Chapter 9

Probabilistic Timed Automata

9.1 Adding Time

So far we have extended labeled transition systems to handle probabilistic behavior; however,
we have not addressed any real-time issue yet. The main objective of this chapter is to add
time to probabilistic automata.

Following an approach that Abadi and Lamport [AL91] call the “old-fashioned recipe”, we
address real-time issues by augmenting probabilistic automata with some structure that models
passage of time. In particular, we adopt the solution of Lynch and Vaandrager [LV95], where
a timed automaton is an ordinary automaton whose actions include the positive real numbers.
The occurrence of a real number d means that time d elapses. In addition, a timed automaton
of [LV95] is required to satisfy two trajectory azioms: the first axiom says that if time d can
elapse and immediately afterwards time d’ can elapse, then time d + d’ can elapse; the second
axiom says that if time d can elapse, then there is a trajectory that allows us to associate every
real time in the interval [0, d] with a state.

The introduction of real-time in probabilistic automata presents two main problems.

1. Time is a continuous entity, and the time that elapses between the occurrence of two sep-
arate actions may depend on a probability distribution that is not discrete. For example,
the response time of a system may be distributed exponentially. On the other hand, the
probability distributions that we allow in the untimed model are only discrete.

2. In the untimed model the parallel composition operator is defined only for simple prob-
abilistic automata. Since time-passage is modeled by actions of R, in a simple proba-
bilistic timed automaton it is not possible to let time pass according to some probability
distribution.

The first problem could be solved by removing the requirement that the probability distribution
associated with a transition is discrete. However, in such case we would need to redevelop the
whole theory, while if we force each probability distribution to be discrete we can reuse most
of the results of the untimed model. For this reason, we choose to work only with discrete
probability distributions and we defer to further work the extension of the model to non-discrete
probability distributions (cf. Section 13.2.1).
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For the second problem the reader may object that it originates from the choice of using
a distinct time-passage action for each amount of time that elapses in a transition, and thus
we may conclude that the problem would be solved by using a unique action that expresses
passage of time [LV93b] rather than a different action for every time; however, the problem has
deeper roots.

Example 9.1.1 (Problems with probabilistic passage of time) Suppose that from state
s1 a probabilistic timed automaton M lets time pass for 1 second with probability 1/2 and for
2 seconds with probability 1/2 before performing an action a, and suppose that from state s; a
probabilistic timed automaton Ms lets time pass for 0.5 seconds with probability 1/2 and for 1.5
seconds with probability 1/2 before performing action a. What is the probability distribution
on the time that elapses from state (si,s2) of M;||My before performing a? What can we
say about the projections of a probabilistic execution of My||M3? The reader may note the
similarity with the problems encountered in the definition of parallel composition for general
probabilistic automata (cf. Section 4.3.3). |

In order to simplify the handling of trajectories, in this thesis we impose an additional restric-
tion on the time-passage transitions of a probabilistic timed automaton; namely, each transition
involving time-passage is required to lead to a Dirac distribution. Probabilistic behavior as-
sociated with passage of time is allowed only within a probabilistic execution. Even though
this timed model may appear to be restrictive, it is sufficiently powerful to analyze non-trivial
timed properties of randomized algorithms (cf. Chapter 10).

In the rest of this chapter we concentrate on the definition of the timed model as an extension
of the probabilistic automata of Chapter 4. Most of the concepts are extensions of the definitions
of [LV95] to the probabilistic framework; the non-trivial part of the chapter is the definition of
a probabilistic timed execution, where some measure-theoretical complications arise.

9.2 The Timed Model

In this section we define probabilistic timed automata as an extension of the probabilistic
automata of Chapter 4, and we extend the timed executions of [LV95] to our framework. Due
to the complications that arise in the definition of a probabilistic timed execution, we define
probabilistic timed executions in a separate section.

9.2.1 Probabilistic Timed Automata

A probabilistic semi-timed automaton M is a probabilistic automaton whose set of external
actions includes R, the set of positive reals, and whose transitions with some action in R+
are non-probabilistic, i.e., they lead to a Dirac distribution. Actions from RT are referred to as
time-passage actions, while non-time-passage actions are referred to as discrete actions. We let
d,d',...range over RT and more generally, ¢,t', ... range over the set ® U {oo} of real numbers
plus infinity. The set of visible actions is defined by vis(M) = ext(M)\ RT.

A probabilistic timed automaton is a probabilistic semi-timed automaton M that satisfies
the following two axioms.

d d’ d+d’
Al If s — 5" and s — s, then s e g,
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For the second axiom, we need an auxiliary definition of a trajectory, which describes the
state changes that can occur during time-passage. Namely, if [ is any left-closed interval of ®
beginning with 0, then an I-trajectory is a function w : I — states(M ), such that

w(t) = w(t!) for all ¢, € T with t < 1",

Thus, a trajectory assigns a state to each time ¢ in the interval I in a “consistent” manner. We
define ltime(w), the “last time” of w, to be the supremum of I. We define fstate(w) to be w(0),
and if [ is right-closed, we also define Istate(w) to be w(ltime(w)). A trajectory for a transition

s -1 ¢isa [0, d]-trajectory such that fstate(w) = s and Istate(w) = s’. Now we can state the
second axiom.

A2 Fach time-passage transition s . ¢ has a trajectory.

A probabilistic timed automaton M is simple if M is a simple probabilistic automaton.

Axioms A1l and A2 express natural properties of time: Axiom A1l says that if time can
elapse in two transitions, then it can also elapse in a single transition; Axiom A2 says that if
time d can elapse, then it is possible to associate states with all times in the interval [0,d] in a
consistent way.

Example 9.2.1 (The patient construction) A simple way to add time to a probabilistic
automaton is to add arbitrary self-loop timed transitions to each state of a probabilistic au-
tomaton. Specifically, given a probabilistic automaton M, we define patient(M) to be the
probabilistic timed automaton M’ such that

1. states(M') = states(M),

2. start(M') = start(M),

3. acts(M') = acts(M) U RT,

4. trans(M') = trans(M ) U {(s,d,s) | s € states(M),d € R},

Thus, patient(M) is like M except that an arbitrary amount of time can elapse between two
discrete transitions. It is immediate to verify that patient(M) satisfies axioms A1l and A2.
The patient construction was first defined for ordinary automata in [VL92]. |

Example 9.2.2 (Simple restrictions on time passage) The patient construction does not
specify any limitations to the way time can elapse. Sometimes we may want to specify upper
and lower bounds to the time it takes for some transition to take place. Such a limitation can
be imposed easily by augmenting the states of a probabilistic automaton with variables that
express the time limitations that are imposed. As an easy example consider a probabilistic
automaton M with a unique state s and a unique discrete transition (s, a, s). Suppose that we
want to add time to M and impose that action @ occurs once every at least 1 time unit and at
most 2 time units. Then the corresponding probabilistic timed automaton M’ can be specified
as follows.

1. states(M') = {(s,[,h) |0 <1< 1,0<1 < h <2},
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2. start(M') = {(s,0,2)},
3. acts(M') = {a} URT,

4. trans(M') = {((s,0,h),a,(s,1,2)) | 0 < h <2} U A{((s,l,h),d,(s,l —d,h—d)) | d <<
h}U{((s,0,h),d,(s,0,h—d))d < h}.

The variables [ and h keep track of the time that must or can elapse before performing a. Time
passage decreases both the variables unless they are 0. Action ¢ can occur only when [ = 0
and leads to a state where [ = 1. This means that at least 1 time unit must elapse before a
can be performed again. No time can elapse if h = 0. At thet point the only transition that
can be performed is the transition labeled with ¢. Thus, no more than 2 time units can elapse
between the occurrence of two actions a. It is immediate to verify that M’ satisfies axioms A1
and A2. [

9.2.2 Timed Executions

Since a probabilistic timed automaton is also a probabilistic automaton, the executions of the
untimed model carry over to the timed case. However, an execution associates states with just
a countable number of points in time, whereas the trajectory axiom A2 allows us to associate
states with all real times. Also, our intuition about the executions of a timed system is that
visible actions occur at points in time, and that time passes “continuously” between these
points. In other words, at each point in time a system is in some state. This leads to the
definition of a timed execution.

Timed Executions

A timed execution fragment a of a probabilistic timed automaton M is a finite or infinite
alternating sequence, a = woaiwyaows - - -, where

1. Each w; is a trajectory and each «a; is a discrete action.
2. If a is a finite sequence then it ends with a trajectory.

3. If w; is not the last trajectory in « then its domain is a right-closed interval, and there
exists a transition (Istate(w;), P) of M such that (a, fstate(w;y1)) € Q.

A timed execution fragment describes all the discrete changes that occur, plus the evolution
of the state during time-passage transitions. If a is a timed execution fragment, then we
let ltime(a) denote Y ; ltime(w;). Note that we allow the case where the domain of the final
trajectory is of the form [0,00); in this case ltime(a) = oco. We define the initial state of «,
fstate(a), to be fstate(wp)

A timed execution is a timed execution fragment whose first state is a start state.

The timed executions and timed execution fragments of a probabilistic timed automaton
can be partitioned into finite, admissible, and Zeno timed executions and timed execution
fragments. A timed execution (fragment) a is finite, if it is a finite sequence and the domain of
its final trajectory is right-closed; a timed execution (fragment) a is admissible if ltime(a) = oo;
a timed execution (fragment) « is Zeno if it is neither finite nor admissible.
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There are basically two types of Zeno timed executions: those containing infinitely many
discrete actions in finite time, and those containing finitely many discrete actions and for which
the time interval associated with the last trajectory is right-open. Thus, Zeno timed executions
represent executions of a probabilistic timed automaton where an infinite amount of activity
occurs in a bounded period of time. (For the second type of Zeno timed executions, the infinitely
many time-passage transitions needed to span the right-open interval should be thought of the
“infinite amount of activity”.)

We will be interested mostly in the admissible timed executions of a probabilistic timed
automaton since they correspond to our intuition that time is a force beyond our control that
happens to approach infinity. However, according to our definition of a probabilistic timed
automaton, it is possible to specify probabilistic timed automata in which from some states
no admissible timed execution fragments are possible. This can be because only Zeno timed
execution fragments are possible from that state, or because time cannot advance at all (in which
case a time deadlock has occurred). Although Zeno timed executions are usually non-desirable,
research experience has shown that the analysis of a model would be more complicated if Zeno
timed executions are ruled out.

Denote by t-frag*(M), t-frag™ (M), and t-frag(M) the sets of finite, admissible, and all
timed execution fragments of M. Similarly, denote by t-exec*(M ), t-exec®™ (M), and t-exec(M )
the sets of finite, admissible, and all timed executions of M.

A timed extended execution fragment of M, denoted by «, is either a timed execution
fragment of M or a sequence a’é where o’ is a timed execution fragment of M. Denote by
t-execi(M) and t-execs(M ) the sets of finite and all timed extended executions of M.

Concatenations, Prefixes and Suffixes

If wis an [-trajectory where [ is right-closed, and w’ is an I’-trajectory such that Istate(w) =
fstate(w'), then w and &’ can be concatenated. The concatenation, denoted by ww’ is the least
trajectory (the trajectory with the smallest domain) w” such that w”(t) = w(t) for ¢t € I, and
W't + ltime(w)) = w(t) for t € I'. It is easy to show that w” is a trajectory.

Likewise, we may combine a countable sequence of “compatible” trajectories into one: if w;
is an [;-trajectory, 0 < i < oo, where all I; are right-closed, and if Istate(w;) = fstate(w;11) for
all 7, then the infinite concatenation wqws - - - is the least function w such that for all z and all
te L, w(t+ 37, ltime(w;)) = wi(t). Tt is easy to show that w is a trajectory.

A finite timed execution fragment o = wpajwy - - - a,w, of M and a timed (extended) execu-
tion fragment o' = W/ ayy1wpy1 -+ of M can be concatenated if Istate(a) = fstate(a'). In this
case the concatenation, written ™ o/, is defined to be a” = woajwy - - (Wl )1 W1
It is easy to see that a is a timed (extended) execution fragment of M.

The notion of prefix for timed execution fragments and timed extended execution fragments
is defined as follows. A timed (extended) execution fragment a of M is a prefiz of a timed
(extended) execution fragment o’ of M, written a < o, if either a = o’ or « is finite and there
exists a timed (extended) execution fragment o’ of M such that o’ = ™ o”. Likewise, a is a
suffiz of o if there exists a finite timed execution fragment «” such that o’ = @” ~ a. Denote
a by a'va”.

The length of a timed execution fragment o expresses the number of discrete actions in
a. Thus, even though « is admissible or Zeno (and thus not finite), its length may be finite.
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Formally, define the length of a = wpawiasws - - - as

la| N n if a is a finite sequence and ends in w,
o) = . . . .
oo if e is an infinite sequence.

9.3 Probabilistic Timed Executions

Since a probabilistic timed automaton is also a probabilistic automaton, it is possible to talk
about the probabilistic executions of a probabilistic timed automaton. However, as we have
pointed out already for ordinary executions, a probabilistic execution does not describe com-
pletely the evolution of a probabilistic timed automaton since it does not allow us to associate
every real time with the states that are reached at that time. We need a structure that extends
probabilistic executions in the same way as a timed execution extends an execution. A timed
execution differs from an execution in two aspects:

1. a timed execution has trajectories to express passage of time;
2. a timed execution does not contain any time-passage actions.

In particular, a timed execution hides the time-passage transitions that are scheduled in an
execution to let time pass. Given a trajectory w, there are infinitely many ways to schedule time-
passage transitions to move in time ltime(w) from fstate(w) to Istate(w) (Istate(w) is meaningful
only if the domain of w is right-closed); the trajectory w represents all those possible ways. In a
similar way, a probabilistic timed execution should not contain any information on the specific
time-passage transitions that are scheduled. Thus, a probabilistic timed execution should be
a structure where each state records the past history and each transition contains information
on the trajectories that are spanned till the occurrence of the next action. However, it may be
the case that there is no next action since the next trajectory is right-open. This would not
be a problem except for the fact that from a state there can be uncountably many right-open
trajectories that leave even though they are generated by scheduling time-passage transitions
according to a discrete probability distribution.

Example 9.3.1 (Uncountable branching from countable branching) Consider a prob-
abilistic automaton M that can increase or decrease a variable z of its state at a constant speed,
and suppose that every one time unit the speed of = can be complemented nondeterministi-
cally. A valid scheduler A for M is a scheduler that every one time unit chooses the sign of the
speed of z according to a uniform binary distribution. As a result, there are uncountably many
trajectories leaving from the start state of M if we use A to resolve the nondeterminism. Thus,
if in a probabilistic timed execution we do not allow for a trajectory to be split into pieces,
the probabilistic timed execution of M generated by A would have a non-discrete probability
distribution in its transition relation. [

To express the fact that we allow only discrete probability distributions on a scheduler, we define
probabilistic timed executions in two steps. First we define probabilistic time-enriched execu-
tions, which contain closed trajectories and time-passage actions (the time-passage transitions
that are scheduled are visible); then, we remove the time-passage actions from probabilistic
time-enriched executions to yield probabilistic timed executions.
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At the end of this section we show that probabilistic executions, probabilistic time-enriched
executions, and probabilistic timed executions are strongly related. Specifically, we show that
each probabilistic execution is a sampling of a probabilistic time-enriched execution where
the information contained in the trajectories is lost, and that each probabilistic time-enriched
execution is sampled by some probabilistic execution. Furthermore, we show that it is possible to
define an equivalence relation directly on probabilistic time-enriched executions that expresses
the fact that two probabilistic time-enriched executions denote the same probabilistic timed
execution (they just schedule time-passage transitions in a different way).

All the equivalence results that we prove in this section allow us to use the kind of proba-
bilistic execution that is best suited for each problem. In particular, we use probabilistic timed
executions for the theorems of Chapter 10, and we use probabilistic time-enriched executions
and probabilistic executions for the results of Chapters 11 and 12. Due to the purely technical
content of the comparison section (Section 9.3.3), the reader may focus just on the definitions
and on the informal explanations (Sections 9.3.1 and 9.3.2) at a first reading. Most of the
concepts are simple modifications of concepts defined for probabilistic executions.

9.3.1 Probabilistic Time-Enriched Executions
Time-Enriched Executions

Let M be a probabilistic timed automaton. A time-enriched execution fragment of M is a finite
or infinite alternating sequence a = wgajwyagws - - - where

1. The domain of wg is [0, 0].
2. Fach w; is a trajectory with a closed domain and each a; is an action.

3. If a; is a visible action, then the domain of w; is [0,0], and there exists a transition

(Istate(w;_1), P) of M such that (a;, fstate(w;)) € €.
4. If a; is a time-passage action, then the domain of w; is [0, a;] and Istate(w;—_1) = fstate(w;).

Denote by te-frag™(M ) and te-frag( M ) the set of finite and all time-enriched execution fragments
of M, respectively. The notation for fstate(a), Istate(a) and ltime(a) extends trivially.

A time-enriched execution fragment a contains more information than a timed execution
fragment since it is possible to observe what time-passage transitions are used to generate a.

A time-enriched eztended execution fragment of M is either a time-enriched execution frag-
ment of M or a sequence adé where « is a finite time-enriched execution fragment of M. The
notation for Istate(a) extends trivially.

A finite time-enriched execution fragment o = wpaqwy - - -ayw, of M and a time-enriched
extended execution fragment o/ = Wl a,y1wyt1--- of M can be concatenated if Istate(a) =

fstate(a'). In this case the concatenation is defined to be a” 2 oaiwy - Wiy 1 W1 *
and is denoted by a ™ o’. It is easy to see that o” is a time-enriched extended execution
fragment of M. A time-enriched extended execution fragment o of M is a prefiz of a time-
enriched extended execution fragment o' of M, written a < o/, if either @ = o’ or « is finite
and there exists a time-enriched extended execution fragment o of M such that o’ = a ™ a”.
Likewise, a is a suffiz of o’ if there exists a finite time-enriched execution fragment o’ such

that o’ = @” ™ a. Denote a by a’za’.
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Time-Enriched Transitions

Let (s,P) be a combined transition of M. For each pair (a,s’) of Q, if a is a discrete action,
then let P, o be D((a,s')); if a is a time-passage action, then let P, ) be a discrete proba-
bility distribution of Probs(trajectories(M,s,a,s")), where trajectories(M, s,a,s’) denotes the
set of trajectories for s — . The pair > (a,snen Pla, $)](s, Pasr)) is called a time-enriched
transition of M.

Thus, a time-enriched transition adds information to a combined transition by specifying
what state is reached at each intermediate time. A combined transition gives just the extremes
of a trajectory, dropping all the information about what happens in the middle.

Probabilistic Time-Enriched Executions

A probabilistic time-enriched execution fragment H of a timed probabilistic automaton M is a
fully probabilistic automaton such that

1. states(H) C te-frag™(M)

2. for each transition tr = (¢, P) of H there is a time-enriched transition tr' = (Istate(q), P’)
of M, called the corresponding time-enriched transition, such that P = ¢~ P'.

3. each state of H is reachable and enables one transition.

A probabilistic time-enriched execution is a probabilistic time-enriched execution fragment
whose start state is a start state of M. Denote by te-prfrag(M) the set of probabilistic time-
enriched execution fragments of M, and by te-prezec(M) the set of probabilistic time-enriched
executions of M. Also, denote by ¢} the start state of a generic probabilistic time-enriched
execution fragment H.

As for the untimed case, there is a strong relationship between the time-enriched extended
execution fragments of a probabilistic timed automaton and the extended executions of one of
its probabilistic time-enriched execution fragments. Specifically, let M be a probabilistic timed
automaton and let H be a probabilistic time-enriched execution fragment of M. Let gy be the
start state of H. For each extended execution o = gga1¢q - -- of H, let

ol a { qo " Istate(qo)aqltraj(qr)ag - - - if a does not end in ¢, (9.1)

qo " Istate(qo)arltraj(qr)as - - -a,ltraj(q,)d  if @ = qoa1qr - - - an 6,

where ltraj(q;) denotes the last trajectory of ¢;. It is immediate to observe that ] is a time-
enriched extended execution fragment of M. For each time-enriched extended execution frag-

ment « of M such that gy < a, i.e., @ = ¢o "~ woaqwy - - -, let
N goa1(qoarwr )az(qoaiwiazws) - - - if @ does not end in &,
alg = e (9.2)
f]oal(%alw1) e '((]oa1w1 e 'anwn)5 if @ = gaywy - -aywyd.

It is immediate to observe that alqy is an extended execution of some probabilistic timed
execution fragment of M. Moreover, the following proposition holds.
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Proposition 9.3.1 Let H be a probabilistic time-enriched execution fragment of a probabilistic
timed automaton M. Then, for each extended execution a of H,

(@)1qo = a, (9.3)
and for each time-enriched extended execution fragment a of M starting with qo,

(@lgo)] = a. (9.4)
Events

The probability space Py associated with a probabilistic time-enriched execution H is defined
as for the untimed case. Thus, Q%; is the set of time-enriched extended execution fragments of
M that correspond to complete extended executions of H, i.e.,

Qy = {a| | ais a complete extended execution of H}, (9.5)

where an extended execution a of H is complete iff either « is infinite, or a = &/§, ' is a finite

execution of H, and 6 € Qifmte(a). For each finite time-enriched extended execution fragment

o of M, let CH denote the cone

cH 2 (o eQpla<all. (9.6)
Let Cgr be the set of cones of H. Then define F7; to be the o-field generated by Cy, i.e.,

Fi 2 o(Cy). (9.7)

Define a measure p on Cp such that the measure puy(CH) of a cone C'H is the product of the
probabilities associated with each edge that generates a in H. Formally, let go be the start
state of H. If a < ¢g, then

pa(CY) 215 (9.8)
if @ = go~ woaiwy « - - wp_1a,w,, then
p(C) 2 Pl(ar,q0)) - Py [(an 40)), (9.9)

where for each 7, 1 < ¢ < n, ¢; = qo ~ woawy * - - wi_1a;w;; if @ = qo 7~ woawy + - Wp_1ApWpo,
then

pr(C

where for each ¢, 1 <i < n, ¢; = o~ woaiwy - - -w;_1a;w;. Then the probability measure Py; is
the unique measure on Fpy that extends pp, and Py is the completion of Ppy.

PHl(ar )] P [ 0012, 18], 9.10)

Finite Probabilistic Time-Enriched Executions, Prefixes, Conditionals, and Suffixes

Since a probabilistic time-enriched execution is a fully probabilistic automaton, the definitions
of finiteness, prefix, conditional and suffix of Section 4.2.6 extend directly: we just need to
define the length of a time-enriched execution fragment a as the number of actions that occur
in a.
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9.3.2 Probabilistic Timed Executions

We now define the probabilistic timed executions of a probabilistic timed automaton. We
use probabilistic time-enriched executions to characterize those transitions that originate from
discrete schedulers.

Timed Transitions

A timed transition expresses the result of choosing either an infinite trajectory or a finite
trajectory followed by some discrete action at random. However, a timed transition should
be the result of scheduling a collection of time-enriched transitions, so that we are guaranteed
that it is due to a discrete scheduler. For this reason, we derive a timed transition from the
probability distribution associated with a time-enriched probabilistic execution. The derivation
proceeds in two steps: first all the time-passage actions are removed and the corresponding
trajectories are concatenated; then the resulting structure is truncated at the occurrence of the
first action.

Removing Time-Passage Actions. lLet a = wpajwiasws - -+ be a time-enriched execution
fragment of a probabilistic timed automaton M. The timed execution represented by «, denoted
by t-exec(a), is the sequence obtained from a by removing all the time-passage actions and by
concatenating all the trajectories whose intermediate action is removed.

Let H be a probabilistic time-enriched execution fragment of a probabilistic timed automa-
ton M. Let

Q = t-exec(Qp) U limits(t-exec(Qp)), (9.11)

where limits(t-exec(§2yr)) is the set of timed executions a of M that end with an open trajectory
and such that for each finite prefix o’ of « there is an element o of t-exec(2gr) such that o’ < o
Then, t-exec(Py) denotes the probability space completion((Q,F, P)) where F is the o-field
generated by the cones on @, and P is t-exec(Pp).

The reason for the definition of the sample space of t-exec(Pp) is mainly technical: we
want to establish a relationship between probabilistic time-enriched executions and probabilis-
tic timed executions, and we want the relationship to be preserved by projection of probabilistic
timed executions in a parallel composition context. Informally, we are interested in a distribu-
tion over trajectories, possibly followed by an action, without keeping any information on how
such a distribution is obtained. The elements of the sample space that end with right open
trajectories can be affected by the way the transitions are scheduled in a probabilistic time-
enriched execution. Moreover, these elements of Q can create problems for parallel composition.
Closing the sample space under limit makes such differences invisible. The reader interested in
more details is referred to Sections 9.3.3 and 9.5, and specifically to Examples 9.3.3 and 9.5.1.

Example 9.3.2 (What t-exec identifies) Figure 9-1 gives an example of two probabilistic
time-enriched executions that are mapped to the same structure by t-exzec(). We assume to
have two functions w and w’ defined on the real numbers, and we denote by wy 4 the trajectory
w" with domain [0, d’ — d] such that for each t < d' — d, w”(t) = w(t — d). A similar notation is
used for w’. [ ]
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Figure 9-1: Probabilistic time-enriched executions that are mapped to the same structure.

Truncation at the First Action. Let M be a probabilistic timed automaton, and let ¢ be
a finite timed execution fragment of M. For each extended timed execution fragment a of M
such that ¢ < a, let

>

(9.12)

Q if no action occurs in arq
truncate (o)

q " woayfstate(wy) if arqg = woaqwy - -

Let H be a probabilistic time-enriched execution fragment of M, and let ¢ be a prefix of
the start state of H. Then define truncate,(t-exec(Prr)) to be the probability space P where
Q = truncate ,(t-exec(Qr)), F is the o-field generated by the cones of 2, and P is the measure
truncate,(t-exec( Prr)).

Timed Transitions. A timed transition of M leaving from a state s is a pair (s,P) such
that there is a probabilistic time-enriched execution fragment H of M starting in s, and P =
truncate(t-exec(Pr)).

Probabilistic Timed Executions

A probabilistic timed execution fragment of a probabilistic timed automaton M, denoted by H,
consists of four components.

1. A set states(H) C t-frags( M) of states.
2. A unique start state ¢}.
3. An action signature sig(H) = sig(M).

4. A transition relation trans(M) consisting of pairs (¢, P) such that there exists a timed
transition (Istate(q), P’) of M satisfying P = ¢~ P’. Observe that, from the discussion in
Section 3.1.5, ¢~ P’ is well defined.

Moreover, each state of H is reachable, enables at most one transition, and enables one transition
iff it is a finite timed execution fragment of M. A probabilistic timed execution of M is a
probabilistic timed execution fragment of M whose start state is a start state of M.

An execution of IT is a sequence of states of H, o = qoqy - - -, such that for each ¢, ¢;11 € Qg
As for the untimed case, there is a strong correspondence between the timed extended execution
fragments of a probabilistic timed execution H of M and the executions of H. Specifically, let
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M be a probabilistic timed automaton and let H be a probabilistic timed execution fragment
of M. Let gy be the start state of H. For each execution a = ¢gqq --- of H, let

ol £ limg, (9.13)

where the limit is taken under prefix ordering. It is immediate to observe that o] is a timed
extended execution fragment of M. For each timed extended execution fragment a of M such
that go < o, i.e., @ = go " woaiwy - -+, let g; be go ™ woaqwy - - - a; fstate(w; ), and if arqg is a finite
sequence with n discrete actions, let ¢,4+1 be a. Then let

algo 2 qonga- - (9.14)

It is immediate to observe that alqy is an execution of some probabilistic timed execution
fragment of M. Moreover, the following proposition holds.

Proposition 9.3.2 Let H be a probabilistic timed execution fragment of a probabilistic timed
automaton M. Then, for each execution o of H,

(@)l = a, (9.15)
and for each timed extended execution fragment o of M starting with qq,

(algo)l = . (9.16)
Events

The probability space Py associated with a probabilistic timed execution fragment H is defined
similarly to the untimed case. The set Q% the set of extended timed execution fragments of
M that correspond to complete executions of H, where an execution of H is complete iff it is
either infinite or it leads to a state that does not enable any transition. The o-field F}; is the
minimum o-field that contains the class of cones of Q%;. The measure Pj; is the unique measure
that extends the measure defined on cones as follows: if a = qéq ™ Wol1Ww1asg + * - Guwy, then
PylCa) = Pla]--- Pyl [an) Pl [C] (9.17)

dn—1

where for each 1 < n, ¢; = qéq " woawy - - - agfstate(w;); if a = qéq ™ Wol w1 as - - - apw, 0, then
PylCol = PHqi] - P [ga] P/ ] (9.18)

where for each 7 < n, ¢; = qéq " woaqwy - - -ayfstate(w;). Observe that although there are
uncountably many cones in Fp;, every union of cones is expressible as a countable union of
disjoint cones. Then, Py is the completion of Py;.

Finite Probabilistic Timed Executions, Prefixes, Conditionals, and Suffixes

Finiteness and prefix are defined similarly to the untimed case, and thus we do not repeat the
definitions here.

Conditionals and suffixes differ in a small detail concerning the start state. The reader
should observe the similarity of these definitions to those for the untimed case. Also, observe
that the properties of conditionals and suffixes (Propositions 9.3.3 and 9.3.4) are the same as
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for the untimed case. This is what allows us to extend the results for the untimed case directly
to the timed case.

Let H be a probabilistic timed execution fragment of a probabilistic timed automaton M,
and let ¢ be a prefix of some state of H such that ¢/ is a prefix of ¢. Then H|q is a new
probabilistic execution fragment defined as follows:

1. states(H|q) = {q} U {q' € states(H) | ¢ < ¢'};

2. start(H|q) = {q}.

R

3. for each state ¢’ of H|q different from ¢, trg 4

4. let ¢ be the maximum state of H that is a prefix of ¢. Then, trf'q = (q,P(ﬂCq).

H|q is called a conditional probabilistic timed execution fragment. We show later that H|q is a
probabilistic timed execution. Observe that (g, Fr|q, Pre) and (Qu|Cy, Fy|Cy, Pyl|C,) are
the same probability space (cf. Section 3.1.8): the sample spaces are the same, the generators
are the same, and the probability measures coincide on the generators. Thus, the following
proposition is true.

Proposition 9.3.3 Let H be a probabilistic timed execution fragment of a probabilistic timed
automaton M, and let ¢ be a prefiz of a state of H such that ¢f! < q. Then, for each subset E

Of QIﬂq;
1L FEeFgyy, iff B e Frg.
2. If E is an event, then Py[l] = Py[C,| Py, [F]. ]

Let H be a probabilistic timed execution fragment of a probabilistic timed automaton M, and
let ¢ be a prefix of some state of H such that ¢/’ is a prefix of ¢. Then H>q is a new probabilistic
execution fragment defined as follows:

1. states(Hvq) = {¢'>q | ¢’ € states(H|q)};

2. start(H |q) = {lstate(q)}.

Hvq

H
g =1 la

3. for each state ¢’ of Heq, tr o~

>q.

Hreq is called a suffiz of H. It is easy to check that the probability spaces Py, and Py, are
in a one-to-one correspondence through the measurable function f : Qg — Qp|, such that

for each a € Qpy, f(a) = ¢~ a. The inverse of f is also measurable and associates arq with
each timed execution a of (. Thus, directly from Proposition 9.3.3, we get the following
proposition.

Proposition 9.3.4 Let H be a probabilistic timed execution fragment of a probabilistic timed
automaton M, and let ¢ be a prefiz of a state of H such that ¢f! < q. Then, for each subset E
Of QHDq;

1. B € Frug iff (" F) € Fy.
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2. If E is an event, then Prlq~ ] = Py[Cy] P E]. ]

We are left with showing that H|q is well defined. The proof of this apparently obvious fact is
not simple and contains several technical details.

Proposition 9.3.5 Let H be a probabilistic timed execution fragment of a probabilistic timed
automaton M, and let q be a prefiz of a state of H such that ¢} < q. Then, H|q is a probabilistic
timed execution fragment of M.

Proof. We just need to verify that the transition leaving from state ¢ in H|q is a timed
transition. Let ¢ be the maximum state of H that is a prefix of ¢. Then, from the definition
of a timed transition, there is a probabilistic time-enriched execution fragment Hz of M such

that 7751 = 47 lruncate jgq40(7)(-evec(Pp,)). From the definition of trf'q, we need to find a
probabilistic time-enriched execution fragment H, of M such that

(@7 truncate gy (q)(t-evec(P,)))|Cy = q 7 truncate .o (t-evec(Pp, ). (9.19)

Let ¢’ be grq. From the definition of ¢, ¢’ is just one closed trajectory. Thus, if we build H,
such that

(t-exec(Pu,))|Cqy = ¢ ™ t-exec(Pr,), (9.20)

then Equation 9.19 follows easily using simple properties of truncate. Thus, the rest of this
proof is dedicated to the construction of an H, that satisfies (9.20).

Let ¢1,¢2,... be an enumeration of the minimal states ¢” of H such that ¢’ < t-exec(q”).
We distinguish two cases.

1. For each i, t-exec(q;) = ¢'.

The construction for H, in this case is carried out in the proof of Proposition 9.3.8 (cf.
Equation 9.29). We give a forward pointer to avoid too many technical details at this
point.

2. There is an i such that ¢’ < t-exec(q;).

We prove this case by reducing the problem to the previous case. That is, we build a new
probabilistic time-enriched execution fragment Hj such that f-evec(Pp,) = t-exec(Pyy)

and such that the minimal states ¢" of H such that ¢’ < t-exec(q”) satisfy ¢' = t-exec(q').

Recall first that ¢’ is a trajectory whose domain is [0,d] for some d > 0. Define a
collection of finite time-enriched execution fragments ¢}, ¢}, - - as follows: for each i, if
t-exec(q;) = ¢' then ¢/ = ¢;; otherwise, represent ¢; as ¢; ~ Istate(q;)d,w;, where ¢; is
a state of Hyz, and let ¢/ be ¢; ™ Istate(q;)d;1wi1d; awi2d; swi 3 Where w; = w1 w;wi3,
t-exec(q; " Istate(q;)d; 1wi1d; 2w; 2) = ¢, and the actions d; 1 and d; 2 are chosen in such a
way that for each 7 ¢; ™ Istate(g;)d;1w;1 is not a prefix of any of the ¢i’s, j # ¢. In other
words, we split all the ¢;’s in such a way that a state that corresponds to ¢’ is reached
always and such that none of the states of Hy are identified. Then,

states(H]) = {q¢" | 3iq" < ¢/} (9.21)

U (U{Q§ " (¢"vqi) | ¢ € states(Hg), q; < q”}) :
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The transition relation of Hj is obtained from the transition relation of H; by scheduling
the same time-enriched transitions of M as before except for the states ¢; where the
intermediate transitions leading to the ¢/’s are scheduled. It is simple to check that Hé
satisfies the desired properties. [ |

9.3.3 Probabilistic Executions versus Probabilistic Timed Executions

In this section we show the relationship between probabilistic executions, probabilistic time-
enriched executions, and probabilistic timed executions. The main idea is that they all repre-
sent the same structures with different levels of detail. We show that a probabilistic execution
is a sampling of a probabilistic time-enriched execution, where the information given by the
trajectories is lost. Conversely, we show that each probabilistic time-enriched execution is
sampled by some probabilistic execution. We show that each probabilistic time-enriched exe-
cution represents a probabilistic timed execution and that each probabilistic timed execution
is represented by some probabilistic time-enriched execution. Essentially, a probabilistic time-
enriched execution is a probabilistic timed execution with the additional information of what
time-passage transitions are scheduled. Finally, we define an equivalence relation on probabilis-
tic time-enriched executions that captures the idea of representing the same probabilistic timed
execution. This equivalence relation will be useful for parallel composition.

Probabilistic Executions versus Probabilistic Time-Enriched Executions

There is a close relationship between the probabilistic executions of a probabilistic timed au-
tomaton and its probabilistic time-enriched executions. Informally, a probabilistic time-enriched
execution contains more information than a probabilistic execution because it associates a state
with every real time rather than with a countable set of times. In other words, a probabilistic
execution can be seen as a sampling of a probabilistic time-enriched execution at countably
many points. In later chapters we will see that probabilistic executions are sufficient for the
study of the properties of a system whenever such properties do not depend on the actual states
that are reached at each time. For the moment we just define what it means for a probabilistic
execution to sample a probabilistic time-enriched execution, and we show that each probabilistic
time-enriched execution is sampled by some probabilistic execution and that each probabilistic
execution samples some probabilistic time-enriched execution. We start by defining a func-
tion sample that applied to a probabilistic time-enriched execution H of a probabilistic timed
automaton M gives a probabilistic execution H' of M, which by definition samples H.

Let a = wpaqwiaswsy - -+ be a time-enriched execution of a probabilistic timed automaton
M, and let sample(a) be the sequence o' = Istate(wy)aylstate(wy )azlstate(ws)---. Then, it is
easy to check that o’ is an execution of M. We say that o’ samples a. Define

states(H') = sample(states(H)). (9.22)

Let (¢, P) be a transition of H. Define sample on 2 as follows: sample((a,q’)) = (a, sample(q’)),
and sample(8) = 6. Then, define the transition sample((q,P)) to be

sample((q,P)) = (sample(q), sample(P)). (9.23)
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For each state ¢ of H', let sample™'(q) be the set of states ¢’ of H such that sample(q') =
q. Observe that all the states of sample™!(q) are incomparable under prefix. For each ¢’ €
sample ™ (q), let

i)s?mple_l(q) é PH[Cq’] ‘
! Z:q”Esample_l(q) PH[C!J”]

Then, the transition enabled from ¢ in H’ is defined to be

! _sample™?
trf = > Pyt (q)sample(trg). (9.25)

(9.24)

¢’ €sample™1(q)

Observe the similarity of Equations (9.24) and (9.25) with the equations that the fine the
projection of a probabilistic execution (cf. Equations (4.21) and (4.22)).

Proposition 9.3.6 below shows that H' is a probabilistic execution of M. We say that H’
samples H. Then, Proposition 9.3.7 shows that each probabilistic execution samples some
probabilistic time-enriched execution.

Proposition 9.3.6 For each probabilistic time-enriched execution H of a probabilistic timed
automaton M, sample( H) is a probabilistic execution of M.

Proof. Let H' denote sample(H ). The fact that each state of H' is reachable can be shown
by a simple inductive argument; the fact that each state of H' is a finite execution fragment of
M follows from a simple analysis of the definition of sample and of a time-enriched execution.

We need to check that for each state ¢ of H' the transition enabled from ¢ in H' is generated
by a combined transition of M. From (9.25), it is enough to show that for each state ¢’ of
sample™'(q) the transition sample(trg) is generated by a combined transition of M.

Since H is a probabilistic time-enriched execution of M, then there is a time-enriched
transition (Istate(q’),P) of M such that 775[ = ¢~ P. From the definition of sample and the
definition of a time-enriched transition, (Istate(q), sample(P)) is a combined transition of M,
and sample(Pf,I) = sample(q') ~ sample(P), which means that sample(Pf/) = ¢~ sample(P).
This is enough to conclude. [

Proposition 9.3.7 Let H be a probabilistic execution of a probabilistic timed automaton M.
Then there is a probabilistic time-enriched execution H' of M such that H = sample(H').

Proof. We build H’ inductively in such a way that for each state ¢ of H there is exactly one
state ¢’ of H' in sample™(q). The start state of H'is the same as the start state of H.
Suppose that the transition relation of H’ is defined for each state of length at most ¢ — 1
and assume that for each state ¢ of H of length at most ¢ there is exactly one state ¢’ of H' in
sample™"(q). Let ¢ be a state of H of length 7 and let ¢’ be the state of sample™'(q). Observe
from the definition of sample that the length of ¢’ is i. Let (Istate(q),P) be the combined
transition of M that corresponds to trf. For each pair (a,s) of Q, if a is a discrete action,
then let P, sy be D((a,s')); if a is a time-passage action, then let P, ) be D(w, ), where
W,,s € trajectories(M, s, a,s'). Let P =37, cq Pl(a,s)] P s). Then, (Istate(q), P’) is a time-
enriched transition of M. Let trgl be (¢',¢' ~ P'). Then, tré{/ is a legal transition for H'.
Moreover, from the definition of P’, each state of 775[ is the sampling of exactly one state of

775,[/, and, vice versa, the sample of each state of 775,[/ is a state of 775[. [ |
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Probabilistic Time-Enriched Executions versus Probabilistic Timed Executions

We define a function t-sample that, given a probabilistic time-enriched execution fragment H
of M, builds a probabilistic timed execution H’ as follows.

states(H') = {t-ewec(gll) U (9.26)
{4 € Q. caec(mry | ¢ contains finitely many actions} U
{q € t-frag™"(M) | ltraj(q) is a [0,0]-trajectory and Elq/th_emc(H)q <dq'}.

The start state of H' is t-exec(qéq), and for each state ¢ of H' the transition enabled from ¢ is
(¢, truncate,(t-exzec(Pr)|Cy)).

Proposition 9.3.8 t-sample( H) is a probabilistic timed execution fragment of M.

Proof. We need to show that for each state ¢ of H’ that enables some transition there is
a probabilistic time-enriched execution fragment H, of M starting from [state(q) such that
775[ = truncate g (q)(1-exvec(Pp, ).

Let ¢1, ¢z, ... be an enumeration of the states ¢’ of H such that t-exec(q’) = ¢, and for each
i let p; denote Pp[Cy,]. Observe that, since ¢ ends with the occurrence of a discrete action,
for each state ¢” of H such that ¢’ < t-ezec(q”) there is an i such that ¢; < ¢”. Define H, as
follows.

states(H,) = | states(Hvq;). (9.27)

K3

For each state ¢’ of Hy, let

H .
whe 2 2-ilg'€states(Heq) F H[Cqm'](““qub%)‘ (9.28)
g Dilgrestates(Hog:) TH[C gmg]

Then, it is enough to prove that
q " t-exec(Pu,) = t-exvec(Py)|C,,. (9.29)
Before proving (9.29), we show the following property: for each state ¢’ of H,,

ila'Estates .PHC.A/
PHq[Cq’] — Z lq’ Estates(Hrq;) [ 3.7 q ] (930)
2o PH[C%]
This follows easily by induction using Equation (9.28) for the inductive step. The denominator
is necessary for the base case to work.
We now turn to Equation (9.29). Consider an extended timed execution fragment a of M,

and distinguish the following two cases.

1. @ does not end with an open trajectory.

Suppose that a € Q cpee(py)c,- Then, from the definition of t-exec() and of the con-
ditional operation, ¢ < a and there is a time-enriched execution o' of Qp such that
t-exzec(a’) = a. This means that there is a time-enriched execution o’ of Qg such that
t-exec(a’) = a and there is a state ¢; of H such that ¢; < /. From the construction of
H,, each prefix of o’ is a state of H,, and thus o’ € Q4 cvee(t,)- The argument can be
reversed.
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2. «a ends with an open trajectory.

Suppose that o € Q cpee(py)jc,- Then, from the definition of t-exec() and of the condi-
tional operation, ¢ < a and for each finite prefix o’ of « there is a timed execution o’
of t-exec(Qp) such that o < . Tt is sufficient to show that for each finite prefix o/
of a there is a timed execution aj of t-exec(Qp,) such that o/ < (¢~ ). Consider a
prefix o of a, and let o” be an element of t-exzec(Qp) such that @’ < o”. Then there is
a time-enriched execution o' of Qp such that o’ < t-exec(a), which means that there
is a finite prefix o of o/’ such that o < t-exec(a”’) and ¢ < t-exec(a). Let ¢; be
the prefix of o/”. We know that such prefix exists. Then, from the definition of H,,
a'"vq; is a state of H,, and thus there is a time-enriched execution af of Qp, such that
o' < (g~ t-exec(ay)). Moreover, t-exec(ay,) € t-exec(Pp,), which is sufficient to conclude.
The argument can be reversed.

Finally, we need to show that Py_c,cc(py)ic, and Pt_emc(qu) coincide on the cones of their sample
spaces. Thus, consider a finite timed execution fragment o of M. From the definition of ¢-exec(),

Pt-exec(PHq)[Coz] = Z PHq [Cq']' (931)
q'€émin({q'Estates(Hgy)|a<t-ezec(q’)})

From (9.30),
Zi 'estates(Hrq; PH[C i ’]
Picpee(py,)[Cal = > lo'e Z»(qu[é? ] VY (9.32)
q'eémin({q'Estates(Hgy)|a<t-ezec(q’)}) it H g
From the definition of the states of H,, (9.32) can be rewritten into
Zi Zq’Emin({q’Estates(HDq')|q"oz<t-exec(q"‘q’)}) PH[Cq"‘q’]
P o] = : = : . .
t-exec(PHq)[C ] Zz PH[C%] (9 33)
By simplifying the concatenations we obtain
g/ €min({q'€states(H)|ga<t-evec(q)}) LHICy]
P Ca _ q'Eman({q'Estates g~a<t-ezec(q’)}) q ) 9.34
t-exec(PHq)[ ] ZZ PH[C%] ( )

From the definition of t-exec(), the definition of a conditional space, and the definition of the

s
S,

Zq’Emin({q’Estates(H)|q"oz§t-exec(q’)}) PH[C!]']

P Col = 9.35
t-exec(PH)|Cq[ ] ZZ PH[C%] ( )
Since the right sides of Equations (9.34) and (9.35) are the same, we conclude that
Pt-exec(PHq)[Coz] = Pt-exec(PH)|Cq[Cq"oz]‘ (936)
This completes the proof. [ |

Conversely, we show that every probabilistic timed execution of M is sampled by some proba-
bilistic time-enriched execution of M. Let H be a probabilistic timed execution of M. Then,
build H' as follows. Let Hg be a probabilistic timed execution consisting of a single state that
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is t-sampled by ¢, i.e., t-sample(qéqo) = ¢!, Strictly speaking Hy is not a probabilistic timed
execution because qéqo should enable a transition in general. Suppose now that H; is defined.
Then build H;1q1 be extending the transition relation of H; from all the states of I; that do
not end in ¢ and do not have any outgoing transition as follows. Consider a state ¢ of H; that
do not end in é and do not have any outgoing transition, and let ¢’ be the state of H such
that t-ezec(q) = ¢ (our construction ensures that there is always such a state since ¢ ends with
a [0,0]-trajectory). From the definition of a probabilistic timed execution fragment, there is
a probabilistic time-enriched execution fragment H, of M starting from Istate(q’) such that
775,[ = truncate lsmte(q/)(t-eacec(PHq,)). Let H,, be obtained from H, by removing all the tran-
sitions from states where an action has occurred and by removing all the states that become
unreachable. Then, extend H; from ¢’ with ¢’ H;,, ie., Hipivq' = H;,.

Then the states of H' are the union of the states of the H;’s, the start state of H' is qéqo,

and for each state ¢ of H', if ¢ is a state of H;, then tr?/ = tr?”l.

Proposition 9.3.9 t-sample(H') = H.

Proof. We prove that Py = t-exec(Pg+). Then the equality between t-sample(H’) and
H follows by induction after observing that t-sample(H') and H have the same start state
and that for each state ¢, stepé_sample(H/) = (g, truncate(t-exec(Pg)|Cy)), and that stepf =
(¢, truncate,(Pr|Cy)).

For the sample spaces, consider an element a of Q. Then, by definition of Qg, there is an
execution agaq - -+ of H such that lim; @; = «, and such that either « is not a finite execution,

or the last element of v ends in . We distinguish two cases.

1. « is either an infinite sequence or a finite sequence agay - - - o, where a,, ends with 6.

From the definition of the transition relation of H', there is a sequence of extended time-
enriched execution fragments ¢g, 1, ... such that for each i a; = t-exec(qo ™ -+~ ¢;),
G~ q1 " -+ is an element of Qp/, and t-evec(qo™ q1 -+ +) = a. Thus, a € Qypee(mry- The
converse argument is a reversal of the argument above.

2. a = aqpay - - -a, where o, ends with an open trajectory.

From the definition of the transition relation of H’, there is a sequence of extended
time-enriched execution fragments qo,¢1,...,¢,—1 such that for each ¢ < n -1 a; =
t-exec(qo ™ -7 ¢;) and o " -+ " ¢; is a state of H'. Furthermore, for each finite prefix
o' of a there is a time-enriched execution fragment ¢, such that o’ < t-exec(go™ -+~ ¢y)
and ¢ -7 ¢u—1 " ¢, is an element of Qps. This means that for each finite prefix o’ of
a there is an element o of {-ezec(Q2y) such that o' < o, and thus @ € Q¢ pee(p,,,)- The
argument can be reversed.

Consider now a cone €. From the definition of t-exec(),

Pt-exec(H’) [Ca] = Z PH'[C!]] (937)
gemin({g€states(H')|a<t-exec(q)})

If C, is not empty, then @« = @y ---a,, where a,, = a, ag---a,_1 is an execution of H, and
there is a o/, such that a,, < o/, and ay ---al, is an execution of H. We show by induction on
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n that
PylC,, ] = > Pyi[C). (9.38)
gemin({g€states(H')|a<t-exec(q)})

The base case is trivial since 'y, denotes the whole sample space. For the inductive case, from
the definition of the probability of a cone,

PH[Cozn] = PH[Cozn_1]PH [Cozn]- (9'39)

dp—1

From the definition of the transition relation of H,

ZqESMtes(H’)|t-exec(q):ozn_1 PH'[Cq]Pt-eacec(H'Dq)[COénDOén—l]

P [C,,] = : 9.40
n_l[ ] Zqutates(H’)|t-exec(q):ozn_1 PH’[Cq] ( )
where

Pt-exec(H’Dq)[COanOzn_l] = Z PHlpq[Cq/]. (941)

g'€émin({g’Estates(H'>q)|an<t-exec(q™g’)})

Since «,_ is a state of H, the last trajectory of «,_; has domain [0,0], and the set {¢q €
states(H') | t-exec(q) = a1} is a set of minimal states. Thus, by substituting (9.41) in (9.40),
simplifying the numerator of (9.40), we obtain

By (] = vEmintly€statestan<teerec(a)) P [Co]
cesec(%oq) [Canporn s Csestates (i) t-ssec(n)=an— PHI(C4]

(9.42)
By substituting (9.42) in (9.39), using induction and simplifying algebraically, we get (9.38). m

Equivalent Probabilistic Time-Enriched Executions

It is possible to define an equivalence relation on probabilistic time-enriched executions that
captures exactly the probabilistic timed executions that they represent.

Let Hy and Hy be two probabilistic time-enriched execution fragments of a probabilistic
timed automaton M. Then t-exec(Pp, ) and t-exec(Pp,) are said to be equivalent, denoted by
t-exec(Ppy, ) = t-exec(Pp,), iff

1. for each timed extended execution fragment o of M that does not contain infinitely many
discrete actions, a € Qt_emc(le) iff a € Qt_emc(sz));

2. for each finite timed extended execution fragment o of M,
Pt-exec(PHl)[Coz] = Pt-exec(PH2)[Coz]'

Hy and H, are said to be equivalent, denoted by Hy = Hy, iff t-ezec(ql') = t-exec(ql?) and
t-exec(Pp, ) = t-exec(Pp,).

Example 9.3.3 (Two equivalent probabilistic time-enriched executions) In the defi-
nition above we do not require the sample spaces of the given probabilistic time-enriched ex-
ecution fragments to contain the same timed executions with infinitely many discrete actions.
Figure 9-2 shows an example of two probabilistic time-enriched executions whose corresponding
sample spaces differ from a timed execution with infinitely many discrete actions and such that
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Figure 9-2: Probabilistic time-enriched executions that represent the same probabilistic timed
execution.

t-sample() gives the same probabilistic timed execution. The important aspect of this example
is that in the upper probabilistic time-enriched execution the explicit time-passage actions are
used to let 1 time unit elapse in infinitely many different ways. However, the trajectory that
is spanned before the first occurrence of action a is always the same. Observe that the fact
that the two probabilistic time-enriched executions of Figure 9-2 represent the same structure
is not a consequence of the limit closure of the sample space of t-exec(), since t-exec(y, ) and
t-exec(Qp,) do not differ in timed executions that end with an open trajectory. Rather, by
analyzing this example again in the context of parallel composition we will discover the reason
for our definition of t-exec() (cf. Example 9.5.1). |

The rest of this section is dedicated to showing that = characterizes the probabilistic timed
executions represented by probabilistic time-enriched executions. We do it by showing two
results: the first result says that two equivalent probabilistic time-enriched executions describe
the same probabilistic timed execution, and the second result says that for each probabilistic
time-enriched execution H, Py pypre(rry = t-exec(Pp).

Proposition 9.3.10 If t-exzec(Hy) = t-exec(Hy), then t-sample( Hy) = t-sample( Hy).

Proof. Let ¢ € states(t-sample( Hy)). If ¢ = t-exec(qgh) or ¢ € Qy cpee(r;) and contains finitely
many discrete actions, then ¢ € states(t-sample( H3)) trivially. Thus, suppose that ltraj(q) is a
[0,0]-trajectory and that there is a ¢' € Q4 pee(pr,) such that ¢ < ¢'. Then, Py ooy [Cyl > 0,
and, since t-exec(Hy) = t-exec(Hy), Pi.cpee(p,)[Cyq] > 0. Thus, there is a ¢" € Q. cpee(p,) such
that ¢ < ¢”, which means that ¢ € states(t-sample(Hz)). The converse argument is identical.

Consider now a state ¢ of t-sample( H; ) and t-sample( Hy). We need to show that tré_sample(Hl)

and tré_sample(Hz)) are the same transition. From the definition of t-sample(), it is enough to show

that truncate,(t-exec(Pr, )|Cy) = truncate,(t-exec(Pp, )|Cy). Since t-exec(Pr,) = t-exec( P, ),
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a direct analysis of the definition of t-exec() shows that t-ezec(Pp, )|Cy = t-exec(Pp,)|C,y. The
truncation operation is independent of the elements of  that contains infinitely many discrete
actions, and thus thncateq(t_emc(le)|Cq) = thncateq(t_emc(sz))|Cq). Furthermore, directly from
the definition of =, Ptmncateq(t_emc(le)|Cq) and Ptmncateq(t_emc(sz))|Cq) coincide on the cones,
and thus truncate,(t-exec(Pr, )|Cy) = truncatey(t-exec( P, )|Cy). |

Proposition 9.3.11 Let H be a probabilistic time-enriched execution of a probabilistic timed
automaton M. Then, Py sampie(r) = t-exec(Ppr).

Proof. Consider a finite timed execution a of M. We prove the proposition in three steps.

1. For each finite timed extended execution « of M, there is a timed extended execution o’
of Q4 sampie(rry such that @ < o' iff there is a timed extended execution o of Q_ .pc.(p,)
such that o < a’.

Let o € Q¢ sampte(rry such that a < o/. Then there is a complete execution ¢oqq - - - of
t-sample( H) such that lim;q; = «'. In particular, there is a value n such that a < ¢,.
From the definition of the transition relation of t-sample( H ), Pt_emc(H)[an] > 0, and thus
there is a timed execution o of Q. .,..(p,) such that ¢, <, which means that a < o,
Conversely, suppose that there is a timed execution a” of Q_cpec(p,,) such that a < o', If
o’ contains finitely many actions, then o € Q. qppic(mry by definition. Otherwise, there
is a finite prefix o of o such that a < o' and the last trajectory of o'
[0,0]. From the definition of t-sample( H ), ' is a state of t-sample(H), and thus there
is a timed execution a’ of Qy_4mpre(pr) such that o < o, which means that o < ao'.

has domain

2. For each timed extended execution fragment o of M that does not contain infinitely many
discrete actions, & € Qp sumpre() T @ € L cpee(py)-

Let a be a timed extended execution of M that does not contain infinitely many discrete
actions, and suppose that & € Qy 4mpre(r)- If @ ends with ¢, then Item 1 is sufficient
to conclude that a € Q.4 (p,). If o does not end with é, then there is a finite execu-
tion qoqy - - - ¢, of t-sample( H) such that ¢, ends with a right-open trajectory. From the
definition of the transition relation of t-sample(H ), q, € truncate,, ,(t-exec(Pr)|Cy, _,)-
Since ¢, ends with an open trajectory, ¢, € Qy cpee(Py), i€ @ € Qpcpee(Py)-

Conversely, suppose that @ € Q pee(py). If @ ends with 6, then Item 1 is sufficient to
conclude that & € Q¢ s4mpic(m)- If @ does not end with 6, then there is a finite prefix o of a
such that ara’ does not contain any action, and either o’ is the start state of t-sample( H),
or the last trajectory of o’ has domain [0,0]. Thus, from the definition of ¢-sample(), o' is
a state of t-sample( H). From the definition of truncate, a € truncate,(t-exec(Pp)|Cyr),
and thus, from the definition of the transition relation of t-sample(H ), o € Qt sample(H),
Since o ends with an open trajectory, a € €y 4 p1e(m)-

3. For each finite timed extended execution fragment o of M,

Pt-sample(H)[COé] = Pt-exec(PH)[COl]'

Let o be a finite timed execution. From Item 1, cr sample(H) _ = () iff cLeee (Pu) _ = .

t-sample(H) .

Suppose that Cy is not empty. Then there is an execution of t-sample(H ),
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Qo -+ Q1 such that a,_1 < a < a,. From the definition of the probability of a
cone,

Pt-sample(H)[Coz] = Py [COq]POq [COQ] P,y [Coén—1]P0én—1 [Ca]' (9'43)
From the definition of t-sample( H ), for each ¢ < n
Pai[cai-u] = Pt-exec(H)|Cai [CozH.l]- (944)

Thus, by substituting (9.44) in (9.43) and simplifying, we obtain

Pt-sample(H)[COé] = Pt-exec(H)[Coz]' (945)
This completes the proof. [ |
9.4 Moves

In the non-timed framework we have introduced the notion of a weak transition to abstract
from internal computation. Informally, a weak transition is obtained by concatenating several
internal and external transitions so that overall the system emulates a unique transition labeled
with at most one external action. In the timed framework, due to the presence of explicit
time-passage actions, it may be the case that some time ¢t cannot elapse without performing
some internal transitions in the middle. This problem becomes more evident when we extend
the simulation relations to the timed framework (cf. Chapter 12). For this reason we introduce
the concept of a move, which extends weak transitions and abstracts from internal transitions
interleaved with time-passage transitions..

Let M is a probabilistic timed automaton, s be a state of M, P be a discrete probability
distribution over states of M, and a be an action of M or the value 0. If a is a visible action of
M then we use the expression s > P to denote s == P: if @ = 0, then we use the expression
s % P to denote s ~ P, which is the same as s = P; if a is a time-passage action, i.e.,

a = d for some d € R, then we use the expression s L P to denote that P is reached from s
by means of several internal and time-passage transitions so that in each situation time d has

elapsed. Formally, s L P iff there is a probabilistic execution fragment H such that
1. the start state of H is s;
2. Py[{ad | ad € Qu}] =1, i.e., the probability of termination in H is 1;
3. for each ad € Qp, t-trace(a) = t-trace(a);

4. P = lIstate(é-strip(Pr)), where §-strip(Prr) is the probability space P’ such that @' =
{a]ad € Qp}, and for each a € ', P'[a] = Py[Cas];

The notion of a generator for a weak transition can be extended to moves in a straightforward
way.
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9.5 Parallel Composition

The parallel composition operator for probabilistic timed automata is exactly the same as the
parallel composition operator for probabilistic automata. Thus, we omit the formal definition.
According to the definition of the transition relation of My||M3, My and M; synchronize on
all their time-passage transitions, and thus time advances always at the same speed in M; and
MQ.

The definition of a projection of a probabilistic time-enriched execution is the same as the
definition of a projection of a probabilistic execution, except that the states of a probabilistic
time-enriched execution fragment are time-enriched execution fragments rather than ordinary
execution fragments. Thus, we need to extend the definition of a projection to time-enriched
execution fragments and time-enriched transitions.

Let M be My||M;, and let a be a time-enriched execution of M. The projection of o onto
M;, ©+ = 1,2, is the sequence obtained from a by projecting the codomain of each trajectory
onto M;, by removing all the actions not in acts(M;), and by concatenating all the trajectories
whose intermediate actions are removed. It is straightforward to check that a is a time-enriched
execution of M;.

Let H be a probabilistic time-enriched execution of M, and let tr = (¢,P) be an action
restricted transition of H such that only actions of M;, ¢ = 1,2, appear in tr. Define the
M; = (a,¢'[M;), and 6[M; = 6.
q[M;, P[M;).

projection operator on the elements of Q as follows: (a,¢’)
The projection of tr onto M;, denoted by tr[M;, is the pair

—_——

Proposition 9.5.1 Let M = My||My, and let H be a probabilistic time-enriched execution
fragment of M. Then H[M; € t-prexzec(My) and H[M; € t-prexec(My).

Proof. The structure of the proofis the same as the proof of Proposition 4.3.4. This time it is
necessary to observe that for each state ¢ of H the transition (trg I acts(My))[ My is generated
by a time-enriched transition of M;. [ |

Proposition 9.5.2 Let M = My||My, and let H be a probabilistic time-enriched execution
fragment of M. Let H; be H[M;, i = 1,2. Let q be a state of H;. Then,

Py lCl= >  Pul[Cyl (9.46)
q'€émin(q]H)

Proof. This proof has the same structure as the proof of Proposition 4.3.5. [ |

In the rest of this section we extend the results of Section 9.3.3 to account for parallel com-
position. We show that sample commutes with projections and that the projections of two
equivalent probabilistic time-enriched executions are equivalent. The first result guarantees
that sample and projection are well defined for probabilistic time-enriched executions; the sec-
ond result allows us to define indirectly a projection operator on probabilistic timed executions:
namely, given a probabilistic timed execution H of M;y||Mz, let H' be any probabilistic time-
enriched execution of M;||My such that t-sample(H') = H. Then, H[M; is defined to be
t-sample( H'[ M;). Before proving these two results, we show why in the definition of t-exec()
we force probabilistic time-enriched executions like those of Figure 9-1 to be mapped to the
same structure (cf. Example 9.3.2).
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Example 9.5.1 (Reason for the definition of t-ezec) We have already seen that the prob-
abilistic time-enriched executions of Figure 9-2 are t-samples of the same probabilistic timed
execution. Suppose now the probabilistic time-enriched executions of Figure 9-2 to be proba-
bilistic time-enriched executions of the parallel composition of two probabilistic timed automata
My and My, and suppose that a is an action of My only. By projecting the probabilistic time-
enriched executions of Figure 9-2 onto M7 we obtain two probabilistic time-enriched executions
like those of Figure 9-1, which must denote the same probabilistic timed execution if we want
t-sample to be preserved by the projection operation. [ |

Proposition 9.5.3 Let M be My||My, and let H be a probabilistic time-enriched execution of
M. Then, sample(H[M;) = sample(H)[M,.

Proof. Since the sampling function commutes with the projection function, sample( H[M;)
and sample( H)[M; have the same states.

For convenience, denote sample(H) by H'. Let ¢ be one of the states of sample( H)[M;.
Below we show that the equation for the transition leaving from ¢ in sample( H)[M; and the
equation for the transition leaving from ¢ in sample( H [M;) denote the same transition. This
is sufficient to show that sample( H)[M; and sample( H [M;) have the same transition relation.
We use implicitly the fact that the projection onto M; distributes over the sum of transitions
restricted to acts(M;).

From (9.25), Proposition 4.3.2, and an algebraic simplification, the expression

S o PH Tacts(M)](trH | acts(M:))[ M, (9.47)
qleq]Hl
can be rewritten into
_g|H' _sample™1(q") H ) )
Z Z Dy Dy sample(try | acts(M;))[M; (9.48)
q'€q|H’ q”Esample_l(q’)
which becomes

_q|H' _sample ™ (sample(g"
Z pilmple(qu)pqu ple (sample(q ))sample(tr(?, I acts(M;))[M;, (9.49)

q"'€sample ™1 (¢ H')

after grouping the two sums.
Denote H[M; by H”. From (4.22), Proposition 4.3.2, and an algebraic simplification,

Z ﬁ57mple_1 (q)sample(trg{”) (950)

q
¢’ €sample ™1 (q)

can be rewritten into

Z Z ﬁsjmple_l(q)ﬁgj]HPf/I/[acts(Mi)]sample(trgl P acts(M;))[M; (9.51)

q
¢’ €sample ™Y (q) ¢ €q'1H

which becomes
_sample ™! (q"[M)H
E pq//[]\]}i (q)p(q (M1 Pﬁ[acts(Mi)]sample(trgl Macts(M;)[M;  (9.52)

q//
q”E(sample_1 (9)NH
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after grouping the two sums.

From the commutativity of sample and projection, sample™'(q|H') = sample™'(q)]H.
Thus, in order to show that (9.49) and (9.52) denote the same transition, it is sufficient to

show that for each state ¢” of sample ™' (¢ H'),

s 1H ssample ™ (sample(q")) _ ssample™ (q) (q" [M:)1H
psample(q”)pq” - pq// [M; pq// .

By expanding the expressions above with their definitions, (9.53) becomes
PH’[Csample(q”)]PH[Cq”]
(ZQ'Emin(q]H') PH'[CT])(Z(j”ES(zmple_l(sample(q”)) PH[CTI])
PH// [Cq”[Mi]PH[Cq”]
(Ezj’€sample_1 (g) PH”[CT])(Zq”Emin((q” [M;)]H) PH[CT'])

By simplifying common subexpressions, using Proposition 4.3.5, and observing that

PH'[Csample(q”)] = Z PH[CT'L

g'"esample 1 (sample(g"))

(we have verified properties like (9.55) several times) Equation (9.54) becomes
S PylCyl = > Prn[Cyl,
g'eémin(q|H’) g €sample 1 (q)
which can be shown as follows:
> Pw[Cy]
g'eémin(q|H')

= X > PulCy]

g emin(q|H') ¢ csample ! (g")

= > Pr(Cyr]

q"emin(sample 1 (q1H'))

= > Py[Cy]

¢ €min((sample™1(q))1H)

= Z Z PH[Cq“]

7 €sample ™1 (q) ¢ €min (71 H)

=Y Pwlosl

g €sample ™1 (q)

(9.53)

(9.54)

(9.55)

(9.56)

where the first step follows from (9.55), the second and fourth steps follow from grouping and
ungrouping sums, the third step follows from the commutativity of sample and projection, and

the fifth step follows from Proposition 4.3.5.

Proposition 9.5.4 Let Hy and Hy be two probabilistic time-enriched executions of My||Mz. If

H1 = HQ, then H1 [Mz = H2 [M“ 1= 1,2
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Proof. We show first that t-exec(Ppy, fMi) and t-exec(Py, fMi) assign the same probabilities
to the same cones; then we show that the sample spaces of t-exec( Py, [Mi) and t-exec( P, [Mi)
satisfy the condition for =. This part of the proof relies on the way we have defined the sample
spaces of the objects produced by t-exec(). For the cones, we show that for each finite timed
extended execution a of M;,

Pt-exec(PHl rMi)[Ca] = Z Pt-exec(Hl)[Coz’]- (957)
a’emin({a’€t-frag}(My||M2)|a=a'[M;})

and

Pt-exec(PH2 rMi)[Coz] = Z Pt-exec(HQ)[Coz']‘ (958)
a'emin({a'€t-fragy(My||M2)|a=a'[M;})
Then, since Hy = Hy, we conclude that the right sides of (9.57) and (9.58) are equal, and thus,
Hy[M; = Hy[M;. We prove only (9.57); the proof for (9.58) is symmetric. From the definition
of t-exec(),

Picoee(Pys, e )[Cal = > Py, ian[Cyl. (9.59)
gemin({g€states(H [M;)|a<t-exec(q)})

From (4.31),

Preaee(Prg, par)[Cal = > ( > Py [Cq/]) . (9.60)
g€min({g€states(Hy [My)|o<t-cxec(q)}) \a'€min(q|H1)

Consider a state ¢ of min({q € states(H;[M;) | a < t-exec(q)}) and a state ¢’ of min(q|Hy).
Then, from the definition of t-exec(), there is at least one o' € t-fragi(M;||Mz) such that
a = o'[M; and ¢ € min({¢ € states(Hy) | o/ < t-exec(q')}). Moreover, there is exactly
one minimum «'. Conversely, consider one o' € min({a’ € t-fragi(Mi|| M) | o = o'[M;}),
and consider a state ¢’ of min({¢" € states(Hy) | o/ < t-exec(q')}). Let ¢ = ¢'[M;. Then,
¢ € min(q|Hy) and ¢ is a state of min({q € states(H1[M;) | & < t-exec(q)}). Thus, from (9.60)
we obtain (9.57).

We now move to the sample spaces. Let o be an element of Qt_emc(le () that does not
contain infinitely many discrete actions. If @ ends with 6, then « is trivially an element of
Qi evec(Py, ) Since Pooeepy rMi)[Ca] = Pt'EfEC(PHQ[Mi)[CO‘] > 0. Otherwise, @ ends with an

open trajectory. Then, from the definition of € .,c.( , for each finite prefix o’ of a there

Py o)
is an element oy of {-exec(Qy, fMi) such that o' < ay. Iltr is enough to show that for each finite
prefix o of a there is also an element ay of t-evec(Qp, ;) such that o < as.

Let o’ be a finite prefix of a such that there is an element ay of {-exec(Qp, as,) such that
o’ < ay. Thus, there is a time-enriched execution aj of Qp py, such that o’ < t-evec(a)).
This means that there is a state ¢; of Hy[M; such that o’ < t-exec(qr). From the definition
of projection, there is a state ¢; of Hy such that o < t-exec(qi[M;), and thus there is a timed
execution af of t-exec(Qp,) such that o' < (af[M;). Consider a finite prefix of’ of of such
that o/ < (af'[M;). Then, Py cvee(Pyg)[Capr] > 0. Since Hy = Ha, Prgee(pyy,)[Carr] > 0, which
Py,) such that o’ < (a5[M;). Thus, there
is a state ¢4 of Hy such that o' < t-exec(qgi[M;), and from the definition of projection, there
is a state gy of Ho[M; such that o’ < t-exec(qz). This implies that there is an element o of

t-evec(Qp,ar,) such that o’ < af, which is sufficient to conclude. |

means that there is a timed execution af of Qt_emc(
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9.6 Discussion

To our knowledge, no general probabilistic models with dense time have been proposed except
for the automata of Courcoubetis, Alur and Dill [ACD91a, ACD91b]. In our model no prob-
ability distributions over passage of time are allowed within a probabilistic timed automaton;
time can elapse probabilistically only within a probabilistic timed execution, and the associated
probability distributions can be only discrete. We have chosen to define the timed model with
such a restriction so that all the theory for the untimed model carries over.

Further work should investigate on the extension of our model to non-discrete probability
distributions. A starting point could be the study of restricted forms of non-discrete distri-
butions as it is done by Courcoubetis, Alur and Dill in [ACD91a, ACD91b]. Useful ideas can
come from the work on stochastic process algebras of Gotz, Herzog and Rettelbach [GHR93],
Hillston [Hil94], and Bernardo, Donatiello and Gorrieri [BDG94].
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Chapter 10

Direct Verification: Time
Complexity

Part of this chapter is based on joint work with Anna Pogosyants and Isaac Saias; some of the
ideas have been influenced by discussion with Lenore Zuck. The verification of the randomized
dining philosophers algorithm of Lehmann and Rabin (Section 10.6) is based on joint work
with Nancy Lynch and Isaac Saias [LSS94]; the verification of the randomized algorithm for
agreement of Ben-Or (Section 10.8) is joint work with Anna Pogosyants and is a formalization
of a proof that appears in the book on distributed algorithms of Nancy Lynch [Lyn95]. Close
interaction with Anna Pogosyants lead us to the idea of the abstract complexity measures of
Section 10.7.

10.1 General Considerations About Time

The direct analysis of a probabilistic timed automaton is carried out exactly in the same way
as for untimed probabilistic automata. Thus, probabilistic statements and progress statements
can be generalized directly, and the coin lemmas can be applied without any modification.

In this chapter we concentrate more on topics that are specific to the presence of time. In
particular, it is now possible to enrich the notation for progress statements and verify some of
the real-time properties of a probabilistic timed automaton. We extend the progress statements
of Chapter 5 by adding a time parameter ¢: the expression U —;—> U’ means that, starting from

a state of U, a state of U’ is reached within time ¢ with probability at least p. Based on the new
timed progress statements we show how to derive upper bounds on the worst expected time for
progress.

We generalize the method for time complexity analysis to more abstract complexity mea-
sures. Then, rather than studying the expected time for progress, we study the expected
abstract complexity for progress. We use abstract complexity to derive an upper bound on the
worst expected time for decision of the randomized algorithm for agreement of Ben-Or that we
presented in Chapter 5. Specifically, we show that under some conditions on the scheduling
policy, each non-faulty process completes its it" stage within some upper bound, and we show
an upper bound on the expected number of stages that are necessary to reach agreement. In
this case the abstract complexity is the number of stages. A direct analysis of the expected time
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for success in Ben-O1’s algorithm would not be as easy since there is no useful upper bound on
the time it takes to a process to move from a stage to the next stage.

Sections 10.2, 10.3, and 10.4 simply extend the definitions of Chapter 5 to the timed case;
Section 10.5 shows how to derive upper bounds on the worst expected time for progress given
a timed progress statement, and Section 10.7 shows how to derive upper bounds on the worst
expected abstract complexity for progress given a timed progress statement with abstract com-
plexity; Sections 10.6 and 10.8 present examples of application by proving that the randomized
dining philosophers algorithm of Lehmann and Rabin guarantees progress in expected constant
time and that the randomized agreement algorithm of Ben-Or guarantees agreement in expected
exponential time.

10.2 Adversaries

An adversary for a probabilistic timed automaton M is a function A that takes a finite timed
execution fragment a of M and returns a timed transition of M that leaves from Istate(a).
Formally,

A t-frag® (M) — t-trans(M)

such that if A(a) = (s,P), then s = Istate(a). Moreover, an adversary satisfies the following
consistency condition: if A(a) = (s,P), then for each prefix o’ of some element o’ of €,
A(a™ o) = (Istate(a), Pra’). Informally, consistency says that an adversary does not change
its mind during a timed transition.

An adversary is deterministic if it returns either deterministic timed transitions of M or
pairs of the form (s, D(s6)), i.e., the next timed transition is chosen deterministically. Denote
the set of adversaries and deterministic adversaries for a probabilistic timed automaton M by
Advs(M) and DAdvs(M ), respectively.

The definitions of an adversary schema and of the result of the interaction between an adver-
sary and a probabilistic timed automaton is the same as for the untimed case (cf. Section 5.2),
and thus we do not repeat them here.

To guarantee that our adversaries are well defined, we need to prove the following lemma.

Lemma 10.2.1 [f (s,P) is a timed transition of a probabilistic timed automaton M, then for
each prefiz o' of some element o' of Q, (Istate(a’), Pra’) is a timed transition of M.

Proof. This is proved already in Proposition 9.3.5. [ |

10.3 Event Schemas

As for the untimed case we need a mechanism to associate an event with each probabilistic
timed execution fragment of a probabilistic timed automaton. Thus, an event schema is a
function e that associates an event of the space Py with each probabilistic timed execution
fragment H of M. The notion of finite satisfiability extends directly from the untimed case.
Observe that, although in Py there can be uncountably many cones, each finitely satisfiable
event can be expressed as the union of countably many disjoint cones. Furthermore, every
uncountable family of cones contains at least two cones that are not disjoint.
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The definition of a timed probabilistic statement extends directly from the untimed case, and
similarly the definition of the concatenation of two event schemas extends directly. Therefore,
we omit the definitions, which are identical to those of Chapter 5.

Proposition 10.3.1 The concatenation of two event schemas is an event schema. That is, if
€ = €1 Oones €2, then e is an event schema.

Proof. Consider a probabilistic timed execution fragment H. From Proposition 9.3.3 each set
ea(H|q) is an event of Fp. From the closure of a o-field under countable union, e(H) is an
event of Fp. [ ]

Proposition 10.3.2 Pyle1 ocones €2(H)| = 3 gc cones(iy PrCol Prrjglea(H]q)].
Proof. Since Cones(H ) represents a collection of disjoint cones, from (5.13) we obtain

Priler 0 cones €2(H)] = Z Prles(H|q)]. (10.1)
g€ Cones(H)

From Proposition 9.3.3, for each ¢ € Cones(H)
Prlea(H|q)] = PrlCy]Pyqlea(H |q)]- (10.2)
By substituting (10.2) in (10.1) we obtain the desired result. |

Now it is possible to prove a concatenation property similar to the one for the untimed case.

Proposition 10.3.3 Consider a probabilistic timed automaton M. Let
1. Pragus.0(e1) R p1 and,
2. for each A € Advs, q € O, let PT 44y, Cones(prevec(M,Aq))(€2) R P2
Then, Pr 44,5 0(€1 0Cones €2) R p1p2-

Proof. Consider an adversary A € Advs and any finite timed execution fragment ¢ € ©. Let
H = prexzec(M, A, q). From Proposition 10.3.2,

PH[el OCones 62(H)] = Z PH[Cq’]PH|q’[€2(H|q/)]' (103)
q'€Cones(H)

Counsider an element ¢’ of Cones(H). It is a simple inductive argument to show that
Hl|q' = prezec(M, A, q), (10.4)

where we use consistency for the base case. Thus, from our second hypothesis,

Ppplea(H|q)] R pa. (10.5)
By substituting (10.5) in (10.3), we obtain
Prler 0cones e2(H)| R py > Py[C). (10.6)

q'€Cones(e1(H))
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By using the fact that Cones(H ) is a characterization of e;(H ) as a disjoint union of cones,
Equation (10.6) can be rewritten into

Prile1 ocones €2(H)] R paPrled(H)). (10.7)
From the first hypothesis, Pyle1(H )] R p1; therefore, from Proposition 5.4.1,

Prler ocones €2(H)] R p1pa. (10.8)
This completes the proof. [ |

10.4 Timed Progress Statements

As a special case of a probabilistic statement for the timed case we can add some features
to the notation X —Advs X’. In particular we define a timed progress statement to assert

that starting from a set of states U some other state of a set U’ is reached within time ¢ with

probability at least p. Such a statement, which we denote by U —;—54(1% U',orby U —;—> U’ if

Advs is clear from the context, is expressed by the probabilistic statement Pryq,s v(eprt) > p.
where the event schema egr ; applied to a timed probabilistic execution fragment H returns the
set of timed executions a of Qy where a state from U’ is reached within time ¢ in argfl. Such
a set can be expressed as a union of cones, and therefore it is an event.

Similarly, the progress statements involving actions can be generalized to the timed frame-
work. Thus, V' %Advs V' is the probabilistic statement PrAdw’@VyV,(eV/J) > p, where Oy v is

the set of finite timed execution fragments of M where an action from V' occurs and no action
from V' occurs after the last occurrence of an action from V', and the event schema ey ; applied
to a timed probabilistic execution fragment H returns the set of timed executions a of Q such
that an action from V occurs in ar¢} within time .

In order to generalize the concatenation theorem for progress statements, we need to extend
the definition of a finite-history-insensitive adversary schema. Thus, an adversary schema Advs
is finite-history-insensitive iff for each adversary A of Advs and each finite timed execution
fragment a of M there is an adversary A’ of Advs such that for each timed execution fragment
o’ such that o < o', A(a) = A'(a’>a). Then, the following theorem is shown in the same way
as for the untimed case.

Theorem 10.4.1 Let Advs be finite-history-insensitive. If X —;1—>Advs X" and X' _;2_>Advs X,
1 2

t1+1¢
then X fs 2Advs X", [ |
P1p2

10.5 Time Complexity

In this section we show how to study the time complexity of a randomized distributed algorithm.
We start by defining how to compute a worst expected time, and then we show how it is possible
to derive upper bounds on the worst expected running time of an algorithm based on timed
progress statements.
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10.5.1 Expected Time of Success

Let e be a finitely satisfiable event schema and suppose that Py[e(H)] = 1,i.e., that the property
described by e is satisfied in H with probability 1. Let Cones(H ) be a characterization of ()
as a disjoint union of cones, where each element of Cones(H ) identifies the first point along
a timed execution where the property denoted by e is satisfied. Then, we can compute the
expected time to satisfy the property identified by e as

Z Py [C)(Itime(geqll)). (10.9)
g€ Cones(H)

In general, if e is a finitely satisfiable event-schema and Cones(H ) identifies the first point along
a timed execution where the property identified by e is satisfied, then for each probabilistic timed
execution fragment H of M we define Fy[e], the expected time to satisfy e in H, as follows.

Ele] { S oy PulC)(ltime(qogl])) it Pygle(H)] = 1 0.0

00 otherwise.

Then, the question is the following: are there easy ways to compute upper bounds on the
expected time for success in a randomized algorithm without computing explicitly (10.10)7 We
give a positive answer to this question.

10.5.2 From Timed Progress Statements to Expected Times

Timed progress statements can be used to analyze the time complexity of a randomized algo-
rithm. The main idea for the analysis is expressed by Proposition 10.5.1. Suppose that we
know the following:

{ U= U (10.11)
U = (U Unless U'").

Then, if Advs is finite-history-insensitive and sé ¢ Q(s) for each A € Advs and each s € U,
we know from Proposition 5.5.6 that U —Advs U’. Let e be a finitely satisfiable event schema,

and let Cones express the points of satisfaction of e. Suppose that for each probabilistic timed
execution fragment H and each state ¢ of H, if there is no prefix ¢’ of ¢ such that ¢’ € Cones(H ),
then e(Hvq) = e(H)rq and Cones(Hreq) = Cones(H )>q (e.g., e can express the property of
reaching some state in a set U”, or the property of performing some action). Let

EU,Advs[e] é SupseU,.AEAdvsEpreacec(M,.A,s)[6]' (1012)
Then the following property is valid.
Proposition 10.5.1

Ev aqvsle] <t 4 pEur aqusle] + (1 — p)Eu, aqvs €] (10.13)
Proof. We prove (10.13) by distinguishing four cases.

L. By, agvsle] = Euadvsle]-
In this case (10.13) is satisfied trivially.
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2. Ey gqusle] = oo and p < 1.
Also in this case (10.13) is satisfied trivially.

3. By gdusle] = oo and p = 1.

We show that Eyr g4.5[€] = 0o, which is enough to satisfy (10.13). Suppose by contradic-
tion that E 44ys(€] < co. Then we distinguish the following cases.

(a) There is an adversary A of Advs and a state s of U such that
Ppreacec(M,.A,s)[e(prexec(Mv -’47 5))] < L
(b) It is not the case that there is an adversary A of Advs and a state s of U such that

Ppmxec(M’AS)[e(prexec(M, A, s))] < 1.

For Case (a), let Conesy be the function that expresses the points of satisfaction of egr,
and let H be prezec(M, A, s), where P, (M, As)le(prezec(M, A, s))] < 1. Then,

prexec

Pule(H)] > 3. PalCylPusy(e(H>q)). (10.14)
q€ Conesyi(H)

i.e., the probability of satisfying e is not smaller than the probability of reaching U’ and
then from there satisfying e. From the finite-history-insensitivity of Advs, for each state ¢
of Conesyi(H) there is an adversary A’ of Advs such that Heq = prezec(M, A, lstate(q)),
and thus, since Eyrr g4u5[€] < 00, Prwg(e(H>q)) = 1. By substituting this result in (10.14),
we get

Pyle(H)] > > Pyl (10.15)
q€ Conesyi(H)

Since p = 1, the right side of (10.15) is equal to 1, i.e., Py[e(H)] > 1, a contradiction.

For Case (b), let Conesyr be a function that expresses the points of satisfaction of er,
and, for each d > 0, let Conesy be a function that expresses the event of reaching time
d as a union of disjoint cones. From the definition of a probabilistic timed execution,
we know that Cones, exists and that for each probabilistic timed execution fragment H
and each ¢ € Conesq(H), ltime(qrql!) = d. Let H be prezec(M, A, s). From (10.10) the
expected time for success for e is

Eyle] = Z Py [C)ltime(qoqll). (10.16)
g€ Cones(H)

Let € be an arbitrary positive number. Let @1 be the set of elements ¢ of Conesy/(H )
such that ltime(qeqd!) < t+¢, and let Hy be the set of elements q of Conesyy.(H) that do
not have any prefix in ©4. Since Pyley(H)] = 1, then PylUzco,u0,C,] = 1. Moreover,
by hypothesis, Pg[Ugecones(ir)Cyq] = 1. Thus, observe that each element of Cones(H ) has
either a proper prefix or a suffix in ©1 U Q4. In fact, if there is an element ¢ of Cones(H)
that has no prefix nor suffix in @1 UQ3, then the cone C'; would not be part of Usco,u0,CYy,
contradicting the hypothesis that Pg[U,c Cones(H)Cq] = 1. Similarly, we can show that
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for each element ¢ of @1 U O3 has either a prefix or a proper suffix in Cones(H). Thus,
Cones(H) can be partitioned into two sets ©F and ©° of elements that have a proper
prefix and a suffix, respectively, in @1 U @4, and ©1 U Oy can be partitioned into two sets
(911)72 and ©7 , of elements that have a prefix and a proper suffix, respectively, in Cones(H).
Based on these observations, the right side of Equation( 10.16) can be rewritten into

Z Z Pr[C oy Prog [Cowy |(ltime(q'>q) + lime(qoq)) (10.17)
q€OP ¢'€07 ,|q'<q

+ Z Z PH[Cq]PHDq[Cq’Dq]ltime(‘]W]éq)
9€0° ¢'€®7 , [9<q’

Observe that for each ¢ € 0%, 3 cor <y Priog[Cyny] = 1, and observe that for each

q' € 03 5, Y jcor|yr<q Pog[Copy] = 1. By exchanging the sums in (10.17) and using some
simple algebraic manipulations, we obtain

Z PrCy] (ltz'me(q'bqéq)—l— Z PHDq/[Cqu/]ltz'me(QDq’)) (10.18)

¢'€07, q€0r|g'<q

+ Z Z PH[Cq]PHDq[Cq’Dq]ltime(‘]W]éq)
g'e07 , 9€0°[9<y’

In the first summand, since from the properties of e for each ¢’ € 0Of,, e(H>q') =
e(H)vq', the subexpression 3 copjy<, lime(qeq') Py [Cypyr] denotes Eppge]. In the
second summand, observe that for each ¢ ¢ (911)72 there is exactly one element ¢ of ©°
such that ¢ < ¢'. Moreover, Py[Cy]Prug[Cynq] = Pr[Cy]. Thus, from (10.18) we obtain

Eald < | 5 PalCyl(Hime(qsat!) + Ereple) (10.19)
q'€07,

+ Z PH[Cq/]ltz'me(qlbqéq)
qleg}fz

By repartitioning 07 5 U (911)72 into @1 and O3, and by observing that for each element ¢
of Oy ltime(qegll) < t + ¢, and for each element g of Oy ltime(qoqd’) =t + ¢, (10.19) can
be rewritten into

Egld<(+o| S PalClEmale | +| X PulC)Emsld| (10.20)
9€0] ,NO; qe®f72n®1

+ > PulClEmsle] | + > PylClEuaasle] |,
q€®] ,NO g€0] ,NO;
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where we have added Epqle] in the upper right summand and Ep g4.5[€] in the lower
right summand. Since Advs is finite history insensitive, for each ¢ € 0 U O3 there is an
adversary A" of Advs such that (Heq) = prexec(M, A, lstate(q)). Thus, (10.20) can be
rewritten into

Eple] < (t+¢) (Z Py[Cy)Err sdnsle ) (Z PylCylEv,adusle ]), (10.21)

q€0, gEBO,

where we have used U = (U Unless U’) to say that the last states of the elements of O
are in U. Observe that 3 o, Pu[Cy] is Puley(H )], which is 1 by hypothesis. Since by
hypothesis Epr q405[€] < 00, from (10.21) we derive that Epr 4445[€] < 00, a contradiction.

- By sausle] < 00, By gqus€] < 00, and Eypr gq0(€] < Eur gqus€]-

Let A be an adversary of Advs and s be a state of U. Let H be prezec(M,A,s). Let €
be any positive real number. Equation (10.21) can be derived also in this case using the
same identical argument as before. Since we have assumed that Eyr gq0s€] < Eu adus[€].
the lowest possible value of the right side of (10.21) occurs by giving U’ the lowest possible
probability, which is p. Thus, (10.21) becomes

Eple] < (t + €)pEur aavsle] + (1 = p) Ev,aausle]. (10.22)

Since Equation (10.22) is valid for any adversary Advs and any state of U, we obtain
timed execution fragment

Ev advsle] < (4 €)pEuyr agusle] + (1 — p)Eu, aqvs€)- (10.23)

Since Equation (10.23) is valid for every ¢, Equation (10.23) is valid also for the infimum
of the values that ¢ can have, i.e., 0, and thus,

Ev aqvsle] <4 pEur agusle] + (1 — p) Ly, agusle]- (10.24)

This completes the proof. [ |

Example 10.5.1 (From timed progress to expected time) As a simple example of ap-
plication of Proposition 10.5.1, suppose that e expresses the property of reaching U’. Then, we
know by definition that Eyr 44.5[€] = 0. By applying Equation (10.13), we obtain Eyr q.s[e] <

— p)Eu adusle], which gives i aq05€] < t/p, i.e., the expected time to reach U’ from U

is at most ¢/p. Informally speaking, we can view the process of reaching U’ as a sequence of
Bernoulli trials, each one performed every ¢ time units. At time t, with probability p we have
reached U’, and with probability (1 — p) we are still in U, and thus we apply the same exper-
iment again. The expected number of rounds of such a process is 1/p, and thus the expected
time for success is ¢/p. Suppose now that we know the following,

Up —pgns Uy U = (Up Unless Uy)
T (10.25)

Uy _;Z_”“d“ Uy Uy = (Uy Unless Uy),
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and suppose that e expresses the property of reaching U,. Then, we know that Eps, 44.5[€] = 0.
By applying Proposition 10.5.1, we obtain

Eu, advs(€] < 1+ p1Euy advsle] + (1 — p1) Loy, Advs €]
(10.26)
Eu, advs(€] < ta+ (1 — p2) Ly, advs €]
From simple algebraic manipulations (10.26) becomes
Evy,aausle] < 11/p1 + Euy, adus €]
) ? 10.27
{ EUl,Advs[e] < t2/P27 ( )
and thus, after substituting the second inequality in the first inequality,
Eu, advsl€] < ti/p1 + ta/p2
: 10.28
{ Eu, advs[€] < ta/ps. ( )
Suppose now that in addition to (10.25) we know that
ta
Uy = (Ug Unless Uy),
which is possible if Uy C Ug U Uy. Then, from Proposition 10.5.1 we get
EUO,Advs [6] S t3/P37 (1030)
which added to (10.28) gives
Ev,,aause] < min(ty/p1 + t2/p2,13/p3)
(10.31)
Eu, advs[€] < ta/ps.
Therefore, more information may give us the possibility to prove better bounds. [ |

Proposition 10.5.1 can be proved also for timed progress statements that involve sets of actions
rather than sets of states. Let V,V’ denote two sets of actions, and let Advs be an adversary
schema. Suppose that

1% _;_”‘”“ V. (10.32)
Let e be a finitely satisfiable event schema, and let Cones express the points of satisfaction of
e. Suppose that for each probabilistic timed execution fragment H and each state ¢ of H, if
there is no prefix ¢’ of ¢ such that ¢’ € Cones(H ), then e(Hvq) = e(H )>q and Cones(Hvq) =
Cones(H )>q. Let Evyr 4445€] denote SupqEG)VyV/,AEAdstpTEGUEC(M,A,q)[e]' Let Oy denote the
set of finite execution fragments of M whose last action is in V', and let Ey: 44,5[€] denote
SUPqeG)V,,AeAdstprexec(M,A,q)[e]- Suppose that ¢'6 ¢ Q 4, for each ¢, each A € Advs and each
q € Oy ys. Then the following proposition is valid.

Proposition 10.5.2
L Eyyi ggusle] <t +pEviagsle] + (1 = p)Ev v agsle], and
2. for each set of actions V", Eyi squs[e] < Evivn aqusle€].

Proof. The proof of the first item follows the lines of the proof of Proposition 10.5.1; the proof
of the second item follows from the fact that Oy C Oy yo. [ |

231



10.6 Example: Randomized Dining Philosophers

To illustrate the use of timed progress statements for the analysis of an algorithm, we reconsider
the randomized dining philosophers algorithm of Lehmann and Rabin, and we show that, under
the condition that each process has a minimum speed, progress is guaranteed within expected
constant time. First, we show how to add time to the probabilistic automaton that describes the
algorithm; then, we add time limitations to the progress statements that we used in Section 6.3.3
and we derive the upper bound on the expected time for progress; finally we repeat the low
level proof observing that the coin lemmas are applied in the same way as for the untimed case.

10.6.1 Representation of the Algorithm

The probabilistic timed automaton that represent the Algorithm of Lehmann and Rabin can be
obtained directly from the probabilistic automaton of Section 6.3.2 by adding arbitrary self-loop
time-passage transition from each state (same as the patient construction of Example 9.2.1).
Then, in order to enforce a lower bound on the speed of each process, we impose some limitations
on the adversaries that act on M. For convenience, but without loss of generality, we assume
that from any point each process in its trying or exit region performs one transition within time
1. Thus, the adversary schema that we use on M is the set of adversaries A for M such that
for each finite timed execution fragment a of M,

1. Pprexec(M,A,oz)[fragoo(M)] = 17 and

2. for each element o’ of Qprevee(M,A,) there is no pair of prefixes a; < ay of a'>a and no
process @ such that process ¢ is in its trying or exit region in Istate(ay), ltime(agraq) > 1,
and process ¢ does not perform any discrete transition in asta;.

We call this adversary schema Unit-Time.

Remark 10.6.1 Observe that in Condition 1 we require the probability of the admissible
executions to be 1 rather than requiring the sample space to contain only admissible executions.
The reason for using probabilities is technical and is due to the fact that the sample space of a
probabilistic timed executions always contains Zeno timed executions, even though they occur
with probability 0. From the practical point of view all the Zeno timed executions can be
ignored.

In other words, it is not necessary to know the intricacies of the definition of a probabilistic
timed executions since they are used only to guarantee that the events of interest are measurable.
From the point of view of verifying the correctness of a randomized distributed algorithm, as
long as Zeno timed executions occur only with probability 0, it is possible to think that Zeno
timed executions do not occur at all. [

Remark 10.6.2 (Alternative approach) Another alternative approach to modeling the al-
gorithm of Lehmann and Rabin, which we do not use here, is to augment the probabilistic
automaton of Section 6.3.2 with an upper bound for each process i to the time by which pro-
cess ¢ must perform a transition, and to allow a time-passage transition only when no process
goes beyond its upper bound. Of course the upper bounds need to be updated opportunely
within a transition. In this case the condition imposed on an adversary would be just that time
advances unboundedly with probability 1. [ |

232



10.6.2 The High Level Proof

The high level proof consists of the same progress statements that we used in Section 6.3.3
together with a time bound. Specifically, we use the following timed progress statements.

T —i—> RTUC (Proposition 10.6.3),

RT —:1))—> FUGUP (Proposition 10.6.15),

F Tj_{ gup (Proposition 10.6.14),

g Tj_4> P (Proposition 10.6.11),

P —1—> C (Proposition 10.6.1).
By combining the statements above by means of Proposition 5.5.3 and Theorem 10.4.1 we
obtain

T2 (10.33)

1/8
Observing that if some process is in the trying region then some process is in the trying region
unless some process gets to the critical region, we apply Proposition 10.5.1 and we obtain that
the expected time to reach C from R7T is at most 104, i.e., the algorithm of Lehmann and Rabin
guarantees progress within expected constant time.

10.6.3 The Low Level Proof

We now prove the timed progress statements of Section 10.6.2. The proofs are exactly the same
as the proofs given in Section 6.3.4 with the difference that in this case we consider also time
bounds and we consider only admissible timed execution fragments since we know that they
occur with probability 1.

Proposition 10.6.1 If some process is in P, then some process enters C' within time 1, i.e.,
1

Proof. Let ¢ be the process in P. Then, from the definition of Unit-Time, process i is scheduled
within time 1, and enters C. [ |

Lemma 10.6.2 If some process is in its Fxit region, then it will enter R within time 3.

Proof. The process needs to perform two transitions to relinquish its two resources, and then
one transition to send a rem message to the user. Every adversary of Unit-Time guarantees
that those three transitions are performed within time 3. [ |

Proposition 10.6.3 7 2. RTUC.
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Proof. From Lemma 6.3.2, every process that begins in Fp or Eg relinquishes its resources
within time 2 . If no process begins in C' or enters (' in the meantime, then the state reached
at this point is a state of R7; otherwise, the starting state or the state reached when the first
process enters (' is a state of C. [ |

We now turn to the proof of G Tj_4> P. The following lemmas form a detailed cases analysis

of the different situations that can arise in states of G. Informally, each lemma shows that a
specific coin event is a sub-event of the properties of reaching some other state. Here we do not
repeat the proof of Lemma 6.3.4 since it does not depend on timing issues.

Lemma 10.6.4

1. Let X;_y € {Ep, R, F} and X; = w. Iy FIRST(flip,_,,left), then, within time 1,
either X;_1 = P or X; = 9.

2. Let X; 1 = D and X; = w. If FIRST(flip,_,,left), then, within time 2, either
X, 1=PorX;,=5.

3. Let X; 1 =5 and X; = w. If FIRST(flip,_,,left), then, within time 3, either X;_1 =
PorX;,=25.

4. Let X;o1 = W and X; = w. If FIRST(flip,_,,left), then, within time 4, either
Xi1=PorX;=5.

Proof. The four proofs start in the same way. Let s be a state of M satisfying the respective
properties of items 1 or 2 or & or 4. Let A be an adversary of Unit-Time, and let a be an
admissible timed execution of €,,cpcc(a,{s1,4) Where the result of the first coin flip of process
1 — 1, if it occurs, is left.

1. By hypothesis and Lemma 6.3.4, ¢ — 1 does not hold any resource at the beginning of «
and has to obtain Res;_s (its left resource) before pursuing Res;_;. From the definition
of Unit-Time, 1 performs a transition within time 1 in «. If ¢ — 1 does not hold Res;_4
when ¢ performs this transition, then ¢ progresses into configuration 5. If not, it must be
the case that ¢ — 1 succeeded in getting it in the meanwhile. But, in this case, since ¢ — 1
flips 1eft, Res;_; was the second resource needed by ¢ — 1 and ¢ — 1 therefore entered P.

2. If X; = 5 within time 1, then we are done. Otherwise, process ¢ — 1 performs a transition
within time 1. Let o = a1 ™ a9 such that the last transition of ay is the first transition
taken by process i—1. Then X;_;(fstate(az)) = F and X,(fstate(az)) = W. Since process
¢ — 1 did not flip any coin during aq, from the finite-history-insensitivity of Unit-Time
and Item I we conclude.

3. If X; = 5 within time 1, then we are done. Otherwise, process ¢ — 1 performs a transition
within time 1. Let o = a1 ™ a9 such that the last transition of ay is the first transition
taken by process ¢ — 1. If X;_;(fstate(ay)) = P then we are also done. Otherwise it must
be the case that X;_y(fstate(az)) = D and X;(fstate(az)) = W. Since process i — 1 did
not flip any coin during aq, from the finite-history-insensitivity of Unit-Time and Item 2
we conclude.
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4. If X; = § within time 1, then we are done. Otherwise, process ¢ checks its left resource
within time 1 and fails, process ¢ — 1 gets its right resource before, and hence reaches at
least state 5. Let @ = a1 ™ ay where the last transition of «q is the first transition of «
that leads process ¢ — 1 to state 5. Then X;_(fstate(az)) = 5 and X;(fstate(az)) = W.
Since process ¢ — 1 did not flip any coin during ay, from the finite-history-insensitivity of
Unit-Time and Item & we conclude. [

Lemma 10.6.5 Assume that X;_y € {FEr,R,T} and X; = VZ If FIRST(flip,_,,left),
then, within time 4, either X;_1 = P or X; = 5.

Proof. Follows directly from Lemma 10.6.4 after observing that X;_y € {Fg, R, T} is equiva-
lent to X,y € {ERr, R, F,W,5,D, P}. [ ]

The next lemma is a useful tool for the proofs of Lemmas 10.6.7, 10.6.8, and 10.6.9. It is just
repeated from Section 6.3.4.

Lemma 10.6.6 Let X; € {VZ, ﬁ} or X; € {Fg, R, F, Q} with FIRST(f1ip,,left). Further-
more, let Xipy € {W, S} or Xipy € {Eg, R, F, D} with FIRST(flip; . right). Then the
first of the two processes i or i + 1 testing its second resource enters P after having performed
this test (if this time ever comes).

Proof. By Lemma 6.3.4 Res; is free. Moreover, Res; is the second resource needed by both ¢
and ¢ + 1. Whichever tests for it first gets it and enters P. [

Lemma 10.6.7 If X, = ﬁ and X;41 € {V_T{, i} then, within time 1, one of the two processes
i ori+ 1 enters P. The same result holds if X; € {W, S} and X;11 = 5.

Proof. Being in state S, process ¢ tests its second resource within time 1. An application of
Lemma 10.6.6 finishes the proof. [ |

Lemma 10.6.8 Let X; = 5 and Xiyy € {FERr,R, F, Q} If FIRST(flip,,,,right), then,
within time 1, one of the two processes 1 or i + 1 enters P. The same result holds if X; €

{ERr,R,F.D}, X;y1 = i and FIRST(flip;, left).

Proof. Being in state S, process ¢ tests its second resource within time 1. An application of
Lemma 10.6.6 finishes the proof. [ |

Lemma 10.6.9 Assume that X;—y € {Er, R, T}, Xi = W, and Xiy1 € {Eg, R, F,W, D}
If FIRST(flip;_y,left) and FIRST(flip, ,,right), then, within time 5, one of the three
processes it — 1, ¢ or v + 1 enters P.

Proof. Let s be a state of M such that X;_y(s) € {Er, R, T}, Xi(s) = W, and X;11(s) €
{FERr,R, F, LV,Q} Let A be an adversary of Unit-Time, and let a be an admissible timed
execution of €, ..c.(nr,{s},4) Where the result of the first coin flip of process ¢ — 1 is left and
the result of the first coin flip of process ¢ 4+ 1 is right. By Lemma 10.6.5, within time 4 either
process ¢ — 1 reaches configuration P in « or process i reaches configuration ﬁ ina. Ife—1
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reaches configuration P, then we are done. If not, then let & = ay ™ ay such that Istate(ay) is
the first state s’ of a with X;(s’) = 5. If i + 1 enters P before the end of oy, then we are done.
Otherwise, X;11(fstate(asz)) is either in {V_I{, i} oritisin {Egr, R, F, 2} and process ¢+ 1 has
not flipped any coin yet in a. From the finite-history-insensitivity of Unit-Time we can then
apply Lemma 10.6.6: within time 1 process ¢ tests its second resource and by Lemma 10.6.6
process 1 enters P if process ¢ + 1 did not check its second resource in the meantime. If process

t 4+ 1 checks its second resource before process ¢ does the same, then by Lemma 10.6.6 process
7+ 1 enters P. [

Lemma 10.6.10 Assume that Xi12 € {Ep, R, T}, Xiya = W, and X; € {Eg, R, F, W, D}.
If FIRST(flip;,left) and FIRST(flip,, ,,right), then, within time 5, one of the three pro-
cessest, 1+ 1 or i+ 2, enters P.

Proof. The proof is analogous to the one of Lemma 10.6.9. This lemma is the symmetric case
of Lemma 10.6.9. [ |

Proposition 10.6.11 Starting from a global configuration in G, then, with probability at least
1/4, some process enters P within time 5. Equivalently:

G P.

1/4

Proof. Lemmas 10.6.7 and 10.6.8 jointly treat the case where X; = ﬁ and X;11 € {Fg, R, F, ﬁ}
and the symmetric case where X; € {Fg, R, F, i} and X; 41 = i; Lemmas 10.6.9 and 10.6.10
jointly treat the case where X; = VZ and X;11 € {ER, R, F, LV,Q} and the symmetric case
where X; € {ER, R, F, W, Q} and X, 41 = w.

Specifically, each lemma shows that a compound event of the kind FIRST(flip,,z) and
FIRST(£1ip;,y) leads to P. Each of the basic events FIRST(£1ip;, ) has probability at least
1/2. From Lemma 6.2.4 each of the compound events has probability at least 1/4. Thus the
probability of reaching P within time 5 is at least 1/4. [ |

We now turn to F Tj_{ G U P. The proof is divided in two parts and constitute the global

argument of the proof of progress, i.e., the argument that focuses on the whole system rather
than on a couple of processes.

Lemma 10.6.12 Start with a state s of F. If there exists a process i for which X;(s) = F and
(Xic1, Xig1) # (ﬁ, i), then, with probability at least 1/2 a state of G U P is reached within
time 1.

Proof. If s € GUP, then the result is trivial. Let s be a state of 7 — (GUP) and let ¢ be such
that X;(s) = F and (X;-1, Xi41) # (ﬁ, i) Assume without loss of generality that X, # i,
ie., X;11 € {Fg, R, F, ﬁ} The case for X;_1 # ﬁ is similar. Furthermore, we can assume
that Xiyi € {ER, R, F, D} since if Xiyy € {W, S} then s is already in G. We show that the

event schema FIRST((flip;,left),(flip,,,,right)), which by Lemma 6.2.2 has probability
at least 1/2, leads eventually to a state of G U P. Let A be an adversary of Unit-Time, and
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let @ be an admissible timed execution of €, ,c;cc(a1,{5},4) Where if process ¢ flips before process
1+ 1 then process ¢ flips left, and if process ¢ + 1 flips before process ¢ then process ¢ + 1 flips
right.

Then, within time 1, ¢ performs one transition and reaches W. Let j € {i,i 4 1} be the
first of ¢ and ¢ + 1 that reaches W and let s; be the state reached after the first time process j
reaches W. If some process reached P in the meantime, then we are done. Otherwise there are
two cases to consider. If j =7, then, flip; gives left and Xj(s1) = W whereas Xy, is (still)
in {Er, R, F, Q} Therefore, s; € G. If j = ¢+ 1, then flip, | gives right and X;1(s1) = w
whereas X;(s1) is (still) F. Therefore, s; € G. |

Lemma 10.6.13 Start with a state s of F. If there exists a process i for which X;(s) = F and
(Xic1(s), Xiqa(s)) = (ﬁ, i) Then, with probability at least 1/2, a state of G U P is reached
within time 2.

Proof. The hypothesis can be summarized into the form (X;_1(s), Xi(s), X;41(s)) = (ﬁ, F, i)
Since ¢t—1 and ¢4 1 point in different directions, by moving to the right of ¢+ 1 there is a process
k pointing to the left such that process k + 1 either points to the right or is in {Fg, R, F, P},
ie., Xi(s) € {W, 5, D} and Xpya(s) € {Ep, R, F,W, 5,D, P}

If Xp(s) € {W, 5} and Xgyi(s) # P then s € G and we are done; if Xjy1(s) = P then
s € P and we are done. Thus, we can restrict our attention to the case where Xj(s) = D.

We show that FIRST((f1ip,,left),(f1lip,,,,right)), which by Lemma 6.2.2 has proba-
bility at least 1/2, leads to GUP within time 2. Let A be an adversary of Unit-Time, and let «
be an admissible timed execution of £ ,,..cc(n1,{s},4) Where if process k flips before process k41
then process k flips left, and if process k 4 1 flips before process k then process k+ 1 flips right.

Within time 2 process k performs at least two transitions and hence goes to configuration
W. Let j € {k,k+ 1} be the first of £ and k£ 4 1 that reaches W and let s; be the state
reached after the first time process j reaches W. If some process reached P in the meantime,
then we are done. Otherwise, we distinguish two cases. If j = k, then, flip, gives left and
Xp(s1) = W whereas Xpyy is (still) in {ER, R, F, ﬁ} Thus, sy € G. If j = k+1, then f1ip;
gives right and Xjy1(s1) = W whereas Xp(s1) is (still) in {D, F'}. Thus, s, € G. |

Proposition 10.6.14 Start with a state s of F. Then, with probability at least 1/2, a state of
G U P is reached within time 2. Equivalently:

F -2 GuP.
1/2
Proof. The hypothesis of Lemmas 10.6.12 and 10.6.13 form a partition of F. [ |

Finally, we prove R7T - FUgGuUP.

Proposition 10.6.15 Starting from a state s of R7T, then a state of F UG U P is reached
within time 3 Equivalently:

RT{%?UQUP.
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Proof. Let s be a state of R7. If s € F UG U P, then we are trivially done. Suppose that
s ¢ FUGUP. Then in s each process is in {Fr, R, W, 5, D} and there exists at least process
in {W, 5, D}. Let A be an adversary of Unit-Time, and let @ be an admissible timed execution
of @ evee (M, {s1,4)-

We first argue that within time 1 some process reaches a state of {5, D, F'} in a. This
is trivially true if in state s there is some process in {5, D}. If this is not the case, then all
processes are either in F'p or R or W. Eventually, some process in R or W performs a transition.
If the first process not in E'p performing a transition started in Fr or R, then it reaches I’ and
we are done; if the first process performing a transition is in W, then it reaches .5 since in s no
resource is held. Once a process 7 is in {5, D, F'}, then within time 2 process i reaches either
state F' or P, and we are done. [ |

10.7 Abstract Complexity Measures

We have seen how to measure the expected time to satisfy a property. However, the technique
can be extended to other kinds of measures of complexity. Specifically, let ¢ be a complexity
measure on timed execution fragments that is additive under concatenation, i.e., ¢(q1 ~ q2) =
&(q1) + ¢(q2). Then we can compute the expected ¢ rather than the expected time, where the
¢ of a state g of H is defined to be ¢(q>qéq). We generalize the notation for timed progress
statements by writing

U2y, U7 (10.34)

with the meaning that PrAdvs’U(eU/@(c)) > p, where the event schema €U g(c) applied to a timed
probabilistic execution fragment H returns the set of timed executions a of Qp where a state
from U’ is reached within complexity ¢. More specifically, let ConesU/@(c)(H) be the set of
minimal timed execution fragments ¢ of M such that C;I is not empty, Istate(q) € U’, and
#(qeql’) < c. Then, e g(e)(H) = Uge conesy, ¢(c)(H)C§I- Observe that time is just one of the
possible complexity measures. 7

The same definition can be extended to sets of actions as we have done previously, and the
concatenation theorem is still valid.

The expected complexity of a finitely satisfiable event schema can be defined easily. Specifi-
cally, if e is a finitely satisfiable event-schema and Cones(H ) identifies the points of satisfaction
of e, then for each probabilistic timed execution fragment H of M we define Ep 4le], the ex-
pected complexity to satisfy e in H, as follows.

ZqECOnes(H) PH[Cq](Cb(f]W]gI)) if Ple(H)]=1 (10.35)

00 otherwise.

Epgle] = {

Then, a proposition similar to Proposition 10.5.1 can be proved.

Proposition 10.7.1 Suppose that

b(c) /
U = U (10.36)
U = (U Unless U'"),
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Figure 10-1: An example of the use of £.

and suppose that Advs is finite history insensitive and that sé ¢ Qus) for each A € Advs and
each s € U. Then,

Ev advs,gle] < ¢+ pEur aqus gle] + (1 — p)E+ Eu ados,le]), (10.37)

where

5 = Supqet-fmg*(M)|lstate(q)€U (Supq'>q (infq"|q<q"§q’(¢(q//>q)))) . (1038)

Proof. This proof has the same structure as the proof of Proposition 10.5.1. Here we describe
in detail only the main differences. In particular, we show part of the derivation from Equa-
tion (10.16) to Equation (10.21), where the constant £ is used. Observe that if we use ¢ to
express time complexity, then & = 0.

From (10.35) the expected complexity for success for e is

Egglel= Y PulClé(eqg)). (10.39)
g€ Cones(H)

For each d > 0, let Conesy be a function that expresses the event of reaching complexity d as
a union of disjoint cones. From the definition of a probabilistic timed execution, we know that
Cones, exists and, from (10.38), we know that for each probabilistic timed execution fragment
H and each ¢ € Conesy(H), d < ¢(qvql’) < d+ £. Let € be any positive number. Following
the same derivation as in the proof of Proposition 10.5.1, we obtain

Ergsle] <(c+e (Z Pr[CylEur advs,0le ) (Z Pr[CLl(€ + Eu, advs, o€ ])) .(10.40)

q€0, gEBO,

|
One of the novel aspects of Proposition 10.7.1 is the constant £&. Roughly speaking, £ gives us a
lower bound to the minimum complexity increase that we can obtain by moving along a timed
execution fragment.

Example 10.7.1 (Why £ is necessary) For example, if the abstract complexity that we use
is the number of discrete actions that appear in a timed execution fragment, then £ = 1. In fact,
whenever we perform a discrete action, the complexity increases by 1. Figure 10-1 shows an
example where £ = 1 and where Equation (10.37) is invalidated if we do not include £. Denote
the probabilistic timed execution fragment of Figure 10-1 by H. Let U be {so}, U’ be {s1}, and
let e express the property of reaching U’. Let Advs contain only one adversary that generates H
when applied to sqg. Let ¢ count the number of external actions in a timed execution fragment

o(1)

(no time-passage actions in H ). Then, it is immediate to verify that the statement U T/_2> U’ is
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valid in H and that also U = (U UnlessU") is valid. By applying Equation (10.37) with £ = 1,
we obtain

Ev advs,sle] <t +1/2(1+ Eu adus,ole]), (10.41)

which leads to By 4qus,6€] < 3. If we did not use £ in Equation (10.37) we would have obtained
Ey Advs,6[€] < 2. We now show that Ep 4le] = 3. In fact,

1 1 1 1
1D i e - 4. 10.42
By rearranging the terms, we obtain
1/ 2 2 2
E = —(=+=-F+=-F+—=+--]. 10.43
H,le] ;22(2+4+8+16+ ) (10.43)

Recall that 3,5, 1/2' = 2. Thus, by rearranging the terms again,
11 1 1
E —941/2(=21 -1 -4 —1...) =3 10.44
nald =2+ 172 (3+ 7+ 5+ 6+ =3 (10.44)

Roughly speaking, the transition relation of H is structured in such a way that whenever the
experiment of reaching U’ from U fails, the system looses one additional complexity unit during
the random draw. In the proof of Proposition 10.7.1 this phenomenon is detected when we define
the partition @ and ©5. To make sure that ©1 and ©, partition an event with probability 1
and that ©; captures all the places where U’ is reached within time ¢, @5 must be based on
states reached after time ¢. In the probabilistic execution H of this example the states of 0,
have complexity t + 1. [ |

10.8 Example: Randomized Agreement with Time

Using abstract complexity measures it is possible to show that the randomized agreement
algorithm of Ben-Or guarantees agreement within an expected exponential time. This is not
an exceptional complexity result, but it corresponds to the time complexity of the algorithm.

In more detail, we add time to the probabilistic automaton that describes Ben-Or’s protocol
in the same way as we have done for the Dining Philosophers algorithm of Lehmann and Rabin.
In this case each adversary is required to schedule every process that enables some transition
within time 1 from every point. Then we show an upper bound linear in st on the time it
takes to all processes to complete a specific stage st. Finally, we derive an upper bound on
the expected number of stages it takes for all processes to decide. This is achieved by defining
an abstract complexity on the timed executions of M that checks the highest stage reached at
every point. A direct extension of the untimed proof without abstract complexities would not be
possible. In fact, given a reachable state s, the validity of the progress statement of Chapter 6
relies on completing the highest stage reached in s, and we cannot establish any useful upper
bound on the time to complete such stage: there is no useful bound on the difference between
the highest and the lowest stages reached in s, and the adversary may stop the processes with
the highest values of st. We start by proving the upper bound on the time it takes to each
process to complete some stage st.
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Lemma 10.8.1 There is a constant d such that, for each stage st, each process completes stage
st within time d - st.

Proof. Let di be the maximum time it takes to each process from the moment it reaches a new
stage st to the moment it broadcasts its value and its value is delivered; let dy be the maximum
time it takes to each process to broadcast and deliver its second message after receiving enough
messages from the first round; let d3 be the maximum time it takes to each process to move to a
new stage once it has received enough messages from the second round. Then d = dy 4 dy + d5.
Since we have not defined formally M, we cannot say explicitly what is the value of d.

We show the result by induction on st where for the base case we assume that st = 0
and that stage 0 is completed by time 0. By induction, by time d - st each non-faulty process
has completed round st. Then, by time dy + d - st each non-faulty process has broadcasted
and delivered its first round message, and thus every non-faulty process has received enough
messages for the first round of stage st + 1. Within additional time dy each non-faulty process
delivers its second message, and within additional time d3 each non-faulty process reaches stage
st 4 2, i.e., within time d(st + 1) each non-faulty process completes stage st + 1. [ |

For each finite timed execution fragment a of M define ¢(«), the stage complexity of a, to
be maa-stage(lstate(a)) — maaz-stage(fstate(a)), where for each state s, maz-stage(s) is the
maximum stage that is reached in s by some process. Observe that this complexity measure is
an upper bound to the stage at which some process decides since if at state s the first process
has just decided, then maa-stage(s) is not smaller than the stage of the process that has decided.
Thus, an upper bound on the expected ¢ for the decision of the first process is an upper bound
on the expected stage at which the first process decides. We show the following two statements.

B Fuo. (10.45)
F o (10.46)
1/2n

Then, by combining (10.45) and (10.46) with Theorem 5.5.2, we obtain
20 o
1/2n

B (10.47)

From Proposition 10.7.1, we obtain

Eg vnit-Time,ol€0) < 34 (1 = 1/2")(1 + EB,vnit- Time,0[€0))s (10.48)
where 1 is the value of £ given by (10.38). By solving Equation (10.48) we obtain

B3, Unit- Time gl€0] < 2772 — 1. (10.49)

Since if a process decides at stage st then each other non-faulty process decides within stage
st + 1, then we can derive that the expected stage by which every process decides is at most
27+2 and thus, from Lemma 10.8.1, each process decides within expected time d - 271,

The proofs for (10.45) and (10.46) have the same structure as the corresponding proofs
for the untimed case. Recall that the proof of (10.45) consider the maximum stage st of a
reachable state s and states that eventually stage st + 1 is reached, at which time a state of F
is reached. The proof of (10.46) states that a specific coin lemma leads a process to decide by
stage maa-stage(s)+ 1. Then, since if a process decides a stage st each process decides by stage
st 4+ 1, the complexity of the state where the first process decides is at most maz-stage(s) + 2.
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10.9 Discussion

To our knowledge this is the first time that statements similar to our timed progress statements
have been used for the analysis of the performance of a randomized distributed algorithm. In
particular, we have been able to prove similar results only because we have studied techniques to
prove properties that hold with some probability different than 1. This should be a sufficiently
strong reason to pursue additional research on methodologies (automatic or not) for the analysis
of properties that hold with probabilities different than 1. The work of Hansson [Han94] and
the algorithm that Courcoubetis and Yannakakis present in [CY90] are in this direction.
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Chapter 11

Hierarchical Verification: Timed
Trace Distributions

11.1 Introduction

In this chapter we extend the trace distribution preorder of Chapter 7 to the timed framework.
The main difference is that we use timed traces rather than traces. A timed trace contains the
sequence of discrete actions that occur within a timed execution plus the time of occurrence
of each action and the time at which the observation ends. That is, in a timed execution we
observe at what time each external action occurs and, if finitely many actions occur, how much
time elapses after the occurrence of the last action.

We define a preorder relation based on timed trace distribution inclusion, and we characterize
the coarsest precongruence that is contained in the timed trace distribution preorder by using
a timed principal context, which is just the principal context of Chapter 7 augmented with
arbitrary time-passage self-loop transitions from its unique state. Most of the proofs follow
directly from the results already proved in Chapter 7, since in several cases it is suflicient to
study ordinary trace distributions in order to derive properties of timed trace distributions.

11.2 Timed Traces

We start by defining the main object of observation, i.e., timed traces. The definition of a timed
trace that we give in this section is taken directly from [LV95].

Timed Sequence Pairs

Let K be any set that does not intersect ®%. Then a timed sequence over K is defined to be a
(finite or infinite) sequence v over K x R2% in which the time components are nondecreasing,
ie., if (k,t) and (K',t") are consecutive elements in y then ¢ < ¢. We say that v is Zeno if it is
infinite and the limit of the time components is finite.

A timed sequence pair over K is a pair 3 = (y,t), where v is a timed sequence over K and
t € 2% U {oc}, such that t is greater than or equal to all time components in 7. We write
seq(3), and ltime(3) for the two respective components of 5. We denote by tsp(/K) the set of
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timed sequence pairs over I{'. We say that a timed sequence pair 3 is finite if both seq(5) and
ltime( ) are finite, and admissible if seq(3) is not Zeno and ltime(3) = cc.

Let 3 and 3’ be timed sequence pairs over K with 3 finite. Then define 3; 3’ to be the timed
sequence pair (seq(3)7y, ltime(3) + ltime(§')), where v is the modification of seq(5’) obtained
by adding ltime(/3) to all the time components. If 3 and 3" are timed sequence pairs over a set
K, then (3 is a prefiz of 3, denoted by 3 < ', if either 3 = #, or 3 is finite and there exists a
timed sequence pair 4" such that 3’ = 3; 5".

Lemma 11.2.1 < is a partial ordering on the set of timed sequence pairs over K. [ |

Now we describe how to translate from a sequence over K UR™T, and ordinary trace, to a timed
sequence pair over K. First, if 3 is any sequence over K U RT, then we define the time of
occurrence of any K-element in § to be the sum of all the reals that precede that element in
B. We also define ltime(3) to be the sum of all the reals in 5. Finally, we define ¢-trace(3) to
be the timed sequence pair (v, ltime(3)), where 7 is the subsequence of 3 consisting of all the
elements of K, each paired with its time of occurrence.

If 3 is a sequence over K U RT then we say that 3 is admissible if the sum of the positive
reals in [ is infinite.

Lemma 11.2.2 [f 3 is a finite or admissible timed sequence pair then t-trace(trace(f)) = 3. m

Lemma 11.2.3 If 3 is a sequence over K U RT then [ is admissible if and only if t-trace(3)
s admissible. [

Timed Traces of Timed Probabilistic Automata

Suppose that a = wpajwiagws --- is a timed execution fragment of a timed probabilistic au-
tomaton M. For each a;, define the time of occurrence t; to be 3, ; ltime(w;), i.e., the sum of
the lengths of all the trajectory intervals preceding a; in a. Let v be the sequence consisting of
the actions in «a paired with their times of occurrence:

v = (a1,t1)(ag, t) - -.
Then t-trace(a), the timed trace of a, is defined to be the pair
(v I (vis(M) x RT), ltime(a)).

Thus, t-trace(a) records the occurrences of visible actions together with their times of oc-
currence, and together with the time spanned by a. Note that neither internal actions nor
time-passage actions appear explicitly in the timed trace of a.

Proposition 11.2.4 If a is a timed execution fragment of M then t-trace(a) is a timed se-
quence pair over vis(M). |

Proposition 11.2.5 Let o be a timed execution fragment of M, and let trace(a) denote the
ordered sequence of external actions that appear in o. Then, t-trace(a) = t-trace(trace(a)). m

Proposition 11.2.6 If a = a1 ™ ay is a timed execution fragment of M, then t-trace(a) =
t-trace(oq ); t-trace(ag). |
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We write ¢-traces(M) for the set of all timed traces of M, t-traces*(M) for the set of finite
timed traces of M, and t-traces® (M) for the set of admissible timed traces of M,

The timed traces of a probabilistic timed automaton M can be characterized also in terms
of its time-enriched executions or in terms of its ordinary executions. Specifically, if « is a time-
enriched execution of M, then let ¢t-trace(a) denote t-trace(t-exec(a)), and if a is an execution
of M, then let t-trace(a) denote t-trace(trace(a)). The following proposition holds.

Proposition 11.2.7 Let M be a probabilistic timed automaton.

1. If a is a time-enriched execution of M, then there is a timed execution o' of M such that
t-trace(a) = t-trace(a’).

2. If a is a timed evecution of M, then there is a time-enriched execution o' of M such that
t-trace(a) = t-trace(a’).

3. If a is a timed execution of M, then there is an execution o' of M such that t-trace(a) =
t-trace(a’).

4. If o is an execution of M, then there is a timed execution o of M such that t-trace(a) =
t-trace(a’).

Proof.

1. Let o' be t-exec(a). Then, t-trace(a) = t-trace(a’) by definition.

2. Let a be wgaiwias---. If « is a finite timed execution or an infinite sequence, then let
o = fstate(wp) ™ @y " @z~ - -, where for each 1,
D a;fstate(w;) if w;_; has domain [0, 0],
o fstate(wi—y)ltime(w;—q )w;—1a;fstate(w;) otherwise;

if @ = woaywyay - -ayw, and the domain of w, is right-open, then let o/ = fstate(wy) ™
ay " -7 ap T al .y, where the a;’s are defined above and o |, = widiwidaw) -+ - is an
infinite sequence such that wjwiw}--- = w,. It is immediate to verify that o and o’ have

the same timed trace since a = t-exec(a’).

3. Let a be wgaqwias---. If « is a finite timed execution or an infinite sequence, then let
o' = fstate(wg) ™ a1 " @z~ - -+, where for each 7,
) state(w;_y )a;fstate(w;) if w;_1 has domain [0, 0],
"] fstate(w;—q)ltime(w;_q )lstate(w;_1 )a;fstate(w;) otherwise;

if @ = wparwyaz - - - a,w, and the domain of w, is right-open, then let o = fstate(wy)~a1™
~-"a, " a1, where the a;’s are defined above and o], | = fstate(w, )diw,(dy )daw, (d1 +
dy)---is an infinite sequence such that 3>, d; = ltime(w,). It is immediate to verify that
a and o' have the same timed trace.
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4. Given a = spajsiasy - -+, build a time-enriched execution o’ by replacing each state s; with
a trajectory for (s;_1,a;,s;) whenever a; is a time-passage action. Then, t-trace(a) =
t-trace(a’). Ttem 2 is enough to conclude. |

The bottom line of the proposition above is that for the study of the timed traces of a probabilis-
tic timed automaton it is not necessary to observe the trajectories spanned by a computation.
The points of occurrence of discrete actions are sufficient.

11.3 Timed Trace Distributions

In this section we define the timed trace distributions of a probabilistic timed automaton and we
extend the action restriction operation. The main result is that it is possible to study the timed
trace distributions of a probabilistic timed automaton M by considering either its probabilistic
executions, or its probabilistic time-enriched executions, or its probabilistic timed executions.

11.3.1 Three ways to Define Timed Trace Distributions

We now define the timed trace distribution of a probabilistic execution, of a probabilistic time-
enriched execution, and of a probabilistic timed execution of a probabilistic timed automaton.
The definitions are given in the same style as for the untimed case. Furthermore, we show that
the three definitions lead to the same collection of timed trace distributions. This enforces the
remark that for the study of the timed trace distributions of a probabilistic timed automaton
it is not necessary to observe the trajectories spanned by a computation.

Timed Trace Distribution of a Probabilistic Execution

Let H be a probabilistic execution of a probabilistic timed automaton M, and let f be a function
from Qp to Q = tsp(vis(M)) that assigns to each extended execution its timed trace. The timed
trace distribution of H, denoted by t-tdistr(H ), is the probability space completion((Q2, F, P))
where F is the o-field generated by the cones (g, where 3 is a finite timed sequence pair of
tsp(vis(M)), and P = f(Pp). Note that from Proposition 3.1.4 f is a measurable function
from (Qp, Fr) to (Q,F).

Timed Trace Distribution of a Probabilistic Time-Enriched Execution

Let H be a probabilistic time-enriched execution of a probabilistic timed automaton M, and
let f be a function from Qp to Q = tsp(vis(M)) that assigns to each time-enriched extended
execution its timed trace. The timed trace distribution of H, denoted by t-tdistr(H), is the
probability space (€2, F, P) where F is the o-field generated by the cones Cg, where 3 is a finite
timed timed sequence pair of tsp(vis(M)), and P = f(Pp). Note that from Proposition 3.1.4
[ is a measurable function from (Qp, Frr) to (R, F).

Timed Trace Distribution of a Probabilistic Timed Execution

Let H be a probabilistic timed execution of a probabilistic timed automaton M, and let f
be a function from Qg to Q@ = tsp(vis(M)) that assigns to each timed extended execution
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its timed trace. The timed trace distribution of H, denoted by t-tdistr(H ), is the probability
space (2, F, P) where F is the o-field generated by the cones ('3, where [ is a finite timed
timed sequence pair of tsp(vis(M)), and P = f(Pg). Note that from Proposition 3.1.4 fis a
measurable function from (Qp, Fpr) to (2, F).

Equivalence of the Definitions

We now show that the three definitions of a timed trace distribution lead to the same collection
of timed trace distributions when applied to a probabilistic timed automaton (cf. Proposi-
tions 11.3.2 and 11.3.4). Thus, we can freely denote a generic timed trace distribution by D
and denote the timed trace distributions of a probabilistic tomed automaton M by t-tdistrs(M ).

Lemma 11.3.1 Let H be a probabilistic time-enriched execution of a probabilistic timed au-
tomaton M. Then, t-tdistr(H) = t-tdistr(sample(H)).

Proof. Let D be t-tdistr(H) and let D’ be t-tdistr(sample(H)) Consider a finite timed trace
§. From the definition of t-tdistr(),

PD/[CQ] = Psample(H)[{a € Qsample(H) | 0 < t-tmce(a)}]. (11.1)

Since Cg is a finitely satisfiable event, there is a set of O of states of sample(H ) such that for
each element ¢ of O, g < t-trace(q), and such that

{& € Qumpro(m) | B < totrace(a)} = UgepCimreUh), (11.2)
Thus,
PD'[CB] = Z Psample(H)[C;ampk(H)]‘ (113)
qeE®

From Equation (9.55), Equation (11.3) becomes

Ppi[Cs] = > pylcol. (11.4)
g€sample™1(O)

Observe that sample™'(0©) is a characterization of Cg for D, and thus,
Ppi[Cg] = Pp[Cl). (11.5)
This completes the proof. [ |

Proposition 11.3.2 Let M be a probabilistic timed automaton. Then, for each probabilis-
tic time-enriched execution H of M there exists a probabilistic execution H' of M such that
t-tdistr(H ) = t-tdistr(H'), and for each probabilistic execution H of M there exists a proba-
bilistic time-enriched execution H' of M such that t-tdistr(H) = t-tdistr(H').

Proof. Follows directly from Propositions 9.3.6 and 9.3.7, and from Lemma 11.3.1. [ |

Lemma 11.3.3 Let H be a probabilistic time-enriched execution of a probabilistic timed au-
tomaton M. Then, t-tdistr(H ) = t-tdistr(t-sample(H)).
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Proof. Let D be t-tdistr(H), and let D’ be t-tdistr(t-sample(H)). Consider a finite timed
sequence pair D of tsp(vis(M)). From the definition of t-tdistr,

PplCg) = Pul{a € Q| B < t-trace(a)}]. (11.6)

From the definition of t-ezec(Pr),

PD[Cﬁ] = Pt-exec(PH)[{a € Qt-exec(H) | ﬁ < t-tmce(a)}], (117)
With a similar analysis,

PD'[CB] = Pt-sample(H)[{a € Qt-sample(H) | ﬁ < t-tT(lC@(Oé)}]. (118)
Since from Proposition 9.3.11 t-evec(Pr) = Py sampic(H)> and since the events of (11.7) and (11.8)
are unions of countably many disjoint cones, we conclude that Pp[Cg] = Pp:[Cj]. ]

Proposition 11.3.4 Let M be a probabilistic timed automaton. Then, for each probabilistic
time-enriched execution H of M there exists a probabilistic timed execution H' of M such that
t-tdistr(H) = t-tdistr(H'), and for each probabilistic timed execution H of M there exists a
probabilistic time-enriched execution H' of M such that t-tdistr(H) = t-tdistr(H').

Proof. Follows directly from Propositions 9.3.8 and 9.3.9, and from Lemma 11.3.3. [ |

Proposition 11.3.5 Let H1 and Hy be two equivalent probabilistic time-enriched executions of
a probabilistic timed automaton M. Then, t-tdistr(Hy) = t-tdistr(Hs).

Proof. From Proposition 9.3.10, t-sample(Hy) = t-sample(Hz), and from Lemma 11.3.3,
tdistr(Hy) = tdistr(t-sample(Hy)) and tdistr(Hy) = tdistr(t-sample(H3)). Thus, combining
the observations above, t-tdistr(Hy) = t-tdistr(Hs). |

11.3.2 Timed Trace Distribution of a Trace Distribution

Given a trace distribution of a probabilistic timed automaton, it is possible to define its timed
trace distribution as we have done for ordinary traces. Thus, let D be a trace distribution of a
probabilistic automaton, and let f be a function from Qp to Q = {t-trace(3) | € Qp} that
assigns to each trace its timed trace. The timed trace distribution of D, denoted by t-tdistr(D),
is the probability space completion((2, F, P)) where F is the o-field generated by the cones
(3, where (3 is a finite timed trace, and P = f(Pp). Note that from Proposition 3.1.4 f is a
measurable function from (Qp, Fp) to (Q,F).

Proposition 11.3.6 Let H be a probabilistic execution of a timed probabilistic automaton M.
Then, t-tdistr(H) = t-tdistr(tdistr(H)).

Proof. Let D be t-tdistr(H ), and let D’ be t-tdistr(tdistr(H)). We show first that D and D’
have the same sample space. Then, we show that they assign the same probability to each cone.

To show that D and D’ have the same sample space, it is enough to show that for each
timed sequence pair 3 of ¢sp(vis(M)) thehre is a trace 8’ of ext(M)* U ext(M)¥ such that
t-trace(B') = . Let (B = (a1,t1)(az, 1), (as, t3)---,t). If seq(3) is an infinite sequence, then
let ' = B1f20s3- -+, where for each ¢, if t;31 = ¢;, then §; = a;, and if t;34 > ¢;, then j3; =
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a;(tiy1 —t;). If seq(B) is a finite sequence, i.e., seq(3) = (a1,t1)(az,t2), (as, t3)- -, (an,t,) then
' = B1PB205 - - P13, where the (3;’s are defined above, and 3, is a, if t, =, a,(t — t,,) if
0 <t—1t, < oo, and a, followed by the infinite sequence of 1’s if t = co. It is easy to verify
that in every case t-trace(3') = .

To show that D and D’ assign the same probability to each cone, let 5 be a finite timed
trace. From the definition of ¢-tdistr and tdistr,

Ppi[Cp]l = Prl{a € Qp | p < t-trace(trace(a))}]. (11.9)
From Proposition 11.2.5, (11.9) becomes

Ppi[Cpl = Prl{a € Qp | B < t-trace(a)}], (11.10)
which is the definition of Pp[Cjg]. ]

11.3.3 Action Restriction

Finally, we extend the action restriction operator to timed trace distributions. Let M be a
probabilistic timed automaton, and let V' be a set of visible actions of M. For each timed trace
G = (v,t) of M, let 5 | V be the pair (7',¢) where 7' is obtained from v by removing all the
pairs whose action is in V. Let D be a timed trace distribution of M. Define D | V' to be the
timed trace distribution (2, F, P) where = Qp [ V, F is the o-field generated by the cones
C'g, where 3 is a finite timed trace, and P = Pp [ V. Note that from Proposition 3.1.4 [ V is a
measurable function from (Qp, Fp) to (2, F). Action restriction commutes with the operation
of taking a timed trace distribution of a trace distribution.

Proposition 11.3.7 Let D be a trace distribution of a probabilistic timed automaton M, and
let V be a set of visible actions of M. Then, t-tdistr(D | V') = t-tdistr(D) [ V.

Proof. Let D’ be t-tdistr(D | V'), and let D" be t-tdistr(D) [ V. Let 3 be a finite timed trace.
By applying the definitions of t-tdistr and of [, we obtain the following two equations.

Ppi[Csl = Pp[{3' € Qp | B < t-trace(' | V)}]. (11.11)
Ppi[Csl = Pp[{3 € Qp | B < t-trace(3') | V}]. (11.12)
Observe that for each 5’ of Qp, t-trace(3’ | V) = t-trace(3') | V. Thus, the right expressions
of (11.11) and (11.12) denote the same value. That is, Pp/[Cg] = Ppn[Cg]. |

11.4 Timed Trace Distribution Precongruence

Let My, My be two probabilistic timed automata with the same external actions. The timed
trace distribution preorder is defined as follows.

My Epy My iff t-tdistrs(My) C t-tdistrs(My).

As for the untimed case, the timed trace distribution preorder is not a precongruence. A
counterexample can be created directly from the counterexample of Chapter 7 by augmenting
the probabilistic automata of Figure 7-4 with arbitrary self-loop time-passage transitions from
their deadlock states (the states that do not enable any transition). Thus, we define the
timed trace distribution precongruence, denoted by Cpcy, as the coarsest precongruence that is
contained in the timed trace distribution preorder.
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11.5 Alternative Characterizations

The timed trace distribution precongruence can be characterized by a timed version of the
principal context of Chapter 7. Namely, let the timed principal context, denoted by Cp be
the principal context of Figure 7-6 augmented with self-loop time-passage transitions for each
time-passage action d. Then, the following holds.

Theorem 11.5.1 My Cpey My iff Mq1||Cp Cpi Ms||Cp.

Thus, if we define the principal timed trace distributions of a probabilistic timed automaton
M, denoted by pt-tdistrs(M ), to be the timed trace distributions of M||Cp, then we get the
following.

Corollary 11.5.2 My Cpey My iff ext(My) = ext(Mz) and pt-tdistrs(My) C pt-tdistrs(My).
| |

The rest of this section is dedicated to the proof of Theorem 11.5.1. The structure of the proof
follows the same lines as the proof of Theorem 7.5.1, where only one additional transformation
step is added: a distinguishing context is transformed into a new time-deterministic context
where each state enables either discrete actions only or time-passage actions only. A time-
deterministic context is a probabilistic automaton such that for each state s and each time-

passage action d, if s 4, s1 and s 4, S9, then s; = s9. All the lemmas except for one are
proved by reducing the problem to the untimed framework.

Lemma 11.5.3 Let C be a distinguishing context for two probabilistic timed automata My and
M. Then there exists a distinguishing context C' for My and My with no discrete actions in
common with My and M,. C' is called a separated context.

Proof. The context C'is built from ' in the same way as in the proof of Lemma 7.5.3. The con-
structions clp and exch work as well (they never exchange transitions involving time-passage),
and the proof is carried out at the level of probabilistic executions rather than probabilistic
timed executions.

Specifically, let D be a timed trace distribution of M;||C that is not a timed trace distri-
bution of M;||C'. Consider a probabilistic execution Hy of M;||C such that t-tdistr(Hy) = D,
and consider the scheduler that leads to Hy. Apply to My||C’ the same scheduler with the
following modification: whenever a transition ((s1,¢),a, Py @ P) is scheduled in M;||C, sched-
ule ((s1,¢),a1,D((s1,¢'))), where ¢ is ¢ 4 p), followed by ((s1,¢),a, Py @ D(c')), and, for each
sy € Qy, followed by ((s],¢'), az, D(s)) @P). Denote the resulting probabilistic execution by H{
and the resulting timed trace distribution by D’. From Lemma 7.5.3, tdistr(Hy) = tdistr(Hy) |
vis(M;]|C'), and thus, from Propositions 11.3.6 and 11.3.7, D = D’ | vis(M;||C).

Suppose by contradiction that it is possible to obtain D’ from M;||C”. Consider the scheduler
that leads to D’ in M,||C’, and let H) be the corresponding probabilistic execution. Then, from
Lemma 7.5.3, clp(exch(H})) is a probabilistic execution of Ms||C’, and tdistr(clp(exch(Hj))) =
tdistr(H}) T acts(Mq]|C). From Propositions 11.3.6 and 11.3.7, D = t-tdistr(clp(exch(H}))),
which is a contradiction. [
Lemma 11.5.4 Let C be a distinguishing separated context for two probabilistic timed automata
My and My. Then there exists a distinguishing cycle-free separated context C' for My and M,.
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Proof. The context C’ can be built by unfolding C'. Every scheduler for C' can be transformed
into a scheduler for C” and vice versa, leading to the same timed trace distributions. [

Lemma 11.5.5 Let C' be a distinguishing cycle-free, separated context for two probabilistic
timed automata My and My. Then there exists a distinguishing time-deterministic, cycle-free
separated context C' for My and My that from any state enables either time-passage actions
only or discrete actions only.

Proof. The context €' is built from € as follows:

1. for each time-passage transition s L. ¢ of C and each trajectory w for s 4, s, add an
action start, and an action end,;

2. for each time-passage transition s L. ¢ of C and each trajectory w for s 2, s, add a

. .. start .. end
collection of new states {s,+ | 0 <t < d}, atransition s — s, ¢, a transition s, 4 —% &,
e t—t
and for each 0 <t < ¢’ < d, a transition s, ; — s, ¢/;

3. remove all the time-passage transitions leaving from states of C.

Let D be a timed trace distribution of M;||C' that is not a timed trace distribution of M;||C'.
Consider a probabilistic execution Hy of M;||C such that t-tdistr(H,) = D, and consider the
scheduler that leads to Hy. Apply to M, ||C’ the same scheduler with the following modification:

whenever a time-passage transition s e scheduled, choose a trajectory w for s L
and schedule start,,, followed by d, and followed by end,. Denote the resulting probabilistic
execution by H{ and the resulting timed trace distribution by D’. Then,

D' | acts(M;||C) = D. (11.13)

To prove (11.13) we prove first that tdistr(H|) | acts(Mq||C') = tdistr(Hy), and then we apply
Propositions 11.3.6 and 11.3.7. To prove that tdistr(H{) | acts(M;||C') = tdistr(H;) we define
a construction telp to be applied to probabilistic executions of M;||C’ where each occurrence of
a start action is followed eventually by the corresponding end action with probability 1.

Let H' be a probabilistic execution of M;||C’ where each occurrence of a start action is
followed eventually by the corresponding end action with probability 1, and denote telp(H') by
H. For each state g of H', let tclp(q) be obtained from ¢ by replacing each state of the form s,
with the state w(t), by removing each occurrence of a start action together with its following
state, and by removing each end action together with its following state. Then,

states(H) = telp(states(H')). (11.14)

Let (g, P) be a restricted transition of H’, and suppose that no start or end action occurs. Let
Q' = {(a, telp(¢)) | (a,q') € Q}, and for each (a,q”) € ', let P'[(a,q¢")] = Pla x telp™'(¢")],
where tclp~™'(q) is the set of states ¢’ of H' such that telp(¢’) = q. Then the transition
telp((q,P)) is defined to be

telp((q, P)) = (telp(q), P). (11.15)
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For the transition relation of H, consider a state ¢ of H, and let min(tclp™(q)) be the set of
minimal states of tclp™'(q) under prefix ordering. For each state ¢ € telp™'(q), let

_telpTHq) & PH/[CQ]
Pg = : (11.16)
! Y gremin(ter=(a)) Pr[Co]
The transition enabled from ¢ in H is
S PO P Lacts (M| C)]telp(trH 1 acts(M;]|C')). (11.17)

q'€telp™1(q)

The probabilistic execution H satisfies the following properties.

a. H is a probabilistic execution of M;||C.

The fact that each state of H is reachable can be shown by a simple inductive argument;
the fact that each state of H is a finite execution fragment of M;||C follows from a simple
analysis of the definition of tclp.

From (11.17) it is enough to check that for each state ¢’ of H', the transition tclp(tr?l i
acts(M;]|C')) is generated a combined transition of M;||C. Since tré{/ is a transition of

', (trq,/ I acts(M;]|C')) can be expressed as ¢’ ™ ¢r, where ¢r is a combined transition of
M;||C" and no start or end action occurs in tr. Let ¢r' be obtained by substituting each
state of the form s, ; with w(t) in ¢r. Then, ' is a combined transition of M||C, and,
from the definition of telp, tclp(tr?l Iacts(M;]|C)) = telp(q') ™ tr'.

b. For each state ¢ of H,

PylC,] = > Pi[Cy]. (11.18)

q'€min(telp~1(q))

This is shown by induction on the length of ¢q. If ¢ consists of a start state only, then
the result is trivial. Otherwise, from the definition of the probability of a cone, Equa-
tion (11.17), and a simple algebraic simplification,

PH[Cas) = PH[C,) ( S P @PH 0 x tclp_l(qas)]) . (11.19)

q'Etelp™? (g)

Observe that for each ¢’ € telp™(q) the set Qg{/ N ({a} x telp™'(qas)) contains only one
element, say (a, ¢'as"), and thus PH/[Cq/]Pf,I/[aX telp~*(qas)] gives Pgi[Cyrasn]. Moreover,
observe that the states of min(tclp™'(qas)) are the states of the form described in Equa-
tion (11.19) (simple cases analysis). Thus, by applying induction to (11.19), using (11.16),
simplifying algebraically, and using the observations above,

Py[Chas) = > Pi[Cy]. (11.20)

q'€min(telp ™t (gas))
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c. tdistr(H) = tdistr(H') | acts(M;||C).

Let (3 be a finite trace of H or H'. Then {a € Qp/ | § < trace(a) | acts(M;]|C')} can be
expressed as a union of disjoint cones Uyce(C, where

O = {q € states(H') | trace(q) | acts(M;||C") = 3, lact(q) = lact(B)}. (11.21)
The set telp(©) is the set
telp(Q) = {q € states(H ) | trace(q) = 3, lact(q) = lact(5)}, (11.22)

which is a characterization of {a € Q| § < trace(a)} as a union of disjoint cones. Ob-
serve that min(telp™(telp(©))) = . Moreover, for each ¢ # go of telp(©), telp™ (q1) N
telp™ (qz) = 0. Thus, from (11.18), Py:[UseaCy] = PrlUgereip@)Cyl- This is enough to
conclude.

To complete the proof of (11.13) it is enough to observe that Hy = telp(H]). Property (11.13)
is then expressed by property (c).

Suppose by contradiction that it is possible to obtain D’ from M;||C’. Consider the scheduler
that leads to D" in My||C’, and let H) be the corresponding probabilistic execution. Observe
that, since the timed trace distribution of H} is D', and since by construction in D’ each occur-
rence of a start action is followed eventually by the corresponding end action with probability
1, in H} each occurrence of a start action is followed eventually by the corresponding end
action with probability 1. Thus, telp can be applied, and t-tdistr(tclp(H})) = D, which is a
contradiction. [

Lemma 11.5.6 Let C' be a distinguishing time-deterministic, cycle-free, separated context for
two probabilistic timed automata My and My that from any state enables either time-passage
actions only or discrete actions only. Then there exists a distinguishing time-deterministic,
cycle-free separated context C' for My and My that from any state enables either time-passage
actions only or discrete actions only, and such that the transition relation from any state
enabling discrete actions is at most countably branching. C' is called a time-deterministic,
countably-branching, cycle-free separated context.

Proof. Let D a timed trace distribution of M;||C' that is not a timed trace distribution of
M,||C. Consider one of the corresponding probabilistic executions H. Observe that H has at
most countably many states that enable discrete actions, and that at each state of H there are
at most countably many transitions of €' that are scheduled. Thus, in total, only countably
many discrete transitions of C' are used to generate D. Then " is C' without the useless discrete
transitions. [ |

Lemma 11.5.7 Let C' be a distinguishing time-deterministic, countably-branching, cycle-free
separated context for two probabilistic timed automata My and My. Then there exists a dis-
tinguishing cycle-free separated context C' for My and Mjy that at each state enabling discrete
actions either enables two deterministic transitions or a unique probabilistic transition with two
possible outcomes. C’ is called a time-deterministic, binary separated context.
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Proof. The context C’ is built from €' in the same way as in the proof of Lemma 7.5.6. The
constructions shr and shf work as well. The specific procedure is the same as the procedure
followed in the proof of Lemma 11.5.3. [ |

Lemma 11.5.8 Let C' be a distinguishing time-deterministic, binary separated context for two
probabilistic timed automata My and My. Then there exists a distinguishing time-deterministic,
binary separated context C' for My and My where all the probabilistic transitions have a uniform
distribution over two states. C" is called a time-deterministic, balanced separated context.

Proof. The context C’ is built from C in the same way as in the proof of Lemma 7.5.7. The
specific procedure is the same as the procedure followed in the proof of Lemma 11.5.3. [ |

Lemma 11.5.9 Let C be a distinguishing time-deterministic, balanced separated context for two
probabilistic timed automata My and My. Then there exists a distinguishing time-deterministic,
binary separated context C' for My and My with no internal actions and such that for each time
t each discrete action appears exactly in one edge of the transition tree that leaves from a state
whose time is t. C' is called a time-deterministic, total balanced separated context.

Proof. The context C’ is obtained from C' by renaming all of its discrete actions so that for
each time t each edge of the new transition relation leaving from a state whose current time is
t has its own action. The proof of Lemma 7.5.8 applies. [ |

Lemma 11.5.10 Let C' be a distinguishing time-deterministic, total balanced separated context
for two probabilistic timed automata My and My. Then there exists a distinguishing time-
deterministic, total, cycle-free separated context C' for My and My that from every state en-
ables one time-passage transition for each timed-action d, two deterministic transitions, and a
probabilistic transition with a uniform distribution over two choices. C' is called a complete
context.

Proof. In this case it is enough to complete C' by adding all the missing transitions and states.
If D is a timed trace distribution of M;||C' that is not a timed trace distribution of M;||C', then
it is enough to use on M;||C” the same scheduler that is used in M;||C. In fact, since each new
discrete transition of €' has a distinct action, none of the new discrete transitions of €’ can be
used in M;||C’ to generate D, and since each state of C’ is uniquely determined by the timed
trace of all the executions leading to that state, none of the new time-passage transitions can
be scheduled (this would affect the resulting timed trace distribution). [ ]

Lemma 11.5.11 Let C be a distinguishing complete context for two probabilistic timed au-
tomata My and My. Then the timed principal context is a distinguishing context for My and
M.

Proof. The result is achieved in two steps. First the actions of €' are renamed so that each
state enables two deterministic transitions with actions left and right, a probabilistic transition
with actions pleft and pright, and one transition for each time-passage action d. Call this
context C';. Then, by observing that the state of C'y is uniquely determined by the timed trace
of any timed execution leading to it, all the states of C'; are collapsed into a unique one.
Thus, we need to show only that (1 is a distinguishing context. The proof of Lemma 7.5.10
applies. [ |
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Lemma 11.5.12 Let C'p be a distinguishing context for two probabilistic timed automata My
and My. Then the simple context C' of Figure 7-6 augmented with a self-loop time-passage
transition from state sq for each time-passage action d, where start is an action that does not
appear in My and Mo, is a distinguishing context for My and Ms.

Proof. The proof of Lemma 7.5.11 applies. [ |
Proof of Theorem 11.5.1. Let My Cpcy My. Then, from Lemma 11.5.12, Mq||Cp Cpy

M,||Cp. Conversely, let My||Cp Cp: Ms||Cp. Then, from Lemmas 11.5.3, 11.5.4, 11.5.5,
11.5.6, 11.5.7, 11.5.8, 11.5.9, 11.5.10, and 11.5.11, M; Cpey M. n
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Chapter 12

Hierarchical Verification: Timed
Simulations

12.1 Introduction

The simulation method extends to the timed framework almost directly. The main difference
is that in a timed simulation that abstracts from internal computation we use moves (cf. Sec-
tion 9.4) rather than weak combined transitions. The kind of results that we prove are a direct
extension of similar results for the untimed model. In particular, probabilistic timed forward
simulations are sound for the timed trace distribution precongruence.

12.2 Probabilistic Timed Simulations

We start directly with simulation relations that abstract from internal computation; the strong
relations are essentially the same as for the untimed case.

For convenience assume that My and M5 do not have common states. A probabilistic timed
bisimulation between two simple probabilistic timed automata My and M; is an equivalence
relation R over states(M;) U states(My) such that

1. each start state of My is related to at least one start state of My, and vice versa;

2. for each pair of states s; R sy and each transition sy — Py of either My or M, there
alext(Ma)

exists a move s  ~> ' Py of either My or My such that Py = Ps.
We write My ~p, M, whenever ext(My) = ext(Mz) and there is a probabilistic timed bisimu-
lation between M; and M.
A probabilistic timed simulation between two simple probabilistic timed automata M; and
Mj is a relation RC states(My) X states(My) such that

1. each start state of My is related to at least one start state of Ms;

2. for each pair of states s; R sy and each transition s; — Py of M, there exists a move

@egt(Mz) Py of My such that Py T Ps.
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We write My Cpy My whenever ext(My) = ext(M;) and there is a probabilistic timed simulation
from My to M5. We denote the kernel of probabilistic timed simulation by =py.

It is easy to check that ~p; is an equivalence relation, that Cp; is a preorder relation, and
that both ~p; and Cpy are preserved by the parallel composition operator. It is also easy to
verify that a weak probabilistic bisimulation is a probabilistic timed bisimulation and that a
weak probabilistic simulation is a probabilistic timed bisimulation.

12.3 Probabilistic Timed Forward Simulations

A probabilistic timed forward simulation between two simple probabilistic timed automata
My, My is a relation RC states(My) X Probs(states(M;)) such that

1. each start state of M; is related to at least one Dirac distribution over a start state of
Msy;

2. for each s R P/, if s =% Py, then

(a) for each s’ € Q' there exists a probability space Py such that s’ afet(M2) P, and

(b) there exists a probability space P; of Probs(Probs(states(M3))) satisfying P; Cg Py,
such that 3. cqr P[']Py = Yopeqr PI[PIP.
Denote the existence of a probabilistic timed forward simulation from My to My by My Eps; M.
Proposition 12.3.1 Crg; is preserved by the parallel composition operator.

Proof. Let My Crgy M>, and let R be a probabilistic timed forward simulation from M, to
M;. Let R’ be arelation between states(My) x states(Ms) and Probs(states(My) X states(Ms)),
defined as follows:

(s1,83) R' P iff P = Py ® D(s3) for some Py such that s; R Ps.

The proof that R’ satisfies Condition 1 and that Condition 2 is satisfied for each discrete
transition of Mj||Mj is essentially the proof of Proposition 8.5.1. Thus we need to show only
that Condition 2 is satisfied by time-passage transitions.

Let (s1,53) R’ Py @ D(s3), and let (sq1,s3) LR (s),5%), where sq LR sy, and s3 LR sh.
From the definition of a probabilistic timed forward simulation, for each s € {9 there exists

a move sy > P, of My, and there exists a probability space Py of Probs( Probs(states(Ms))),
such that

> Ps]Ps = Y B[PIP, (12.1)

s€Q) PeQ)
and

D(sy) Cr Ps. (12.2)
Moreover, from the definition of a probabilistic timed automaton, there is a trajectory ws for
PR 5.

For each s € 5, let Os be a generator for s A P,. Define a new generator O, as follows:
for each finite execution fragment a of M;|| M5 starting in (s, s3),

258



L. if O4(a[M;y) = (s',P), where (s',P) = >, pi(s',a;, P;), each (s',a;,P;) is a transition
of My, and a[Ms is consistent with ws, i.e., for each prefix o' of a, Istate(a’)[Ms =
ws(ltime(a’)), then letting s% denote Istate(a|[Ms),

O;(a) = Zpi((slv Sg)v aivpi ® 772/),

where P! = D(s4) if a; is a discrete action, and P] = D(ws(ltime(a) + a;)) if a; is a

time-passage action.
2. otherwise, O (a) = D(4).

The move generated by each O is (s, s3) Lo D(sh). In fact, an execution fragment o
of Ms||Ms is terminal for O, iff a[M; is terminal for O, and Istate(a[Ms) = s, and thus

Qo1 = Q, x D(s5). Moreover, for each a € Qo1 ot = PS[SMZ).
Denote Py @ D(s5) by P(s,5,)- Then, for each (s,s3) € Q2@ D(s3), we have identified a move
(s,83) ~ Pls,s5)- These are the spaces of Condition 2.a in the definition of a probabilistic timed
forward simulation.
From this point the proof proceeds exactly in the same way as the proof of Proposition 8.5.1.

No modification of the text is necessary. [ |

12.4 The Execution Correspondence Theorem: Timed Ver-
sion

The execution correspondence theorem of Chapter 8 extends easily to the timed framework. In
this section we define the notion of a timed execution correspondence structure, show the timed
version of the execution correspondence theorem, and, as a consequence, show that probabilistic
timed forward simulations are transitive.

The timed execution correspondence theorem is stated in terms of the probabilistic execu-
tions of a probabilistic timed automaton; however, it is easy to see that the same result can be
extended to probabilistic timed executions: the execution correspondence theorem talks about
countably many states of a probabilistic timed execution; all the other points can be described
by arbitrary trajectories.

12.4.1 Timed Execution Correspondence Structure

The definition of a fringe for a probabilistic timed execution is the same as the definition of a
fringe for a probabilistic execution. For the definition of fringe( H,17) the only difference is in
the way the length of a state of H is measured, and thus the definition given for probabilistic
automata is still valid.

Let R be a probabilistic timed forward simulation from My to My. A timed execution corre-
spondence structure via R is a tuple (Hy, Hy,m, S), where Hy is a probabilistic execution of My,
Hs is a probabilistic execution of My, m is a mapping from natural numbers to fringes of M;, and
S is a mapping from natural numbers to probability distributions of Probs(Probs(states(H3))),
such that
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1. For each ¢, m(i) < m(i + 1);
2. For each state gz of Hy, lim; oo 3" 0,14, < Fild] = PulClyl;
3. Let 1 R (Q, F, P)iff for each ¢ € Q, t-trace(q) = t-trace(q), and either

(a) ¢ does not end in 4, each state of @ does not end in &, and Istate(qy) R Istate(P),
or

(b) ¢ and each state of Q end in 6 and Istate(é-strip(q1)) R Istate(é-strip(P)).
Then, for each ¢ > 0, m(7) = > pensy st [PIP, and fringe(Hq,7) Cr S(7).
4. Let, for each 7 > 0, each ¢ € fringe(H1,17), and each ¢y € states(Hz), Wilq1, q2) =
Sopwi(qr, P)Plqa]. If Wi(q1,qh) = 0 for each prefix or extension ¢ of ¢2, then, for each
extension ¢| of ¢1 such that ¢| € fringe(Hq,7+4 1), and each prefix or extension ¢} of ¢,

Witi(d1,45) = 0.

12.4.2 The Main Theorem

Theorem 12.4.1 Let My Cpg My via the probabilistic timed forward simulation R, and let
Hy be a probabilistic execution of M. Then there exists a probabilistic execution Hy of Msy, a
mapping m from natural numbers to fringes of My, and a mapping S from natural numbers to
probability distributions of Probs(Probs(states(Hy))), such that (Hy, Hy,m,S) is an execution
correspondence structure via R.

Proof. The proof has exactly the same structure as the proof of Theorem 8.6.1. Note that the
only difference between this theorem and Theorem 8.6.1 is in Condition 3, where we use timed
traces rather than traces. [

12.4.3 Transitivity of Probabilistic Timed Forward Simulations

The timed execution correspondence theorem can be used to show that probabilistic timed
forward simulations are transitive, i.e., if My Crgy My and My Cpg; Ms, then My Crgy Ms.
The proof of this result follows the same lines as the corresponding proof in the untimed case
(cf. Section 8.6.4), where combined transitions are replaced by moves and traces are replaced
by timed traces. We leave the details of the proof to the reader.

12.5 Soundness for Timed Trace Distributions

As for the untimed model, the timed execution correspondence theorem can be used to show
that probabilistic timed forward simulations are sound for the timed trace distribution precon-
gruence. Since Cpgy is a precongruence, it is enough to show that Cpg; is sound for the timed
trace distribution preorder.

Proposition 12.5.1 If My Cpg; My, then My Cpy M.
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Proof. Let My Crs; M5, and let Hy be a probabilistic execution of M; that leads to a timed
trace distribution Dqi. From Lemma 12.4.1, there exists a probabilistic execution H, of M,
that corresponds to Hy via some mappings m,S. We show that Hy leads to a timed trace
distribution D, that is equivalent to Dy.

Consider a cone Cg of Dy. The cone (g can be expressed as a union of cones of Py, , and
thus its measure can be expressed as

lim > Py, [Cy]- (12.3)

1—00

q1Efringe(Hq 0)|B<t-trace(q1)

Consider a cone C'g of Dy. The cone Cg can be expressed as a union of cones of Pp,, and thus
its measure can be expressed as

lim > Pz (12.4)

g2€m(1)|B<t-trace(qz)

The reason for Expression (12.4) is that at the limit each cone expressing the occurrence of 3
is captured completely.
Thus, it is sufficient to show that for each finite 5 and each 1,

Z PH1 [C!h] = Z Pm(z)[q] (12.5)

q1Efringe(Hq ,1)|B<t-trace(q1) g2€m(1)|B<t-trace(g2)

From this point the proof proceeds exactly as the proof of Proposition 8.7.1. [ |
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Chapter 13

Conclusion

13.1 Have we Met the Challenge?

We have developed a model for the description of randomized distributed real-time systems, and
we have investigated how the new model can be used for the analysis of algorithms. The main
idea behind the model is to extend labeled transition systems to account for randomization in
such a way that probabilistic behavior and nondeterministic behavior are clearly distinct.

We have shown how commonly used informal statements can be formulated in the new
formalism, and we have shown how such statements can be proved to be correct in a formal
and rigorous way. In particular, we have developed verification techniques that resemble the
common ways in which randomized algorithms are analyzed. The main improvement is that
now we have a collection of results that allow us to determine when a specific argument can be
used safely. Furthermore, we have shown how to derive upper bounds to the complexity of a
randomized distributed algorithm using an ordinary time complexity measure as well as more
abstract complexity measures like “number of rounds in an asynchronous computation”.

Finally, we have extended several verification techniques that are commonly used within the
labeled transition system model. We have extended the trace semantics of labeled transition
systems and several of the existing simulation relations for labeled transition systems. In
particular, all our preorder relations are compositional and the simulation relations are sound
for the trace-based semantics. Although we have not presented any example of verification
using simulations, except for two toy examples based on coin flips, we are confident that in the
future the method based on simulations will become of practical relevance as it happened for
ordinary automata.

Therefore, we can claim that we have met the challenge given by randomization at least
partially. Surely we understand much more of the problem than before. The fact that we have
been able to prove new results about randomized algorithms is a positive sign. In particular,
Aggarwal [Agg94] used successfully the technique presented in this thesis for the verification of
the randomized self-stabilizing algorithm of Aggarwal and Kutten [AK93], which is not trivial
at all; during the verification process Aggarwal discovered also a subtle bug in the original
protocol. In the measure in which the power of a proof method is evaluated based on the bugs
that such method helps to discover, our methodology has achieved something. Indeed we have
discovered another bug on one existing algorithm, and the main issue is that we did not have
to work much to discover such a bug; essentially it was sufficient to try to reformulate the proof
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of correctness in our framework.

13.2 The Challenge Continues

Although we have improved considerably our understanding of randomization in distributed
computation, what we have discovered looks like the tip of the iceberg. We have addressed
several problems, and in solving them we have addressed more the basic methodology rather
than an extensive analysis of all the possible solutions. Therefore, there are several directions for
further research that can be pursued. Here we suggest some of the most important directions.

13.2.1 Discrete versus Continuous Distributions

Throughout this thesis we have assumed that the probability distributions associated with the
transitions of a probabilistic automaton are discrete. Although such assumption is sufficiently
general for the study of several randomized algorithms, several other real-time systems are better
described by using continuous distributions. Examples involve algorithms for transmission of
data along a common wire, scheduling algorithms for massively parallel machines, and queuing
systems. Moreover, continuous distributions would be more suitable for the study of randomized
hybrid systems.

The extension of the theory to continuous distributions involves nontrivial measure theoret-
ical problems. In particular it is not the case any more that any union of cones is measurable;
thus, not even the event that expresses the occurrence of an action or the reachability of a
state is measurable in general. The events with probability 0 need a more careful treatment
within the model with continuous distributions. It is likely that some restrictions must be
imposed to the model to ensure that some minimal set of events is measurable. Examples of
restricted models with continuous distributions are the automata of Alur, Courcuobetis and
Dill [ACD91a, ACD91b], where the time that elapses between two transitions is governed by
an exponential distribution or by a distribution which is non zero in a finite collection of closed
intervals, and the models of [GHR93, Hil93, BDG94], where the time between the occurrence
of two actions is assumed to be distributed exponentially. Exponential distributions occur in
several real systems and are easy to model due to their memoryless structure. However, other
distributions should be studied.

13.2.2 Simplified Models

Within the context of ordinary automata Lynch and Tuttle [LT87] have developed a model of
I/O automata. The model enforces a distinction between Input actions and Output actions
within an automaton, and requires that input actions are enabled from every state. Further-
more, in a parallel composition context each action is required to be the output or internal
action of at most one process, i.e., each action is under the control of at most one process.
Based on the Input/Output distinction Lynch and Tuttle can introduce fairness in the model
in a natural way, and in particular they can use the trace semantics as a meaningful notion of
implementation. In general the trace semantics is not meaningful as a notion of implementation
since, for example, it is not sensitive to deadlock. The advantage of the use of traces is that
traces are easy to deal with.
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Figure 13-1: Synchronization for probabilistic I/O automata.

For this reason, it makes sense to study a theory of probabilistic I/O automata as an
extension of the model of [LT87] and as a restriction of our model. An interesting point of a
model with I/O distinction is that it is possible to relax the requirement that all the transitions
of a probabilistic /O automaton are simple. In particular, only the transitions with input
actions need to be simple, while all the others can be general. The parallel composition can be
defined easily since a non-simple transition synchronizes only with simple transitions. Figure 13-
1 gives an example of synchronization between a transition with three output actions a,b, c and
two transitions of an I/O automaton with just two input actions a,b. A similar observation
was made also by Wu, Stark and Smolka in [WSS94].

A restricted timed model with I/O distinction is introduced by Merrit, Modugno and Tuttle
[MMT91]. In particular timing constraints can be described only by giving upper and lower
bounds to the time it takes for a process to perform the next transition whenever it is ready
to do so. MMT automata turned out to be sufficient for the modeling of several distributed
systems, and in particular, due to their simple structure, made the analysis simpler than by
using the full automaton model. Once again, a study of the probabilistic version of the MMT
model would be useful. The proofs that we have illustrated in Chapter 12 could be carried out
in the probabilistic MMT model as well.

Finally, the analysis of a system can be simplified by studying time-deterministic probabilis-
tic timed automata, i.e., probabilistic timed automata such that from each state s and each time
d there is at most one state reachable from s in time d. In fact, if a system is time-deterministic,
then the end points of a time-passage transition determine completely the trajectory that is
spanned. Therefore, trajectories could be removed also from the direct analysis of randomized
timed algorithms. It turns out that most of the times an algorithm can be described as a
time-deterministic probabilistic automaton. Probabilistic MMT automata are an example of
time-deterministic probabilistic automata.

13.2.3 Beyond Simple Probabilistic Automata

The study of parallel composition and of the simulation relations of this thesis is done within
the context of simple probabilistic automata. The main problem is that we did not find any
reasonable definition of parallel composition for general probabilistic automata that is consistent
with our synchronization style. We have just observed that in the presence of an Input/OQutput
distinction it is possible to relax the simplicity condition and yet obtain a meaningful notion
of parallel composition. It would be interesting to investigate other mechanisms that give a
meaning to general probabilistic automata and yet work as we expect in the simple case.
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13.2.4 Completeness of the Simulation Method

We have provided several simulation and bisimulation relations for probabilistic automata and
probabilistic timed automata, and we have shown that they are sound for the trace distribution
precongruence and the timed trace distribution precongruence, respectively. However, we have
not shown any completeness result for probabilistic forward simulations and probabilistic for-
ward timed simulations. In [LV93a, LV95] it is shown that forward simulations together with
another kind of simulations called backward simulations are sound and complete for the trace
preorder. Are probabilistic forward simulations complete for the trace distribution preorder?
If not, is there an equivalent of backward simulations that can lead to completeness?

13.2.5 Testing Probabilistic Automata

We have presented the trace distribution semantics as an example of a semantics based on
abstract observations. Another widely known semantics for ordinary automata is the failure
semantics of Brookes, Hoare and Roscoe [BHR84], which in turn is connected to the testing
preorders of De Nicola and Hennessy [DH84]. Similarly to the trace distribution semantics,
it should be possible to extend the failure semantics to the probabilistic framework and find
a sufficiently powerful context to distinguish probabilistic automata that are not in the corre-
sponding precongruence relation. Possibly, a related theory of testing in the style of [DH&4]
should be defined. It is very likely that the new testing preorders will be similar to those
of Yi and Larsen [YL92]. Other theories of testing for probabilistic automata are studied in
[Chr90b, Chr90a, CSZ92, YCDS94] and are explained in Section 2.2.

13.2.6 Liveness in Probabilistic Automata

In the extension of the notion of an execution of an automaton we have obtained a parallelism
between the theory of ordinary automata and the theory of probabilistic automata. In this
parallelism also the notion of liveness has found its place, although we have not addressed the
issue in this thesis. In ongoing research we have given a simple definition of a live probabilistic
automaton as a pair (M, L) where L is an arbitrary subset of the probabilistic executions of M,
and we have shown that the live trace distribution precongruence can be defined easily and can
be characterized by a live principal context, which is essentially the principal context paired
with the set of its probabilistic executions. However, lot of work remains to be done within the
theory of liveness.

First of all it would be useful to study how the definition of safety and liveness properties
of Alpern and Schneider [AS85] extends to the probabilistic framework and what consequences
such extension has. Furthermore, the use of the live trace preorder within ordinary automata
makes sense as a notion of implementation in the presence of I/O distinction and of a property
called receptiveness or environment-freedom [Dil88, A193, GSSL.94]. It would be useful to
study the theory of receptiveness of [Dil88, AL93] and of environment-freedom of [GSSL94]
in the context of randomization. In this case, differently from [GSSL94], the environment is
expressed by a function rather than by a sequence of actions. However, non-trivial problems
arise in imposing restrictions to the behavior of the environment.
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13.2.7 Temporal Logics for Probabilistic Systems

In the chapters on direct analysis we have identified a collection of probabilistic statements
that are useful for the analysis of algorithms. However, there are several other statements that
can be of interest. It would be desirable to find a probabilistic temporal logic that expresses
as many properties as possible. The probabilistic modal logic of [LL.S89] is a direct extension of
the modal logic of Hennessy and Milner [HM8&5] for reactive processes, but it is not sufficiently
powerful to deal with nondeterminism; similarly, the extended probabilistic logic of [.S92] is not
sufficiently powerful. The Probabilistic Computation Tree Logic of [HJ89, Han94] captures more
the consequences of the interplay between probability and nondeterminism; in [SL94] PCTL is
generalized also to probabilistic systems with internal actions (WPCTL). However, there are
still properties that are useful and do not seem to be expressible in WPCTL. Specifically, we
do not know how to express a property of the kind “after something has happened, no matter
where I am, something else will happen with probability at least p”. Is there something missing
in WPCTL? What would be a more appropriate temporal logic?

Another issue is the relationship between the simulation method and temporal logic. That
is, if a probabilistic automaton implements another probabilistic automaton according to some
implementation relation (e.g., trace distribution precongruence, probabilistic simulation, proba-
bilistic forward simulation, etc.), what can we say about the implementation? What properties
of the specification are satisfied by the implementation? More generally, given a probabilis-
tic temporal logic and a preorder relation, what fragment of the logic is preserved by the
preorder relation? Somehow it is implicit that whenever we use some preorder relation as a
notion of implementation we are interested only in the properties that are preserved by such
relation; however, we need to know what are those properties. In [SL.95] we have stated that
weak probabilistic simulation preserve a large fragment of WPCTL and that weak probabilistic
bisimulations preserve WPCTL. The results of [SL95] can be proved easily given the results of
this thesis. However, more work in this direction is necessary. In particular, some completeness
results would be useful.

13.2.8 More Algorithms to Verify

In this thesis we have illustrated our direct verification technique by proving the correctness
of the randomized dining philosophers algorithm of Lehmann and Rabin [LR81] and of the
randomized agreement protocol of Ben-Or [BO83]. In [Agg94] Aggarwal uses our model to verify
the correctness of the self-stabilizing minimum weight spanning tree randomized algorithm of
Aggarwal and Kutten [AK93]. However, the technique should be tested against many other
algorithms. We are currently investigating the agreement protocol of Aspnes and Herlihy [AH90]
and the randomized mutual exclusion algorithm of Pnueli and Zuck [PZ86]. Based on the little
experience that we have gained, we can say that the model provides us with a systematic way
of analyzing those algorithms, and in particular it provides us with a simple methodology to
identify the critical points of an algorithm.

It is very likely that new coin lemmas need to be developed together with other techniques
for the actual computation of the probability of an event. A technique that needs further
development is the partition technique of Section 6.7. The analysis of other algorithms should
make clear what other techniques are necessary. Also, playing with the toy resource allocation
protocol of Chapter 5 can be very instructive. Although the protocol is simple, its analysis
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highlights several of the issues that arise in randomized distributed computation.

It is also plausible, as it happened for non-probabilistic distributed algorithms, that some
complex protocols can be verified more easily by using the simulation method. Finding those
algorithms would be an optimal way to test the hierarchical verification method and possibly
to improve it.

13.2.9 Automatic Verification of Randomized Systems

Formal verification usually involves two levels of analysis. First, an algorithm is analyzed at
a high level by using the intuition that designers have of their own algorithm; then, a more
detailed verification of the high level claims is carried out in order to guarantee correctness.
The low level analysis is very tedious and involves checking a whole lot of uninteresting details.
On the other hand, several times the low level analysis is the only way to discover flaws in the
intuitions about an algorithm.

Fortunately, the low level analysis is amenable to automatic verification, although the re-
search in this area is still in progress. Model checking [EC82, CES83] is certainly a useful
technique; in [SGG193] it is shown how a theorem prover can be used to help in the verification
of a protocol using simulations; in [PS95] we have investigated how a randomized algorithm
can be verified mechanically once the high level proof is formulated. However, there is still a
lot of work that needs to be done. It would be interesting to study how model checking and
theorem proving could be integrated to automatize part of the verification of an algorithm.

13.3 The Conclusion’s Conclusion

To say what we have done in one sentence, we have provided a new way of reasoning about
randomized systems that integrates both the theoretical aspects of modeling and the basic
requirements for usage in practice. From the modeling point of view we have distinguished be-
tween nondeterminism and probability explicitly and we have extended the main semantics that
are available within the labeled transition systems model; from the point of view of verification
we have formalized some of the common informal arguments about randomized algorithms and
we have provided guidelines to determine whether an argument can be used safely. Further-
more, we have provided a systematic way to analyze the complexity of randomized algorithms.
All our results are compatible with previous work.

As we have seen in the previous section, there are still many open problems in this area.
Here we hope to have stimulated the curiosity of the reader to go much further. Needless to
say that for us (me) working on this project was a continuous discovery.
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int() Internal actions of. 37
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Transition.

Probability space in the transition tr, i.e., tr = (s, Py or, if tr is
simple, tr = (s, a, Py ).
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M.
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Function that identifies the points of satisfaction of a finitely satis-
fiable event schema.

Concatenation of two event schemas.

Probabilistic statement.

Oblivious relation.

Coin event: first occurrence of an action among many.
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GCOIN(S,E)() General coin event. 125
D Trace distribution. 138
tdistr() Trace distribution of. 138
tdistrs() Trace distributions of. 138
itrace() Internal trace of. 139
itdistr() Internal trace distribution of. 139
itdistrs() Internal trace distributions of. 139
Cp Trace distribution preorder. 141
Cpo Trace distribution precongruence. 143
Cp Principal context, timed principal context. 145
ptdistrs() Principal trace distributions of. 146
Cr Lifting of a relation to probability spaces. 168
~ Existence of a strong bisimulation. 169
Cgg Existence of a strong simulation. 169
~p Existence of a strong probabilistic bisimulation. 171
Csps Existence of a strong probabilistic simulation. 171
=p Existence of a weak probabilistic bisimulation. 172
Cwps Existence of a weak probabilistic simulation. 172
Crg Existence of a probabilistic forward simulation. 174
vis() Visible actions of. 196
w Trajectory. 197
ltime() Last time of. 197
t-frag() Timed execution fragments of. 199
t-exec() Timed executions of. 199
t-execs() Extended timed executions of. 199
te-frag() Time-enriched execution fragments of. 201
te-prfrag() Probabilistic time-enriched execution fragments of. 202
te-prezec() Probabilistic time-enriched executions of. 202
sample() Function that applied to a probabilistic time-enriched execution 209

H of a probabilistic timed automaton M returns a probabilistic
execution H' of M that samples H.

t-sample() Function that applied to a probabilistic time-enriched execution 211
fragment H of a probabilistic timed automaton M returns a prob-
abilistic timed execution fragment H’ of M that t-samples H.

a

~ Move. 217
Ey, advs|€] Worst expected time for success of the event schema e starting from 227
a state of U under the action of an adversary from Advs.
seq() Sequence of a timed sequence pair. 243
tsp() Timed sequence pairs over some given set. 243
t-trace() Timed trace of. 244
t-tdistr() Timed trace distribution of. 246
t-tdistrs() Timed trace distributions of. 247
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=Pt

Cpt

C st

Timed trace distribution preorder.

Timed trace distribution precongruence.

Principal timed trace distributions of.

Existence of a probabilistic timed bisimulation.
Existence of a probabilistic timed simulation.
Existence of a probabilistic timed forward simulation.
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deterministic, 79, 80, 224
oblivious, 91
schema, 80
with partial on-line information, 79
alternating model, 28
automaton, 37
fully probabilistic, 47
probabilistic, 18, 46
probabilistic Input/Output, 265
probabilistic MMT, 265
probabilistic semi-timed, 196
probabilistic timed, 196
simple probabilistic, 47
timed, 195

behavioral semantics, 135
bisimulation
probabilistic timed, 257
strong, 169
strong probabilistic, 171
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coin
event, 103
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coin lemma, 19
compatibility, 41, 61
compositionality, 136
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of two time-enriched executions, 201
of two timed executions, 199
of two trajectories, 199
conditional
event, 36
of a probabilistic execution, 57
of a probabilistic time-enriched execu-
tion, 203
of a probabilistic timed execution, 207
probability space, 36

Dirac distribution, 37

event, 34
schema, 82, 224
execution, 39
admissible timed, 198
extended, 50
finite timed, 198
probabilistic, 19, 49
probabilistic time-enriched, 202
probabilistic timed, 200, 205
time-enriched, 201
timed, 198
timed extended, 199
Zeno timed, 198
execution correspondence structure, 177
timed, 259
execution-based
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probabilistic timed execution, 206
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finitely satisfiable
event, H3
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generative process, 23, 25
generator
of a o-field, 33

of a weak transition, 60

internal trace, 139
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measurable
function, 34
set, 33
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measure induced by a function, 35
measure space, 34
complete, 34
discrete, 34
model checking, 17, 30, 31
move, 217
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observation, 135
observational semantics, 135

parallel composition
of automata, 41
of simple probabilistic automata, 61
of simple timed probabilistic automata,
218
partial on-line information, 92
partition technique, 20, 132
patient
construction, 197
point of extension, 56
point of satisfaction, 83
precongruence, 20, 136
timed trace distribution, 249
trace distribution, 20, 137, 143
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prefix
of a probabilistic execution, 56
of a probabilistic time-enriched execu-
tion, 203
of a probabilistic timed execution, 206
of a time-enriched execution, 201
of a timed execution, 199
of a trace distribution, 139
of an execution, 39
preorder
timed trace distribution, 249
trace distribution, 20, 137, 141
principal
context, 20, 137, 145
timed context, 21, 243, 250
timed trace distribution, 250
trace distribution, 20, 137, 146
probabilistic statement, 19, 84
probability
distribution, 34
measure, 34
space, 34
progress statement, 19, 85
timed, 21, 223, 226
projection
of a probabilistic execution, 62, 65
of a probabilistic time-enriched execu-
tion, 218
of a probabilistic timed execution, 218
of an execution, 41

qualitative analysis, 29
quantitative analysis, 29

random variable, 36
reachable state, 39, 60
reactive process, 23, 24

sample space, 34

scheduler, 79

o-additivity, 34

o-field, 33

simulation
method, 137, 167
probabilistic forward, 20, 174
probabilistic timed, 257



probabilistic timed forward, 258
strong, 169
strong probabilistic, 171
weak probabilistic, 172
stratified process, 24, 25
substitutivity, 136
suflix
of a probabilistic execution, 57
of a probabilistic time-enriched execu-
tion, 203
of a probabilistic timed execution, 207
of a time-enriched execution, 201
of a timed execution, 199
of an execution, 39

terminal state, 60
time deadlock, 199
timed sequence, 243
timed sequence pair, 243
trace
distribution, 20, 137, 138
of an execution, 40
timed, 21, 243, 244
timed distribution, 243, 246
trajectory, 195, 197
axioms, 195, 197
transition, 37
action restricted, 64
combined, 47
prefixing, 52
relation, 37
suffixing, 52
time-enriched, 202
timed, 205
weak, 38, 58
weak combined, 59
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weight function, 168
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