���



which is easier than analyzing every adversary	 A similar result is shown by Hart� Sharir and
Pnueli �HSP��� for fair adversaries and almost�sure termination properties� i	e	� properties that
express the fact that under all fair adversaries the system reaches some �xed set of states
with probability �	 Fair adversaries and termination events are expressible as execution�based
adversary schemas and �nitely satis�able execution�based event schemas� respectively� thus�
the result of Hart� Sharir and Pnueli is implied by our result	 Hart� Sharir and Pnueli prove
also that another class of adversaries is equivalent to the class of fair adversaries� namely� those
adversaries that lead to fair executions with probability �	 The same result holds here as well�
however� it is not clear under what conditions a similar result holds in general	
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