
Chapter 9Probabilistic Timed Automata9.1 Adding TimeSo far we have extended labeled transition systems to handle probabilistic behavior; however,we have not addressed any real-time issue yet. The main objective of this chapter is to addtime to probabilistic automata.Following an approach that Abadi and Lamport [AL91] call the \old-fashioned recipe", weaddress real-time issues by augmenting probabilistic automata with some structure that modelspassage of time. In particular, we adopt the solution of Lynch and Vaandrager [LV95], wherea timed automaton is an ordinary automaton whose actions include the positive real numbers.The occurrence of a real number d means that time d elapses. In addition, a timed automatonof [LV95] is required to satisfy two trajectory axioms : the �rst axiom says that if time d canelapse and immediately afterwards time d0 can elapse, then time d+ d0 can elapse; the secondaxiom says that if time d can elapse, then there is a trajectory that allows us to associate everyreal time in the interval [0; d] with a state.The introduction of real-time in probabilistic automata presents two main problems.1. Time is a continuous entity, and the time that elapses between the occurrence of two sep-arate actions may depend on a probability distribution that is not discrete. For example,the response time of a system may be distributed exponentially. On the other hand, theprobability distributions that we allow in the untimed model are only discrete.2. In the untimed model the parallel composition operator is de�ned only for simple prob-abilistic automata. Since time-passage is modeled by actions of <+, in a simple proba-bilistic timed automaton it is not possible to let time pass according to some probabilitydistribution.The �rst problem could be solved by removing the requirement that the probability distributionassociated with a transition is discrete. However, in such case we would need to redevelop thewhole theory, while if we force each probability distribution to be discrete we can reuse mostof the results of the untimed model. For this reason, we choose to work only with discreteprobability distributions and we defer to further work the extension of the model to non-discreteprobability distributions (cf. Section 13.2.1). 195

For the second problem the reader may object that it originates from the choice of usinga distinct time-passage action for each amount of time that elapses in a transition, and thuswe may conclude that the problem would be solved by using a unique action that expressespassage of time [LV93b] rather than a di�erent action for every time; however, the problem hasdeeper roots.Example 9.1.1 (Problems with probabilistic passage of time) Suppose that from states1 a probabilistic timed automatonM1 lets time pass for 1 second with probability 1=2 and for2 seconds with probability 1=2 before performing an action a, and suppose that from state s2 aprobabilistic timed automatonM2 lets time pass for 0:5 seconds with probability 1=2 and for 1:5seconds with probability 1=2 before performing action a. What is the probability distributionon the time that elapses from state (s1; s2) of M1kM2 before performing a? What can wesay about the projections of a probabilistic execution of M1kM2? The reader may note thesimilarity with the problems encountered in the de�nition of parallel composition for generalprobabilistic automata (cf. Section 4.3.3).In order to simplify the handling of trajectories, in this thesis we impose an additional restric-tion on the time-passage transitions of a probabilistic timed automaton; namely, each transitioninvolving time-passage is required to lead to a Dirac distribution. Probabilistic behavior as-sociated with passage of time is allowed only within a probabilistic execution. Even thoughthis timed model may appear to be restrictive, it is su�ciently powerful to analyze non-trivialtimed properties of randomized algorithms (cf. Chapter 10).In the rest of this chapter we concentrate on the de�nition of the timed model as an extensionof the probabilistic automata of Chapter 4. Most of the concepts are extensions of the de�nitionsof [LV95] to the probabilistic framework; the non-trivial part of the chapter is the de�nition ofa probabilistic timed execution, where some measure-theoretical complications arise.9.2 The Timed ModelIn this section we de�ne probabilistic timed automata as an extension of the probabilisticautomata of Chapter 4, and we extend the timed executions of [LV95] to our framework. Dueto the complications that arise in the de�nition of a probabilistic timed execution, we de�neprobabilistic timed executions in a separate section.9.2.1 Probabilistic Timed AutomataA probabilistic semi-timed automaton M is a probabilistic automaton whose set of externalactions includes <+, the set of positive reals, and whose transitions with some action in <+are non-probabilistic, i.e., they lead to a Dirac distribution. Actions from <+ are referred to astime-passage actions , while non-time-passage actions are referred to as discrete actions . We letd; d0; : : : range over <+ and more generally, t; t0; : : : range over the set <[f1g of real numbersplus in�nity. The set of visible actions is de�ned by vis(M) 4= ext(M) n <+.A probabilistic timed automaton is a probabilistic semi-timed automaton M that satis�esthe following two axioms.A1 If s d�! s0 and s0 d0�! s00, then s d+d0�! s00. 196

For the second axiom, we need an auxiliary de�nition of a trajectory , which describes thestate changes that can occur during time-passage. Namely, if I is any left-closed interval of <beginning with 0, then an I-trajectory is a function ! : I ! states(M), such that!(t) t0�t�! !(t0) for all t; t0 2 I with t < t0.Thus, a trajectory assigns a state to each time t in the interval I in a \consistent" manner. Wede�ne ltime(!), the \last time" of !, to be the supremum of I . We de�ne fstate(!) to be !(0),and if I is right-closed, we also de�ne lstate(!) to be !(ltime(!)). A trajectory for a transitions d�! s0 is a [0; d]-trajectory such that fstate(!) = s and lstate(!) = s0. Now we can state thesecond axiom.A2 Each time-passage transition s d�! s0 has a trajectory.A probabilistic timed automatonM is simple if M is a simple probabilistic automaton.Axioms A1 and A2 express natural properties of time: Axiom A1 says that if time canelapse in two transitions, then it can also elapse in a single transition; Axiom A2 says that iftime d can elapse, then it is possible to associate states with all times in the interval [0; d] in aconsistent way.Example 9.2.1 (The patient construction) A simple way to add time to a probabilisticautomaton is to add arbitrary self-loop timed transitions to each state of a probabilistic au-tomaton. Speci�cally, given a probabilistic automaton M , we de�ne patient(M) to be theprobabilistic timed automaton M 0 such that1. states(M 0) = states(M),2. start(M 0) = start(M),3. acts(M 0) = acts(M) [<+,4. trans(M 0) = trans(M) [f(s; d; s) j s 2 states(M); d 2 <+g.Thus, patient(M) is like M except that an arbitrary amount of time can elapse between twodiscrete transitions. It is immediate to verify that patient(M) satis�es axioms A1 and A2.The patient construction was �rst de�ned for ordinary automata in [VL92].Example 9.2.2 (Simple restrictions on time passage) The patient construction does notspecify any limitations to the way time can elapse. Sometimes we may want to specify upperand lower bounds to the time it takes for some transition to take place. Such a limitation canbe imposed easily by augmenting the states of a probabilistic automaton with variables thatexpress the time limitations that are imposed. As an easy example consider a probabilisticautomatonM with a unique state s and a unique discrete transition (s; a; s). Suppose that wewant to add time to M and impose that action a occurs once every at least 1 time unit and atmost 2 time units. Then the corresponding probabilistic timed automatonM 0 can be speci�edas follows.1. states(M 0) = f(s; l; h) j 0 � l � 1; 0 � l � h � 2g,197

2. start(M 0) = f(s; 0; 2)g,3. acts(M 0) = fag [<+,4. trans(M 0) = f((s; 0; h); a; (s; 1; 2)) j 0 � h � 2g [f((s; l; h); d; (s; l� d; h � d)) j d � l �hg [f((s; 0; h); d; (s; 0; h� d))d � hg.The variables l and h keep track of the time that must or can elapse before performing a. Timepassage decreases both the variables unless they are 0. Action a can occur only when l = 0and leads to a state where l = 1. This means that at least 1 time unit must elapse before acan be performed again. No time can elapse if h = 0. At thet point the only transition thatcan be performed is the transition labeled with a. Thus, no more than 2 time units can elapsebetween the occurrence of two actions a. It is immediate to verify that M 0 satis�es axioms A1and A2.9.2.2 Timed ExecutionsSince a probabilistic timed automaton is also a probabilistic automaton, the executions of theuntimed model carry over to the timed case. However, an execution associates states with justa countable number of points in time, whereas the trajectory axiom A2 allows us to associatestates with all real times. Also, our intuition about the executions of a timed system is thatvisible actions occur at points in time, and that time passes \continuously" between thesepoints. In other words, at each point in time a system is in some state. This leads to thede�nition of a timed execution.Timed ExecutionsA timed execution fragment � of a probabilistic timed automaton M is a �nite or in�nitealternating sequence, � = !0a1!1a2!2 � � �, where1. Each !i is a trajectory and each ai is a discrete action.2. If � is a �nite sequence then it ends with a trajectory.3. If !i is not the last trajectory in � then its domain is a right-closed interval, and thereexists a transition (lstate(!i);P) of M such that (a; fstate(!i+1)) 2
.A timed execution fragment describes all the discrete changes that occur, plus the evolutionof the state during time-passage transitions. If � is a timed execution fragment, then welet ltime(�) denote Pi ltime(!i). Note that we allow the case where the domain of the �naltrajectory is of the form [0;1); in this case ltime(�) = 1. We de�ne the initial state of �,fstate(�), to be fstate(!0)A timed execution is a timed execution fragment whose �rst state is a start state.The timed executions and timed execution fragments of a probabilistic timed automatoncan be partitioned into �nite, admissible, and Zeno timed executions and timed executionfragments. A timed execution (fragment) � is �nite, if it is a �nite sequence and the domain ofits �nal trajectory is right-closed; a timed execution (fragment) � is admissible if ltime(�) =1;a timed execution (fragment) � is Zeno if it is neither �nite nor admissible.198

There are basically two types of Zeno timed executions: those containing in�nitely manydiscrete actions in �nite time, and those containing �nitely many discrete actions and for whichthe time interval associated with the last trajectory is right-open. Thus, Zeno timed executionsrepresent executions of a probabilistic timed automaton where an in�nite amount of activityoccurs in a bounded period of time. (For the second type of Zeno timed executions, the in�nitelymany time-passage transitions needed to span the right-open interval should be thought of the\in�nite amount of activity".)We will be interested mostly in the admissible timed executions of a probabilistic timedautomaton since they correspond to our intuition that time is a force beyond our control thathappens to approach in�nity. However, according to our de�nition of a probabilistic timedautomaton, it is possible to specify probabilistic timed automata in which from some statesno admissible timed execution fragments are possible. This can be because only Zeno timedexecution fragments are possible from that state, or because time cannot advance at all (in whichcase a time deadlock has occurred). Although Zeno timed executions are usually non-desirable,research experience has shown that the analysis of a model would be more complicated if Zenotimed executions are ruled out.Denote by t-frag�(M), t-frag1(M), and t-frag(M) the sets of �nite, admissible, and alltimed execution fragments ofM . Similarly, denote by t-exec�(M), t-exec1(M), and t-exec(M)the sets of �nite, admissible, and all timed executions of M .A timed extended execution fragment of M , denoted by �, is either a timed executionfragment of M or a sequence �0� where �0 is a timed execution fragment of M . Denote byt-exec��(M) and t-exec�(M) the sets of �nite and all timed extended executions of M .Concatenations, Pre�xes and Su�xesIf ! is an I-trajectory where I is right-closed, and !0 is an I 0-trajectory such that lstate(!) =fstate(!0), then ! and !0 can be concatenated. The concatenation, denoted by !!0 is the leasttrajectory (the trajectory with the smallest domain) !00 such that !00(t) = !(t) for t 2 I , and!00(t+ ltime(!)) = !(t) for t 2 I 0. It is easy to show that !00 is a trajectory.Likewise, we may combine a countable sequence of \compatible" trajectories into one: if !iis an Ii-trajectory, 0 � i <1, where all Ii are right-closed, and if lstate(!i) = fstate(!i+1) forall i, then the in�nite concatenation !1!2 � � � is the least function ! such that for all i and allt 2 Ii, !(t+Pj<i ltime(!j)) = !i(t). It is easy to show that ! is a trajectory.A �nite timed execution fragment � = !0a1!1 � � �an!n ofM and a timed (extended) execu-tion fragment �0 = !0nan+1!n+1 � � � of M can be concatenated if lstate(�) = fstate(�0). In thiscase the concatenation, written �a �0, is de�ned to be �00 4= !0a1!1 � � �an(!n!0n)an+1!n+1 � � �.It is easy to see that � is a timed (extended) execution fragment of M .The notion of pre�x for timed execution fragments and timed extended execution fragmentsis de�ned as follows. A timed (extended) execution fragment � of M is a pre�x of a timed(extended) execution fragment �0 of M , written � � �0, if either � = �0 or � is �nite and thereexists a timed (extended) execution fragment �00 of M such that �0 = � a �00. Likewise, � is asu�x of �0 if there exists a �nite timed execution fragment �00 such that �0 = �00 a �. Denote� by �0.�00.The length of a timed execution fragment � expresses the number of discrete actions in�. Thus, even though � is admissible or Zeno (and thus not �nite), its length may be �nite.199

Formally, de�ne the length of � = !0a1!1a2!2 � � � asj�j 4= (n if � is a �nite sequence and ends in !n1 if � is an in�nite sequence.9.3 Probabilistic Timed ExecutionsSince a probabilistic timed automaton is also a probabilistic automaton, it is possible to talkabout the probabilistic executions of a probabilistic timed automaton. However, as we havepointed out already for ordinary executions, a probabilistic execution does not describe com-pletely the evolution of a probabilistic timed automaton since it does not allow us to associateevery real time with the states that are reached at that time. We need a structure that extendsprobabilistic executions in the same way as a timed execution extends an execution. A timedexecution di�ers from an execution in two aspects:1. a timed execution has trajectories to express passage of time;2. a timed execution does not contain any time-passage actions.In particular, a timed execution hides the time-passage transitions that are scheduled in anexecution to let time pass. Given a trajectory !, there are in�nitely many ways to schedule time-passage transitions to move in time ltime(!) from fstate(!) to lstate(!) (lstate(!) is meaningfulonly if the domain of ! is right-closed); the trajectory ! represents all those possible ways. In asimilar way, a probabilistic timed execution should not contain any information on the speci�ctime-passage transitions that are scheduled. Thus, a probabilistic timed execution should bea structure where each state records the past history and each transition contains informationon the trajectories that are spanned till the occurrence of the next action. However, it may bethe case that there is no next action since the next trajectory is right-open. This would notbe a problem except for the fact that from a state there can be uncountably many right-opentrajectories that leave even though they are generated by scheduling time-passage transitionsaccording to a discrete probability distribution.Example 9.3.1 (Uncountable branching from countable branching) Consider a prob-abilistic automatonM that can increase or decrease a variable x of its state at a constant speed,and suppose that every one time unit the speed of x can be complemented nondeterministi-cally. A valid scheduler A for M is a scheduler that every one time unit chooses the sign of thespeed of x according to a uniform binary distribution. As a result, there are uncountably manytrajectories leaving from the start state ofM if we use A to resolve the nondeterminism. Thus,if in a probabilistic timed execution we do not allow for a trajectory to be split into pieces,the probabilistic timed execution of M generated by A would have a non-discrete probabilitydistribution in its transition relation.To express the fact that we allow only discrete probability distributions on a scheduler, we de�neprobabilistic timed executions in two steps. First we de�ne probabilistic time-enriched execu-tions, which contain closed trajectories and time-passage actions (the time-passage transitionsthat are scheduled are visible); then, we remove the time-passage actions from probabilistictime-enriched executions to yield probabilistic timed executions.200

At the end of this section we show that probabilistic executions, probabilistic time-enrichedexecutions, and probabilistic timed executions are strongly related. Speci�cally, we show thateach probabilistic execution is a sampling of a probabilistic time-enriched execution wherethe information contained in the trajectories is lost, and that each probabilistic time-enrichedexecution is sampled by some probabilistic execution. Furthermore, we show that it is possible tode�ne an equivalence relation directly on probabilistic time-enriched executions that expressesthe fact that two probabilistic time-enriched executions denote the same probabilistic timedexecution (they just schedule time-passage transitions in a di�erent way).All the equivalence results that we prove in this section allow us to use the kind of proba-bilistic execution that is best suited for each problem. In particular, we use probabilistic timedexecutions for the theorems of Chapter 10, and we use probabilistic time-enriched executionsand probabilistic executions for the results of Chapters 11 and 12. Due to the purely technicalcontent of the comparison section (Section 9.3.3), the reader may focus just on the de�nitionsand on the informal explanations (Sections 9.3.1 and 9.3.2) at a �rst reading. Most of theconcepts are simple modi�cations of concepts de�ned for probabilistic executions.9.3.1 Probabilistic Time-Enriched ExecutionsTime-Enriched ExecutionsLetM be a probabilistic timed automaton. A time-enriched execution fragment ofM is a �niteor in�nite alternating sequence � = !0a1!1a2!2 � � � where1. The domain of !0 is [0; 0].2. Each !i is a trajectory with a closed domain and each ai is an action.3. If ai is a visible action, then the domain of !i is [0; 0], and there exists a transition(lstate(!i�1);P) of M such that (ai; fstate(!i)) 2
.4. If ai is a time-passage action, then the domain of !i is [0; ai] and lstate(!i�1) = fstate(!i).Denote by te-frag�(M) and te-frag(M) the set of �nite and all time-enriched execution fragmentsof M , respectively. The notation for fstate(�), lstate(�) and ltime(�) extends trivially.A time-enriched execution fragment � contains more information than a timed executionfragment since it is possible to observe what time-passage transitions are used to generate �.A time-enriched extended execution fragment ofM is either a time-enriched execution frag-ment of M or a sequence �� where � is a �nite time-enriched execution fragment of M . Thenotation for lstate(�) extends trivially.A �nite time-enriched execution fragment � = !0a1!1 � � �an!n of M and a time-enrichedextended execution fragment �0 = !0nan+1!n+1 � � � of M can be concatenated if lstate(�) =fstate(�0). In this case the concatenation is de�ned to be �00 4= !0a1!1 � � �an!nan+1!n+1 � � �,and is denoted by � a �0. It is easy to see that �00 is a time-enriched extended executionfragment of M . A time-enriched extended execution fragment � of M is a pre�x of a time-enriched extended execution fragment �0 of M , written � � �0, if either � = �0 or � is �niteand there exists a time-enriched extended execution fragment �00 of M such that �0 = � a �00.Likewise, � is a su�x of �0 if there exists a �nite time-enriched execution fragment �00 suchthat �0 = �00 a �. Denote � by �0.�00. 201

Time-Enriched TransitionsLet (s;P) be a combined transition of M . For each pair (a; s0) of
, if a is a discrete action,then let P(a;s0) be D((a; s0)); if a is a time-passage action, then let P(a;s0) be a discrete proba-bility distribution of Probs(trajectories(M; s; a; s0)), where trajectories(M; s; a; s0) denotes theset of trajectories for s a�! s0. The pair P(a;s0)2
 P [(a; s0)](s;P(a;s0)) is called a time-enrichedtransition of M .Thus, a time-enriched transition adds information to a combined transition by specifyingwhat state is reached at each intermediate time. A combined transition gives just the extremesof a trajectory, dropping all the information about what happens in the middle.Probabilistic Time-Enriched ExecutionsA probabilistic time-enriched execution fragment H of a timed probabilistic automatonM is afully probabilistic automaton such that1. states(H) � te-frag�(M)2. for each transition tr = (q;P) of H there is a time-enriched transition tr 0 = (lstate(q);P 0)of M , called the corresponding time-enriched transition, such that P = q a P 0.3. each state of H is reachable and enables one transition.A probabilistic time-enriched execution is a probabilistic time-enriched execution fragmentwhose start state is a start state of M . Denote by te-prfrag(M) the set of probabilistic time-enriched execution fragments of M , and by te-prexec(M) the set of probabilistic time-enrichedexecutions of M . Also, denote by qH0 the start state of a generic probabilistic time-enrichedexecution fragment H .As for the untimed case, there is a strong relationship between the time-enriched extendedexecution fragments of a probabilistic timed automaton and the extended executions of one ofits probabilistic time-enriched execution fragments. Speci�cally, let M be a probabilistic timedautomaton and let H be a probabilistic time-enriched execution fragment of M . Let q0 be thestart state of H . For each extended execution � = q0a1q1 � � � of H , let�# 4= (q0 a lstate(q0)a1ltraj (q1)a2 � � � if � does not end in �,q0 a lstate(q0)a1ltraj (q1)a2 � � �anltraj (qn)� if � = q0a1q1 � � �anqn�, (9.1)where ltraj (qi) denotes the last trajectory of qi. It is immediate to observe that �# is a time-enriched extended execution fragment of M . For each time-enriched extended execution frag-ment � of M such that q0 � �, i.e., � = q0 a !0a1!1 � � �, let�"q0 4= (q0a1(q0a1!1)a2(q0a1!1a2!2) � � � if � does not end in �,q0a1(q0a1!1) � � �(q0a1!1 � � �an!n)� if � = q0a1!1 � � �an!n�. (9.2)It is immediate to observe that �"q0 is an extended execution of some probabilistic timedexecution fragment of M . Moreover, the following proposition holds.202

Proposition 9.3.1 Let H be a probabilistic time-enriched execution fragment of a probabilistictimed automaton M . Then, for each extended execution � of H,(�#)"q0 = �; (9.3)and for each time-enriched extended execution fragment � of M starting with q0,(�"q0)# = �: (9.4)EventsThe probability space PH associated with a probabilistic time-enriched execution H is de�nedas for the untimed case. Thus,
0H is the set of time-enriched extended execution fragments ofM that correspond to complete extended executions of H , i.e.,
0H 4= f�# j � is a complete extended execution of Hg; (9.5)where an extended execution � of H is complete i� either � is in�nite, or � = �0�, �0 is a �niteexecution of H , and � 2
Hlstate(�). For each �nite time-enriched extended execution fragment� of M , let CH� denote the coneCH� 4= f�0 2
H j � � �0g: (9.6)Let CH be the set of cones of H . Then de�ne F 0H to be the �-�eld generated by CH , i.e.,F 0H 4= �(CH): (9.7)De�ne a measure � on CH such that the measure �H(CH�) of a cone CH� is the product of theprobabilities associated with each edge that generates � in H . Formally, let q0 be the startstate of H . If � � q0, then�H(CH�) 4= 1; (9.8)if � = q0 a !0a1!1 � � �!n�1an!n, then�H(CH�) 4= PHq0 [(a1; q1)] � � �PHqn�1 [(an; qn)]; (9.9)where for each i, 1 � i < n, qi = q0 a !0a1!1 � � �!i�1ai!i; if � = q0 a !0a1!1 � � �!n�1an!n�,then �H(CH�) 4= PHq0 [(a1; q1)] � � �PHqn�1 [(an; qn)]Pqn [�]; (9.10)where for each i, 1 � i � n, qi = q0 a !0a1!1 � � �!i�1ai!i. Then the probability measure P 0H isthe unique measure on FH that extends �H , and PH is the completion of PH .Finite Probabilistic Time-Enriched Executions, Pre�xes, Conditionals, and Su�xesSince a probabilistic time-enriched execution is a fully probabilistic automaton, the de�nitionsof �niteness, pre�x, conditional and su�x of Section 4.2.6 extend directly: we just need tode�ne the length of a time-enriched execution fragment � as the number of actions that occurin �. 203

9.3.2 Probabilistic Timed ExecutionsWe now de�ne the probabilistic timed executions of a probabilistic timed automaton. Weuse probabilistic time-enriched executions to characterize those transitions that originate fromdiscrete schedulers.Timed TransitionsA timed transition expresses the result of choosing either an in�nite trajectory or a �nitetrajectory followed by some discrete action at random. However, a timed transition shouldbe the result of scheduling a collection of time-enriched transitions, so that we are guaranteedthat it is due to a discrete scheduler. For this reason, we derive a timed transition from theprobability distribution associated with a time-enriched probabilistic execution. The derivationproceeds in two steps: �rst all the time-passage actions are removed and the correspondingtrajectories are concatenated; then the resulting structure is truncated at the occurrence of the�rst action.Removing Time-Passage Actions. Let � = !0a1!1a2!2 � � � be a time-enriched executionfragment of a probabilistic timed automatonM . The timed execution represented by �, denotedby t-exec(�), is the sequence obtained from � by removing all the time-passage actions and byconcatenating all the trajectories whose intermediate action is removed.Let H be a probabilistic time-enriched execution fragment of a probabilistic timed automa-ton M . Let
 4= t-exec(
H) [limits(t-exec(
H)); (9.11)where limits(t-exec(
H)) is the set of timed executions � ofM that end with an open trajectoryand such that for each �nite pre�x �0 of � there is an element �00 of t-exec(
H) such that �0 � �00.Then, t-exec(PH) denotes the probability space completion((
;F ; P)) where F is the �-�eldgenerated by the cones on
, and P is t-exec(PH).The reason for the de�nition of the sample space of t-exec(PH) is mainly technical: wewant to establish a relationship between probabilistic time-enriched executions and probabilis-tic timed executions, and we want the relationship to be preserved by projection of probabilistictimed executions in a parallel composition context. Informally, we are interested in a distribu-tion over trajectories, possibly followed by an action, without keeping any information on howsuch a distribution is obtained. The elements of the sample space that end with right opentrajectories can be a�ected by the way the transitions are scheduled in a probabilistic time-enriched execution. Moreover, these elements of
 can create problems for parallel composition.Closing the sample space under limit makes such di�erences invisible. The reader interested inmore details is referred to Sections 9.3.3 and 9.5, and speci�cally to Examples 9.3.3 and 9.5.1.Example 9.3.2 (What t-exec identi�es) Figure 9-1 gives an example of two probabilistictime-enriched executions that are mapped to the same structure by t-exec(). We assume tohave two functions ! and !0 de�ned on the real numbers, and we denote by !d;d0 the trajectory!00 with domain [0; d0� d] such that for each t � d0� d, !00(t) = !(t� d). A similar notation isused for !0. 204

s0

ω0,1/4

ω0,1/8

ω1/2,1

ω1/4,1

ω1/8,1

ω

ω

ω

’

1,2

1,2

0,1
1

1

1

ω

ω

1

1

’0,1

2,3

ω0,1/21/2

1/2

1/4

1/8

1/2

3/4

7/81/8

1/4

ω1
’0,1

s0 ω0,1
1

1

1/2

1/2

1

1

1/2

1/2

ω2,3
1

1

1/2

1/2

ω1,2

ωω ω’ ’ ’0,1 0,1 0,1Figure 9-1: Probabilistic time-enriched executions that are mapped to the same structure.Truncation at the First Action. Let M be a probabilistic timed automaton, and let q bea �nite timed execution fragment of M . For each extended timed execution fragment � of Msuch that q � �, lettruncateq(�) 4= (� if no action occurs in �.qq a !0a1fstate(!1) if �.q = !0a1!1 � � � (9.12)Let H be a probabilistic time-enriched execution fragment of M , and let q be a pre�x ofthe start state of H . Then de�ne truncateq(t-exec(PH)) to be the probability space P where
 = truncateq(t-exec(
H)), F is the �-�eld generated by the cones of
, and P is the measuretruncateq(t-exec(PH)).Timed Transitions. A timed transition of M leaving from a state s is a pair (s;P) suchthat there is a probabilistic time-enriched execution fragment H of M starting in s, and P =truncates(t-exec(PH)).Probabilistic Timed ExecutionsA probabilistic timed execution fragment of a probabilistic timed automatonM , denoted by H ,consists of four components.1. A set states(H) � t-frag�(M) of states.2. A unique start state qH0 .3. An action signature sig(H) = sig(M).4. A transition relation trans(M) consisting of pairs (q;P) such that there exists a timedtransition (lstate(q);P 0) of M satisfying P = q a P 0. Observe that, from the discussion inSection 3.1.5, q a P 0 is well de�ned.Moreover, each state ofH is reachable, enables at most one transition, and enables one transitioni� it is a �nite timed execution fragment of M . A probabilistic timed execution of M is aprobabilistic timed execution fragment of M whose start state is a start state of M .An execution of H is a sequence of states ofH , � = q0q1 � � � ; such that for each i, qi+1 2
Hqi .As for the untimed case, there is a strong correspondence between the timed extended executionfragments of a probabilistic timed execution H of M and the executions of H . Speci�cally, let205

M be a probabilistic timed automaton and let H be a probabilistic timed execution fragmentof M . Let q0 be the start state of H . For each execution � = q0q1 � � � of H , let�# 4= limi qi; (9.13)where the limit is taken under pre�x ordering. It is immediate to observe that �# is a timedextended execution fragment of M . For each timed extended execution fragment � of M suchthat q0 � �, i.e., � = q0 a !0a1!1 � � �, let qi be q0 a !0a1!1 � � �aifstate(!i), and if �.q0 is a �nitesequence with n discrete actions, let qn+1 be �. Then let�"q0 4= q0q1q2 � � � : (9.14)It is immediate to observe that �"q0 is an execution of some probabilistic timed executionfragment of M . Moreover, the following proposition holds.Proposition 9.3.2 Let H be a probabilistic timed execution fragment of a probabilistic timedautomaton M . Then, for each execution � of H,(�#)"q0 = �; (9.15)and for each timed extended execution fragment � of M starting with q0,(�"q0)# = �: (9.16)EventsThe probability space PH associated with a probabilistic timed execution fragmentH is de�nedsimilarly to the untimed case. The set
0H the set of extended timed execution fragments ofM that correspond to complete executions of H , where an execution of H is complete i� it iseither in�nite or it leads to a state that does not enable any transition. The �-�eld F 0H is theminimum �-�eld that contains the class of cones of
0H . The measure P 0H is the unique measurethat extends the measure de�ned on cones as follows: if � = qH0 a !0a1!1a2 � � �an!n, thenP 0H [C�] = PHq0 [q1] � � �PHqn�1 [qn]PHqn [C�] (9.17)where for each i � n, qi = qH0 a !0a1!1 � � �anfstate(!i); if � = qH0 a !0a1!1a2 � � �an!n�, thenP 0H [C�] = PHq0 [q1] � � �PHqn�1 [qn]PHqn [�] (9.18)where for each i � n, qi = qH0 a !0a1!1 � � �anfstate(!i). Observe that although there areuncountably many cones in F 0H , every union of cones is expressible as a countable union ofdisjoint cones. Then, PH is the completion of P 0H .Finite Probabilistic Timed Executions, Pre�xes, Conditionals, and Su�xesFiniteness and pre�x are de�ned similarly to the untimed case, and thus we do not repeat thede�nitions here.Conditionals and su�xes di�er in a small detail concerning the start state. The readershould observe the similarity of these de�nitions to those for the untimed case. Also, observethat the properties of conditionals and su�xes (Propositions 9.3.3 and 9.3.4) are the same as206

for the untimed case. This is what allows us to extend the results for the untimed case directlyto the timed case.Let H be a probabilistic timed execution fragment of a probabilistic timed automaton M ,and let q be a pre�x of some state of H such that qH0 is a pre�x of q. Then H jq is a newprobabilistic execution fragment de�ned as follows:1. states(H jq) = fqg [fq0 2 states(H) j q � q0g;2. start(H jq) = fqg.3. for each state q0 of H jq di�erent from q, trH jqq0 = trHq0 .4. let �q be the maximum state of H that is a pre�x of q. Then, trH jqq = (q;PH�q jCq).H jq is called a conditional probabilistic timed execution fragment. We show later that H jq is aprobabilistic timed execution. Observe that (
H jq;FH jq; PH jq) and (
H jCq;FH jCq; PH jCq) arethe same probability space (cf. Section 3.1.8): the sample spaces are the same, the generatorsare the same, and the probability measures coincide on the generators. Thus, the followingproposition is true.Proposition 9.3.3 Let H be a probabilistic timed execution fragment of a probabilistic timedautomaton M , and let q be a pre�x of a state of H such that qH0 � q. Then, for each subset Eof
H jq,1. E 2 FH jq i� E 2 FH .2. If E is an event, then PH [E] = PH [Cq]PH jq[E].Let H be a probabilistic timed execution fragment of a probabilistic timed automatonM , andlet q be a pre�x of some state of H such that qH0 is a pre�x of q. Then H.q is a new probabilisticexecution fragment de�ned as follows:1. states(H.q) = fq0.q j q0 2 states(H jq)g;2. start(H jq) = flstate(q)g.3. for each state q0 of H.q, trH.qq0 = trH jqqaq0.q.H.q is called a su�x of H . It is easy to check that the probability spaces PH.q and PH jq arein a one-to-one correspondence through the measurable function f :
H.q !
H jq such thatfor each � 2
H.q, f(�) = q a �. The inverse of f is also measurable and associates �.q witheach timed execution � of
H jq. Thus, directly from Proposition 9.3.3, we get the followingproposition.Proposition 9.3.4 Let H be a probabilistic timed execution fragment of a probabilistic timedautomaton M , and let q be a pre�x of a state of H such that qH0 � q. Then, for each subset Eof
H.q,1. E 2 FH.q i� (q a E) 2 FH . 207

2. If E is an event, then PH [q a E] = PH [Cq]PH.q[E].We are left with showing that H jq is well de�ned. The proof of this apparently obvious fact isnot simple and contains several technical details.Proposition 9.3.5 Let H be a probabilistic timed execution fragment of a probabilistic timedautomaton M , and let q be a pre�x of a state of H such that qH0 � q. Then, H jq is a probabilistictimed execution fragment of M .Proof. We just need to verify that the transition leaving from state q in H jq is a timedtransition. Let �q be the maximum state of H that is a pre�x of q. Then, from the de�nitionof a timed transition, there is a probabilistic time-enriched execution fragment H�q of M suchthat PH�q = �q a truncate lstate(�q)(t-exec(PH�q)). From the de�nition of trH jqq , we need to �nd aprobabilistic time-enriched execution fragment Hq of M such that(�q a truncate lstate(�q)(t-exec(PH�q)))jCq = q a truncate lstate(q)(t-exec(PHq)): (9.19)Let q0 be q.�q. From the de�nition of �q, q0 is just one closed trajectory. Thus, if we build Hqsuch that(t-exec(PH�q))jCq0 = q0 a t-exec(PHq); (9.20)then Equation 9.19 follows easily using simple properties of truncate. Thus, the rest of thisproof is dedicated to the construction of an Hq that satis�es (9.20).Let q1; q2; : : : be an enumeration of the minimal states q00 of H such that q0 � t-exec(q00).We distinguish two cases.1. For each i, t-exec(qi) = q0.The construction for Hq in this case is carried out in the proof of Proposition 9.3.8 (cf.Equation 9.29). We give a forward pointer to avoid too many technical details at thispoint.2. There is an i such that q0 < t-exec(qi).We prove this case by reducing the problem to the previous case. That is, we build a newprobabilistic time-enriched execution fragment H 0�q such that t-exec(PH�q) = t-exec(PH 0�q)and such that the minimal states q00 of H 0�q such that q0 � t-exec(q00) satisfy q0 = t-exec(q0).Recall �rst that q0 is a trajectory whose domain is [0; d] for some d > 0. De�ne acollection of �nite time-enriched execution fragments q01; q02; � � � as follows: for each i, ift-exec(qi) = q0 then q0i = qi; otherwise, represent qi as �qi a lstate(�qi)di!i, where �qi isa state of H�q, and let q0i be �qi a lstate(�qi)di;1!i;1di;2!i;2di;3!i;3 where !i = !i;1!i;2!i;3,t-exec(�qi a lstate(�qi)di;1!i;1di;2!i;2) = q0, and the actions di;1 and di;2 are chosen in such away that for each i �qi a lstate(�qi)di;1!i;1 is not a pre�x of any of the q0j 's, j 6= i. In otherwords, we split all the qi's in such a way that a state that corresponds to q0 is reachedalways and such that none of the states of H�q are identi�ed. Then,states(H 0�q) = fq00 j 9iq00 � q0ig (9.21)[[i fq0i a (q00.qi) j q00 2 states(H�q); qi < q00g! :208

The transition relation of H 0�q is obtained from the transition relation of H�q by schedulingthe same time-enriched transitions of M as before except for the states �qi where theintermediate transitions leading to the q0i's are scheduled. It is simple to check that H 0�qsatis�es the desired properties.9.3.3 Probabilistic Executions versus Probabilistic Timed ExecutionsIn this section we show the relationship between probabilistic executions, probabilistic time-enriched executions, and probabilistic timed executions. The main idea is that they all repre-sent the same structures with di�erent levels of detail. We show that a probabilistic executionis a sampling of a probabilistic time-enriched execution, where the information given by thetrajectories is lost. Conversely, we show that each probabilistic time-enriched execution issampled by some probabilistic execution. We show that each probabilistic time-enriched exe-cution represents a probabilistic timed execution and that each probabilistic timed executionis represented by some probabilistic time-enriched execution. Essentially, a probabilistic time-enriched execution is a probabilistic timed execution with the additional information of whattime-passage transitions are scheduled. Finally, we de�ne an equivalence relation on probabilis-tic time-enriched executions that captures the idea of representing the same probabilistic timedexecution. This equivalence relation will be useful for parallel composition.Probabilistic Executions versus Probabilistic Time-Enriched ExecutionsThere is a close relationship between the probabilistic executions of a probabilistic timed au-tomaton and its probabilistic time-enriched executions. Informally, a probabilistic time-enrichedexecution contains more information than a probabilistic execution because it associates a statewith every real time rather than with a countable set of times. In other words, a probabilisticexecution can be seen as a sampling of a probabilistic time-enriched execution at countablymany points. In later chapters we will see that probabilistic executions are su�cient for thestudy of the properties of a system whenever such properties do not depend on the actual statesthat are reached at each time. For the moment we just de�ne what it means for a probabilisticexecution to sample a probabilistic time-enriched execution, and we show that each probabilistictime-enriched execution is sampled by some probabilistic execution and that each probabilisticexecution samples some probabilistic time-enriched execution. We start by de�ning a func-tion sample that applied to a probabilistic time-enriched execution H of a probabilistic timedautomaton M gives a probabilistic execution H 0 of M , which by de�nition samples H .Let � = !0a1!1a2!2 � � � be a time-enriched execution of a probabilistic timed automatonM , and let sample(�) be the sequence �0 = lstate(!0)a1lstate(!1)a2lstate(!2) � � �. Then, it iseasy to check that �0 is an execution of M . We say that �0 samples �. De�nestates(H 0) 4= sample(states(H)): (9.22)Let (q;P) be a transition ofH . De�ne sample on
 as follows: sample((a; q0)) = (a; sample(q0)),and sample(�) = �. Then, de�ne the transition sample((q;P)) to besample((q;P)) 4= (sample(q); sample(P)): (9.23)209

For each state q of H 0, let sample�1(q) be the set of states q0 of H such that sample(q0) =q. Observe that all the states of sample�1(q) are incomparable under pre�x. For each q0 2sample�1(q), let�psample�1(q)q0 4= PH [Cq0]Pq002sample�1(q) PH [Cq00] : (9.24)Then, the transition enabled from q in H 0 is de�ned to betrH 0q 4= Xq02sample�1(q) �psample�1(q)q0 sample(trHq0): (9.25)Observe the similarity of Equations (9.24) and (9.25) with the equations that the �ne theprojection of a probabilistic execution (cf. Equations (4.21) and (4.22)).Proposition 9.3.6 below shows that H 0 is a probabilistic execution of M . We say that H 0samples H . Then, Proposition 9.3.7 shows that each probabilistic execution samples someprobabilistic time-enriched execution.Proposition 9.3.6 For each probabilistic time-enriched execution H of a probabilistic timedautomaton M , sample(H) is a probabilistic execution of M .Proof. Let H 0 denote sample(H). The fact that each state of H 0 is reachable can be shownby a simple inductive argument; the fact that each state of H 0 is a �nite execution fragment ofM follows from a simple analysis of the de�nition of sample and of a time-enriched execution.We need to check that for each state q of H 0 the transition enabled from q in H 0 is generatedby a combined transition of M . From (9.25), it is enough to show that for each state q0 ofsample�1(q) the transition sample(trHq0) is generated by a combined transition of M .Since H is a probabilistic time-enriched execution of M , then there is a time-enrichedtransition (lstate(q0);P) of M such that PHq0 = q0 a P . From the de�nition of sample and thede�nition of a time-enriched transition, (lstate(q); sample(P)) is a combined transition of M ,and sample(PHq0) = sample(q0) a sample(P), which means that sample(PH 0q) = q a sample(P).This is enough to conclude.Proposition 9.3.7 Let H be a probabilistic execution of a probabilistic timed automaton M .Then there is a probabilistic time-enriched execution H 0 of M such that H = sample(H 0).Proof. We build H 0 inductively in such a way that for each state q of H there is exactly onestate q0 of H 0 in sample�1(q). The start state of H 0 is the same as the start state of H .Suppose that the transition relation of H 0 is de�ned for each state of length at most i� 1and assume that for each state q of H of length at most i there is exactly one state q0 of H 0 insample�1(q). Let q be a state of H of length i and let q0 be the state of sample�1(q). Observefrom the de�nition of sample that the length of q0 is i. Let (lstate(q);P) be the combinedtransition of M that corresponds to trHq . For each pair (a; s) of
, if a is a discrete action,then let P(a;s0) be D((a; s0)); if a is a time-passage action, then let P(a;s0) be D(wa;s0), wherewa;s0 2 trajectories(M; s; a; s0). Let P 0 =P(a;s)2
 P [(a; s)]P(a;s). Then, (lstate(q);P 0) is a time-enriched transition of M . Let trH 0q0 be (q0; q0 a P 0). Then, trH 0q0 is a legal transition for H 0.Moreover, from the de�nition of P 0, each state of PHq is the sampling of exactly one state ofPH 0q0 , and, vice versa, the sample of each state of PH 0q0 is a state of PHq .210

Probabilistic Time-Enriched Executions versus Probabilistic Timed ExecutionsWe de�ne a function t-sample that, given a probabilistic time-enriched execution fragment Hof M , builds a probabilistic timed execution H 0 as follows.states(H 0) = ft-exec(qH0) [(9.26)fq 2
t-exec(H) j q contains �nitely many actionsg [fq 2 t-frag�(M) j ltraj (q) is a [0,0]-trajectory and 9q02
t-exec(H)q � q0g:The start state of H 0 is t-exec(qH0), and for each state q of H 0 the transition enabled from q is(q; truncateq(t-exec(PH)jCq)).Proposition 9.3.8 t-sample(H) is a probabilistic timed execution fragment of M .Proof. We need to show that for each state q of H 0 that enables some transition there isa probabilistic time-enriched execution fragment Hq of M starting from lstate(q) such thatPHq = truncate lstate(q)(t-exec(PHq)).Let q1; q2; : : : be an enumeration of the states q0 of H such that t-exec(q0) = q, and for eachi let pi denote PH [Cqi]. Observe that, since q ends with the occurrence of a discrete action,for each state q00 of H such that q0 � t-exec(q00) there is an i such that qi � q00. De�ne Hq asfollows.states(Hq) 4= [i states(H.qi): (9.27)For each state q0 of Hq, lettrHqq0 4= Pijq02states(H.qi) PH [Cqiaq0](trHqiaq0.qi)Pijq02states(H.qi) PH [Cqiaq0] : (9.28)Then, it is enough to prove thatq a t-exec(PHq) = t-exec(PH)jCq: (9.29)Before proving (9.29), we show the following property: for each state q0 of Hq,PHq [Cq0] = Pijq02states(H.qi) PH [Cqiaq0]Pi PH [Cqi] : (9.30)This follows easily by induction using Equation (9.28) for the inductive step. The denominatoris necessary for the base case to work.We now turn to Equation (9.29). Consider an extended timed execution fragment � of M ,and distinguish the following two cases.1. � does not end with an open trajectory.Suppose that � 2
t-exec(PH)jCq . Then, from the de�nition of t-exec() and of the con-ditional operation, q � � and there is a time-enriched execution �0 of
H such thatt-exec(�0) = �. This means that there is a time-enriched execution �0 of
H such thatt-exec(�0) = � and there is a state qi of H such that qi � �0. From the construction ofHq, each pre�x of �0 is a state of Hq, and thus �0 2
t-exec(Hq). The argument can bereversed. 211

2. � ends with an open trajectory.Suppose that � 2
t-exec(PH)jCq . Then, from the de�nition of t-exec() and of the condi-tional operation, q � � and for each �nite pre�x �0 of � there is a timed execution �00of t-exec(
H) such that �0 � �00. It is su�cient to show that for each �nite pre�x �0of � there is a timed execution �00q of t-exec(
Hq) such that �0 � (q a �00q). Consider apre�x �0 of �, and let �00 be an element of t-exec(
H) such that �0 � �00. Then there isa time-enriched execution �000 of
H such that �0 � t-exec(�000), which means that thereis a �nite pre�x �0000 of �000 such that �0 � t-exec(�000) and q � t-exec(�000). Let qi bethe pre�x of �0000. We know that such pre�x exists. Then, from the de�nition of Hq,�0000.qi is a state of Hq, and thus there is a time-enriched execution �0q of
Hq such that�0 � (q a t-exec(�0q)). Moreover, t-exec(�0q) 2 t-exec(PHq), which is su�cient to conclude.The argument can be reversed.Finally, we need to show that Pt-exec(PH)jCq and Pt-exec(PHq) coincide on the cones of their samplespaces. Thus, consider a �nite timed execution fragment � ofM . From the de�nition of t-exec(),Pt-exec(PHq)[C�] = Xq02min(fq02states(Hq)j��t-exec(q0)g)PHq [Cq0]: (9.31)From (9.30),Pt-exec(PHq)[C�] = Xq02min(fq02states(Hq)j��t-exec(q0)g)Pijq02states(H.qi) PH [Cqiaq0]Pi PH [Cqi] : (9.32)From the de�nition of the states of Hq, (9.32) can be rewritten intoPt-exec(PHq)[C�] = PiPq02min(fq02states(H.qi)jqa��t-exec(qiaq0)g)PH [Cqiaq0]Pi PH [Cqi] : (9.33)By simplifying the concatenations we obtainPt-exec(PHq)[C�] = Pq02min(fq02states(H)jqa��t-exec(q0)g) PH [Cq0]Pi PH [Cqi] : (9.34)From the de�nition of t-exec(), the de�nition of a conditional space, and the de�nition of theqi's, Pt-exec(PH)jCq [C�] = Pq02min(fq02states(H)jqa��t-exec(q0)g) PH [Cq0]Pi PH [Cqi] : (9.35)Since the right sides of Equations (9.34) and (9.35) are the same, we conclude thatPt-exec(PHq)[C�] = Pt-exec(PH)jCq [Cqa�]: (9.36)This completes the proof.Conversely, we show that every probabilistic timed execution of M is sampled by some proba-bilistic time-enriched execution of M . Let H be a probabilistic timed execution of M . Then,build H 0 as follows. Let H0 be a probabilistic timed execution consisting of a single state that212

is t-sampled by qH0 , i.e., t-sample(qH00) = qH0 . Strictly speaking H0 is not a probabilistic timedexecution because qH00 should enable a transition in general. Suppose now that Hi is de�ned.Then build Hi+1 be extending the transition relation of Hi from all the states of Hi that donot end in � and do not have any outgoing transition as follows. Consider a state q of Hi thatdo not end in � and do not have any outgoing transition, and let q0 be the state of H suchthat t-exec(q) = q0 (our construction ensures that there is always such a state since q ends witha [0; 0]-trajectory). From the de�nition of a probabilistic timed execution fragment, there isa probabilistic time-enriched execution fragment Hq0 of M starting from lstate(q0) such thatPHq0 = truncate lstate(q0)(t-exec(PHq0)). Let H 0q0 be obtained from Hq0 by removing all the tran-sitions from states where an action has occurred and by removing all the states that becomeunreachable. Then, extend Hi from q0 with q0 a H 0q0 , i.e., Hi+1.q0 = H 0q0 .Then the states of H 0 are the union of the states of the Hi's, the start state of H 0 is qH00 ,and for each state q of H 0, if q is a state of Hi, then trH 0q = trHi+1q .Proposition 9.3.9 t-sample(H 0) = H.Proof. We prove that PH = t-exec(PH 0). Then the equality between t-sample(H 0) andH follows by induction after observing that t-sample(H 0) and H have the same start stateand that for each state q, stept-sample(H 0)q = (q; truncateq(t-exec(PH 0)jCq)), and that stepHq =(q; truncateq(PH jCq)).For the sample spaces, consider an element � of
H . Then, by de�nition of
H , there is anexecution �0�1 � � � of H such that limi �i = �, and such that either � is not a �nite execution,or the last element of � ends in �. We distinguish two cases.1. � is either an in�nite sequence or a �nite sequence �0�2 � � ��n where �n ends with �.From the de�nition of the transition relation of H 0, there is a sequence of extended time-enriched execution fragments q0; q1; : : : such that for each i �i = t-exec(q0 a � � � a qi),q0 a q1 a � � � is an element of
H 0 , and t-exec(q0 a q1 a � � �) = �. Thus, � 2
t-exec(H 0). Theconverse argument is a reversal of the argument above.2. � = �0�2 � � ��n where �n ends with an open trajectory.From the de�nition of the transition relation of H 0, there is a sequence of extendedtime-enriched execution fragments q0; q1; : : : ; qn�1 such that for each i � n � 1 �i =t-exec(q0 a � � � a qi) and q0 a � � � a qi is a state of H 0. Furthermore, for each �nite pre�x�0 of � there is a time-enriched execution fragment qn such that �0 � t-exec(q0 a � � �a qn)and q0 a � � � a qn�1 a qn is an element of
H 0. This means that for each �nite pre�x �0 of� there is an element �00 of t-exec(
H 0) such that �0 � �00, and thus � 2
t-exec(PH0). Theargument can be reversed.Consider now a cone C�. From the de�nition of t-exec(),Pt-exec(H 0)[C�] = Xq2min(fq2states(H 0)j��t-exec(q)g)PH 0 [Cq]: (9.37)If C� is not empty, then � = �1 � � ��n, where �n = �, �0 � � ��n�1 is an execution of H , andthere is a �0n such that �n � �0n and �1 � � ��0n is an execution of H . We show by induction on213

n thatPH [C�n] = Xq2min(fq2states(H 0)j��t-exec(q)g)PH 0 [Cq]: (9.38)The base case is trivial since C�0 denotes the whole sample space. For the inductive case, fromthe de�nition of the probability of a cone,PH [C�n] = PH [C�n�1]PH�n�1 [C�n]: (9.39)From the de�nition of the transition relation of H ,PH�n�1 [C�n] = Pq2states(H 0)jt-exec(q)=�n�1 PH 0 [Cq]Pt-exec(H 0.q)[C�n.�n�1]Pq2states(H 0)jt-exec(q)=�n�1 PH 0 [Cq] ; (9.40)wherePt-exec(H 0.q)[C�n.�n�1] = Xq02min(fq02states(H 0.q)j�n�t-exec(qaq0)g)PH 0.q[Cq0]: (9.41)Since �n�1 is a state of H , the last trajectory of �n�1 has domain [0; 0], and the set fq 2states(H 0) j t-exec(q) = �n�1g is a set of minimal states. Thus, by substituting (9.41) in (9.40),simplifying the numerator of (9.40), we obtainPt-exec(H 0.q)[C�n.�n�1] = Pq02min(fq02states(H 0)j�n�t-exec(q0)g)PH 0 [Cq0]Pq2states(H 0)jt-exec(q)=�n�1 PH 0 [Cq] : (9.42)By substituting (9.42) in (9.39), using induction and simplifying algebraically, we get (9.38).Equivalent Probabilistic Time-Enriched ExecutionsIt is possible to de�ne an equivalence relation on probabilistic time-enriched executions thatcaptures exactly the probabilistic timed executions that they represent.Let H1 and H2 be two probabilistic time-enriched execution fragments of a probabilistictimed automaton M . Then t-exec(PH1) and t-exec(PH2) are said to be equivalent , denoted byt-exec(PH1) � t-exec(PH2), i�1. for each timed extended execution fragment � ofM that does not contain in�nitely manydiscrete actions, � 2
t-exec(PH1) i� � 2
t-exec(PH2);2. for each �nite timed extended execution fragment � of M ,Pt-exec(PH1)[C�] = Pt-exec(PH2)[C�].H1 and H2 are said to be equivalent , denoted by H1 � H2, i� t-exec(qH10) = t-exec(qH20) andt-exec(PH1) � t-exec(PH2).Example 9.3.3 (Two equivalent probabilistic time-enriched executions) In the de�-nition above we do not require the sample spaces of the given probabilistic time-enriched ex-ecution fragments to contain the same timed executions with in�nitely many discrete actions.Figure 9-2 shows an example of two probabilistic time-enriched executions whose correspondingsample spaces di�er from a timed execution with in�nitely many discrete actions and such that214

s0

ω0,1/4

ω0,1/8

ω0,1/21/2

1/2

ω

ω

a

a
2,2

2,2 ω

ω

1

1

’0,1

2,3 ω1
’0,1

ω1/2,1

ω1/4,1

ω1/8,1

ω1,1
a

1/4

1/8

1/8

1/4

ωa
3,3

ω

ω

ω

’

1,2

1,2

0,1
1

1

1

ω

ω1,1

1,1
a

a

1/2

3/4

7/8

s0 ω0,1
1 ωa

1,1 ωa
2,2 ωa

3,3
1

1

1/2

1/2

ω1,2
1

1

1/2

1/2

ω2,3

1

1/2

1/2

ωωω’ ’ ’0,1 0,1 0,1Figure 9-2: Probabilistic time-enriched executions that represent the same probabilistic timedexecution.t-sample() gives the same probabilistic timed execution. The important aspect of this exampleis that in the upper probabilistic time-enriched execution the explicit time-passage actions areused to let 1 time unit elapse in in�nitely many di�erent ways. However, the trajectory thatis spanned before the �rst occurrence of action a is always the same. Observe that the factthat the two probabilistic time-enriched executions of Figure 9-2 represent the same structureis not a consequence of the limit closure of the sample space of t-exec(), since t-exec(
H1) andt-exec(
H2) do not di�er in timed executions that end with an open trajectory. Rather, byanalyzing this example again in the context of parallel composition we will discover the reasonfor our de�nition of t-exec() (cf. Example 9.5.1).The rest of this section is dedicated to showing that � characterizes the probabilistic timedexecutions represented by probabilistic time-enriched executions. We do it by showing tworesults: the �rst result says that two equivalent probabilistic time-enriched executions describethe same probabilistic timed execution, and the second result says that for each probabilistictime-enriched execution H , Pt-sample(H) � t-exec(PH).Proposition 9.3.10 If t-exec(H1) � t-exec(H2), then t-sample(H1) = t-sample(H2).Proof. Let q 2 states(t-sample(H1)). If q = t-exec(qH10) or q 2
t-exec(H1) and contains �nitelymany discrete actions, then q 2 states(t-sample(H2)) trivially. Thus, suppose that ltraj (q) is a[0,0]-trajectory and that there is a q0 2
t-exec(H1) such that q � q0. Then, Pt-exec(H1)[Cq] > 0,and, since t-exec(H1) = t-exec(H2), Pt-exec(H2)[Cq] > 0. Thus, there is a q00 2
t-exec(H2) suchthat q � q00, which means that q 2 states(t-sample(H2)). The converse argument is identical.Consider now a state q of t-sample(H1) and t-sample(H2). We need to show that tr t-sample(H1)qand tr t-sample(H2)q are the same transition. From the de�nition of t-sample(), it is enough to showthat truncateq(t-exec(PH1)jCq) = truncateq(t-exec(PH2)jCq). Since t-exec(PH1) � t-exec(PH2),215

a direct analysis of the de�nition of t-exec() shows that t-exec(PH1)jCq � t-exec(PH2)jCq. Thetruncation operation is independent of the elements of
 that contains in�nitely many discreteactions, and thus
truncateq(t-exec(PH1)jCq) =
truncateq(t-exec(PH2)jCq). Furthermore, directly fromthe de�nition of �, Ptruncateq(t-exec(PH1)jCq) and Ptruncateq(t-exec(PH2)jCq) coincide on the cones,and thus truncateq(t-exec(PH1)jCq) = truncateq(t-exec(PH2)jCq).Proposition 9.3.11 Let H be a probabilistic time-enriched execution of a probabilistic timedautomaton M . Then, Pt-sample(H) � t-exec(PH).Proof. Consider a �nite timed execution � of M . We prove the proposition in three steps.1. For each �nite timed extended execution � of M , there is a timed extended execution �0of
t-sample(H) such that � � �0 i� there is a timed extended execution �00 of
t-exec(PH)such that � � �00.Let �0 2
t-sample(H) such that � � �0. Then there is a complete execution q0q1 � � � oft-sample(H) such that limiqi = �0. In particular, there is a value n such that � � qn.From the de�nition of the transition relation of t-sample(H), Pt-exec(H)[Cqn] > 0, and thusthere is a timed execution �00 of
t-exec(PH) such that qn � �00, which means that � � �00.Conversely, suppose that there is a timed execution �00 of
t-exec(PH) such that � � �00. If�00 contains �nitely many actions, then �00 2
t-sample(H) by de�nition. Otherwise, thereis a �nite pre�x �000 of �00 such that � � �000 and the last trajectory of �000 has domain[0; 0]. From the de�nition of t-sample(H), �000 is a state of t-sample(H), and thus thereis a timed execution �0 of
t-sample(H) such that �000 � �0, which means that � � �0.2. For each timed extended execution fragment � ofM that does not contain in�nitely manydiscrete actions, � 2
t-sample(H) i� � 2
t-exec(PH).Let � be a timed extended execution of M that does not contain in�nitely many discreteactions, and suppose that � 2
t-sample(H). If � ends with �, then Item 1 is su�cientto conclude that � 2
t-exec(PH). If � does not end with �, then there is a �nite execu-tion q0q1 � � �qn of t-sample(H) such that qn ends with a right-open trajectory. From thede�nition of the transition relation of t-sample(H), qn 2 truncateqn�1(t-exec(PH)jCqn�1).Since qn ends with an open trajectory, qn 2
t-exec(PH), i.e., � 2
t-exec(PH).Conversely, suppose that � 2
t-exec(PH). If � ends with �, then Item 1 is su�cient toconclude that � 2
t-sample(H). If � does not end with �, then there is a �nite pre�x �0 of �such that �.�0 does not contain any action, and either �0 is the start state of t-sample(H),or the last trajectory of �0 has domain [0; 0]. Thus, from the de�nition of t-sample(), �0 isa state of t-sample(H). From the de�nition of truncate, � 2 truncate�0(t-exec(PH)jC�0),and thus, from the de�nition of the transition relation of t-sample(H), � 2
t-sample(H)�0 .Since � ends with an open trajectory, � 2
t-sample(H).3. For each �nite timed extended execution fragment � of M ,Pt-sample(H)[C�] = Pt-exec(PH)[C�].Let � be a �nite timed execution. From Item 1, Ct-sample(H)� = ; i� Ct-exec(PH)� = ;.Suppose that Ct-sample(H)� is not empty. Then there is an execution of t-sample(H),216

�0�1 � � ��n�1�n such that �n�1 < � � �n. From the de�nition of the probability of acone, Pt-sample(H)[C�] = P�0 [C�1]P�1 [C�2] � � �P�n�2 [C�n�1]P�n�1 [C�]: (9.43)From the de�nition of t-sample(H), for each i < nP�i [C�i+1] = Pt-exec(H)jC�i [C�i+1]: (9.44)Thus, by substituting (9.44) in (9.43) and simplifying, we obtainPt-sample(H)[C�] = Pt-exec(H)[C�]: (9.45)This completes the proof.9.4 MovesIn the non-timed framework we have introduced the notion of a weak transition to abstractfrom internal computation. Informally, a weak transition is obtained by concatenating severalinternal and external transitions so that overall the system emulates a unique transition labeledwith at most one external action. In the timed framework, due to the presence of explicittime-passage actions, it may be the case that some time t cannot elapse without performingsome internal transitions in the middle. This problem becomes more evident when we extendthe simulation relations to the timed framework (cf. Chapter 12). For this reason we introducethe concept of a move, which extends weak transitions and abstracts from internal transitionsinterleaved with time-passage transitions..Let M is a probabilistic timed automaton, s be a state of M , P be a discrete probabilitydistribution over states of M , and a be an action of M or the value 0. If a is a visible action ofM then we use the expression s a; P to denote s a=) P ; if a = 0, then we use the expressions 0; P to denote s ; P , which is the same as s =) P ; if a is a time-passage action, i.e.,a = d for some d 2 <+, then we use the expression s d; P to denote that P is reached from sby means of several internal and time-passage transitions so that in each situation time d haselapsed. Formally, s d; P i� there is a probabilistic execution fragment H such that1. the start state of H is s;2. PH [f�� j �� 2
Hg] = 1, i.e., the probability of termination in H is 1;3. for each �� 2
H , t-trace(�) = t-trace(a);4. P = lstate(�-strip(PH)), where �-strip(PH) is the probability space P 0 such that
0 =f� j �� 2
Hg, and for each � 2
0, P 0[�] = PH [C��];The notion of a generator for a weak transition can be extended to moves in a straightforwardway. 217

9.5 Parallel CompositionThe parallel composition operator for probabilistic timed automata is exactly the same as theparallel composition operator for probabilistic automata. Thus, we omit the formal de�nition.According to the de�nition of the transition relation of M1kM2, M1 and M2 synchronize onall their time-passage transitions, and thus time advances always at the same speed in M1 andM2.The de�nition of a projection of a probabilistic time-enriched execution is the same as thede�nition of a projection of a probabilistic execution, except that the states of a probabilistictime-enriched execution fragment are time-enriched execution fragments rather than ordinaryexecution fragments. Thus, we need to extend the de�nition of a projection to time-enrichedexecution fragments and time-enriched transitions.Let M be M1kM2, and let � be a time-enriched execution of M . The projection of � ontoMi, i = 1; 2, is the sequence obtained from � by projecting the codomain of each trajectoryontoMi, by removing all the actions not in acts(Mi), and by concatenating all the trajectorieswhose intermediate actions are removed. It is straightforward to check that � is a time-enrichedexecution of Mi.Let H be a probabilistic time-enriched execution of M , and let tr = (q;P) be an actionrestricted transition of H such that only actions of Mi, i = 1; 2, appear in tr . De�ne theprojection operator on the elements of
 as follows: (a; q0)dMi = (a; q0dMi), and �dMi = �.The projection of tr onto Mi, denoted by trdMi, is the pair (qdMi;PdMi).Proposition 9.5.1 Let M = M1kM2, and let H be a probabilistic time-enriched executionfragment of M . Then HdM1 2 t-prexec(M1) and HdM2 2 t-prexec(M2).Proof. The structure of the proof is the same as the proof of Proposition 4.3.4. This time it isnecessary to observe that for each state q of H the transition (trHq0 � acts(M1))dM1 is generatedby a time-enriched transition of Mi.Proposition 9.5.2 Let M = M1kM2, and let H be a probabilistic time-enriched executionfragment of M . Let Hi be HdMi, i = 1; 2. Let q be a state of Hi. Then,PHi [Cq] = Xq02min(qeH)PH [Cq0]: (9.46)Proof. This proof has the same structure as the proof of Proposition 4.3.5.In the rest of this section we extend the results of Section 9.3.3 to account for parallel com-position. We show that sample commutes with projections and that the projections of twoequivalent probabilistic time-enriched executions are equivalent. The �rst result guaranteesthat sample and projection are well de�ned for probabilistic time-enriched executions; the sec-ond result allows us to de�ne indirectly a projection operator on probabilistic timed executions:namely, given a probabilistic timed execution H of M1kM2, let H 0 be any probabilistic time-enriched execution of M1kM2 such that t-sample(H 0) = H . Then, HdMi is de�ned to bet-sample(H 0dMi). Before proving these two results, we show why in the de�nition of t-exec()we force probabilistic time-enriched executions like those of Figure 9-1 to be mapped to thesame structure (cf. Example 9.3.2). 218

Example 9.5.1 (Reason for the de�nition of t-exec) We have already seen that the prob-abilistic time-enriched executions of Figure 9-2 are t-samples of the same probabilistic timedexecution. Suppose now the probabilistic time-enriched executions of Figure 9-2 to be proba-bilistic time-enriched executions of the parallel composition of two probabilistic timed automataM1 and M2, and suppose that a is an action of M2 only. By projecting the probabilistic time-enriched executions of Figure 9-2 ontoM1 we obtain two probabilistic time-enriched executionslike those of Figure 9-1, which must denote the same probabilistic timed execution if we wantt-sample to be preserved by the projection operation.Proposition 9.5.3 Let M be M1kM2, and let H be a probabilistic time-enriched execution ofM . Then, sample(HdMi) = sample(H)dMi.Proof. Since the sampling function commutes with the projection function, sample(HdMi)and sample(H)dMi have the same states.For convenience, denote sample(H) by H 0. Let q be one of the states of sample(H)dMi.Below we show that the equation for the transition leaving from q in sample(H)dMi and theequation for the transition leaving from q in sample(HdMi) denote the same transition. Thisis su�cient to show that sample(H)dMi and sample(HdMi) have the same transition relation.We use implicitly the fact that the projection onto Mi distributes over the sum of transitionsrestricted to acts(Mi).From (9.25), Proposition 4.3.2, and an algebraic simpli�cation, the expressionXq02qeH 0 �pqeH 0q0 PH 0q0 [acts(Mi)](trH 0q0 � acts(Mi))dMi (9.47)can be rewritten intoXq02qeH 0 Xq002sample�1(q0) �pqeH 0q0 �psample�1(q0)q00 sample(trHq00 � acts(Mi))dMi; (9.48)which becomesXq002sample�1(qeH 0) �pqeH 0sample(q00)�psample�1(sample(q00))q00 sample(trHq00 � acts(Mi))dMi; (9.49)after grouping the two sums.Denote HdMi by H 00. From (4.22), Proposition 4.3.2, and an algebraic simpli�cation,Xq02sample�1(q) �psample�1(q)q0 sample(trH 00q0) (9.50)can be rewritten intoXq02sample�1(q) Xq002q0eH �psample�1(q)q0 �pq0eHq00 PHq00 [acts(Mi)]sample(trHq00 � acts(Mi))dMi; (9.51)which becomesXq002(sample�1(q))eH �psample�1(q)q00dMi �p(q00dMi)eHq00 PHq00 [acts(Mi)]sample(trHq00 � acts(Mi))dMi (9.52)219

after grouping the two sums.From the commutativity of sample and projection, sample�1(qeH 0) = sample�1(q)eH .Thus, in order to show that (9.49) and (9.52) denote the same transition, it is su�cient toshow that for each state q00 of sample�1(qeH 0),�pqeH 0sample(q00)�psample�1(sample(q00))q00 = �psample�1(q)q00dMi �p(q00dMi)eHq00 : (9.53)By expanding the expressions above with their de�nitions, (9.53) becomesPH 0 [Csample(q00)]PH [Cq00](P�q02min(qeH 0) PH 0 [C�q0])(P�q002sample�1(sample(q00)) PH [C�q00]) (9.54)= PH 00 [Cq00dMi]PH [Cq00](P�q02sample�1(q) PH 00 [C�q0])(P�q002min((q00dMi)eH) PH [C�q00]) :By simplifying common subexpressions, using Proposition 4.3.5, and observing thatPH 0 [Csample(q00)] = X�q002sample�1(sample(q00))PH [C�q00]; (9.55)(we have veri�ed properties like (9.55) several times) Equation (9.54) becomesX�q02min(qeH 0)PH 0 [C�q0] = X�q02sample�1(q)PH 00 [C�q0]; (9.56)which can be shown as follows:X�q02min(qeH 0)PH 0 [C�q0]= X�q02min(qeH 0) Xq002sample�1(�q0)PH [Cq00]= Xq002min(sample�1(qeH 0))PH [Cq00]= Xq002min((sample�1(q))eH)PH [Cq00]= X�q02sample�1(q) Xq002min(�q0eH)PH [Cq00]= X�q02sample�1(q)PH 00 [C�q0];where the �rst step follows from (9.55), the second and fourth steps follow from grouping andungrouping sums, the third step follows from the commutativity of sample and projection, andthe �fth step follows from Proposition 4.3.5.Proposition 9.5.4 Let H1 and H2 be two probabilistic time-enriched executions of M1kM2. IfH1 � H2, then H1dMi � H2dMi, i = 1; 2. 220

Proof. We show �rst that t-exec(PH1dMi) and t-exec(PH2dMi) assign the same probabilitiesto the same cones; then we show that the sample spaces of t-exec(PH1dMi) and t-exec(PH2dMi)satisfy the condition for �. This part of the proof relies on the way we have de�ned the samplespaces of the objects produced by t-exec(). For the cones, we show that for each �nite timedextended execution � of Mi,Pt-exec(PH1dMi)[C�] = X�02min(f�02t-frag��(M1kM2)j�=�0dMig)Pt-exec(H1)[C�0]: (9.57)and Pt-exec(PH2dMi)[C�] = X�02min(f�02t-frag��(M1kM2)j�=�0dMig)Pt-exec(H2)[C�0]: (9.58)Then, since H1 � H2, we conclude that the right sides of (9.57) and (9.58) are equal, and thus,H1dMi � H2dMi. We prove only (9.57); the proof for (9.58) is symmetric. From the de�nitionof t-exec(),Pt-exec(PH1dMi)[C�] = Xq2min(fq2states(H1dMi)j��t-exec(q)g)PH1dMi[Cq]: (9.59)From (4.31),Pt-exec(PH1dMi)[C�] = Xq2min(fq2states(H1dMi)j��t-exec(q)g)0@ Xq02min(qeH1)PH1 [Cq0]1A : (9.60)Consider a state q of min(fq 2 states(H1dMi) j � � t-exec(q)g) and a state q0 of min(qeH1).Then, from the de�nition of t-exec(), there is at least one �0 2 t-frag��(M1kM2) such that� = �0dMi and q0 2 min(fq0 2 states(H1) j �0 � t-exec(q0)g). Moreover, there is exactlyone minimum �0. Conversely, consider one �0 2 min(f�0 2 t-frag��(M1kM2) j � = �0dMig),and consider a state q0 of min(fq0 2 states(H1) j �0 � t-exec(q0)g). Let q = q0dMi. Then,q0 2 min(qeH1) and q is a state of min(fq 2 states(H1dMi) j � � t-exec(q)g). Thus, from (9.60)we obtain (9.57).We now move to the sample spaces. Let � be an element of
t-exec(PH1dMi) that does notcontain in�nitely many discrete actions. If � ends with �, then � is trivially an element of
t-exec(PH2dMi) since Pt-exec(PH2dMi)[C�] = Pt-exec(PH2dMi)[C�] > 0. Otherwise, � ends with anopen trajectory. Then, from the de�nition of
t-exec(PH1dMi), for each �nite pre�x �0 of � thereis an element �1 of t-exec(
H1dMi) such that �0 � �1. It is enough to show that for each �nitepre�x �0 of � there is also an element �2 of t-exec(
H2dMi) such that �0 � �2.Let �0 be a �nite pre�x of � such that there is an element �1 of t-exec(
H1dMi) such that�0 � �1. Thus, there is a time-enriched execution �01 of
H1dMi such that �0 � t-exec(�01).This means that there is a state q1 of H1dMi such that �0 � t-exec(q1). From the de�nitionof projection, there is a state q01 of H1 such that �0 � t-exec(q01dMi), and thus there is a timedexecution �001 of t-exec(
H1) such that �0 � (�001dMi). Consider a �nite pre�x �0001 of �001 suchthat �0 � (�0001 dMi). Then, Pt-exec(PH1)[C�0001] > 0. Since H1 � H2, Pt-exec(PH2)[C�0001] > 0, whichmeans that there is a timed execution �002 of
t-exec(PH2) such that �0 � (�002dMi). Thus, thereis a state q02 of H2 such that �0 � t-exec(q02dMi), and from the de�nition of projection, thereis a state q2 of H2dMi such that �0 � t-exec(q2). This implies that there is an element �02 oft-exec(
H2dMi) such that �0 � �02, which is su�cient to conclude.221

9.6 DiscussionTo our knowledge, no general probabilistic models with dense time have been proposed exceptfor the automata of Courcoubetis, Alur and Dill [ACD91a, ACD91b]. In our model no prob-ability distributions over passage of time are allowed within a probabilistic timed automaton;time can elapse probabilistically only within a probabilistic timed execution, and the associatedprobability distributions can be only discrete. We have chosen to de�ne the timed model withsuch a restriction so that all the theory for the untimed model carries over.Further work should investigate on the extension of our model to non-discrete probabilitydistributions. A starting point could be the study of restricted forms of non-discrete distri-butions as it is done by Courcoubetis, Alur and Dill in [ACD91a, ACD91b]. Useful ideas cancome from the work on stochastic process algebras of G�otz, Herzog and Rettelbach [GHR93],Hillston [Hil94], and Bernardo, Donatiello and Gorrieri [BDG94].

222

Chapter 10Direct Veri�cation: TimeComplexityPart of this chapter is based on joint work with Anna Pogosyants and Isaac Saias; some of theideas have been in
uenced by discussion with Lenore Zuck. The veri�cation of the randomizeddining philosophers algorithm of Lehmann and Rabin (Section 10.6) is based on joint workwith Nancy Lynch and Isaac Saias [LSS94]; the veri�cation of the randomized algorithm foragreement of Ben-Or (Section 10.8) is joint work with Anna Pogosyants and is a formalizationof a proof that appears in the book on distributed algorithms of Nancy Lynch [Lyn95]. Closeinteraction with Anna Pogosyants lead us to the idea of the abstract complexity measures ofSection 10.7.10.1 General Considerations About TimeThe direct analysis of a probabilistic timed automaton is carried out exactly in the same wayas for untimed probabilistic automata. Thus, probabilistic statements and progress statementscan be generalized directly, and the coin lemmas can be applied without any modi�cation.In this chapter we concentrate more on topics that are speci�c to the presence of time. Inparticular, it is now possible to enrich the notation for progress statements and verify some ofthe real-time properties of a probabilistic timed automaton. We extend the progress statementsof Chapter 5 by adding a time parameter t: the expression U t�!p U 0 means that, starting froma state of U , a state of U 0 is reached within time t with probability at least p. Based on the newtimed progress statements we show how to derive upper bounds on the worst expected time forprogress.We generalize the method for time complexity analysis to more abstract complexity mea-sures. Then, rather than studying the expected time for progress, we study the expectedabstract complexity for progress. We use abstract complexity to derive an upper bound on theworst expected time for decision of the randomized algorithm for agreement of Ben-Or that wepresented in Chapter 5. Speci�cally, we show that under some conditions on the schedulingpolicy, each non-faulty process completes its ith stage within some upper bound, and we showan upper bound on the expected number of stages that are necessary to reach agreement. Inthis case the abstract complexity is the number of stages. A direct analysis of the expected time223

for success in Ben-Or's algorithm would not be as easy since there is no useful upper bound onthe time it takes to a process to move from a stage to the next stage.Sections 10.2, 10.3, and 10.4 simply extend the de�nitions of Chapter 5 to the timed case;Section 10.5 shows how to derive upper bounds on the worst expected time for progress givena timed progress statement, and Section 10.7 shows how to derive upper bounds on the worstexpected abstract complexity for progress given a timed progress statement with abstract com-plexity; Sections 10.6 and 10.8 present examples of application by proving that the randomizeddining philosophers algorithm of Lehmann and Rabin guarantees progress in expected constanttime and that the randomized agreement algorithm of Ben-Or guarantees agreement in expectedexponential time.10.2 AdversariesAn adversary for a probabilistic timed automaton M is a function A that takes a �nite timedexecution fragment � of M and returns a timed transition of M that leaves from lstate(�).Formally,A : t-frag�(M)! t-trans(M)such that if A(�) = (s;P), then s = lstate(�). Moreover, an adversary satis�es the followingconsistency condition: if A(�) = (s;P), then for each pre�x �0 of some element �00 of
,A(� a �0) = (lstate(�0);P.�0). Informally, consistency says that an adversary does not changeits mind during a timed transition.An adversary is deterministic if it returns either deterministic timed transitions of M orpairs of the form (s;D(s�)), i.e., the next timed transition is chosen deterministically. Denotethe set of adversaries and deterministic adversaries for a probabilistic timed automaton M byAdvs(M) and DAdvs(M), respectively.The de�nitions of an adversary schema and of the result of the interaction between an adver-sary and a probabilistic timed automaton is the same as for the untimed case (cf. Section 5.2),and thus we do not repeat them here.To guarantee that our adversaries are well de�ned, we need to prove the following lemma.Lemma 10.2.1 If (s;P) is a timed transition of a probabilistic timed automaton M , then foreach pre�x �0 of some element �00 of
, (lstate(�0);P.�0) is a timed transition of M .Proof. This is proved already in Proposition 9.3.5.10.3 Event SchemasAs for the untimed case we need a mechanism to associate an event with each probabilistictimed execution fragment of a probabilistic timed automaton. Thus, an event schema is afunction e that associates an event of the space PH with each probabilistic timed executionfragment H of M . The notion of �nite satis�ability extends directly from the untimed case.Observe that, although in PH there can be uncountably many cones, each �nitely satis�ableevent can be expressed as the union of countably many disjoint cones. Furthermore, everyuncountable family of cones contains at least two cones that are not disjoint.224

The de�nition of a timed probabilistic statement extends directly from the untimed case, andsimilarly the de�nition of the concatenation of two event schemas extends directly. Therefore,we omit the de�nitions, which are identical to those of Chapter 5.Proposition 10.3.1 The concatenation of two event schemas is an event schema. That is, ife = e1 �Cones e2, then e is an event schema.Proof. Consider a probabilistic timed execution fragment H . From Proposition 9.3.3 each sete2(H jq) is an event of FH . From the closure of a �-�eld under countable union, e(H) is anevent of FH .Proposition 10.3.2 PH [e1 �Cones e2(H)] =Pq2Cones(H) PH [Cq]PH jq[e2(H jq)].Proof. Since Cones(H) represents a collection of disjoint cones, from (5.13) we obtainPH [e1 �Cones e2(H)] = Xq2Cones(H)PH [e2(H jq)]: (10.1)From Proposition 9.3.3, for each q 2 Cones(H)PH [e2(H jq)] = PH [Cq]PH jq[e2(H jq)]: (10.2)By substituting (10.2) in (10.1) we obtain the desired result.Now it is possible to prove a concatenation property similar to the one for the untimed case.Proposition 10.3.3 Consider a probabilistic timed automaton M . Let1. PrAdvs ;�(e1) R p1 and,2. for each A 2 Advs, q 2 �, let PrAdvs ;Cones(prexec(M;A;q))(e2) R p2.Then, PrAdvs ;�(e1 �Cones e2) R p1p2.Proof. Consider an adversary A 2 Advs and any �nite timed execution fragment q 2 �. LetH = prexec(M;A; q). From Proposition 10.3.2,PH [e1 �Cones e2(H)] = Xq02Cones(H)PH [Cq0]PH jq0[e2(H jq0)]: (10.3)Consider an element q0 of Cones(H). It is a simple inductive argument to show thatH jq0 = prexec(M;A; q0); (10.4)where we use consistency for the base case. Thus, from our second hypothesis,PH jq0[e2(H jq0)] R p2: (10.5)By substituting (10.5) in (10.3), we obtainPH [e1 �Cones e2(H)]R p2 Xq02Cones(e1(H))PH [Cq0]: (10.6)225

By using the fact that Cones(H) is a characterization of e1(H) as a disjoint union of cones,Equation (10.6) can be rewritten intoPH [e1 �Cones e2(H)]R p2PH [e1(H)]: (10.7)From the �rst hypothesis, PH [e1(H)] R p1; therefore, from Proposition 5.4.1,PH [e1 �Cones e2(H)]R p1p2: (10.8)This completes the proof.10.4 Timed Progress StatementsAs a special case of a probabilistic statement for the timed case we can add some featuresto the notation X �!p Advs X 0. In particular we de�ne a timed progress statement to assertthat starting from a set of states U some other state of a set U 0 is reached within time t withprobability at least p. Such a statement, which we denote by U t�!p Advs U 0, or by U t�!p U 0 ifAdvs is clear from the context, is expressed by the probabilistic statement PrAdvs ;U(eU 0;t) � p,where the event schema eU 0;t applied to a timed probabilistic execution fragment H returns theset of timed executions � of
H where a state from U 0 is reached within time t in �.qH0 . Sucha set can be expressed as a union of cones, and therefore it is an event.Similarly, the progress statements involving actions can be generalized to the timed frame-work. Thus, V t�!p Advs V 0 is the probabilistic statement PrAdvs ;�V;V 0 (eV 0;t) � p, where �V;V 0 isthe set of �nite timed execution fragments of M where an action from V occurs and no actionfrom V 0 occurs after the last occurrence of an action from V , and the event schema eV 0;t appliedto a timed probabilistic execution fragment H returns the set of timed executions � of
H suchthat an action from V occurs in �.qH0 within time t.In order to generalize the concatenation theorem for progress statements, we need to extendthe de�nition of a �nite-history-insensitive adversary schema. Thus, an adversary schema Advsis �nite-history-insensitive i� for each adversary A of Advs and each �nite timed executionfragment � of M there is an adversary A0 of Advs such that for each timed execution fragment�0 such that � � �0, A(�0) = A0(�0.�). Then, the following theorem is shown in the same wayas for the untimed case.Theorem 10.4.1 Let Advs be �nite-history-insensitive. If X t1�!p1 Advs X 0 and X 0 t2�!p2 Advs X 00,then X t1+t2�!p1p2Advs X 00.10.5 Time ComplexityIn this section we show how to study the time complexity of a randomized distributed algorithm.We start by de�ning how to compute a worst expected time, and then we show how it is possibleto derive upper bounds on the worst expected running time of an algorithm based on timedprogress statements. 226

10.5.1 Expected Time of SuccessLet e be a �nitely satis�able event schema and suppose that PH [e(H)] = 1, i.e., that the propertydescribed by e is satis�ed in H with probability 1. Let Cones(H) be a characterization of e(H)as a disjoint union of cones, where each element of Cones(H) identi�es the �rst point alonga timed execution where the property denoted by e is satis�ed. Then, we can compute theexpected time to satisfy the property identi�ed by e asXq2Cones(H)PH [Cq](ltime(q.qH0)): (10.9)In general, if e is a �nitely satis�able event-schema and Cones(H) identi�es the �rst point alonga timed execution where the property identi�ed by e is satis�ed, then for each probabilistic timedexecution fragment H of M we de�ne EH [e], the expected time to satisfy e in H , as follows.EH [e] = (Pq2Cones(H)PH [Cq](ltime(q.qH0)) if PH [e(H)] = 11 otherwise. (10.10)Then, the question is the following: are there easy ways to compute upper bounds on theexpected time for success in a randomized algorithm without computing explicitly (10.10)? Wegive a positive answer to this question.10.5.2 From Timed Progress Statements to Expected TimesTimed progress statements can be used to analyze the time complexity of a randomized algo-rithm. The main idea for the analysis is expressed by Proposition 10.5.1. Suppose that weknow the following:(U t�!p Advs U 0U) (U Unless U 0): (10.11)Then, if Advs is �nite-history-insensitive and s� =2
A(s) for each A 2 Advs and each s 2 U ,we know from Proposition 5.5.6 that U �!1 Advs U 0. Let e be a �nitely satis�able event schema,and let Cones express the points of satisfaction of e. Suppose that for each probabilistic timedexecution fragmentH and each state q ofH , if there is no pre�x q0 of q such that q0 2 Cones(H),then e(H.q) = e(H).q and Cones(H.q) = Cones(H).q (e.g., e can express the property ofreaching some state in a set U 00, or the property of performing some action). LetEU;Advs [e] 4= sups2U;A2AdvsEprexec(M;A;s)[e]: (10.12)Then the following property is valid.Proposition 10.5.1EU;Advs [e] � t + pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.13)Proof. We prove (10.13) by distinguishing four cases.1. EU 0;Advs [e] � EU;Advs [e].In this case (10.13) is satis�ed trivially. 227

2. EU;Advs [e] =1 and p < 1.Also in this case (10.13) is satis�ed trivially.3. EU;Advs [e] =1 and p = 1.We show that EU 0;Advs [e] =1, which is enough to satisfy (10.13). Suppose by contradic-tion that EU 0;Advs [e] <1. Then we distinguish the following cases.(a) There is an adversary A of Advs and a state s of U such thatPprexec(M;A;s)[e(prexec(M;A; s))]< 1.(b) It is not the case that there is an adversary A of Advs and a state s of U such thatPprexec(M;A;s)[e(prexec(M;A; s))]< 1.For Case (a), let ConesU 0 be the function that expresses the points of satisfaction of eU 0,and let H be prexec(M;A; s), where Pprexec (M;A;s)[e(prexec(M;A; s))] < 1. Then,PH [e(H)] � Xq2ConesU 0(H)PH [Cq]PH.q(e(H.q)); (10.14)i.e., the probability of satisfying e is not smaller than the probability of reaching U 0 andthen from there satisfying e. From the �nite-history-insensitivity of Advs, for each state qof ConesU 0(H) there is an adversary A0 of Advs such that H.q = prexec(M;A0; lstate(q)),and thus, since EU 0;Advs [e] <1, PH.q(e(H.q)) = 1. By substituting this result in (10.14),we getPH [e(H)] � Xq2ConesU 0(H)PH [Cq]: (10.15)Since p = 1, the right side of (10.15) is equal to 1, i.e., PH [e(H)] � 1, a contradiction.For Case (b), let ConesU 0 be a function that expresses the points of satisfaction of eU ,and, for each d > 0, let Conesd be a function that expresses the event of reaching timed as a union of disjoint cones. From the de�nition of a probabilistic timed execution,we know that Conesd exists and that for each probabilistic timed execution fragment Hand each q 2 Conesd(H), ltime(q.qH0) = d. Let H be prexec(M;A; s). From (10.10) theexpected time for success for e isEH [e] = Xq2Cones(H)PH [Cq]ltime(q.qH0): (10.16)Let � be an arbitrary positive number. Let �1 be the set of elements q of ConesU 0(H)such that ltime(q.qH0) < t+ �, and let H2 be the set of elements q of Conest+�(H) that donot have any pre�x in �1. Since PH [eU(H)] = 1, then PH [[q2�1[�2Cq] = 1. Moreover,by hypothesis, PH [[q2Cones(H)Cq] = 1. Thus, observe that each element of Cones(H) haseither a proper pre�x or a su�x in �1 [�2. In fact, if there is an element q of Cones(H)that has no pre�x nor su�x in �1[�2, then the cone Cq would not be part of [q2�1[�2Cq,contradicting the hypothesis that PH [[q2Cones(H)Cq] = 1. Similarly, we can show that228

for each element q of �1 [�2 has either a pre�x or a proper su�x in Cones(H). Thus,Cones(H) can be partitioned into two sets �p and �s of elements that have a properpre�x and a su�x, respectively, in �1 [�2, and �1 [�2 can be partitioned into two sets�p1;2 and �s1;2 of elements that have a pre�x and a proper su�x, respectively, in Cones(H).Based on these observations, the right side of Equation(10.16) can be rewritten into0B@Xq2�p Xq02�s1;2jq0�q PH [Cq0]PH.q0 [Cq.q0](ltime(q0.qH0) + ltime(q.q0))1CA (10.17)+0B@Xq2�s Xq02�p1;2jq�q0 PH [Cq]PH.q[Cq0.q]ltime(q.qH0)1CA :Observe that for each q 2 �s, Pq02�p1;2jq�q0 PH.q[Cq0.q] = 1, and observe that for eachq0 2 �s1;2,Pq2�pjq0�q PH.q0 [Cq.q0] = 1. By exchanging the sums in (10.17) and using somesimple algebraic manipulations, we obtain0B@ Xq02�s1;2 PH [Cq0]0@ltime(q0.qH0) + Xq2�pjq0�q PH.q0 [Cq.q0]ltime(q.q0)1A1CA (10.18)+0B@ Xq02�p1;2 Xq2�sjq�q0 PH [Cq]PH.q[Cq0.q]ltime(q.qH0)1CA :In the �rst summand, since from the properties of e for each q0 2 �s1;2, e(H.q0) =e(H).q0, the subexpression Pq2�pjq0�q ltime(q.q0)PH.q0 [Cq.q0] denotes EH.q0 [e]. In thesecond summand, observe that for each q0 2 �p1;2 there is exactly one element q of �ssuch that q � q0. Moreover, PH [Cq]PH.q[Cq0.q] = PH [Cq0]. Thus, from (10.18) we obtainEH [e] � 0B@ Xq02�s1;2 PH [Cq0](ltime(q0.qH0) + EH.q0 [e])1CA (10.19)+ 0B@ Xq02�p1;2 PH [Cq0]ltime(q0.qH0)1CA :By repartitioning �s1;2 [�p1;2 into �1 and �2, and by observing that for each element qof �1 ltime(q.qH0) < t+ �, and for each element q of �2 ltime(q.qH0) = t + �, (10.19) canbe rewritten intoEH [e] � (t + �)0B@ Xq2�s1;2\�1 PH [Cq]EH.q[e])1CA+0B@ Xq2�p1;2\�1 PH [Cq]EH.q[e]1CA (10.20)+0B@ Xq2�s1;2\�2 PH [Cq]EH.q[e]1CA+ 0B@ Xq2�p1;2\�2 PH [Cq]EU;Advs [e]1CA ;229

where we have added EH.q[e] in the upper right summand and EU;Advs [e] in the lowerright summand. Since Advs is �nite history insensitive, for each q 2 �1 [�2 there is anadversary A0 of Advs such that (H.q) = prexec(M;A; lstate(q)). Thus, (10.20) can berewritten intoEH [e] � (t + �)0@Xq2�1 PH [Cq]EU 0;Advs [e])1A+0@Xq2�2 PH [Cq]EU;Advs [e]1A ; (10.21)where we have used U) (U Unless U 0) to say that the last states of the elements of �2are in U . Observe that Pq2�1 PH [Cq] is PH [eU 0;t(H)], which is 1 by hypothesis. Since byhypothesis EU 0;Advs [e] <1, from (10.21) we derive that EU;Advs [e] <1, a contradiction.4. EU;Advs [e] <1, EU 0;Advs [e] <1, and EU 0;Advs [e] � EU 0;Advs [e].Let A be an adversary of Advs and s be a state of U . Let H be prexec(M;A; s). Let �be any positive real number. Equation (10.21) can be derived also in this case using thesame identical argument as before. Since we have assumed that EU 0;Advs [e] � EU;Advs [e],the lowest possible value of the right side of (10.21) occurs by giving U 0 the lowest possibleprobability, which is p. Thus, (10.21) becomesEH [e] � (t + �)pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.22)Since Equation (10.22) is valid for any adversary Advs and any state of U , we obtaintimed execution fragmentEU;Advs [e] � (t+ �)pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.23)Since Equation (10.23) is valid for every �, Equation (10.23) is valid also for the in�mumof the values that � can have, i.e., 0, and thus,EU;Advs [e] � t+ pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.24)This completes the proof.Example 10.5.1 (From timed progress to expected time) As a simple example of ap-plication of Proposition 10.5.1, suppose that e expresses the property of reaching U 0. Then, weknow by de�nition that EU 0;Advs [e] = 0. By applying Equation (10.13), we obtain EU;Advs [e] �t + (1� p)EU;Advs [e], which gives EU;Advs [e] � t=p, i.e., the expected time to reach U 0 from Uis at most t=p. Informally speaking, we can view the process of reaching U 0 as a sequence ofBernoulli trials, each one performed every t time units. At time t, with probability p we havereached U 0, and with probability (1� p) we are still in U , and thus we apply the same exper-iment again. The expected number of rounds of such a process is 1=p, and thus the expectedtime for success is t=p. Suppose now that we know the following,8<: U0 t1�!p1 Advs U1 U0) (U0 Unless U1)U1 t2�!p2 Advs U2 U1) (U1 Unless U2); (10.25)230

and suppose that e expresses the property of reaching U2. Then, we know that EU2;Advs [e] = 0.By applying Proposition 10.5.1, we obtain(EU0;Advs [e] � t1 + p1EU1;Advs [e] + (1� p1)EU0;Advs [e]EU1;Advs [e] � t2 + (1� p2)EU1;Advs [e]: (10.26)From simple algebraic manipulations (10.26) becomes(EU0;Advs [e] � t1=p1 + EU1;Advs [e]EU1;Advs [e] � t2=p2; (10.27)and thus, after substituting the second inequality in the �rst inequality,(EU0;Advs [e] � t1=p1 + t2=p2EU1;Advs [e] � t2=p2: (10.28)Suppose now that in addition to (10.25) we know that8<: U0 t3�!p3 Advs U2U0) (U0 Unless U2); (10.29)which is possible if U1 � U0 [U2. Then, from Proposition 10.5.1 we getEU0;Advs [e] � t3=p3; (10.30)which added to (10.28) gives(EU0;Advs [e] � min(t1=p1 + t2=p2; t3=p3)EU1;Advs [e] � t2=p2: (10.31)Therefore, more information may give us the possibility to prove better bounds.Proposition 10.5.1 can be proved also for timed progress statements that involve sets of actionsrather than sets of states. Let V; V 0 denote two sets of actions, and let Advs be an adversaryschema. Suppose thatV t�!p Advs V 0: (10.32)Let e be a �nitely satis�able event schema, and let Cones express the points of satisfaction ofe. Suppose that for each probabilistic timed execution fragment H and each state q of H , ifthere is no pre�x q0 of q such that q0 2 Cones(H), then e(H.q) = e(H).q and Cones(H.q) =Cones(H).q. Let EV;V 0;Advs [e] denote supq2�V;V 0 ;A2AdvsEprexec(M;A;q)[e]. Let �V 0 denote theset of �nite execution fragments of M whose last action is in V 0, and let EV 0 ;Advs [e] denotesupq2�V 0 ;A2AdvsEprexec(M;A;q)[e]. Suppose that q0� =2
A(q) for each q0, each A 2 Advs and eachq 2 �V;V 0 . Then the following proposition is valid.Proposition 10.5.21. EV;V 0;Advs [e] � t + pEV 0;Advs [e] + (1� p)EV;V 0;Advs [e], and2. for each set of actions V 00, EV 0;Advs [e] � EV 0;V 00;Advs [e].Proof. The proof of the �rst item follows the lines of the proof of Proposition 10.5.1; the proofof the second item follows from the fact that �V 0 � �V 0;V 00 .231

10.6 Example: Randomized Dining PhilosophersTo illustrate the use of timed progress statements for the analysis of an algorithm, we reconsiderthe randomized dining philosophers algorithm of Lehmann and Rabin, and we show that, underthe condition that each process has a minimum speed, progress is guaranteed within expectedconstant time. First, we show how to add time to the probabilistic automaton that describes thealgorithm; then, we add time limitations to the progress statements that we used in Section 6.3.3and we derive the upper bound on the expected time for progress; �nally we repeat the lowlevel proof observing that the coin lemmas are applied in the same way as for the untimed case.10.6.1 Representation of the AlgorithmThe probabilistic timed automaton that represent the Algorithm of Lehmann and Rabin can beobtained directly from the probabilistic automaton of Section 6.3.2 by adding arbitrary self-looptime-passage transition from each state (same as the patient construction of Example 9.2.1).Then, in order to enforce a lower bound on the speed of each process, we impose some limitationson the adversaries that act on M . For convenience, but without loss of generality, we assumethat from any point each process in its trying or exit region performs one transition within time1. Thus, the adversary schema that we use on M is the set of adversaries A for M such thatfor each �nite timed execution fragment � of M ,1. Pprexec(M;A;�)[frag1(M)] = 1, and2. for each element �0 of
prexec(M;A;�) there is no pair of pre�xes �1 � �2 of �0.� and noprocess i such that process i is in its trying or exit region in lstate(�1), ltime(�2.�1) > 1,and process i does not perform any discrete transition in �2.�1.We call this adversary schema Unit-Time.Remark 10.6.1 Observe that in Condition 1 we require the probability of the admissibleexecutions to be 1 rather than requiring the sample space to contain only admissible executions.The reason for using probabilities is technical and is due to the fact that the sample space of aprobabilistic timed executions always contains Zeno timed executions, even though they occurwith probability 0. From the practical point of view all the Zeno timed executions can beignored.In other words, it is not necessary to know the intricacies of the de�nition of a probabilistictimed executions since they are used only to guarantee that the events of interest are measurable.From the point of view of verifying the correctness of a randomized distributed algorithm, aslong as Zeno timed executions occur only with probability 0, it is possible to think that Zenotimed executions do not occur at all.Remark 10.6.2 (Alternative approach) Another alternative approach to modeling the al-gorithm of Lehmann and Rabin, which we do not use here, is to augment the probabilisticautomaton of Section 6.3.2 with an upper bound for each process i to the time by which pro-cess i must perform a transition, and to allow a time-passage transition only when no processgoes beyond its upper bound. Of course the upper bounds need to be updated opportunelywithin a transition. In this case the condition imposed on an adversary would be just that timeadvances unboundedly with probability 1. 232

10.6.2 The High Level ProofThe high level proof consists of the same progress statements that we used in Section 6.3.3together with a time bound. Speci�cally, we use the following timed progress statements.T 2�!1 RT [C (Proposition 10.6.3),RT 3�!1 F [G [P (Proposition 10.6.15),F 2�!1=2 G [P (Proposition 10.6.14),G 5�!1=4 P (Proposition 10.6.11),P 1�!1 C (Proposition 10.6.1).By combining the statements above by means of Proposition 5.5.3 and Theorem 10.4.1 weobtainT 13�!1=8 C: (10.33)Observing that if some process is in the trying region then some process is in the trying regionunless some process gets to the critical region, we apply Proposition 10.5.1 and we obtain thatthe expected time to reach C from RT is at most 104, i.e., the algorithm of Lehmann and Rabinguarantees progress within expected constant time.10.6.3 The Low Level ProofWe now prove the timed progress statements of Section 10.6.2. The proofs are exactly the sameas the proofs given in Section 6.3.4 with the di�erence that in this case we consider also timebounds and we consider only admissible timed execution fragments since we know that theyoccur with probability 1.Proposition 10.6.1 If some process is in P , then some process enters C within time 1, i.e.,P 1�!1 C:Proof. Let i be the process in P . Then, from the de�nition of Unit-Time, process i is scheduledwithin time 1, and enters C.Lemma 10.6.2 If some process is in its Exit region, then it will enter R within time 3.Proof. The process needs to perform two transitions to relinquish its two resources, and thenone transition to send a rem message to the user. Every adversary of Unit-Time guaranteesthat those three transitions are performed within time 3.Proposition 10.6.3 T 2�! RT [C. 233

Proof. From Lemma 6.3.2, every process that begins in EF or ES relinquishes its resourceswithin time 2 . If no process begins in C or enters C in the meantime, then the state reachedat this point is a state of RT ; otherwise, the starting state or the state reached when the �rstprocess enters C is a state of C.We now turn to the proof of G 5�!1=4 P . The following lemmas form a detailed cases analysisof the di�erent situations that can arise in states of G. Informally, each lemma shows that aspeci�c coin event is a sub-event of the properties of reaching some other state. Here we do notrepeat the proof of Lemma 6.3.4 since it does not depend on timing issues.Lemma 10.6.41. Let Xi�1 2 fER; R; Fg and Xi = W . If FIRST(flipi�1; left), then, within time 1,either Xi�1 = P or Xi = S.2. Let Xi�1 = D and Xi = W . If FIRST(flipi�1; left), then, within time 2, eitherXi�1 = P or Xi = S.3. Let Xi�1 = S and Xi = W . If FIRST(flipi�1; left), then, within time 3, either Xi�1 =P or Xi = S.4. Let Xi�1 = W and Xi = W . If FIRST(flipi�1; left), then, within time 4, eitherXi�1 = P or Xi = S.Proof. The four proofs start in the same way. Let s be a state of M satisfying the respectiveproperties of items 1 or 2 or 3 or 4 . Let A be an adversary of Unit-Time, and let � be anadmissible timed execution of
prexec(M;fsg;A) where the result of the �rst coin
ip of processi� 1, if it occurs, is left.1. By hypothesis and Lemma 6.3.4, i � 1 does not hold any resource at the beginning of �and has to obtain Resi�2 (its left resource) before pursuing Resi�1. From the de�nitionof Unit-Time, i performs a transition within time 1 in �. If i � 1 does not hold Resi�1when i performs this transition, then i progresses into con�guration S. If not, it must bethe case that i� 1 succeeded in getting it in the meanwhile. But, in this case, since i� 1
ips left, Resi�1 was the second resource needed by i� 1 and i� 1 therefore entered P .2. If Xi = S within time 1, then we are done. Otherwise, process i� 1 performs a transitionwithin time 1. Let � = �1 a �2 such that the last transition of �1 is the �rst transitiontaken by process i�1. Then Xi�1(fstate(�2)) = F and Xi(fstate(�2)) = W . Since processi � 1 did not
ip any coin during �1, from the �nite-history-insensitivity of Unit-Timeand Item 1 we conclude.3. If Xi = S within time 1, then we are done. Otherwise, process i� 1 performs a transitionwithin time 1. Let � = �1 a �2 such that the last transition of �1 is the �rst transitiontaken by process i� 1. If Xi�1(fstate(�2)) = P then we are also done. Otherwise it mustbe the case that Xi�1(fstate(�2)) = D and Xi(fstate(�2)) = W . Since process i � 1 didnot
ip any coin during �1, from the �nite-history-insensitivity of Unit-Time and Item 2we conclude. 234

4. If Xi = S within time 1, then we are done. Otherwise, process i checks its left resourcewithin time 1 and fails, process i� 1 gets its right resource before, and hence reaches atleast state S. Let � = �1 a �2 where the last transition of �1 is the �rst transition of �that leads process i� 1 to state S. Then Xi�1(fstate(�2)) = S and Xi(fstate(�2)) = W .Since process i� 1 did not
ip any coin during �1, from the �nite-history-insensitivity ofUnit-Time and Item 3 we conclude.Lemma 10.6.5 Assume that Xi�1 2 fER; R; Tg and Xi = W . If FIRST(flipi�1; left),then, within time 4, either Xi�1 = P or Xi = S.Proof. Follows directly from Lemma 10.6.4 after observing that Xi�1 2 fER; R; Tg is equiva-lent to Xi�1 2 fER; R; F;W; S;D; Pg.The next lemma is a useful tool for the proofs of Lemmas 10.6.7, 10.6.8, and 10.6.9. It is justrepeated from Section 6.3.4.Lemma 10.6.6 Let Xi 2 fW ; S g or Xi 2 fER; R; F; D g with FIRST(flipi; left). Further-more, let Xi+1 2 fW!; S!g or Xi+1 2 fER; R; F; D!g with FIRST(flipi+1; right). Then the�rst of the two processes i or i+ 1 testing its second resource enters P after having performedthis test (if this time ever comes).Proof. By Lemma 6.3.4 Resi is free. Moreover, Resi is the second resource needed by both iand i+ 1. Whichever tests for it �rst gets it and enters P .Lemma 10.6.7 If Xi = S and Xi+1 2 fW!; S!g then, within time 1, one of the two processesi or i+ 1 enters P . The same result holds if Xi 2 fW ; S g and Xi+1 = S!.Proof. Being in state S, process i tests its second resource within time 1. An application ofLemma 10.6.6 �nishes the proof.Lemma 10.6.8 Let Xi = S and Xi+1 2 fER; R; F; D!g. If FIRST(flipi+1; right), then,within time 1, one of the two processes i or i + 1 enters P . The same result holds if Xi 2fER; R; F;Dg, Xi+1 = S! and FIRST(flipi; left).Proof. Being in state S, process i tests its second resource within time 1. An application ofLemma 10.6.6 �nishes the proof.Lemma 10.6.9 Assume that Xi�1 2 fER; R; Tg, Xi = W , and Xi+1 2 fER; R; F;W!; D!g.If FIRST(flipi�1; left) and FIRST(flipi+1; right), then, within time 5, one of the threeprocesses i� 1, i or i+ 1 enters P .Proof. Let s be a state of M such that Xi�1(s) 2 fER; R; Tg, Xi(s) = W , and Xi+1(s) 2fER; R; F;W!; D!g. Let A be an adversary of Unit-Time, and let � be an admissible timedexecution of
prexec(M;fsg;A) where the result of the �rst coin
ip of process i� 1 is left andthe result of the �rst coin
ip of process i+ 1 is right. By Lemma 10.6.5, within time 4 eitherprocess i � 1 reaches con�guration P in � or process i reaches con�guration S in �. If i � 1235

reaches con�guration P , then we are done. If not, then let � = �1 a �2 such that lstate(�1) isthe �rst state s0 of � with Xi(s0) = S . If i+1 enters P before the end of �1, then we are done.Otherwise, Xi+1(fstate(�2)) is either in fW!; S!g or it is in fER; R; F; D!g and process i+ 1 hasnot
ipped any coin yet in �. From the �nite-history-insensitivity of Unit-Time we can thenapply Lemma 10.6.6: within time 1 process i tests its second resource and by Lemma 10.6.6process i enters P if process i+1 did not check its second resource in the meantime. If processi+ 1 checks its second resource before process i does the same, then by Lemma 10.6.6 processi+ 1 enters P .Lemma 10.6.10 Assume that Xi+2 2 fER; R; Tg, Xi+1 = W!, and Xi 2 fER; R; F;W ; D g.If FIRST(flipi; left) and FIRST(flipi+2; right), then, within time 5, one of the three pro-cesses i, i+ 1 or i+ 2, enters P .Proof. The proof is analogous to the one of Lemma 10.6.9. This lemma is the symmetric caseof Lemma 10.6.9.Proposition 10.6.11 Starting from a global con�guration in G, then, with probability at least1=4, some process enters P within time 5. Equivalently:G 5�!1=4 P :Proof. Lemmas 10.6.7 and 10.6.8 jointly treat the case whereXi = S andXi+1 2 fER; R; F;#!gand the symmetric case where Xi 2 fER; R; F;# g and Xi+1 = S!; Lemmas 10.6.9 and 10.6.10jointly treat the case where Xi = W and Xi+1 2 fER; R; F;W!; D!g and the symmetric casewhere Xi 2 fER; R; F;W ; D g and Xi+1 = W!.Speci�cally, each lemma shows that a compound event of the kind FIRST(flipi; x) andFIRST(flipj ; y) leads to P . Each of the basic events FIRST(flipi; x) has probability at least1=2. From Lemma 6.2.4 each of the compound events has probability at least 1=4. Thus theprobability of reaching P within time 5 is at least 1=4.We now turn to F 2�!1=2 G [P . The proof is divided in two parts and constitute the globalargument of the proof of progress, i.e., the argument that focuses on the whole system ratherthan on a couple of processes.Lemma 10.6.12 Start with a state s of F . If there exists a process i for which Xi(s) = F and(Xi�1; Xi+1) 6= (#!;#), then, with probability at least 1=2 a state of G [P is reached withintime 1.Proof. If s 2 G [P , then the result is trivial. Let s be a state of F � (G [P) and let i be suchthat Xi(s) = F and (Xi�1; Xi+1) 6= (#!;#). Assume without loss of generality that Xi+1 6= # ,i.e., Xi+1 2 fER; R; F;#!g. The case for Xi�1 6= #! is similar. Furthermore, we can assumethat Xi+1 2 fER; R; F; D!g since if Xi+1 2 fW!; S!g then s is already in G. We show that theevent schema FIRST((flipi; left); (flipi+1; right)), which by Lemma 6.2.2 has probabilityat least 1=2, leads eventually to a state of G [P . Let A be an adversary of Unit-Time, and236

let � be an admissible timed execution of
prexec(M;fsg;A) where if process i
ips before processi+ 1 then process i
ips left, and if process i+ 1
ips before process i then process i + 1
ipsright.Then, within time 1, i performs one transition and reaches W . Let j 2 fi; i+ 1g be the�rst of i and i+ 1 that reaches W and let s1 be the state reached after the �rst time process jreaches W . If some process reached P in the meantime, then we are done. Otherwise there aretwo cases to consider. If j = i, then, flipi gives left and Xi(s1) = W whereas Xi+1 is (still)in fER; R; F; D!g. Therefore, s1 2 G. If j = i+ 1, then flipi+1 gives right and Xi+1(s1) = W!whereas Xi(s1) is (still) F . Therefore, s1 2 G.Lemma 10.6.13 Start with a state s of F . If there exists a process i for which Xi(s) = F and(Xi�1(s); Xi+1(s)) = (#!;#). Then, with probability at least 1=2, a state of G [P is reachedwithin time 2.Proof. The hypothesis can be summarized into the form (Xi�1(s); Xi(s); Xi+1(s)) = (#!; F;#).Since i�1 and i+1 point in di�erent directions, by moving to the right of i+1 there is a processk pointing to the left such that process k + 1 either points to the right or is in fER; R; F; Pg,i.e., Xk(s) 2 fW ; S ; D g and Xk+1(s) 2 fER; R; F;W!; S!; D!; Pg.If Xk(s) 2 fW ; S g and Xk+1(s) 6= P then s 2 G and we are done; if Xk+1(s) = P thens 2 P and we are done. Thus, we can restrict our attention to the case where Xk(s) = D .We show that FIRST((flipk; left); (flipk+1; right)), which by Lemma 6.2.2 has proba-bility at least 1=2, leads to G [P within time 2. Let A be an adversary of Unit-Time, and let �be an admissible timed execution of
prexec(M;fsg;A) where if process k
ips before process k+1then process k
ips left, and if process k+1
ips before process k then process k+1
ips right.Within time 2 process k performs at least two transitions and hence goes to con�gurationW . Let j 2 fk; k + 1g be the �rst of k and k + 1 that reaches W and let s1 be the statereached after the �rst time process j reaches W . If some process reached P in the meantime,then we are done. Otherwise, we distinguish two cases. If j = k, then, flipk gives left andXk(s1) = W whereas Xk+1 is (still) in fER; R; F;#!g. Thus, s1 2 G. If j = k+1, then flipk+1gives right and Xk+1(s1) = W! whereas Xk(s1) is (still) in fD ; Fg. Thus, s1 2 G.Proposition 10.6.14 Start with a state s of F . Then, with probability at least 1=2, a state ofG [P is reached within time 2. Equivalently:F 2�!1=2 G [P :Proof. The hypothesis of Lemmas 10.6.12 and 10.6.13 form a partition of F .Finally, we prove RT �!1 F [G [P .Proposition 10.6.15 Starting from a state s of RT , then a state of F [G [P is reachedwithin time 3 Equivalently:RT 3�!1 F [G [P : 237

Proof. Let s be a state of RT . If s 2 F [G [P , then we are trivially done. Suppose thats =2 F [G [P . Then in s each process is in fER; R;W; S;Dg and there exists at least processin fW;S;Dg. Let A be an adversary of Unit-Time, and let � be an admissible timed executionof
prexec(M;fsg;A).We �rst argue that within time 1 some process reaches a state of fS;D; Fg in �. Thisis trivially true if in state s there is some process in fS;Dg. If this is not the case, then allprocesses are either in ER or R orW . Eventually, some process in R orW performs a transition.If the �rst process not in ER performing a transition started in ER or R, then it reaches F andwe are done; if the �rst process performing a transition is in W , then it reaches S since in s noresource is held. Once a process i is in fS;D; Fg, then within time 2 process i reaches eitherstate F or P , and we are done.10.7 Abstract Complexity MeasuresWe have seen how to measure the expected time to satisfy a property. However, the techniquecan be extended to other kinds of measures of complexity. Speci�cally, let � be a complexitymeasure on timed execution fragments that is additive under concatenation, i.e., �(q1 a q2) =�(q1) + �(q2). Then we can compute the expected � rather than the expected time, where the� of a state q of H is de�ned to be �(q.qH0). We generalize the notation for timed progressstatements by writingU �(c)�!p Advs U 0 (10.34)with the meaning that PrAdvs ;U (eU 0;�(c)) � p, where the event schema eU 0;�(c) applied to a timedprobabilistic execution fragment H returns the set of timed executions � of
H where a statefrom U 0 is reached within complexity c. More speci�cally, let ConesU 0;�(c)(H) be the set ofminimal timed execution fragments q of M such that CHq is not empty, lstate(q) 2 U 0, and�(q.qH0) � c. Then, eU 0;�(c)(H) = [q2ConesU 0;�(c)(H)CHq . Observe that time is just one of thepossible complexity measures.The same de�nition can be extended to sets of actions as we have done previously, and theconcatenation theorem is still valid.The expected complexity of a �nitely satis�able event schema can be de�ned easily. Speci�-cally, if e is a �nitely satis�able event-schema and Cones(H) identi�es the points of satisfactionof e, then for each probabilistic timed execution fragment H of M we de�ne EH;�[e], the ex-pected complexity to satisfy e in H , as follows.EH;�[e] = (Pq2Cones(H)PH [Cq](�(q.qH0)) if PH [e(H)] = 11 otherwise. (10.35)Then, a proposition similar to Proposition 10.5.1 can be proved.Proposition 10.7.1 Suppose that8<: U �(c)�!p Advs U 0U) (U Unless U 0); (10.36)238

s0 s0 s0

s1

s0 s0

s1

s0 1/2

1/2τ

s1

a

1/2

1/2

a

τ

a

1/2

1/2

a

τ

aFigure 10-1: An example of the use of �.and suppose that Advs is �nite history insensitive and that s� =2
A(s) for each A 2 Advs andeach s 2 U . Then,EU;Advs;�[e] � c+ pEU 0;Advs ;�[e] + (1� p)(� + EU;Advs;�[e]); (10.37)where� = supq2t-frag�(M)jlstate(q)2U �supq0>q �inf q00jq<q00�q0(�(q00.q))�� : (10.38)Proof. This proof has the same structure as the proof of Proposition 10.5.1. Here we describein detail only the main di�erences. In particular, we show part of the derivation from Equa-tion (10.16) to Equation (10.21), where the constant � is used. Observe that if we use � toexpress time complexity, then � = 0.From (10.35) the expected complexity for success for e isEH;�[e] = Xq2Cones(H)PH [Cq]�(q.qH0): (10.39)For each d > 0, let Conesd be a function that expresses the event of reaching complexity d asa union of disjoint cones. From the de�nition of a probabilistic timed execution, we know thatConesd exists and, from (10.38), we know that for each probabilistic timed execution fragmentH and each q 2 Conesd(H), d � �(q.qH0) � d + �. Let � be any positive number. Followingthe same derivation as in the proof of Proposition 10.5.1, we obtainEH;�[e] � (c+ �)0@Xq2�1 PH [Cq]EU 0;Advs ;�[e])1A+0@Xq2�2 PH [Cq](� +EU;Advs;�[e])1A : (10.40)One of the novel aspects of Proposition 10.7.1 is the constant �. Roughly speaking, � gives us alower bound to the minimum complexity increase that we can obtain by moving along a timedexecution fragment.Example 10.7.1 (Why � is necessary) For example, if the abstract complexity that we useis the number of discrete actions that appear in a timed execution fragment, then � = 1. In fact,whenever we perform a discrete action, the complexity increases by 1. Figure 10-1 shows anexample where � = 1 and where Equation (10.37) is invalidated if we do not include �. Denotethe probabilistic timed execution fragment of Figure 10-1 by H . Let U be fs0g, U 0 be fs1g, andlet e express the property of reaching U 0. Let Advs contain only one adversary that generates Hwhen applied to s0. Let � count the number of external actions in a timed execution fragment(no time-passage actions in H). Then, it is immediate to verify that the statement U �(1)�!1=2 U 0 is239

valid in H and that also U) (U UnlessU 0) is valid. By applying Equation (10.37) with � = 1,we obtainEU;Advs;�[e] � t+ 1=2(1+ EU;Advs;�[e]); (10.41)which leads to EU;Advs;�[e] � 3. If we did not use � in Equation (10.37) we would have obtainedEU;Advs;�[e] � 2. We now show that EH;�[e] = 3. In fact,EH;�[e] = 12 + 314 + 518 + 7 116 + � � � (10.42)By rearranging the terms, we obtainEH;�[e] =Xi�0 12i �12 + 24 + 28 + 216 + � � �� : (10.43)Recall that Pi�0 1=2i = 2. Thus, by rearranging the terms again,EH;�[e] = 2 + 1=2�12 + 14 + 18 + 116 + � � �� = 3: (10.44)Roughly speaking, the transition relation of H is structured in such a way that whenever theexperiment of reaching U 0 from U fails, the system looses one additional complexity unit duringthe random draw. In the proof of Proposition 10.7.1 this phenomenon is detected when we de�nethe partition �1 and �2. To make sure that �1 and �2 partition an event with probability 1and that �1 captures all the places where U 0 is reached within time t, �2 must be based onstates reached after time t. In the probabilistic execution H of this example the states of �2have complexity t+ 1.10.8 Example: Randomized Agreement with TimeUsing abstract complexity measures it is possible to show that the randomized agreementalgorithm of Ben-Or guarantees agreement within an expected exponential time. This is notan exceptional complexity result, but it corresponds to the time complexity of the algorithm.In more detail, we add time to the probabilistic automaton that describes Ben-Or's protocolin the same way as we have done for the Dining Philosophers algorithm of Lehmann and Rabin.In this case each adversary is required to schedule every process that enables some transitionwithin time 1 from every point. Then we show an upper bound linear in st on the time ittakes to all processes to complete a speci�c stage st . Finally, we derive an upper bound onthe expected number of stages it takes for all processes to decide. This is achieved by de�ningan abstract complexity on the timed executions of M that checks the highest stage reached atevery point. A direct extension of the untimed proof without abstract complexities would not bepossible. In fact, given a reachable state s, the validity of the progress statement of Chapter 6relies on completing the highest stage reached in s, and we cannot establish any useful upperbound on the time to complete such stage: there is no useful bound on the di�erence betweenthe highest and the lowest stages reached in s, and the adversary may stop the processes withthe highest values of st . We start by proving the upper bound on the time it takes to eachprocess to complete some stage st . 240

Lemma 10.8.1 There is a constant d such that, for each stage st, each process completes stagest within time d � st.Proof. Let d1 be the maximum time it takes to each process from the moment it reaches a newstage st to the moment it broadcasts its value and its value is delivered; let d2 be the maximumtime it takes to each process to broadcast and deliver its second message after receiving enoughmessages from the �rst round; let d3 be the maximum time it takes to each process to move to anew stage once it has received enough messages from the second round. Then d = d1+d2+d3.Since we have not de�ned formally M , we cannot say explicitly what is the value of d.We show the result by induction on st where for the base case we assume that st = 0and that stage 0 is completed by time 0. By induction, by time d � st each non-faulty processhas completed round st . Then, by time d1 + d � st each non-faulty process has broadcastedand delivered its �rst round message, and thus every non-faulty process has received enoughmessages for the �rst round of stage st + 1. Within additional time d2 each non-faulty processdelivers its second message, and within additional time d3 each non-faulty process reaches stagest + 2, i.e., within time d(st + 1) each non-faulty process completes stage st + 1.For each �nite timed execution fragment � of M de�ne �(�), the stage complexity of �, tobe max-stage(lstate(�)) � max-stage(fstate(�)), where for each state s, max-stage(s) is themaximum stage that is reached in s by some process. Observe that this complexity measure isan upper bound to the stage at which some process decides since if at state s the �rst processhas just decided, thenmax-stage(s) is not smaller than the stage of the process that has decided.Thus, an upper bound on the expected � for the decision of the �rst process is an upper boundon the expected stage at which the �rst process decides. We show the following two statements.B �(1)�!1 f-fair F [O: (10.45)F �(2)�!1=2nO: (10.46)Then, by combining (10.45) and (10.46) with Theorem 5.5.2, we obtainB �(3)�!1=2nO: (10.47)From Proposition 10.7.1, we obtainEB;Unit-Time;�[eO] � 3 + (1� 1=2n)(1 + EB;Unit-Time;�[eO]); (10.48)where 1 is the value of � given by (10.38). By solving Equation (10.48) we obtainEB;Unit-Time;�[eO] � 2n+2 � 1: (10.49)Since if a process decides at stage st then each other non-faulty process decides within stagest + 1, then we can derive that the expected stage by which every process decides is at most2n+2, and thus, from Lemma 10.8.1, each process decides within expected time d � 2n+1.The proofs for (10.45) and (10.46) have the same structure as the corresponding proofsfor the untimed case. Recall that the proof of (10.45) consider the maximum stage st of areachable state s and states that eventually stage st + 1 is reached, at which time a state of Fis reached. The proof of (10.46) states that a speci�c coin lemma leads a process to decide bystage max-stage(s)+1. Then, since if a process decides a stage st each process decides by stagest + 1, the complexity of the state where the �rst process decides is at most max-stage(s) + 2.241

10.9 DiscussionTo our knowledge this is the �rst time that statements similar to our timed progress statementshave been used for the analysis of the performance of a randomized distributed algorithm. Inparticular, we have been able to prove similar results only because we have studied techniques toprove properties that hold with some probability di�erent than 1. This should be a su�cientlystrong reason to pursue additional research on methodologies (automatic or not) for the analysisof properties that hold with probabilities di�erent than 1. The work of Hansson [Han94] andthe algorithm that Courcoubetis and Yannakakis present in [CY90] are in this direction.

242

Chapter 11Hierarchical Veri�cation: TimedTrace Distributions11.1 IntroductionIn this chapter we extend the trace distribution preorder of Chapter 7 to the timed framework.The main di�erence is that we use timed traces rather than traces. A timed trace contains thesequence of discrete actions that occur within a timed execution plus the time of occurrenceof each action and the time at which the observation ends. That is, in a timed execution weobserve at what time each external action occurs and, if �nitely many actions occur, how muchtime elapses after the occurrence of the last action.We de�ne a preorder relation based on timed trace distribution inclusion, and we characterizethe coarsest precongruence that is contained in the timed trace distribution preorder by usinga timed principal context , which is just the principal context of Chapter 7 augmented witharbitrary time-passage self-loop transitions from its unique state. Most of the proofs followdirectly from the results already proved in Chapter 7, since in several cases it is su�cient tostudy ordinary trace distributions in order to derive properties of timed trace distributions.11.2 Timed TracesWe start by de�ning the main object of observation, i.e., timed traces. The de�nition of a timedtrace that we give in this section is taken directly from [LV95].Timed Sequence PairsLet K be any set that does not intersect <+. Then a timed sequence over K is de�ned to be a(�nite or in�nite) sequence
 over K � <�0 in which the time components are nondecreasing,i.e., if (k; t) and (k0; t0) are consecutive elements in
 then t � t0. We say that
 is Zeno if it isin�nite and the limit of the time components is �nite.A timed sequence pair over K is a pair � = (
; t), where
 is a timed sequence over K andt 2 <�0 [f1g, such that t is greater than or equal to all time components in
. We writeseq(�), and ltime(�) for the two respective components of �. We denote by tsp(K) the set of243

timed sequence pairs over K. We say that a timed sequence pair � is �nite if both seq(�) andltime(�) are �nite, and admissible if seq(�) is not Zeno and ltime(�) =1.Let � and �0 be timed sequence pairs overK with � �nite. Then de�ne �; �0 to be the timedsequence pair (seq(�)
; ltime(�) + ltime(�0)), where
 is the modi�cation of seq(�0) obtainedby adding ltime(�) to all the time components. If � and �0 are timed sequence pairs over a setK, then � is a pre�x of �0, denoted by � � �0, if either � = �0, or � is �nite and there exists atimed sequence pair �00 such that �0 = �; �00.Lemma 11.2.1 � is a partial ordering on the set of timed sequence pairs over K.Now we describe how to translate from a sequence over K [<+, and ordinary trace, to a timedsequence pair over K. First, if � is any sequence over K [<+, then we de�ne the time ofoccurrence of any K-element in � to be the sum of all the reals that precede that element in�. We also de�ne ltime(�) to be the sum of all the reals in �. Finally, we de�ne t-trace(�) tobe the timed sequence pair (
; ltime(�)), where
 is the subsequence of � consisting of all theelements of K, each paired with its time of occurrence.If � is a sequence over K [<+ then we say that � is admissible if the sum of the positivereals in � is in�nite.Lemma 11.2.2 If � is a �nite or admissible timed sequence pair then t-trace(trace(�)) = �.Lemma 11.2.3 If � is a sequence over K [<+ then � is admissible if and only if t-trace(�)is admissible.Timed Traces of Timed Probabilistic AutomataSuppose that � = !0a1!1a2!2 � � � is a timed execution fragment of a timed probabilistic au-tomatonM . For each ai, de�ne the time of occurrence ti to be Pj<i ltime(!j), i.e., the sum ofthe lengths of all the trajectory intervals preceding ai in �. Let
 be the sequence consisting ofthe actions in � paired with their times of occurrence:
 = (a1; t1)(a2; t2) � � � :Then t-trace(�), the timed trace of �, is de�ned to be the pair(
 � (vis(M)�<+); ltime(�)):Thus, t-trace(�) records the occurrences of visible actions together with their times of oc-currence, and together with the time spanned by �. Note that neither internal actions nortime-passage actions appear explicitly in the timed trace of �.Proposition 11.2.4 If � is a timed execution fragment of M then t-trace(�) is a timed se-quence pair over vis(M).Proposition 11.2.5 Let � be a timed execution fragment of M , and let trace(�) denote theordered sequence of external actions that appear in �. Then, t-trace(�) = t-trace(trace(�)).Proposition 11.2.6 If � = �1 a �2 is a timed execution fragment of M , then t-trace(�) =t-trace(�1); t-trace(�2). 244

We write t-traces(M) for the set of all timed traces of M , t-traces�(M) for the set of �nitetimed traces of M , and t-traces1(M) for the set of admissible timed traces of M ,The timed traces of a probabilistic timed automaton M can be characterized also in termsof its time-enriched executions or in terms of its ordinary executions. Speci�cally, if � is a time-enriched execution of M , then let t-trace(�) denote t-trace(t-exec(�)), and if � is an executionof M , then let t-trace(�) denote t-trace(trace(�)). The following proposition holds.Proposition 11.2.7 Let M be a probabilistic timed automaton.1. If � is a time-enriched execution of M , then there is a timed execution �0 of M such thatt-trace(�) = t-trace(�0).2. If � is a timed execution of M , then there is a time-enriched execution �0 of M such thatt-trace(�) = t-trace(�0).3. If � is a timed execution of M , then there is an execution �0 of M such that t-trace(�) =t-trace(�0).4. If � is an execution of M , then there is a timed execution �0 of M such that t-trace(�) =t-trace(�0).Proof.1. Let �0 be t-exec(�). Then, t-trace(�) = t-trace(�0) by de�nition.2. Let � be !0a1!1a2 � � �. If � is a �nite timed execution or an in�nite sequence, then let�0 = fstate(!0) a �1 a �2 a � � �, where for each i,�i = (!i�1aifstate(!i) if !i�1 has domain [0; 0],fstate(!i�1)ltime(!i�1)!i�1aifstate(!i) otherwise;if � = !0a1!1a2 � � �an!n and the domain of !n is right-open, then let �0 = fstate(!0) a�1 a � � � a �n a �0n+1, where the �i's are de�ned above and �0n+1 = !00d1!01d2!02 � � � is anin�nite sequence such that !00!01!02 � � � = !n. It is immediate to verify that � and �0 havethe same timed trace since � = t-exec(�0).3. Let � be !0a1!1a2 � � �. If � is a �nite timed execution or an in�nite sequence, then let�0 = fstate(!0) a �1 a �2 a � � �, where for each i,�i = (lstate(!i�1)aifstate(!i) if !i�1 has domain [0; 0],fstate(!i�1)ltime(!i�1)lstate(!i�1)aifstate(!i) otherwise;if � = !0a1!1a2 � � �an!n and the domain of !n is right-open, then let �00 = fstate(!0)a�1a� � �a�n a�0n+1, where the �i's are de�ned above and �0n+1 = fstate(!n)d1!n(d1)d2!n(d1+d2) � � � is an in�nite sequence such that Pi di = ltime(!n). It is immediate to verify that� and �0 have the same timed trace. 245

4. Given � = s0a1s1a2 � � �, build a time-enriched execution �00 by replacing each state si witha trajectory for (si�1; ai; si) whenever ai is a time-passage action. Then, t-trace(�) =t-trace(�00). Item 2 is enough to conclude.The bottom line of the proposition above is that for the study of the timed traces of a probabilis-tic timed automaton it is not necessary to observe the trajectories spanned by a computation.The points of occurrence of discrete actions are su�cient.11.3 Timed Trace DistributionsIn this section we de�ne the timed trace distributions of a probabilistic timed automaton and weextend the action restriction operation. The main result is that it is possible to study the timedtrace distributions of a probabilistic timed automatonM by considering either its probabilisticexecutions, or its probabilistic time-enriched executions, or its probabilistic timed executions.11.3.1 Three ways to De�ne Timed Trace DistributionsWe now de�ne the timed trace distribution of a probabilistic execution, of a probabilistic time-enriched execution, and of a probabilistic timed execution of a probabilistic timed automaton.The de�nitions are given in the same style as for the untimed case. Furthermore, we show thatthe three de�nitions lead to the same collection of timed trace distributions. This enforces theremark that for the study of the timed trace distributions of a probabilistic timed automatonit is not necessary to observe the trajectories spanned by a computation.Timed Trace Distribution of a Probabilistic ExecutionLetH be a probabilistic execution of a probabilistic timed automatonM , and let f be a functionfrom
H to
 = tsp(vis(M)) that assigns to each extended execution its timed trace. The timedtrace distribution of H , denoted by t-tdistr(H), is the probability space completion((
;F ; P))where F is the �-�eld generated by the cones C�, where � is a �nite timed sequence pair oftsp(vis(M)), and P = f(PH). Note that from Proposition 3.1.4 f is a measurable functionfrom (
H ;FH) to (
;F).Timed Trace Distribution of a Probabilistic Time-Enriched ExecutionLet H be a probabilistic time-enriched execution of a probabilistic timed automaton M , andlet f be a function from
H to
 = tsp(vis(M)) that assigns to each time-enriched extendedexecution its timed trace. The timed trace distribution of H , denoted by t-tdistr (H), is theprobability space (
;F ; P) where F is the �-�eld generated by the cones C�, where � is a �nitetimed timed sequence pair of tsp(vis(M)), and P = f(PH). Note that from Proposition 3.1.4f is a measurable function from (
H ;FH) to (
;F).Timed Trace Distribution of a Probabilistic Timed ExecutionLet H be a probabilistic timed execution of a probabilistic timed automaton M , and let fbe a function from
H to
 = tsp(vis(M)) that assigns to each timed extended execution246

its timed trace. The timed trace distribution of H , denoted by t-tdistr(H), is the probabilityspace (
;F ; P) where F is the �-�eld generated by the cones C�, where � is a �nite timedtimed sequence pair of tsp(vis(M)), and P = f(PH). Note that from Proposition 3.1.4 f is ameasurable function from (
H ;FH) to (
;F).Equivalence of the De�nitionsWe now show that the three de�nitions of a timed trace distribution lead to the same collectionof timed trace distributions when applied to a probabilistic timed automaton (cf. Proposi-tions 11.3.2 and 11.3.4). Thus, we can freely denote a generic timed trace distribution by Dand denote the timed trace distributions of a probabilistic tomed automatonM by t-tdistrs(M).Lemma 11.3.1 Let H be a probabilistic time-enriched execution of a probabilistic timed au-tomaton M . Then, t-tdistr (H) = t-tdistr(sample(H)).Proof. Let D be t-tdistr(H) and let D0 be t-tdistr (sample(H)) Consider a �nite timed trace�. From the de�nition of t-tdistr (),PD0 [C�] = Psample(H)[f� 2
sample(H) j � � t-trace(�)g]: (11.1)Since C� is a �nitely satis�able event, there is a set of � of states of sample(H) such that foreach element q of �, � � t-trace(q), and such thatf� 2
sample(H) j � � t-trace(�)g = [q2�Csample(H)q : (11.2)Thus,PD0 [C�] = Xq2�Psample(H)[Csample(H)q]: (11.3)From Equation (9.55), Equation (11.3) becomesPD0 [C�] = Xq2sample�1(�)PH [CHq]: (11.4)Observe that sample�1(�) is a characterization of C� for D, and thus,PD0 [C�] = PD [C�]: (11.5)This completes the proof.Proposition 11.3.2 Let M be a probabilistic timed automaton. Then, for each probabilis-tic time-enriched execution H of M there exists a probabilistic execution H 0 of M such thatt-tdistr(H) = t-tdistr(H 0), and for each probabilistic execution H of M there exists a proba-bilistic time-enriched execution H 0 of M such that t-tdistr(H) = t-tdistr(H 0).Proof. Follows directly from Propositions 9.3.6 and 9.3.7, and from Lemma 11.3.1.Lemma 11.3.3 Let H be a probabilistic time-enriched execution of a probabilistic timed au-tomaton M . Then, t-tdistr (H) = t-tdistr(t-sample(H)).247

Proof. Let D be t-tdistr (H), and let D0 be t-tdistr(t-sample(H)). Consider a �nite timedsequence pair D of tsp(vis(M)). From the de�nition of t-tdistr ,PD[C�] = PH [f� 2
H j � � t-trace(�)g]: (11.6)From the de�nition of t-exec(PH),PD[C�] = Pt-exec(PH)[f� 2
t-exec(H) j � � t-trace(�)g]: (11.7)With a similar analysis,PD0 [C�] = Pt-sample(H)[f� 2
t-sample(H) j � � t-trace(�)g]: (11.8)Since fromProposition 9.3.11 t-exec(PH) = Pt-sample(H), and since the events of (11.7) and (11.8)are unions of countably many disjoint cones, we conclude that PD [C�] = PD0 [C�].Proposition 11.3.4 Let M be a probabilistic timed automaton. Then, for each probabilistictime-enriched execution H of M there exists a probabilistic timed execution H 0 of M such thatt-tdistr(H) = t-tdistr(H 0), and for each probabilistic timed execution H of M there exists aprobabilistic time-enriched execution H 0 of M such that t-tdistr(H) = t-tdistr(H 0).Proof. Follows directly from Propositions 9.3.8 and 9.3.9, and from Lemma 11.3.3.Proposition 11.3.5 Let H1 and H2 be two equivalent probabilistic time-enriched executions ofa probabilistic timed automaton M . Then, t-tdistr(H1) = t-tdistr(H2).Proof. From Proposition 9.3.10, t-sample(H1) = t-sample(H2), and from Lemma 11.3.3,tdistr(H1) = tdistr(t-sample(H1)) and tdistr(H2) = tdistr(t-sample(H2)). Thus, combiningthe observations above, t-tdistr (H1) = t-tdistr(H2).11.3.2 Timed Trace Distribution of a Trace DistributionGiven a trace distribution of a probabilistic timed automaton, it is possible to de�ne its timedtrace distribution as we have done for ordinary traces. Thus, let D be a trace distribution of aprobabilistic automaton, and let f be a function from
D to
 = ft-trace(�) j � 2
Dg thatassigns to each trace its timed trace. The timed trace distribution of D, denoted by t-tdistr (D),is the probability space completion((
;F ; P)) where F is the �-�eld generated by the conesC�, where � is a �nite timed trace, and P = f(PD). Note that from Proposition 3.1.4 f is ameasurable function from (
D;FD) to (
;F).Proposition 11.3.6 Let H be a probabilistic execution of a timed probabilistic automaton M .Then, t-tdistr (H) = t-tdistr (tdistr(H)).Proof. Let D be t-tdistr (H), and let D0 be t-tdistr(tdistr(H)). We show �rst that D and D0have the same sample space. Then, we show that they assign the same probability to each cone.To show that D and D0 have the same sample space, it is enough to show that for eachtimed sequence pair � of tsp(vis(M)) thehre is a trace �0 of ext(M)� [ext(M)! such thatt-trace(�0) = �. Let (� = (a1; t1)(a2; t2); (a3; t3) � � � ; t). If seq(�) is an in�nite sequence, thenlet �0 = �1�2�3 � � �, where for each i, if ti+1 = ti, then �i = ai, and if ti+1 > ti, then �i =248

ai(ti+1� ti). If seq(�) is a �nite sequence, i.e., seq(�) = (a1; t1)(a2; t2); (a3; t3) � � � ; (an; tn) then�0 = �1�2�3 � � ��n�1�0n where the �i's are de�ned above, and �0n is an if tn = t, an(t � tn) if0 < t � tn < 1, and an followed by the in�nite sequence of 1's if t = 1. It is easy to verifythat in every case t-trace(�0) = �.To show that D and D0 assign the same probability to each cone, let � be a �nite timedtrace. From the de�nition of t-tdistr and tdistr ,PD0 [C�] = PH [f� 2
H j � � t-trace(trace(�))g]: (11.9)From Proposition 11.2.5, (11.9) becomesPD0 [C�] = PH [f� 2
H j � � t-trace(�)g]; (11.10)which is the de�nition of PD[C�].11.3.3 Action RestrictionFinally, we extend the action restriction operator to timed trace distributions. Let M be aprobabilistic timed automaton, and let V be a set of visible actions ofM . For each timed trace� = (
; t) of M , let � � V be the pair (
 0; t) where
 0 is obtained from
 by removing all thepairs whose action is in V . Let D be a timed trace distribution of M . De�ne D � V to be thetimed trace distribution (
;F ; P) where
 =
D � V , F is the �-�eld generated by the conesC�, where � is a �nite timed trace, and P = PD � V . Note that from Proposition 3.1.4 � V is ameasurable function from (
D;FD) to (
;F). Action restriction commutes with the operationof taking a timed trace distribution of a trace distribution.Proposition 11.3.7 Let D be a trace distribution of a probabilistic timed automaton M , andlet V be a set of visible actions of M . Then, t-tdistr(D � V) = t-tdistr (D) � V .Proof. Let D0 be t-tdistr(D � V), and let D00 be t-tdistr(D) � V . Let � be a �nite timed trace.By applying the de�nitions of t-tdistr and of �, we obtain the following two equations.PD0 [C�] = PD [f�0 2
D j � � t-trace(�0 � V)g]: (11.11)PD00 [C�] = PD [f�0 2
D j � � t-trace(�0) � V g]: (11.12)Observe that for each �0 of
D , t-trace(�0 � V) = t-trace(�0) � V . Thus, the right expressionsof (11.11) and (11.12) denote the same value. That is, PD0 [C�] = PD00 [C�].11.4 Timed Trace Distribution PrecongruenceLet M1;M2 be two probabilistic timed automata with the same external actions. The timedtrace distribution preorder is de�ned as follows.M1 vDt M2 i� t-tdistrs(M1) � t-tdistrs(M2):As for the untimed case, the timed trace distribution preorder is not a precongruence. Acounterexample can be created directly from the counterexample of Chapter 7 by augmentingthe probabilistic automata of Figure 7-4 with arbitrary self-loop time-passage transitions fromtheir deadlock states (the states that do not enable any transition). Thus, we de�ne thetimed trace distribution precongruence, denoted by vDCt, as the coarsest precongruence that iscontained in the timed trace distribution preorder.249

11.5 Alternative CharacterizationsThe timed trace distribution precongruence can be characterized by a timed version of theprincipal context of Chapter 7. Namely, let the timed principal context , denoted by CP bethe principal context of Figure 7-6 augmented with self-loop time-passage transitions for eachtime-passage action d. Then, the following holds.Theorem 11.5.1 M1 vDCt M2 i� M1kCP vDt M2kCP .Thus, if we de�ne the principal timed trace distributions of a probabilistic timed automatonM , denoted by pt-tdistrs(M), to be the timed trace distributions of MkCP , then we get thefollowing.Corollary 11.5.2 M1 vDCt M2 i� ext(M1) = ext(M2) and pt-tdistrs(M1) � pt-tdistrs(M2).The rest of this section is dedicated to the proof of Theorem 11.5.1. The structure of the prooffollows the same lines as the proof of Theorem 7.5.1, where only one additional transformationstep is added: a distinguishing context is transformed into a new time-deterministic contextwhere each state enables either discrete actions only or time-passage actions only. A time-deterministic context is a probabilistic automaton such that for each state s and each time-passage action d, if s d�! s1 and s d�! s2, then s1 = s2. All the lemmas except for one areproved by reducing the problem to the untimed framework.Lemma 11.5.3 Let C be a distinguishing context for two probabilistic timed automata M1 andM2. Then there exists a distinguishing context C 0 for M1 and M2 with no discrete actions incommon with M1 and M2. C0 is called a separated context.Proof. The context C0 is built from C in the same way as in the proof of Lemma 7.5.3. The con-structions clp and exch work as well (they never exchange transitions involving time-passage),and the proof is carried out at the level of probabilistic executions rather than probabilistictimed executions.Speci�cally, let D be a timed trace distribution of M1kC that is not a timed trace distri-bution of M2kC. Consider a probabilistic execution H1 of M1kC such that t-tdistr (H1) = D,and consider the scheduler that leads to H1. Apply to M1kC 0 the same scheduler with thefollowing modi�cation: whenever a transition ((s1; c); a;P1
 P) is scheduled in M1kC, sched-ule ((s1; c); a1;D((s1; c0))), where c0 is c(c;a;P), followed by ((s1; c0); a;P1
D(c0)), and, for eachs01 2
1, followed by ((s01; c0); a2;D(s01)
P). Denote the resulting probabilistic execution by H 01and the resulting timed trace distribution by D0. From Lemma 7.5.3, tdistr(H1) = tdistr(H 01) �vis(M1kC), and thus, from Propositions 11.3.6 and 11.3.7, D = D0 � vis(M1kC).Suppose by contradiction that it is possible to obtain D0 fromM2kC 0. Consider the schedulerthat leads to D0 in M2kC 0, and let H 02 be the corresponding probabilistic execution. Then, fromLemma 7.5.3, clp(exch(H 02)) is a probabilistic execution ofM2kC0, and tdistr(clp(exch(H 02))) =tdistr(H 02) � acts(M1kC). From Propositions 11.3.6 and 11.3.7, D = t-tdistr (clp(exch(H 02))),which is a contradiction.Lemma 11.5.4 Let C be a distinguishing separated context for two probabilistic timed automataM1 and M2. Then there exists a distinguishing cycle-free separated context C0 for M1 and M2.250

Proof. The context C 0 can be built by unfolding C. Every scheduler for C can be transformedinto a scheduler for C 0 and vice versa, leading to the same timed trace distributions.Lemma 11.5.5 Let C be a distinguishing cycle-free, separated context for two probabilistictimed automata M1 and M2. Then there exists a distinguishing time-deterministic, cycle-freeseparated context C0 for M1 and M2 that from any state enables either time-passage actionsonly or discrete actions only.Proof. The context C0 is built from C as follows:1. for each time-passage transition s d�! s0 of C and each trajectory ! for s d�! s0, add anaction start! and an action end!;2. for each time-passage transition s d�! s0 of C and each trajectory ! for s d�! s0, add acollection of new states fs!;t j 0 � t � dg, a transition s start!�! s!;0, a transition s!;d end!�! s0,and for each 0 � t < t0 � d, a transition s!;t t0�t�! s!;t0 ;3. remove all the time-passage transitions leaving from states of C.Let D be a timed trace distribution of M1kC that is not a timed trace distribution of M2kC.Consider a probabilistic execution H1 of M1kC such that t-tdistr (H1) = D, and consider thescheduler that leads toH1. Apply toM1kC 0 the same scheduler with the following modi�cation:whenever a time-passage transition s d�! s0 is scheduled, choose a trajectory ! for s d�! s0and schedule start!, followed by d, and followed by end! . Denote the resulting probabilisticexecution by H 01 and the resulting timed trace distribution by D0. Then,D0 � acts(M1kC) = D: (11.13)To prove (11.13) we prove �rst that tdistr(H 01) � acts(M1kC) = tdistr(H1), and then we applyPropositions 11.3.6 and 11.3.7. To prove that tdistr(H 01) � acts(M1kC) = tdistr(H1) we de�nea construction tclp to be applied to probabilistic executions ofMikC 0 where each occurrence ofa start action is followed eventually by the corresponding end action with probability 1.Let H 0 be a probabilistic execution of MikC0 where each occurrence of a start action isfollowed eventually by the corresponding end action with probability 1, and denote tclp(H 0) byH . For each state q of H 0, let tclp(q) be obtained from q by replacing each state of the form s!;twith the state !(t), by removing each occurrence of a start action together with its followingstate, and by removing each end action together with its following state. Then,states(H) 4= tclp(states(H 0)): (11.14)Let (q;P) be a restricted transition of H 0, and suppose that no start or end action occurs. Let
0 = f(a; tclp(q0)) j (a; q0) 2
g, and for each (a; q00) 2
0, let P 0[(a; q00)] = P [a � tclp�1(q00)],where tclp�1(q) is the set of states q0 of H 0 such that tclp(q0) = q. Then the transitiontclp((q;P)) is de�ned to betclp((q;P)) 4= (tclp(q);P): (11.15)251

For the transition relation of H , consider a state q of H , and let min(tclp�1(q)) be the set ofminimal states of tclp�1(q) under pre�x ordering. For each state �q 2 tclp�1(q), let�ptclp�1(q)�q 4= PH 0 [C�q]Pq02min(tclp�1(q))PH 0 [Cq0] : (11.16)The transition enabled from q in H isXq02tclp�1(q) �ptclp�1(q)�q PH 0q0 [acts(MikC)]tclp(trH 0q0 � acts(MikC)): (11.17)The probabilistic execution H satis�es the following properties.a. H is a probabilistic execution of MikC.The fact that each state of H is reachable can be shown by a simple inductive argument;the fact that each state of H is a �nite execution fragment ofMikC follows from a simpleanalysis of the de�nition of tclp.From (11.17) it is enough to check that for each state q0 of H 0, the transition tclp(trH 0q0 �acts(MikC)) is generated a combined transition of MikC. Since trH 0q0 is a transition ofH 0, (trH 0q0 � acts(MikC)) can be expressed as q0 a tr , where tr is a combined transition ofMikC0 and no start or end action occurs in tr . Let tr 0 be obtained by substituting eachstate of the form s!;t with !(t) in tr . Then, tr 0 is a combined transition of MkC, and,from the de�nition of tclp, tclp(trH 0q0 � acts(MikC)) = tclp(q0) a tr 0.b. For each state q of H ,PH [Cq] = Xq02min(tclp�1(q))PH 0 [Cq0]: (11.18)This is shown by induction on the length of q. If q consists of a start state only, thenthe result is trivial. Otherwise, from the de�nition of the probability of a cone, Equa-tion (11.17), and a simple algebraic simpli�cation,PH [Cqas] = PH [Cq]0@ Xq02tclp�1(q) �ptclp�1(q)q0 PH 0q0 [a� tclp�1(qas)]1A : (11.19)Observe that for each q0 2 tclp�1(q) the set
H 0q0 \ (fag � tclp�1(qas)) contains only oneelement, say (a; q0as00), and thus PH 0 [Cq0]PH 0q0 [a�tclp�1(qas)] gives PH 0 [Cq0as00]. Moreover,observe that the states of min(tclp�1(qas)) are the states of the form described in Equa-tion (11.19) (simple cases analysis). Thus, by applying induction to (11.19), using (11.16),simplifying algebraically, and using the observations above,PH [Cqas] = Xq02min(tclp�1(qas))PH 0 [Cq0]: (11.20)252

c. tdistr(H) = tdistr(H 0) � acts(MikC).Let � be a �nite trace of H or H 0. Then f� 2
H 0 j � � trace(�) � acts(MikC)g can beexpressed as a union of disjoint cones [q2�Cq where� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = lact(�)g: (11.21)The set tclp(�) is the settclp(�) = fq 2 states(H) j trace(q) = �; lact(q) = lact(�)g; (11.22)which is a characterization of f� 2
H j � � trace(�)g as a union of disjoint cones. Ob-serve that min(tclp�1(tclp(�))) = �. Moreover, for each q1 6= q2 of tclp(�), tclp�1(q1) \tclp�1(q2) = ;. Thus, from (11.18), PH 0 [[q2�Cq] = PH [[q2tclp(�)Cq]. This is enough toconclude.To complete the proof of (11.13) it is enough to observe that H1 = tclp(H 01). Property (11.13)is then expressed by property (c).Suppose by contradiction that it is possible to obtain D0 fromM2kC 0. Consider the schedulerthat leads to D0 in M2kC0, and let H 02 be the corresponding probabilistic execution. Observethat, since the timed trace distribution of H 02 is D0, and since by construction in D0 each occur-rence of a start action is followed eventually by the corresponding end action with probability1, in H 02 each occurrence of a start action is followed eventually by the corresponding endaction with probability 1. Thus, tclp can be applied, and t-tdistr (tclp(H 02)) = D, which is acontradiction.Lemma 11.5.6 Let C be a distinguishing time-deterministic, cycle-free, separated context fortwo probabilistic timed automata M1 and M2 that from any state enables either time-passageactions only or discrete actions only. Then there exists a distinguishing time-deterministic,cycle-free separated context C0 for M1 and M2 that from any state enables either time-passageactions only or discrete actions only, and such that the transition relation from any stateenabling discrete actions is at most countably branching. C 0 is called a time-deterministic,countably-branching, cycle-free separated context.Proof. Let D a timed trace distribution of M1kC that is not a timed trace distribution ofM2kC. Consider one of the corresponding probabilistic executions H . Observe that H has atmost countably many states that enable discrete actions, and that at each state of H there areat most countably many transitions of C that are scheduled. Thus, in total, only countablymany discrete transitions of C are used to generate D. Then C0 is C without the useless discretetransitions.Lemma 11.5.7 Let C be a distinguishing time-deterministic, countably-branching, cycle-freeseparated context for two probabilistic timed automata M1 and M2. Then there exists a dis-tinguishing cycle-free separated context C0 for M1 and M2 that at each state enabling discreteactions either enables two deterministic transitions or a unique probabilistic transition with twopossible outcomes. C 0 is called a time-deterministic, binary separated context.253

Proof. The context C0 is built from C in the same way as in the proof of Lemma 7.5.6. Theconstructions shr and shf work as well. The speci�c procedure is the same as the procedurefollowed in the proof of Lemma 11.5.3.Lemma 11.5.8 Let C be a distinguishing time-deterministic, binary separated context for twoprobabilistic timed automata M1 and M2. Then there exists a distinguishing time-deterministic,binary separated context C0 forM1 andM2 where all the probabilistic transitions have a uniformdistribution over two states. C 0 is called a time-deterministic, balanced separated context.Proof. The context C0 is built from C in the same way as in the proof of Lemma 7.5.7. Thespeci�c procedure is the same as the procedure followed in the proof of Lemma 11.5.3.Lemma 11.5.9 Let C be a distinguishing time-deterministic, balanced separated context for twoprobabilistic timed automata M1 and M2. Then there exists a distinguishing time-deterministic,binary separated context C0 for M1 and M2 with no internal actions and such that for each timet each discrete action appears exactly in one edge of the transition tree that leaves from a statewhose time is t. C0 is called a time-deterministic, total balanced separated context.Proof. The context C0 is obtained from C by renaming all of its discrete actions so that foreach time t each edge of the new transition relation leaving from a state whose current time ist has its own action. The proof of Lemma 7.5.8 applies.Lemma 11.5.10 Let C be a distinguishing time-deterministic, total balanced separated contextfor two probabilistic timed automata M1 and M2. Then there exists a distinguishing time-deterministic, total, cycle-free separated context C0 for M1 and M2 that from every state en-ables one time-passage transition for each timed-action d, two deterministic transitions, and aprobabilistic transition with a uniform distribution over two choices. C0 is called a completecontext.Proof. In this case it is enough to complete C by adding all the missing transitions and states.If D is a timed trace distribution ofM1kC that is not a timed trace distribution ofM2kC, thenit is enough to use on M1kC 0 the same scheduler that is used in M1kC. In fact, since each newdiscrete transition of C 0 has a distinct action, none of the new discrete transitions of C 0 can beused in M2kC 0 to generate D, and since each state of C0 is uniquely determined by the timedtrace of all the executions leading to that state, none of the new time-passage transitions canbe scheduled (this would a�ect the resulting timed trace distribution).Lemma 11.5.11 Let C be a distinguishing complete context for two probabilistic timed au-tomata M1 and M2. Then the timed principal context is a distinguishing context for M1 andM2.Proof. The result is achieved in two steps. First the actions of C are renamed so that eachstate enables two deterministic transitions with actions left and right , a probabilistic transitionwith actions pleft and pright , and one transition for each time-passage action d. Call thiscontext C1. Then, by observing that the state of C1 is uniquely determined by the timed traceof any timed execution leading to it, all the states of C1 are collapsed into a unique one.Thus, we need to show only that C1 is a distinguishing context. The proof of Lemma 7.5.10applies. 254

Lemma 11.5.12 Let CP be a distinguishing context for two probabilistic timed automata M1and M2. Then the simple context C of Figure 7-6 augmented with a self-loop time-passagetransition from state s0 for each time-passage action d, where start is an action that does notappear in M1 and M2, is a distinguishing context for M1 and M2.Proof. The proof of Lemma 7.5.11 applies.Proof of Theorem 11.5.1. Let M1 vDCt M2. Then, from Lemma 11.5.12, M1kCP vDtM2kCP . Conversely, let M1kCP vDt M2kCP . Then, from Lemmas 11.5.3, 11.5.4, 11.5.5,11.5.6, 11.5.7, 11.5.8, 11.5.9, 11.5.10, and 11.5.11,M1 vDCt M2.

255

256

Chapter 12Hierarchical Veri�cation: TimedSimulations12.1 IntroductionThe simulation method extends to the timed framework almost directly. The main di�erenceis that in a timed simulation that abstracts from internal computation we use moves (cf. Sec-tion 9.4) rather than weak combined transitions. The kind of results that we prove are a directextension of similar results for the untimed model. In particular, probabilistic timed forwardsimulations are sound for the timed trace distribution precongruence.12.2 Probabilistic Timed SimulationsWe start directly with simulation relations that abstract from internal computation; the strongrelations are essentially the same as for the untimed case.For convenience assume that M1 and M2 do not have common states. A probabilistic timedbisimulation between two simple probabilistic timed automata M1 and M2 is an equivalencerelation R over states(M1) [states(M2) such that1. each start state of M1 is related to at least one start state of M2, and vice versa;2. for each pair of states s1 R s2 and each transition s1 a�! P1 of either M1 or M2, thereexists a move s2 a�ext(M2); P2 of either M1 or M2 such that P1 �R P2.We write M1 'Pt M2 whenever ext(M1) = ext(M2) and there is a probabilistic timed bisimu-lation between M1 and M2.A probabilistic timed simulation between two simple probabilistic timed automata M1 andM2 is a relation R� states(M1)� states(M2) such that1. each start state of M1 is related to at least one start state of M2;2. for each pair of states s1 R s2 and each transition s1 a�! P1 of M1, there exists a moves2 a�ext(M2); P2 of M2 such that P1 vR P2.257

We writeM1 vPt M2 whenever ext(M1) = ext(M2) and there is a probabilistic timed simulationfrom M1 to M2. We denote the kernel of probabilistic timed simulation by �Pt.It is easy to check that 'Pt is an equivalence relation, that vPt is a preorder relation, andthat both 'Pt and vPt are preserved by the parallel composition operator. It is also easy toverify that a weak probabilistic bisimulation is a probabilistic timed bisimulation and that aweak probabilistic simulation is a probabilistic timed bisimulation.12.3 Probabilistic Timed Forward SimulationsA probabilistic timed forward simulation between two simple probabilistic timed automataM1;M2 is a relation R� states(M1)� Probs(states(M2)) such that1. each start state of M1 is related to at least one Dirac distribution over a start state ofM2;2. for each s R P 0, if s a�! P1, then(a) for each s0 2
0 there exists a probability space Ps0 such that s0 adext(M2); Ps0 , and(b) there exists a probability space P 01 of Probs(Probs(states(M2))) satisfying P1 vR P 01,such that Ps02
0 P 0[s0]Ps0 =PP2
01 P 01[P]P .Denote the existence of a probabilistic timed forward simulation fromM1 toM2 byM1 vFSt M2.Proposition 12.3.1 vFSt is preserved by the parallel composition operator.Proof. Let M1 vFSt M2, and let R be a probabilistic timed forward simulation from M1 toM2. Let R0 be a relation between states(M1)�states(M3) and Probs(states(M2)�states(M3)),de�ned as follows:(s1; s3) R0 P i� P = P2
D(s3) for some P2 such that s1 R P2.The proof that R0 satis�es Condition 1 and that Condition 2 is satis�ed for each discretetransition of M1kM2 is essentially the proof of Proposition 8.5.1. Thus we need to show onlythat Condition 2 is satis�ed by time-passage transitions.Let (s1; s3) R0 P2
 D(s3), and let (s1; s3) d�! (s01; s03), where s1 d�! s01, and s3 d�! s03.From the de�nition of a probabilistic timed forward simulation, for each s 2
2 there existsa move s2 d; Ps of M2, and there exists a probability space P 02 of Probs(Probs(states(M2))),such thatXs2
2 P2[s]Ps = XP2
02 P 02[P]P ; (12.1)and D(s01) vR P 02: (12.2)Moreover, from the de�nition of a probabilistic timed automaton, there is a trajectory !3 fors3 d�! s03.For each s 2
2, let Os be a generator for s d; Ps. De�ne a new generator O0s as follows:for each �nite execution fragment � of M2kM3 starting in (s; s3),258

1. if Os(�dM2) = (s0;P), where (s0;P) = Pi pi(s0; ai;Pi), each (s0; ai;Pi) is a transitionof M2, and �dM3 is consistent with !3, i.e., for each pre�x �0 of �, lstate(�0)dM3 =!3(ltime(�0)), then letting s003 denote lstate(�dM3),O0s(�) =Xi pi((s0; s003); ai;Pi
P 0i);where P 0i = D(s003) if ai is a discrete action, and P 0i = D(!3(ltime(�) + ai)) if ai is atime-passage action.2. otherwise, O0s(�) = D(�).The move generated by each O0s is (s; s3) d; Ps
 D(s03). In fact, an execution fragment �of M2kM3 is terminal for O0s i� �dM2 is terminal for Os and lstate(�dM3) = s03, and thus
O0s =
s � D(s03). Moreover, for each � 2
O0s , PO0s� = POs�dM2 .Denote Ps
D(s03) by P(s;s3). Then, for each (s; s3) 2
2
D(s3), we have identi�ed a move(s; s3) a; P(s;s3). These are the spaces of Condition 2.a in the de�nition of a probabilistic timedforward simulation.From this point the proof proceeds exactly in the same way as the proof of Proposition 8.5.1.No modi�cation of the text is necessary.12.4 The Execution Correspondence Theorem: Timed Ver-sionThe execution correspondence theorem of Chapter 8 extends easily to the timed framework. Inthis section we de�ne the notion of a timed execution correspondence structure, show the timedversion of the execution correspondence theorem, and, as a consequence, show that probabilistictimed forward simulations are transitive.The timed execution correspondence theorem is stated in terms of the probabilistic execu-tions of a probabilistic timed automaton; however, it is easy to see that the same result can beextended to probabilistic timed executions: the execution correspondence theorem talks aboutcountably many states of a probabilistic timed execution; all the other points can be describedby arbitrary trajectories.12.4.1 Timed Execution Correspondence StructureThe de�nition of a fringe for a probabilistic timed execution is the same as the de�nition of afringe for a probabilistic execution. For the de�nition of fringe(H; i) the only di�erence is inthe way the length of a state of H is measured, and thus the de�nition given for probabilisticautomata is still valid.Let R be a probabilistic timed forward simulation fromM1 toM2. A timed execution corre-spondence structure via R is a tuple (H1; H2; m; S), where H1 is a probabilistic execution ofM1,H2 is a probabilistic execution ofM2,m is a mapping from natural numbers to fringes ofM2, andS is a mapping from natural numbers to probability distributions of Probs(Probs(states(H2))),such that 259

1. For each i, m(i) � m(i+ 1);2. For each state q2 of H2, limi!1Pq2
ijq2�q Pi[q] = PH [Cq];3. Let q1 R (
;F ; P) i� for each q 2
, t-trace(q) = t-trace(q1), and either(a) q1 does not end in �, each state of
 does not end in �, and lstate(q1) R lstate(P),or(b) q1 and each state of
 end in � and lstate(�-strip(q1)) R lstate(�-strip(P)).Then, for each i � 0, m(i) =PP2
S(i) PS(i)[P]P , and fringe(H1; i) vR S(i).4. Let, for each i � 0, each q1 2 fringe(H1; i), and each q2 2 states(H2), Wi(q1; q2) 4=PP wi(q1;P)P [q2]. If Wi(q1; q02) = 0 for each pre�x or extension q02 of q2, then, for eachextension q01 of q1 such that q01 2 fringe(H1; i+ 1), and each pre�x or extension q02 of q2,Wi+1(q01; q02) = 0.12.4.2 The Main TheoremTheorem 12.4.1 Let M1 vFS M2 via the probabilistic timed forward simulation R, and letH1 be a probabilistic execution of M1. Then there exists a probabilistic execution H2 of M2, amapping m from natural numbers to fringes of M2, and a mapping S from natural numbers toprobability distributions of Probs(Probs(states(H2))), such that (H1; H2; m; S) is an executioncorrespondence structure via R.Proof. The proof has exactly the same structure as the proof of Theorem 8.6.1. Note that theonly di�erence between this theorem and Theorem 8.6.1 is in Condition 3, where we use timedtraces rather than traces.12.4.3 Transitivity of Probabilistic Timed Forward SimulationsThe timed execution correspondence theorem can be used to show that probabilistic timedforward simulations are transitive, i.e., if M1 vFSt M2 and M2 vFSt M3, then M1 vFSt M3.The proof of this result follows the same lines as the corresponding proof in the untimed case(cf. Section 8.6.4), where combined transitions are replaced by moves and traces are replacedby timed traces. We leave the details of the proof to the reader.12.5 Soundness for Timed Trace DistributionsAs for the untimed model, the timed execution correspondence theorem can be used to showthat probabilistic timed forward simulations are sound for the timed trace distribution precon-gruence. Since vFSt is a precongruence, it is enough to show that vFSt is sound for the timedtrace distribution preorder.Proposition 12.5.1 If M1 vFSt M2, then M1 vDt M2.260

Proof. Let M1 vFSt M2, and let H1 be a probabilistic execution of M1 that leads to a timedtrace distribution D1. From Lemma 12.4.1, there exists a probabilistic execution H2 of M2that corresponds to H1 via some mappings m;S. We show that H2 leads to a timed tracedistribution D2 that is equivalent to D1.Consider a cone C� of D1. The cone C� can be expressed as a union of cones of PH1 , andthus its measure can be expressed aslimi!1 Xq12fringe(H1;i)j��t-trace(q1)PH1 [Cq1]: (12.3)Consider a cone C� of D2. The cone C� can be expressed as a union of cones of PH2 , and thusits measure can be expressed aslimi!1 Xq22m(i)j��t-trace(q2)Pm(i)[q2]: (12.4)The reason for Expression (12.4) is that at the limit each cone expressing the occurrence of �is captured completely.Thus, it is su�cient to show that for each �nite � and each i,Xq12fringe(H1;i)j��t-trace(q1)PH1 [Cq1] = Xq22m(i)j��t-trace(q2)Pm(i)[q]: (12.5)From this point the proof proceeds exactly as the proof of Proposition 8.7.1.

261

262

Chapter 13Conclusion13.1 Have we Met the Challenge?We have developed a model for the description of randomized distributed real-time systems, andwe have investigated how the new model can be used for the analysis of algorithms. The mainidea behind the model is to extend labeled transition systems to account for randomization insuch a way that probabilistic behavior and nondeterministic behavior are clearly distinct.We have shown how commonly used informal statements can be formulated in the newformalism, and we have shown how such statements can be proved to be correct in a formaland rigorous way. In particular, we have developed veri�cation techniques that resemble thecommon ways in which randomized algorithms are analyzed. The main improvement is thatnow we have a collection of results that allow us to determine when a speci�c argument can beused safely. Furthermore, we have shown how to derive upper bounds to the complexity of arandomized distributed algorithm using an ordinary time complexity measure as well as moreabstract complexity measures like \number of rounds in an asynchronous computation".Finally, we have extended several veri�cation techniques that are commonly used within thelabeled transition system model. We have extended the trace semantics of labeled transitionsystems and several of the existing simulation relations for labeled transition systems. Inparticular, all our preorder relations are compositional and the simulation relations are soundfor the trace-based semantics. Although we have not presented any example of veri�cationusing simulations, except for two toy examples based on coin
ips, we are con�dent that in thefuture the method based on simulations will become of practical relevance as it happened forordinary automata.Therefore, we can claim that we have met the challenge given by randomization at leastpartially. Surely we understand much more of the problem than before. The fact that we havebeen able to prove new results about randomized algorithms is a positive sign. In particular,Aggarwal [Agg94] used successfully the technique presented in this thesis for the veri�cation ofthe randomized self-stabilizing algorithm of Aggarwal and Kutten [AK93], which is not trivialat all; during the veri�cation process Aggarwal discovered also a subtle bug in the originalprotocol. In the measure in which the power of a proof method is evaluated based on the bugsthat such method helps to discover, our methodology has achieved something. Indeed we havediscovered another bug on one existing algorithm, and the main issue is that we did not haveto work much to discover such a bug; essentially it was su�cient to try to reformulate the proof263

of correctness in our framework.13.2 The Challenge ContinuesAlthough we have improved considerably our understanding of randomization in distributedcomputation, what we have discovered looks like the tip of the iceberg. We have addressedseveral problems, and in solving them we have addressed more the basic methodology ratherthan an extensive analysis of all the possible solutions. Therefore, there are several directions forfurther research that can be pursued. Here we suggest some of the most important directions.13.2.1 Discrete versus Continuous DistributionsThroughout this thesis we have assumed that the probability distributions associated with thetransitions of a probabilistic automaton are discrete. Although such assumption is su�cientlygeneral for the study of several randomized algorithms, several other real-time systems are betterdescribed by using continuous distributions. Examples involve algorithms for transmission ofdata along a common wire, scheduling algorithms for massively parallel machines, and queuingsystems. Moreover, continuous distributions would be more suitable for the study of randomizedhybrid systems.The extension of the theory to continuous distributions involves nontrivial measure theoret-ical problems. In particular it is not the case any more that any union of cones is measurable;thus, not even the event that expresses the occurrence of an action or the reachability of astate is measurable in general. The events with probability 0 need a more careful treatmentwithin the model with continuous distributions. It is likely that some restrictions must beimposed to the model to ensure that some minimal set of events is measurable. Examples ofrestricted models with continuous distributions are the automata of Alur, Courcuobetis andDill [ACD91a, ACD91b], where the time that elapses between two transitions is governed byan exponential distribution or by a distribution which is non zero in a �nite collection of closedintervals, and the models of [GHR93, Hil93, BDG94], where the time between the occurrenceof two actions is assumed to be distributed exponentially. Exponential distributions occur inseveral real systems and are easy to model due to their memoryless structure. However, otherdistributions should be studied.13.2.2 Simpli�ed ModelsWithin the context of ordinary automata Lynch and Tuttle [LT87] have developed a model ofI/O automata. The model enforces a distinction between Input actions and Output actionswithin an automaton, and requires that input actions are enabled from every state. Further-more, in a parallel composition context each action is required to be the output or internalaction of at most one process, i.e., each action is under the control of at most one process.Based on the Input/Output distinction Lynch and Tuttle can introduce fairness in the modelin a natural way, and in particular they can use the trace semantics as a meaningful notion ofimplementation. In general the trace semantics is not meaningful as a notion of implementationsince, for example, it is not sensitive to deadlock. The advantage of the use of traces is thattraces are easy to deal with. 264

s0

s1 s2 s3

a

1/2

a
b

1/2

s0),(0s

),(ss1 1),(ss1 2),(ss2 3),(0ss3

a
a b

c
1/12

1/12
1/3

1/2

s0

s1 s2 s3

=a
b

c

1/6 1/3 1/2Figure 13-1: Synchronization for probabilistic I/O automata.For this reason, it makes sense to study a theory of probabilistic I/O automata as anextension of the model of [LT87] and as a restriction of our model. An interesting point of amodel with I/O distinction is that it is possible to relax the requirement that all the transitionsof a probabilistic I/O automaton are simple. In particular, only the transitions with inputactions need to be simple, while all the others can be general. The parallel composition can bede�ned easily since a non-simple transition synchronizes only with simple transitions. Figure 13-1 gives an example of synchronization between a transition with three output actions a; b; c andtwo transitions of an I/O automaton with just two input actions a; b. A similar observationwas made also by Wu, Stark and Smolka in [WSS94].A restricted timed model with I/O distinction is introduced by Merrit, Modugno and Tuttle[MMT91]. In particular timing constraints can be described only by giving upper and lowerbounds to the time it takes for a process to perform the next transition whenever it is readyto do so. MMT automata turned out to be su�cient for the modeling of several distributedsystems, and in particular, due to their simple structure, made the analysis simpler than byusing the full automaton model. Once again, a study of the probabilistic version of the MMTmodel would be useful. The proofs that we have illustrated in Chapter 12 could be carried outin the probabilistic MMT model as well.Finally, the analysis of a system can be simpli�ed by studying time-deterministic probabilis-tic timed automata, i.e., probabilistic timed automata such that from each state s and each timed there is at most one state reachable from s in time d. In fact, if a system is time-deterministic,then the end points of a time-passage transition determine completely the trajectory that isspanned. Therefore, trajectories could be removed also from the direct analysis of randomizedtimed algorithms. It turns out that most of the times an algorithm can be described as atime-deterministic probabilistic automaton. Probabilistic MMT automata are an example oftime-deterministic probabilistic automata.13.2.3 Beyond Simple Probabilistic AutomataThe study of parallel composition and of the simulation relations of this thesis is done withinthe context of simple probabilistic automata. The main problem is that we did not �nd anyreasonable de�nition of parallel composition for general probabilistic automata that is consistentwith our synchronization style. We have just observed that in the presence of an Input/Outputdistinction it is possible to relax the simplicity condition and yet obtain a meaningful notionof parallel composition. It would be interesting to investigate other mechanisms that give ameaning to general probabilistic automata and yet work as we expect in the simple case.265

13.2.4 Completeness of the Simulation MethodWe have provided several simulation and bisimulation relations for probabilistic automata andprobabilistic timed automata, and we have shown that they are sound for the trace distributionprecongruence and the timed trace distribution precongruence, respectively. However, we havenot shown any completeness result for probabilistic forward simulations and probabilistic for-ward timed simulations. In [LV93a, LV95] it is shown that forward simulations together withanother kind of simulations called backward simulations are sound and complete for the tracepreorder. Are probabilistic forward simulations complete for the trace distribution preorder?If not, is there an equivalent of backward simulations that can lead to completeness?13.2.5 Testing Probabilistic AutomataWe have presented the trace distribution semantics as an example of a semantics based onabstract observations. Another widely known semantics for ordinary automata is the failuresemantics of Brookes, Hoare and Roscoe [BHR84], which in turn is connected to the testingpreorders of De Nicola and Hennessy [DH84]. Similarly to the trace distribution semantics,it should be possible to extend the failure semantics to the probabilistic framework and �nda su�ciently powerful context to distinguish probabilistic automata that are not in the corre-sponding precongruence relation. Possibly, a related theory of testing in the style of [DH84]should be de�ned. It is very likely that the new testing preorders will be similar to thoseof Yi and Larsen [YL92]. Other theories of testing for probabilistic automata are studied in[Chr90b, Chr90a, CSZ92, YCDS94] and are explained in Section 2.2.13.2.6 Liveness in Probabilistic AutomataIn the extension of the notion of an execution of an automaton we have obtained a parallelismbetween the theory of ordinary automata and the theory of probabilistic automata. In thisparallelism also the notion of liveness has found its place, although we have not addressed theissue in this thesis. In ongoing research we have given a simple de�nition of a live probabilisticautomaton as a pair (M;L) where L is an arbitrary subset of the probabilistic executions ofM ,and we have shown that the live trace distribution precongruence can be de�ned easily and canbe characterized by a live principal context , which is essentially the principal context pairedwith the set of its probabilistic executions. However, lot of work remains to be done within thetheory of liveness.First of all it would be useful to study how the de�nition of safety and liveness propertiesof Alpern and Schneider [AS85] extends to the probabilistic framework and what consequencessuch extension has. Furthermore, the use of the live trace preorder within ordinary automatamakes sense as a notion of implementation in the presence of I/O distinction and of a propertycalled receptiveness or environment-freedom [Dil88, AL93, GSSL94]. It would be useful tostudy the theory of receptiveness of [Dil88, AL93] and of environment-freedom of [GSSL94]in the context of randomization. In this case, di�erently from [GSSL94], the environment isexpressed by a function rather than by a sequence of actions. However, non-trivial problemsarise in imposing restrictions to the behavior of the environment.266

13.2.7 Temporal Logics for Probabilistic SystemsIn the chapters on direct analysis we have identi�ed a collection of probabilistic statementsthat are useful for the analysis of algorithms. However, there are several other statements thatcan be of interest. It would be desirable to �nd a probabilistic temporal logic that expressesas many properties as possible. The probabilistic modal logic of [LS89] is a direct extension ofthe modal logic of Hennessy and Milner [HM85] for reactive processes, but it is not su�cientlypowerful to deal with nondeterminism; similarly, the extended probabilistic logic of [LS92] is notsu�ciently powerful. The Probabilistic Computation Tree Logic of [HJ89, Han94] captures morethe consequences of the interplay between probability and nondeterminism; in [SL94] PCTL isgeneralized also to probabilistic systems with internal actions (WPCTL). However, there arestill properties that are useful and do not seem to be expressible in WPCTL. Speci�cally, wedo not know how to express a property of the kind \after something has happened, no matterwhere I am, something else will happen with probability at least p". Is there something missingin WPCTL? What would be a more appropriate temporal logic?Another issue is the relationship between the simulation method and temporal logic. Thatis, if a probabilistic automaton implements another probabilistic automaton according to someimplementation relation (e.g., trace distribution precongruence, probabilistic simulation, proba-bilistic forward simulation, etc.), what can we say about the implementation? What propertiesof the speci�cation are satis�ed by the implementation? More generally, given a probabilis-tic temporal logic and a preorder relation, what fragment of the logic is preserved by thepreorder relation? Somehow it is implicit that whenever we use some preorder relation as anotion of implementation we are interested only in the properties that are preserved by suchrelation; however, we need to know what are those properties. In [SL95] we have stated thatweak probabilistic simulation preserve a large fragment of WPCTL and that weak probabilisticbisimulations preserve WPCTL. The results of [SL95] can be proved easily given the results ofthis thesis. However, more work in this direction is necessary. In particular, some completenessresults would be useful.13.2.8 More Algorithms to VerifyIn this thesis we have illustrated our direct veri�cation technique by proving the correctnessof the randomized dining philosophers algorithm of Lehmann and Rabin [LR81] and of therandomized agreement protocol of Ben-Or [BO83]. In [Agg94] Aggarwal uses our model to verifythe correctness of the self-stabilizing minimum weight spanning tree randomized algorithm ofAggarwal and Kutten [AK93]. However, the technique should be tested against many otheralgorithms. We are currently investigating the agreement protocol of Aspnes and Herlihy [AH90]and the randomized mutual exclusion algorithm of Pnueli and Zuck [PZ86]. Based on the littleexperience that we have gained, we can say that the model provides us with a systematic wayof analyzing those algorithms, and in particular it provides us with a simple methodology toidentify the critical points of an algorithm.It is very likely that new coin lemmas need to be developed together with other techniquesfor the actual computation of the probability of an event. A technique that needs furtherdevelopment is the partition technique of Section 6.7. The analysis of other algorithms shouldmake clear what other techniques are necessary. Also, playing with the toy resource allocationprotocol of Chapter 5 can be very instructive. Although the protocol is simple, its analysis267

highlights several of the issues that arise in randomized distributed computation.It is also plausible, as it happened for non-probabilistic distributed algorithms, that somecomplex protocols can be veri�ed more easily by using the simulation method. Finding thosealgorithms would be an optimal way to test the hierarchical veri�cation method and possiblyto improve it.13.2.9 Automatic Veri�cation of Randomized SystemsFormal veri�cation usually involves two levels of analysis. First, an algorithm is analyzed ata high level by using the intuition that designers have of their own algorithm; then, a moredetailed veri�cation of the high level claims is carried out in order to guarantee correctness.The low level analysis is very tedious and involves checking a whole lot of uninteresting details.On the other hand, several times the low level analysis is the only way to discover
aws in theintuitions about an algorithm.Fortunately, the low level analysis is amenable to automatic veri�cation, although the re-search in this area is still in progress. Model checking [EC82, CES83] is certainly a usefultechnique; in [SGG+93] it is shown how a theorem prover can be used to help in the veri�cationof a protocol using simulations; in [PS95] we have investigated how a randomized algorithmcan be veri�ed mechanically once the high level proof is formulated. However, there is still alot of work that needs to be done. It would be interesting to study how model checking andtheorem proving could be integrated to automatize part of the veri�cation of an algorithm.13.3 The Conclusion's ConclusionTo say what we have done in one sentence, we have provided a new way of reasoning aboutrandomized systems that integrates both the theoretical aspects of modeling and the basicrequirements for usage in practice. From the modeling point of view we have distinguished be-tween nondeterminism and probability explicitly and we have extended the main semantics thatare available within the labeled transition systems model; from the point of view of veri�cationwe have formalized some of the common informal arguments about randomized algorithms andwe have provided guidelines to determine whether an argument can be used safely. Further-more, we have provided a systematic way to analyze the complexity of randomized algorithms.All our results are compatible with previous work.As we have seen in the previous section, there are still many open problems in this area.Here we hope to have stimulated the curiosity of the reader to go much further. Needless tosay that for us (me) working on this project was a continuous discovery.
268

Bibliography[ACD91a] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking for probabilistic real-timesystems. In J. Leach Albert, B. Monien, and M. Rodr��guez, editors, Proceedings18th ICALP, Madrid, volume 510 of Lecture Notes in Computer Science, pages115{136. Springer-Verlag, 1991.[ACD91b] R. Alur, C. Courcoubetis, and D.L. Dill. Verifying automata speci�cations ofprobabilistic real-time systems. In de Bakker et al. [dBHRR91], pages 28{44.[ACS94] B. Awerbuch, L. Cowen, and M.A. Smith. E�cient asynchronous distributed sym-metry breaking. In Proceedings of the 26th Annual ACM Symposium on Theory ofComputing, 1994.[Agg94] S. Aggarwal. Time optimal self-stabilizing spanning tree algorithms. TechnicalReport MIT/LCS/TR-632, MIT Laboratory for Computer Science, 1994. Master'sthesis.[AH90] J. Aspnes and M.P. Herlihy. Fast randomized consensus using shared memory.Journal of Algorithms, 15(1):441{460, September 1990.[AK93] S. Aggarwal and S. Kutten. Time optimal self stabilizing spanning tree algo-rithms. In R.K. Shyamasundar, editor, 13th International Conference on Foun-dations of Software Technology and Theoretical Computer Science, volume 761 ofLecture Notes in Computer Science, pages 400{410, Bombay, India., December1993. Springer-Verlag.[AL91] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In de Bakkeret al. [dBHRR91], pages 1{27.[AL93] M. Abadi and L. Lamport. Composing speci�cations. ACM Transactions onProgramming Languages and Systems, 15(1):73{132, 1993.[AS85] B. Alpern and F.B. Schneider. De�ning liveness. Information Processing Letters,21(4):181{185, 1985.[BBS92] J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing probabilistic pro-cesses: ACP with generative probabilities. In Cleaveland [Cle92], pages 472{485.[BDG94] M. Bernardo, L. Donatiello, and R. Gorrieri. Modeling and analyzing concur-rent systems with MPA. In U. Herzog and M. Rettelbach, editors, Proceedings of269

the Second Workshop on Process Algebras and Performance Modelling (PAPM),Erlangen, Germany, pages 175{189, 1994.[BFJ+82] J. Burns, M. Fisher, P. Jackson, N.A. Lynch, and G. Peterson. Data requirementsfor implementation of n-process mutual exclusion using a single shared variable.Journal of the ACM, 29(1):183{205, 1982.[BG91] J.C.M. Baeten and J.F. Groote, editors. Proceedings of CONCUR 91, Amsterdam,volume 527 of Lecture Notes in Computer Science. Springer-Verlag, 1991.[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-quential processes. Journal of the ACM, 31(3):560{599, 1984.[BK90] J.C.M. Baeten and J.W. Klop, editors. Proceedings of CONCUR 90, Amsterdam,volume 458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.[BM89] B. Bloom and A. Meyer. A remark on bisimulation between probabilistic processes.In Proceedings of the Symposium on Logical Foundations of Computer Science,volume 363 of Lecture Notes in Computer Science, pages 26{40, 1989.[BO83] M. Ben-Or. Another advantage of free choice: completely asynchronous agreementprotocols. In Proceedings of the 2nd Annual ACM Symposium on Principles ofDistributed Computing, Montreal, Quebec, Canada, August 1983.[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Veri�cation of an audio control protocol.Technical Report CS-R9445, CWI, Amsterdam, July 1994.[BW90] J.C.M. Baeten and W.P Weijland. Process Algebra. Cambridge Tracts in Theo-retical Computer Science 18, Cambridge University Press, 1990.[CES83] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state concurrent systems using temporal logic speci�cations. ACM Transactionson Programming Languages and Systems, 8(2), 1983.[Chr90a] I. Christo�. Testing equivalences and fully abstract models for probabilistic pro-cesses. In Baeten and Klop [BK90], pages 126{140.[Chr90b] I. Christo�. Testing Equivalences for Probabilistic Processes. PhD thesis, Depart-ment of Computer Science, Uppsala University, 1990.[Chr93] L. Christo�. Speci�cation and Veri�cation Methods for Probabilistic Processes.PhD thesis, Department of Computer Science, Uppsala University, 1993.[Cle92] W.R. Cleaveland, editor. Proceedings of CONCUR 92, Stony Brook, NY, USA,volume 630 of Lecture Notes in Computer Science. Springer-Verlag, 1992.[CM88] K.M. Chandi and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988. 270

[CSZ92] R. Cleaveland, S.A. Smolka, and A. Zwarico. Testing preorders for probabilisticprocesses (extended abstract). In Proceedings 19th ICALP, Madrid, volume 623 ofLecture Notes in Computer Science, pages 708{719. Springer-Verlag, 1992.[CY88] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of �nite-stateprobabilistic programs. In 29th Annual Symposium on Foundations of ComputerScience, pages 338{345, 1988.[CY90] C. Courcoubetis and M. Yannakakis. Markov decision procedures and regularevents. In M. Paterson, editor, Proceedings 17th ICALP, Warwick, volume 443 ofLecture Notes in Computer Science, pages 336{349. Springer-Verlag, July 1990.[dBHRR91] J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors. Pro-ceedings of the REX Workshop \Real-Time: Theory in Practice", volume 600 ofLecture Notes in Computer Science. Springer-Verlag, 1991.[DeN87] R. De Nicola. Extensional equivalences for transition systems. Acta Informatica,24:211{237, 1987.[DH84] R. De Nicola and M. Hennessy. Testing equivalences for processes. TheoreticalComputer Science, 34:83{133, 1984.[Dil88] D. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-IndependentCircuits. ACM Distinguished Dissertations. MIT Press, 1988.[EC82] E.A. Emerson and E.C. Clarke. Using branching time temporal logic to synthesizesynchronous skeletons. Science of Computer Programming, 2:241{266, 1982.[FLP85] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensuswith a family of faulty process. Journal of the ACM, 32(2):374{382, April 1985.[GHR93] N. G�otz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed systemdesign: the integration of functional speci�cation and performance analysis usingstochastic process algebras. In L. Donatiello and R. Nelson, editors, PerformanceEvaluation of Computer and Communication Systems. Joint Tutorial Papers ofPerformance '93 and Sigmetrics '93, volume 729 of Lecture Notes in ComputerScience, pages 121{146. Springer-Verlag, 1993.[GJS90] A. Giacalone, C.C Jou, and S.A. Smolka. Algebraic reasoning for probabilisticconcurrent systems. In Proceedings of the Working Conference on ProgrammingConcepts and Methods (IFIP TC2), Sea of Galilee, Israel, 1990.[Gla90] R.J. van Glabbeek. The linear time { branching time spectrum. In Baeten andKlop [BK90], pages 278{297.[Gla93] R.J. van Glabbeek. The linear time { branching time spectrum ii. The semantics ofsequential systems with silent moves. In E. Best, editor, Proceedings of CONCUR93, Hildesheim, Germany, volume 715 of Lecture Notes in Computer Science, pages66{81. Springer-Verlag, 1993. 271

[GSB94] R. Gupta, S.A. Smolka, and S. Bhaskar. On randomization in sequential anddistributed algorithms. ACM Computing Surveys, 26(1):1{86, 1994.[GSSL94] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N.A. Lynch. Liveness intimed and untimed systems. In S. Abiteboul and E. Shamir, editors, Proceed-ings 21th ICALP, Jerusalem, volume 820 of Lecture Notes in Computer Science.Springer-Verlag, 1994. A full version appears as MIT Technical Report numberMIT/LCS/TR-587.[GSST90] R.J. van Glabbeek, S.A. Smolka, B. Ste�en, and C.M.N. Tofts. Reactive, gener-ative, and strati�ed models of probabilistic processes. In Proceedings 5th AnnualSymposium on Logic in Computer Science, Philadelphia, USA, pages 130{141.IEEE Computer Society Press, 1990.[Hal50] P.R. Halmos. Measure Theory. Springer-Verlag, 1950.[Han91] H. Hansson. Time and Probability in Formal Design of Distributed Systems. PhDthesis, Department of Computer Science, Uppsala University, 1991.[Han94] H. Hansson. Time and Probability in Formal Design of Distributed Systems, vol-ume 1 of Real-Time Safety Critical Systems. Elsevier, 1994.[Hil93] J. Hillston. PEPA: Performance enhanced process algebra. Technical Report CSR-24-93, Department of Computer Science, University of Edimburgh (UK), 1993.[Hil94] J. Hillston. A Compositional Approach to Performance Modeling. PhD thesis,Department of Computer Science, University of Edimburgh (UK), 1994.[HJ89] H. Hansson and B. Jonsson. A framework for reasoning about time and reliability.In Proceedings of the 10th IEEE Symposium on Real-Time Systems, Santa Monica,Ca., 1989.[HJ90] H. Hansson and B. Jonsson. A calculus for communicating systems with time andprobabilities. In Proceedings of the 11th IEEE Symposium on Real-Time Systems,Orlando, Fl., 1990.[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.Journal of the ACM, 32(1):137{161, 1985.[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,Englewood Cli�s, 1985.[HS85] S. Hart and M. Sharir. How to schedule if you must. SIAM Journal on Computing,14:991{1012, 1985.[HSP83] S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent pro-grams. ACM Transactions on Programming Languages and Systems, 5(3):356{380,1983. 272

[JHY94] B. Jonsson, C. Ho-Stuart, and W. Yi. Testing and re�nement for nondeterministicand probabilistic processes. In Langmaack, de Roever, and Vytopil, editors, Pro-ceedings of the Symposium on Formal Techniques in Real-Time and Fault-TolerantSystems, volume 863 of Lecture Notes in Computer Science, pages 418{430, 1994.[JL91] B. Jonsson and K.G. Larsen. Speci�cation and re�nement of probabilistic pro-cesses. In Proceedings of the 6th IEEE Symposium on Logic in Computer Science,pages 266{277, Amsterdam, July 1991.[Jon91] B. Jonsson. Simulations between speci�cations of distributed systems. In Baetenand Groote [BG91], pages 346{360.[JP89] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Proceed-ings 4th Annual Symposium on Logic in Computer Science, Asilomar, California,pages 186{195. IEEE Computer Society Press, 1989.[JP94] B. Jonsson and J. Parrow, editors. Proceedings of CONCUR 94, Uppsala, Sweden,volume 836 of Lecture Notes in Computer Science. Springer-Verlag, 1994.[JS90] C.C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatiza-tions for probabilistic processes. In Baeten and Klop [BK90], pages 367{383.[JY95] B. Jonsson and W. Yi. Compositional testing preorders for probabilistic processes.In Proceedings 10th Annual Symposium on Logic in Computer Science, San Diego,California. IEEE Computer Society Press, 1995.[Kar90] R.M. Karp. An introduction to randomized algorithms. Technical Report TR-90-024, Computer Science Division, University of California, Berkeley, CA, 1990.[Kel76] R. Keller. Formal veri�cation of parallel programs. Communications of the ACM,7(19):561{572, 1976.[KR92] E. Kushilevitz and M. Rabin. Randomized mutual exclusion algorithms revisited.In Proceedings of the 11th Annual ACM Symposium on Principles of DistributedComputing, Quebec, Canada, pages 275{284, 1992.[LR81] D. Lehmann and M. Rabin. On the advantage of free choice: a symmetric andfully distributed solution to the dining philosophers problem. In Proceedings ofthe 8th Annual ACM Symposium on Principles of Programming Languages, pages133{138, January 1981.[LS82] D. Lehmann and S. Shelah. Reasoning with time and chance. Information andControl, 53:165{198, 1982.[LS89] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In ConferenceRecord of the 16th ACM Symposium on Principles of Programming Languages,Austin, Texas, pages 344{352, 1989.[LS91] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Informationand Computation, 94(1):1{28, September 1991.273

[LS92] K.G. Larsen and A. Skou. Compositional veri�cation of probabilistic processes. InCleaveland [Cle92], pages 456{471.[LSS94] N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized dis-tributed algorithms. In Proceedings of the 13th Annual ACM Symposium on Prin-ciples of Distributed Computing, Los Angeles, CA, pages 314{323, 1994.[LT87] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed al-gorithms. In Proceedings of the 6th Annual ACM Symposium on Principles ofDistributed Computing, pages 137{151, Vancouver, Canada, August 1987. A fullversion is available as MIT Technical Report MIT/LCS/TR-387.[LV91] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-based systems. In de Bakker et al. [dBHRR91], pages 397{446.[LV93a] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { partI: Untimed systems. Technical Report MIT/LCS/TM-486, MIT Laboratory forComputer Science, May 1993.[LV93b] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part II:Timing-based systems. Technical Report MIT/LCS/TM-487, MIT Laboratory forComputer Science, September 1993.[LV95] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part II:Timing-based systems. Technical Report CS-R95??, CWI, Amsterdam, ?? 1995.[Lyn95] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1995. Toappear.[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-wood Cli�s, 1989.[Mil93] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,25:267{310, 1993.[MMT91] M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In Baetenand Groote [BG91], pages 408{423.[OL82] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.ACM Transactions on Programming Languages and Systems, 4:455{495, 1982.[Par81] D.M.R. Park. Concurrency and automata on in�nite sequences. In P. Deussen,editor, 5th GI Conference, volume 104 of Lecture Notes in Computer Science, pages167{183. Springer-Verlag, 1981.[Plo81] G.D. Plotkin. A structural approach to operational semantics. Technical ReportDAIMI FN-19, Computer science Department, Aarhus University, 1981.[Pnu82] A. Pnueli. The temporal semantics of concurrent programs. Theoretical ComputerScience, 13:45{60, 1982. 274

[Pnu83] A. Pnueli. On the extremely fair treatment of probabilistic algorithms. In Pro-ceedings of the 15th Annual ACM Symposium on Theory of Computing, Boston,Massachusetts, May 1983.[PS95] A. Pogosyants and R. Segala. Formal veri�cation of timed properties of randomizeddistributed algorithms. In Proceedings of the 14th Annual ACM Symposium onPrinciples of Distributed Computing, Ottawa, Ontario, Canada, August 1995. Toappear.[PZ86] A. Pnueli and L. Zuck. Veri�cation of multiprocess probabilistic protocols. Dis-tributed Computing, 1(1):53{72, 1986.[Rab63] M.O. Rabin. Probabilistic automata. Information and Control, 6:230{245, 1963.[Rab76] M.O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms andComplexity: New Directions and Results, pages 21{39. Academic Press, 1976.[Rab82] M.O. Rabin. N -process mutual exclusion with bounded waiting by 4 logN sharedvariables. Journal of Computer and System Sciences, 25:66{75, 1982.[Rao90] J.R. Rao. Reasoning about probabilistic algorithms. In Proceedings of the 9th An-nual ACM Symposium on Principles of Distributed Computing, Quebec, Canada,August 1990.[Rud66] W. Rudin. Real Complex Analysis. McGraw-Hill, 1966.[Sai92] I. Saias. Proving probabilistic correctness: the case of Rabin's algorithm for mutualexclusion. In Proceedings of the 11th Annual ACM Symposium on Principles ofDistributed Computing, Quebec, Canada, August 1992.[Sei92] K. Seidel. Probabilistic communicating processes. Technical Report PRG-102,Ph.D. Thesis, Programming Research Group, Oxford University Computing Lab-oratory, 1992.[SGG+93] J.F. S�gaard-Andersen, S.J. Garland, J.V. Guttag, N.A. Lynch, andA. Pogosyants. Computer-assisted simulation proofs. In C. Courcoubetis, editor,Proceedings of the �fth international conference on Computer Aided Veri�cation,volume 697 of Lecture Notes in Computer Science. Springer-Verlag, 1993.[She87] G.S. Shedler. Regeneration and Networks of Queues. Springer-Verlag, 1987.[SL94] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. InJonsson and Parrow [JP94], pages 481{496.[SL95] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.Nordic Journal of Computing, 1995.[SLL93] J.F. S�gaard-Andersen, N.A. Lynch, and B.W. Lampson. Correctness of com-munication protocols. a case study. Technical Report MIT/LCS/TR-589, MITLaboratory for Computer Science, November 1993.275

[SS90] S. Smolka and B. Ste�en. Priority as extremal probability. In Baeten and Klop[BK90], pages 456{466.[Tof90] C. Tofts. A synchronous calculus of relative frequencies. In Baeten and Klop[BK90].[Var85] M.Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state pro-grams. In Proceedings of 26th IEEE Symposium on Foundations of ComputerScience, pages 327{338, Portland, OR, 1985.[VL92] F.W. Vaandrager and N.A. Lynch. Action transducers and timed automata. InCleaveland [Cle92], pages 436{455.[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic programveri�cation. In Proceedings Symposium on Logic in Computer Science, pages 332{344. IEEE Computer Society Press, 1986.[Whi80] W. Whitt. Continuity of generalized semi-markov processes. Mathematics of Op-erations Research, 5, 1980.[WLL88] J.L. Welch, L. Lamport, and N.A. Lynch. A lattice-structured proof techniqueapplied to a minimum spanning tree algorithm. Technical Report MIT/LCS/TM-361, MIT Laboratory for Computer Science, June 1988.[WSS94] S.H. Wu, S. Smolka, and E.W. Stark. Composition and behaviors of probabilisticI/O automata. In Jonsson and Parrow [JP94].[YCDS94] S. Yuen, R. Cleaveland, Z. Dayar, and S. Smolka. Fully abstract characterizationsof testing preorders for probabilistic processes. In Jonsson and Parrow [JP94].[YL92] W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes. InProtocol Speci�cation, Testing and Veri�cation XII, pages 47{61, 1992.[Zuc86] L. Zuck. Past Temporal Logic. PhD thesis, The Weizman Institute of Science,1986.
276

Table of SymbolsWe list the symbols that are used in this thesis in the order they appear in the presentation.Each symbol is listed with a short description and a reference to the pages where it is �rstde�ned.
 Sample space. 33F �-�eld. 33�(C) �-�eld generated by a family of sets C. 33� Measure 33P Probability measure. 34E Event. 34completion() Completion of a measure. 34
 Product of �-�elds, of measures, and of discrete probability spaces. 35j Conditional of an event and of an event schema. 36j Conditional of a probabilistic execution fragment. 57P Probability space. 37D() Dirac distribution. 37U() Uniform distribution. 37Probs(C) Set of discrete probability spaces (
;F ; P) with no 0-probabilityelements such that
 � C. 37A Automaton. 37states() States of. 37start() Start states of. 37sig() Action signature of. 37ext() External actions of. 37int() Internal actions of. 37acts() Actions of. 37trans() Transitions of. 37a�! Transition with action a. 38=) Weak transition. 38� Execution (fragment). 39fstate() First state of. 39lstate() Last state of. 39frag() Execution fragments of. 39exec() Executions of. 39a Concatenation of executions. 39a Transition pre�xing operator. 52277

� Pre�x of. 39. Su�x operator. 39. Transition su�xing operator. 52� Trace. 40traces() Traces of. 40vT Trace preorder. 40k Parallel composition operator. 41M Probabilistic automaton. 46� Termination or deadlock symbol. 46ctrans() Combined transitions of. 48H Probabilistic execution (fragment). 49prfrag() Probabilistic execution fragments of. 49prexec() Probabilistic executions of. 49�# From an execution of a probabilistic execution fragment to an ex-ecution fragment of a probabilistic automaton. 51�"q0 From an execution fragment of a probabilistic automaton to anexecution of a probabilistic execution fragment. 51tr Transition. 51Ptr Probability space in the transition tr , i.e., tr = (s;Ptr) or, if tr issimple, tr = (s; a;Ptr). 51V Set of actions. 51U Set of states. 51trMs Transition leaving from state s in the fully probabilistic automatonM . 51PH Probability space associated with the probabilistic execution frag-ment H . 52C� Cone with pre�x �. 53a�!C Combined transition. 58a=)C Weak combined transition. 59O Generator of a weak transition. 60� Action restriction operator. 64d Projection operator. 65e Reverse of projection. 66Rename�() Renaming operator. 72HideI() Hiding operator. 73Advs() Adversaries for. 80prexec(M;A; �) Probabilistic execution fragment of M generated by adversary Awith starting condition �. 80e Event schema. 82Cones() Function that identi�es the points of satisfaction of a �nitely satis-�able event schema. 83�Cones Concatenation of two event schemas. 83PrAdvs ;�(e) R p Probabilistic statement. 84(�; F) Oblivious relation. 92FIRST(: : :) Coin event: �rst occurrence of an action among many. 107278

OCC(i; : : :) Coin event: i-th occurrence of an action among many. 109GFIRST(S; E)() Coin event: �rst occurrence of an action among many with severaloutcomes. 122GCOIN (S; E)() General coin event. 125D Trace distribution. 138tdistr() Trace distribution of. 138tdistrs() Trace distributions of. 138itrace() Internal trace of. 139itdistr() Internal trace distribution of. 139itdistrs() Internal trace distributions of. 139vD Trace distribution preorder. 141vDC Trace distribution precongruence. 143CP Principal context, timed principal context. 145ptdistrs() Principal trace distributions of. 146vR Lifting of a relation to probability spaces. 168' Existence of a strong bisimulation. 169vSS Existence of a strong simulation. 169'P Existence of a strong probabilistic bisimulation. 171vSPS Existence of a strong probabilistic simulation. 171=P Existence of a weak probabilistic bisimulation. 172vWPS Existence of a weak probabilistic simulation. 172vFS Existence of a probabilistic forward simulation. 174vis() Visible actions of. 196! Trajectory. 197ltime() Last time of. 197t-frag() Timed execution fragments of. 199t-exec() Timed executions of. 199t-exec�() Extended timed executions of. 199te-frag() Time-enriched execution fragments of. 201te-prfrag() Probabilistic time-enriched execution fragments of. 202te-prexec() Probabilistic time-enriched executions of. 202sample() Function that applied to a probabilistic time-enriched executionH of a probabilistic timed automaton M returns a probabilisticexecution H 0 of M that samples H . 209t-sample() Function that applied to a probabilistic time-enriched executionfragment H of a probabilistic timed automaton M returns a prob-abilistic timed execution fragment H 0 of M that t-samples H . 211a; Move. 217EU;Advs [e] Worst expected time for success of the event schema e starting froma state of U under the action of an adversary from Advs. 227seq() Sequence of a timed sequence pair. 243tsp() Timed sequence pairs over some given set. 243t-trace() Timed trace of. 244t-tdistr() Timed trace distribution of. 246t-tdistrs() Timed trace distributions of. 247279

vDt Timed trace distribution preorder. 249vDCt Timed trace distribution precongruence. 249pt-tdistrs() Principal timed trace distributions of. 250'Pt Existence of a probabilistic timed bisimulation. 257vPt Existence of a probabilistic timed simulation. 258vFSt Existence of a probabilistic timed forward simulation. 258

280

Indexabstract complexity, 238action, 37discrete, 196hiding operator, 73renaming operator, 72restriction, 139, 249signature, 37time-passage, 196visible, 196adversary, 19, 75, 79, 224deterministic, 79, 80, 224oblivious, 91schema, 80with partial on-line information, 79alternating model, 28automaton, 37fully probabilistic, 47probabilistic, 18, 46probabilistic Input/Output, 265probabilistic MMT, 265probabilistic semi-timed, 196probabilistic timed, 196simple probabilistic, 47timed, 195behavioral semantics, 135bisimulationprobabilistic timed, 257strong, 169strong probabilistic, 171weak probabilistic, 172coinevent, 103lemma, 103, 104coin lemma, 19compatibility, 41, 61compositionality, 136

concatenationof two event schemas, 83of two executions, 39of two time-enriched executions, 201of two timed executions, 199of two trajectories, 199conditionalevent, 36of a probabilistic execution, 57of a probabilistic time-enriched execu-tion, 203of a probabilistic timed execution, 207probability space, 36Dirac distribution, 37event, 34schema, 82, 224execution, 39admissible timed, 198extended, 50�nite timed, 198probabilistic, 19, 49probabilistic time-enriched, 202probabilistic timed, 200, 205time-enriched, 201timed, 198timed extended, 199Zeno timed, 198execution correspondence structure, 177timed, 259execution-basedadversary schema, 79, 91event schema, 79, 83expected time of success, 227expected value of a random variable, 36�nite281

probabilistic execution, 55probabilistic time-enriched execution, 203probabilistic timed execution, 206�nite-history insensitivity, 86�nitely satis�ableevent, 53event schema, 82generative process, 23, 25generatorof a �-�eld, 33of a weak transition, 60internal trace, 139distribution, 139lebeled transition system, 37measurablefunction, 34set, 33space, 33measure induced by a function, 35measure space, 34complete, 34discrete, 34model checking, 17, 30, 31move, 217oblivious relation, 92observation, 135observational semantics, 135parallel compositionof automata, 41of simple probabilistic automata, 61of simple timed probabilistic automata,218partial on-line information, 92partition technique, 20, 132patientconstruction, 197point of extension, 56point of satisfaction, 83precongruence, 20, 136timed trace distribution, 249trace distribution, 20, 137, 143

pre�xof a probabilistic execution, 56of a probabilistic time-enriched execu-tion, 203of a probabilistic timed execution, 206of a time-enriched execution, 201of a timed execution, 199of a trace distribution, 139of an execution, 39preordertimed trace distribution, 249trace distribution, 20, 137, 141principalcontext, 20, 137, 145timed context, 21, 243, 250timed trace distribution, 250trace distribution, 20, 137, 146probabilistic statement, 19, 84probabilitydistribution, 34measure, 34space, 34progress statement, 19, 85timed, 21, 223, 226projectionof a probabilistic execution, 62, 65of a probabilistic time-enriched execu-tion, 218of a probabilistic timed execution, 218of an execution, 41qualitative analysis, 29quantitative analysis, 29random variable, 36reachable state, 39, 60reactive process, 23, 24sample space, 34scheduler, 79�-additivity, 34�-�eld, 33simulationmethod, 137, 167probabilistic forward, 20, 174probabilistic timed, 257282

probabilistic timed forward, 258strong, 169strong probabilistic, 171weak probabilistic, 172strati�ed process, 24, 25substitutivity, 136su�xof a probabilistic execution, 57of a probabilistic time-enriched execu-tion, 203of a probabilistic timed execution, 207of a time-enriched execution, 201of a timed execution, 199of an execution, 39terminal state, 60time deadlock, 199timed sequence, 243timed sequence pair, 243tracedistribution, 20, 137, 138of an execution, 40timed, 21, 243, 244timed distribution, 243, 246trajectory, 195, 197axioms, 195, 197transition, 37action restricted, 64combined, 47pre�xing, 52relation, 37su�xing, 52time-enriched, 202timed, 205weak, 38, 58weak combined, 59uniform distribution, 37weight function, 168 283

284

