
Chapter 6Direct Veri�cation: Proving aPropertyIn this chapter we illustrate techniques to prove the validity of a probabilistic statement fromscratch. The main technique, which is based on coin lemmas , consists of reducing the analysis ofa property of a probabilistic automaton to the analysis of a property of an ordinary automaton.We illustrate the methodology by applying it to some existing randomized algorithms.Part of this chapter is based on joint work with Anna Pogosyants and Isaac Saias. AnnaPogosyants suggested us the coin event OCC (Section 6.2.3) as a generalization of other lesselegant coin events that we had in mind and collaborated on the veri�cation of the randomizedalgorithm for agreement of Ben-Or (Section 6.5). The veri�cation of the randomized diningphilosophers algorithm of Lehmann and Rabin (Section 6.3) is based on joint work with NancyLynch and Isaac Saias [LSS94], and the veri�cation of the randomized algorithm for agreementof Ben-Or is a formalization of a proof that appears in the book on distributed algorithms ofNancy Lynch [Lyn95].6.1 How to Prove the Validity of a Probabilistic StatementIn Chapter 5 we have de�ned formally what is a probabilistic statement and we have shown howit is possible to combine probabilistic statements to derive more complex properties. However,one question is left open: how do we prove the validity of a given probabilistic statement fromscratch?The problem is not trivial: a property may rely on complicate global con�gurations of asystem that depend on several separated random draws. Analyzing the exact probability of anevent associated with a probabilistic execution fragment may be extremely hard. Fortunately,there are usually some key points, known to the designer of a system, where speci�c probabilisticchoices lead to the desired property. In this chapter we formalize the idea above by introducinga collection of coin lemmas . The idea behind a coin lemma is the following.1. We de�ne a mechanism to identify events of the kind \some speci�c probabilistic choicesyield some speci�c results". We call such events coin events since a common source ofrandomness is given by coin 
ips. 103



2. We prove a lower bound on the probability of the coin event that we identify.Then, the analysis of a probabilistic statement for a probabilistic automaton M proceeds asfollows.1. We �nd a coin event that expresses the key intuition behind the property to be shown.2. We show that the coin event is a subevent of the event expressing the desired property,i.e., we show that whenever the coin event is satis�ed, the desired property is satis�ed aswell.3. We use the lower bound on the probability of the coin event to obtain a lower bound onthe probability of the desired property.Example 6.1.1 (Coin lemmas and the toy resource allocation protocol) Let us con-sider the toy resource allocation protocol of Chapter 5 again. One of the coin lemmas ofthis chapter states that if we �x any two separate coin 
ips (
ipping of di�erent coins) andwe consider the event where the two coin 
ips yield di�erent outcomes whenever they bothoccur, then, no matter how the nondeterminism is resolved, the considered event is satis�edwith probability at least 1=2. On the other hand, if the �rst coin 
ip of M1 after the �rst coin
ip of M2 is di�erent from the last coin 
ip of M2 before the �rst time M1 checks its resourceafter 
ipping, then M1 succeeds in getting its resource. Thus, whenever the property above canbe expressed as a coin event in a form suitable to the coin lemma above, we are guaranteed thatM1 eventually gets its resource with probability at least 1=2. It turns out that an adversarymust be fair, oblivious and deterministic in order to be able to de�ne the desired coin event (cf.Section 6.6). Our results about deterministic and randomized adversaries (Proposition 5.7.11)can then be used to remove the constraint that an adversary is deterministic.We present a large collection of coin lemmas, and we illustrate their use via two main examples:Section 6.3 proves the correctness of the randomized Dining Philosophers algorithm of Lehmannand Rabin [LR81], and Section 6.5 proves the correctness of the randomized algorithm of Ben-Or for agreement in asynchronous networks in the presence of stopping faults [BO83]. At theend of the chapter we hint at another technique, called the partition technique, that departsconsiderably from the coin lemmas and that is necessary to prove stronger claims about the toyresource allocation protocol. We leave to further work a deeper study of this other technique.6.2 Some Simple Coin LemmasIn this section we present some simple coin lemmas where we use actions to identify the randomdraws of interest. Speci�cally, we study the following coin lemmas.1. First occurrence of an action.In this coin lemma we consider an action a and a set of states U , and we study theprobability that either action a does not occur or the �rst occurrence of action a leads toa state of U . We show that this probability is at least the in�mum of the probability ofreaching a state of U over all the transitions of M that are labeled with action a.104



As an example, action a can identify the process of 
ipping a fair coin and U can identifythose states that are reached if the coin 
ip yields head. Then the coin lemma says thatno matter how the nondeterminism is resolved the probability that either the coin is not
ipped or the coin is 
ipped and yields head is at least 1=2.Observe that in the de�nition of the coin event we allow for those executions where nocoin is 
ipped. One reason for this choice is to avoid trivial lower bounds due to the factthat a generic adversary can always decide not to schedule any transition. Another reasonis that generally a randomized algorithm is structured so that that if no coin is 
ippedthen progress is guaranteed with certainty. Alternatively, a randomized algorithm can bestructured so that under any valid adversary some coin is 
ipped. In both cases it is ofabsolute importance to be aware of the existence of executions where no coin is 
ipped.Overlooking those executions is a common source of mistakes.2. First occurrence of an action among many.In this coin lemma we consider several pairs (ai; Ui) of actions and sets of states, and westudy the probability that either none of the ai's occur or the action aj that occurs �rstleads to a state of Uj . We show that, if for each i pi is the lower bound given for (ai; Ui)by the coin lemma of 1, then the probability mentioned above is at least the minimum ofthe pi's.As an example, consider n processes that run in parallel, and suppose that each processcan 
ip a fair coin. Then, the probability that either no process 
ips a coin or that the�rst process that 
ips a coin obtains head is at least 1=2.3. I-th occurrence of an action among many.In this coin lemma we consider the coin event of 2 with the di�erence that we considerthe ith occurrence of an action rather than the �rst occurrence. The lower bound on theprobability of this event is the same as the lower bound on the probability of the eventof 2.4. Conjunction of separate coin events.In this coin lemma we consider the conjunction of several coin events of the kind of 3. Weshow that if each one of the coin events involves disjoint occurrences of actions, then thelower bound on the probability of the conjunction is the product of the lower bounds onthe probability of each of the involved coin events.As an example, consider n processes that run in parallel, and suppose that each processcan 
ip a fair coin. For each i let xi be either head or tail. Then, the probability that foreach process i either no coin is 
ipped or the �rst coin that is 
ipped yields xi is at least1=2n.Some more general and complex coin lemmas are presented in Section 6.4; several other coinlemmas are likely to be derived in the future. Before presenting the simple coin lemmas in fulldetail we give just a rough idea of the coin lemmas of Section 6.4.5. Conjunction of separate coin events with multiple outcomes.105



In this coin lemma we consider again the conjunction of several coin events that involvedisjoint occurrences of actions. However we allow more freedom. First of all an action ispaired with more than one set of states, thus allowing the observation of more than oneoutcome; second, we allow for multiple joint observations.As an example, the coin lemma says that if n processes run in parallel and each one ofthem can 
ip a coin, then the probability that at least half of the processes either do not
ip a coin or 
ip head is at least 1=2. Similarly, if each process can roll a dice, then theprobability that if process 1 rolls 1 then the other processes do not roll a number di�erentfrom 1 is at least (1=6)n + 5=6, which is essentially the probability of rolling n dices andthat either all processes give 1 or process 1 does not give 1.6. A generalized coin lemma.In this coin lemma we generalize the idea of 5, but this time we do not use actions toidentify the random draws of interest. The reader is referred to Section 6.4.2 for furtherdetails.6.2.1 First Occurrence of an ActionLet M be a probabilistic automaton, and let (a; U) be a pair consisting of an action of M anda set of states of M . Let FIRST(a; U) be a function that applied to a probabilistic executionfragment H of M returns the set of executions � of 
H such that either a does not occur in�.qH0 , or a occurs in �.qH0 and the state reached after the �rst occurrence of a is a state of U .It is simple to check that FIRST(a; U) is an event schema since, for each probabilisticexecution fragment H of M , the complement of FIRST(a; U)(H) is the set of executions � of
H such that action a occurs in �.qH0 , and the state reached after the �rst occurrence of a isnot a state of U . This set is expressible as a union of cones, and thus it is an event.The event schema FIRST(a; U) identi�es the �rst random draw associated with action athat occurs in a probabilistic execution fragment H , and requires the outcome of the randomdraw to be in a speci�c range, namely in U . The intuition behind the use of such a coin event,is that a system performs well if the outcome of the �rst random draw involving a is in U .From the de�nition of FIRST(a; U), we assume also that the system performs well whenever adoes not occur at all. Thus, if an adversary has the possibility not to schedule a, then it has abetter chance to degrade the performance of a system by scheduling a.The following lemma provides a lower bound to the probability of FIRST(a; U). Informally,it states that if whenever there is a transition of M that involves action a the occurrence of aimplies that a state of U is reached with probability at least p, then p is a lower bound on theprobability of FIRST(a; U).Lemma 6.2.1 Let M be a probabilistic automaton, and let (a; U) be a pair consisting of anaction of M and a set of states of M . Let p be a real number between 0 and 1 such that foreach transition (s;P) of M where P [a] > 0, P [U ja] � p. Then, for each probabilistic executionfragment H of M , PH [FIRST(a; U)(H)]� p.Proof. For convenience denote FIRST(a; U)(H) by E, and for each state q of H , denote by
(q; U) the set f(a; q0) 2 
Hq j lstate(q0) =2 Ug. Let � be the set of states q of H such that106



action a does not occur in q.qH0 , and PHq [a] > 0. Then,PH [E] = Xq2� X(a;q0)2
(q;U)PH [Cq]PHq [(a; q0)]: (6.1)By expressing PHq [(a; q0)] as a conditional probability and rearranging the expression, we obtainPH [E] = Xq2�PH [Cq]PHq [a]0B@ X(a;q0)2
(q;U)PHq [(a; q0)ja]1CA : (6.2)From the de�nition of a probabilistic execution fragment and the de�nition of 
(q; U), for eachelement q of � there is a combined transition tr =Pi pitr i of M such that trHq = q a tr andX(a;q0)2
(q;U)PHq [(a; q0)ja] = Ptr [U ja] = Ptr [U \ a]Ptr [a] = Pi piPtr i [U \ a]Pi piPtr i [a] : (6.3)By multiplying and dividing each ith summand of the enumerator by Ptr i [a], using the hypoth-esis of the lemma, i.e., for each i Ptr i [U \ a] � (1� p), and simplifying algebraically, from (6.3)we obtainX(a;q0)2
(q;U)PHq [(a; q0)ja] � (1� p): (6.4)By using (6.4) in (6.2) we obtainPH [E] � (1� p)0@Xq2�PH [Cq]PHq [a]1A : (6.5)Furthermore, the subexpression Pq2� PH [Cq]PHq [a] is the probability that a occurs in H , whichis at most 1. Thus,PH [E] � (1� p): (6.6)This completes the proof.6.2.2 First Occurrence of an Action among ManyThe event schema FIRST(a; U) can be generalized to account for the �rst action that occursamong several possible ones. Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un)be pairs consisting of an action of M and a set of states of M such that the actions ai areall distinct. Then de�ne FIRST((a1; U1); : : : ; (an; Un)) to be the function that applied to aprobabilistic execution fragment H ofM returns the set of executions � of 
H such that eithernone of the ai's occurs in �.qH0 , or some of the ai's occur in �.qH0 , and if ai is the �rst of thoseactions that occurs, then the state reached after the �rst occurrence of ai is a state of Ui.It is simple again to check that FIRST((a1; U1); : : : ; (an; Un)) is an event schema since, foreach probabilistic execution fragment H , the complement of FIRST((a1; U1); : : : ; (an; Un))(H)can be expressed as a union of cones.Lemma 6.2.1 extends to this case. 107



Lemma 6.2.2 Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un) be pairs con-sisting of an action of M and a set of states of M such that the actions ai are all distinct. Letfpigi=1;:::;n be a collection of real numbers between 0 and 1 such that for each i, 1 � i � n,and each transition (s;P) of M where P [ai] > 0, P [U jai] � pi. Then, for each probabilisticexecution fragment H of M , PH [FIRST((a1; U1); : : : ; (an; Un))(H)]� min(p1; : : : ; pn).Proof. Let V be fa1; : : : ; ang, and let p be the minimum of fp1; : : : ; png. For convenience,denote FIRST((a1; U1); : : : ; (an; Un))(H) by E, and for each state q of H , denote by 
(q; E)the set [i2f1;:::;ngf(ai; q0) 2 
Hq j lstate(q0) =2 Uig. Then, for each transition (q;PHq ) of H suchthat PHq [V ] > 0,PHq [
(q; E)jV ] � (1� p): (6.7)To prove (6.7), let, for each i = 1; : : : ; n, 
(q; ai; U i) denote the set f(ai; q0) 2 
Hq j lstate(q0) =2Uig. Then,PHq [
(q; E)jV ] = Xi2f1;:::;ngPHq [
(q; ai; U i)jV ]: (6.8)By using conditional probabilities, Equation (6.8) can be rewritten intoPHq [
(q; E)jV ] = Xi2f1;:::;ngPHq [aijV ]PHq [
(q; ai; U i)jai]: (6.9)Following the same argument as in the proof of Lemma 6.2.1, for each i, PHq [
(q; ai; U i)jai] �(1� p); moreover, Pi PHq [aijV ] = 1. Thus, (6.7) follows directly.The rest of the proof follows te lines of the proof of Lemma 6.2.1. Let � be the set of statesq of H such that no action of V occurs in q.qH0 , and PHq [V ] > 0. Then,PH [E] = Xq2� X(a;q0)2
(q;E)PH [Cq]PHq [(a; q0)]: (6.10)By expressing PHq [(a; q0)] as a conditional probability and rearranging the expression, we obtainPH [E] = Xq2�PH [Cq]PHq [V ]0B@ X(a;q0)2
(q;E)PHq [(a; q0)jV ]1CA : (6.11)The subexpression P(a;q0)2
(q;E) PHq [(a; q0)jV ] is PHq [
(q; E)jV ], which is less than or equal to(1� p) from (6.7). Thus,PH [E] � (1� p)0@Xq2�PH [Cq]PHq [V ]1A : (6.12)Furthermore, the subexpression Pq2� PH [Cq]PHq [V ] is the probability that an action from Voccurs in H , which is at most 1. Thus,PH [E] � (1� p): (6.13)This completes the proof. 108



6.2.3 I-th Occurrence of an Action among ManyIn the de�nition of FIRST we have considered the �rst action among a given set that occursin a probabilistic execution fragment H . However, the results for FIRST are valid also ifwe consider the ith occurrence of an action instead of the �rst occurrence. This observationsuggests a new more general event schema.Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un) be pairs consisting ofan action of M and a set of states of M such that the actions ai are all distinct. Thende�ne OCC (i; (a1; U1); : : : ; (an; Un)) to be the function that applied to a probabilistic executionfragment H of M returns the set of executions � of 
H such that either there are less than ioccurrences of actions from fa1; : : : ; ang in �.qH0 , or there are at least i occurrences of actionsfrom fa1; : : : ; ang, and, if aj is the action that occurs as the ith one, then the state reachedafter its occurrence is a state of Ui.Since in the proof of Lemma 6.2.2 we never use the fact that it is the �rst occurrence of anaction that is considered, Lemma 6.2.2 carries over to the ith occurrence trivially.Lemma 6.2.3 Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un) be pairs con-sisting of an action of M and a set of states of M such that the actions ai are all distinct. Letfpjgj=1;:::;n be a collection of real numbers between 0 and 1 such that for each j 2 f1; : : : ; ngand each transition (s;P) of M where P [aj ] > 0, P [U jaj ] � pj. Then, for each probabilisticexecution fragment H of M , PH [OCC(i; (a1; U1); : : : ; (an; Un))(H)]� min(p1; : : : ; pn).6.2.4 Conjunction of Separate Coin EventsIn this section we study what happens if we consider several events of the kind OCC together.In order to simplify the notation, we consider only event schemas of the kind OCC(i; (a; U))since, as we have seen in the proof of Lemma 6.2.2, the case with multiple actions can bereduced to the case with a single action.The lemma that we prove states that if we consider several separate coin events, i.e., coinevents that involve di�erent random draws, each one with its own lower bound, then the lowerbound of their conjunction is the product of the lower bounds. In other words, an adversarycan introduce dependencies by increasing the probability of the conjunction of events, but itcan never decrease the probability below the value that we would get by considering all theevents to be independent.Lemma 6.2.4 Let M be a probabilistic automaton, and let (k1; a1; U1); : : : ; (kn; an; Un) be acollection of triplets consisting of a natural number, an action of M and a set of states ofM , such that the pairs (ki; ai) are all distinct. Let fpjgj=1;:::;n be a collection of real num-bers between 0 and 1 such that for each j 2 f1; : : : ; ng and each transition (s;P) of Mwhere P [aj ] > 0, P [U jaj ] � pj. Then, for each probabilistic execution fragment H of M ,PH [OCC(k1; (a1; U1))(H)\ � � � \ OCC(kn; (an; Un))(H)] � p1 � � �pn.Proof. For each I � f1; : : : ; ng, denote a generic event schema \i2IOCC(ki; (ai; Ui)) by eI .For each i = 1; : : : ; n and each state q of H , denote by 
(q; i; Ui) the set f(ai; q0) 2 
Hq jlstate(q0) 2 Uig of pairs where ai occurs and Ui is reached, and denote by 
(q; i; Ui) the setf(ai; q0) 2 
Hq j lstate(q0) =2 Uig of pairs where ai occurs and Ui is not reached. For each action109



a and each state q of H , let a(q) denote the number of occurrences of action a in q.qH0 . Foreach i = 1; : : : ; n, let �i be the set of states q of H such that each action aj ; 1 � j � n occursless than kj times in q.qH0 , action ai occurs ki � 1 times in q.qH0 , and PHq [ai] > 0. For eachi = 1; : : : ; n and each state q of H such that ai(q) < ki, let OCC(ki; (ai; Ui)).q denote the eventschema OCC (ki � ai(q); (ai; Ui)). Finally, for each I � f1; : : : ; ng and each suitable state q ofH , let eI.q denote the event schema \i2IOCC (ki; (ai; Ui)).q.We prove the lemma by induction on n. If n = 1, then the result follows directly fromLemma 6.2.1. Otherwise,PH [e1;:::;n(H)] = Xi2f1;:::;ng Xq2�i PH [Cq]0B@0B@ X(ai;q0)2
(q;i;Ui)PHq [(ai; q0)]1CA+ 0@ X(ai;q0)2
(q;i;Ui)PHq [(ai; q0)]PH.q0 [ef1;:::;i�1;i+1;:::;ng.q0(H.q0)]1A1A : (6.14)The �rst summand of Expression (6.14) expresses the probability that action ai occurs from qand leads to a state not in Ui; the second summand expresses the probability that ai occurs, leadsto a state of Ui, and from the reached state something happen so that the resulting executionis not in e1;:::;n(H). From induction, and by using conditional probabilities, we obtainPH [e1;:::;n(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]0B@0B@ X(ai;q0)2
(q;i;Ui)PHq [(ai; q0)jai]1CA+ 0@ X(ai;q0)2
(q;i;Ui)PHq [(ai; q0)jai])(1� p1 � � �pi�1pi+1 � � �pn)1A1A : (6.15)Let, for each i and each q, pi;q = PHq [
(q; i; Ui)jai]. Then, (6.15) becomesPH [e1;:::;n(H)]� Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]((1� pi;q) + (1� p1 � � �pi�1pi+1 � � �pn)pi;q); (6.16)which becomesPH [e1;:::;n(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai](1� p1 � � �pi�1pi;qpi+1 � � �pn) (6.17)after simple algebraic simpli�cations. Using the same argument as in the proof of Lemma 6.2.1,for each i and each q, pi;q � pi. Thus,PH [e1;:::;n(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai](1� p1 � � �pn): (6.18)Finally, observe that Pi2f1;:::;ngPq2�i PH [Cq]PHq [ai] is the probability that for some i actionai occurs at least ki times. Thus,PH [e1;:::;n(H)] � (1� p1 � � �pn): (6.19)This completes the proof. 110



Figure 6-1: The Dining Philosopher problem with 6 philosophers.6.3 Example: Randomized Dining PhilosophersIn this section we apply the methodology presented so far to prove the correctness of the Ran-domized Dining Philosophers algorithm of Lehmann and Rabin [LR81]. The proof is structuredin two levels. The high level proof consists of a collection of progress statements that are con-catenated together; the low level proof consists of the proofs of the statements of the high levelproof. The low level proof is based on the coin lemmas.6.3.1 The ProblemThere are n philosophers sat at a round table. Each philosopher has a plate in from of him, afork on its left, and a fork on its right. The left fork is shared with his left neighbor philosopher,and the right fork is shared with his right neighbor philosopher. At the center of the table thereis a bowl full of spaghetti. Figure 6-1 illustrates the situation for n = 6. Each philosophergoes repeatedly through phases where he is thinking and where he is eating. However, eachphilosopher needs both of its forks in order to eat. The problem is the following:\What procedure should each philosopher follow to get his forks and to put themdown in order to make sure that every philosopher that is hungry will eventually beable to eat?"A simpler problem is the following.\What procedure should each philosopher follow to get his forks and to put them downin order to make sure that whenever somebody is hungry somebody will eventuallybe able to eat?"The second problem is simpler than the �rst problem since it allows for some philosopherto starve. It is known from [LR81] that there is no symmetric solution even for the simpledining philosophers problem, i.e., there is no deterministic solution for the dining philosophersproblem where each philosopher follows exactly the same protocol; some mechanism to breakthe symmetry is necessary. In the algorithm of Lehmann and Rabin each philosopher followsexactly the same protocol and randomness is used to break the symmetry.111



Shared variables: Resj 2 ffree; takeng; j = 1; : : : ; n, initially free.Local variables: ui 2 fleft; rightg; i = 1; : : : ; nCode for process i:0. try ** beginning of Trying Section **1. < ui  random> ** choose left or right with equal probability **2. < if Res(i;ui) = free thenRes(i;ui) := taken ** pick up �rst resource **else goto 2. >3. < if Res(i;opp(ui)) = free thenRes(i;opp(ui)) := taken; ** pick up second resource **goto 5. >4. < Res(i;ui) := free; goto 1.> ** put down �rst resource **5. crit ** end of Trying Section **** Critical Section **6. exit ** beginning of Exit Section **7. < ui  left or right ** nondeterministic choice **Res(i;opp(ui)) := free > ** put down �rst resources **8. < Res(i;ui) := free > ** put down second resources **9. rem ** end of Exit Section **** Remainder Section **Figure 6-2: The Lehmann-Rabin algorithm. The operations between angular brackets areperformed atomically.6.3.2 The AlgorithmEach hungry philosopher proceeds according to the following protocol.1. Flip a fair coin to choose between the left and the right fork.2. Wait for the chosen fork to become free and get it.3. Try to get the second fork:if it is free, then get it;if it is taken, then put down the �rst fork and go to 1.4. Eat.Each philosopher that has terminated to eat puts down his forks one at a time. The intuitionbehind the use of randomness is that the actual protocol used by each philosopher is determinedby an in�nite sequence of random coin 
ips. Thus, with probability 1 each philosopher followsa di�erent protocol.Figure 6-2 gives a more precise representation of the protocol, using a terminology thatis closer to computer science; thus, a philosopher is called a process, and a fork is called aresource. A philosopher who is thinking is said to be in its reminder region; a philosopher112
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2Figure 6-3: Numbering processes and resources in the Dining Philosophers problem.who is eating is said to be in its critical region; a philosopher who is trying to get its forks issaid to be in its trying region; and a philosopher who is putting down its forks is said to be inits exit region. The n resources (forks) are represented by n shared variables Res1; : : : ;Resn,each of which can assume values in ffree; takeng. Each process (philosopher) i ignores itsown name and the names of its adjacent resources. However, each process i is able to referto its adjacent resources by relative names: Res(i;left) is the resource located to the left, andRes(i;right) is the resource to the right of i. Each process i has a private variable ui, whose valueis in fleft; rightg, which is used either to keep track of the resource that process i currentlyholds, or, if no resource is held, to keep track of the resource that process i is going to takenext. For notational convenience we de�ne an operator opp that complements the value of itsargument, i.e., opp(right) = left and opp(left) = right.We now de�ne a probabilistic automatonM that represents the evolution of n philosophers.We assume that process i + 1 is on the right of process i and that resource Resi is betweenprocesses i and i+ 1 (see Figure 6-3). We also identify labels modulo n so that, for instance,process n + 1 coincides with process 1.A state s of M is a tuple (X1; : : : ; Xn;Res1; : : : ;Resn) containing the local state Xi of eachprocess i, and the value of each resource Resi. Each local state Xi is a pair (pci; ui) consistingof a program counter pci and the local variable ui. The program counter of each process keepstrack of the current instruction in the code of Figure 6-2. Rather than representing the valueof the program counter with a number, we use a more suggestive notation which is explainedin Table 6.1. Also, the execution of each instruction is represented by an action. Actions tryi,criti, remi, exiti are external; all the other actions are internal.The start state of M assigns the value free to all the shared variables Resi, the value R toeach program counter pci, and an arbitrary value to each variable ui. The transition relationof M is derived directly from Figure 6-2. For example, for each state where pci = F there isan internal transition labeled with flipi that changes pci into W and assigns left to ui withprobability 1=2 and right to ui with probability 1=2; from each state where Xi = (W; left)there is a transition labeled with waiti that does not change the state if Res(i;left) = taken,and changes pci into S and Res(i;left) into taken if Res(i;left) = free; for each state where113



Nr. pci Action Informal meaning0 R tryi Reminder region1 F flipi Ready to Flip2 W waiti Waiting for �rst resource3 S secondi Checking for Second resource4 D dropi Dropping �rst resource5 P criti Pre-critical region6 C exiti Critical region7 EF dropfi Exit: drop First resource8 ES dropsi Exit: drop Second resource9 ER remi Exit: move to Reminder regionTable 6.1: Program counter and action names for the Lehmann-Rabin algorithm.pci = EF there are two transitions labeled with action dropfi: one transition sets ui to rightand makes Res(i;left) free, and the other transition sets ui to left makes Res(i;right) free. Thetwo separate transitions correspond to a nondeterministic choice that is left to the adversary.The value of each pair Xi can be represented concisely by the value of pci and an arrow(to the left or to the right) which describes the value of ui. Thus, informally, a process i is instate S! or D! (resp. S or D ) when i is in state S or D while holding its right (resp. left)resource; process i is in state W! (resp. W ) when i is waiting for its right (resp. left) resourceto become free; process i is in state ES! (resp. ES ) when i is in its exit region and it is stillholding its right (resp. left) resource. Sometimes we are interested in sets of pairs; for example,whenever pci = F the value of ui is irrelevant. With the simple value of pci we denote the set ofthe two pairs f(pci; left); (pci; right)g. Finally, with the symbol # we denote any pair wherepci 2 fW;S;Dg. The arrow notation is used as before.For each state s = (X1; : : : ; Xn;Res1; : : : ;Resn) of M we denote Xi by Xi(s) and Resi byResi(s). Also, for any set St of states of a process i, we denote by Xi 2 St , or alternativelyXi = St the set of states s of M such that Xi(s) 2 St . Sometimes we abuse notation in thesense that we write expressions like Xi 2 fF;Dg with the meaning Xi 2 F [ D. Finally, wewrite Xi = E for Xi = fEF ; ES ; ERg, and we write Xi = T for Xi 2 fF;W; S;D;Pg.6.3.3 The High Level ProofIn this section we give the high level proof that the algorithm of Lehmann and Rabin guaranteesprogress, i.e., that from every state where some process is in its trying region, some processenters eventually its critical region with probability 1. We assume that each process that isready to perform a transition is allowed eventually to do so: process i is ready to perform atransition whenever it enables an action di�erent from tryi or exiti. Actions tryi and exitiare under the control of the user (a philosopher decides whether to eat or think), and hence,by assumption, under the control of the adversary.Formally, consider the probabilistic automaton M of Section 6.3.2. De�ne an extendedexecution � of M to be fair i� for each process i either � is �nite and its last state enables114



tryi or exiti, or � is in�nite and either actions of process i occur in�nitely many times in �or � = �1 a �2 and all the states of �2 enable either tryi or exiti. De�ne Fairadvs to be theset of adversaries A for M such that, for every �nite execution fragment � of M the elementsof 
prexec(M;A;�) are extended fair execution fragments of M . Then Fairadvs is �nite-history-insensitive: if A is an adversary of Fairadvs and q is a �nite execution fragment of M , then itis easy to verify that the adversary Aq such thatAq(�) = ( A(�.q) if q � �A(�) otherwiseis an adversary of Fairadvs. Let rstates(M) denote the set of reachable states of M . LetT 4= fs 2 rstates(M) j 9iXi(s) 2 fTggdenote the sets of reachable states of M where some process is in its trying region, and letC 4= fs 2 rstates(M) j 9iXi(s) = Cgdenote the sets of reachable states of M where some process is in its critical region. We �rstshow thatT �!1=8Fairadvs C; (6.20)i.e., that, starting from any reachable state where some process is in its trying region, for allthe adversaries of Fairadvs, some process enters its critical region eventually with probability atleast 1=8. Note that (6.20) is satis�ed trivially if some process is initially in its critical region.Our proof is divided into several phases, each one concerned with the property of makingsome partial progress toward C. The sets of states associated with the di�erent phases areexpressed in terms of T ;RT ;F ;G;P ; and C. Here,RT 4= fs 2 T j 8iXi(s) 2 fER; R; Tggis the set of states where at least one process is in its trying region and where no process is inits critical region or holds resources while being in its exit region.F 4= fs 2 RT j 9iXi(s) = Fgis the set of states of RT where some process is ready to 
ip a coin.P 4= fs 2 rstates(M) j 9iXi(s) = Pgis the sets of reachable states of M where some process is in its pre-critical region, i.e., wheresome process is ready to enter its critical region. The set G is the most important for theanalysis. To motivate the de�nition, we de�ne the following notions. We say that a process iis committed if Xi 2 fW;Sg, and that a process i potentially controls Resi (resp. Resi�1) ifXi 2 fW!; S!; D!g (resp. Xi 2 fW ; S ; D g). Informally said, a state in RT is in G if and onlyif there is a committed process whose second resource is not potentially controlled by anotherprocess. Such a process is called a good process. Formally,G 4= fs 2 RT j 9iXi(s) 2 fW ; S g and Xi+1(s) 2 fER; R; F;#!g; orXi(s) 2 fW!; S!g and Xi�1(s) 2 fER; R; F;# gg115



Reaching a state of G is a substantial progress toward reaching a state of C. Somehow, a goodstate is a place where the symmetry is broken. The progress statements of the proof are thefollowing.T �!1 RT [ C (Proposition 6.3.3),RT �!1 F [ G [ P (Proposition 6.3.16),F �!1=2 G [ P (Proposition 6.3.15),G �!1=4 P (Proposition 6.3.12),P �!1 C (Proposition 6.3.1).The �rst statement says that eventually every process in its exit region relinquishes its resources.In this way we avoid to deal with resources held by processes who do not want to enter thecritical region. The second statement says that eventually either a good state is reached, or aplace where some process is ready to 
ip its coin is reached. The 
ipping points are potentialpoints where the symmetry is broken, and thus reaching a 
ipping point means progress. Thethird statement says that from a 
ipping point there is probability 1=2 to reach a good state.Finally, the fourth statement says that from a good state there is probability 1=4 to be readyto enter the critical region. By combining the statements above by means of Proposition 5.5.3and Theorem 5.5.2 we obtainT �!1=8 C; (6.21)which is the property that was to be proven. Observe that once some process is in the tryingregion there is always some process in the trying region until some process reaches the criticalregion. Formally, M satis�es T Unless C. Thus, Proposition 5.5.6 applies, leading toT �!1 C: (6.22)6.3.4 The Low Level ProofIn this section we prove the �ve progress statements used in Section 6.3.3. The proofs aredetailed operational arguments. The main point to observe is that randomness is handledexclusively by the coin lemmas, and thus, any technique for the veri�cation of ordinary automatacould be applied as well.For the sake of clarity, we do not prove the relations in the order they were presented.Throughout the proof we abuse notation by writing expressions of the kind FIRST(flipi; left)for the event schema FIRST(flipi; fs 2 states(M) j Xi(s) = W g). We write also sentences ofthe form \If FIRST(flipi; left) then �" meaning that for each valid probabilistic executionfragment H , each element of FIRST(flipi; left)(H) satis�es �.Proposition 6.3.1 If some process is in P , then some process enters C, i.e.,P �!1 C:Proof. Let i be the process in P . Then, from the de�nition of Fairadvs, process i is scheduledeventually, and enters C. 116



Lemma 6.3.2 If some process is in its Exit region, then it will eventually enter R.Proof. The process needs to perform two transitions to relinquish its two resources, and thenone transition to send a rem message to the user. Every adversary of Fairadvs guarantees thatthose three transitions are performed eventually.Proposition 6.3.3 T �! RT [ C.Proof. From Lemma 6.3.2, every process that begins in EF or ES relinquishes its resources.If no process begins in C or enters C in the meantime, then the state reached at this point isa state of RT ; otherwise, the starting state or the state reached when the �rst process entersC is a state of C.We now turn to the proof of G �!1=4 P . The following lemmas form a detailed cases analysisof the di�erent situations that can arise in states of G. Informally, each lemma shows that aspeci�c coin event is a sub-event of the properties of reaching some other state. A preliminarylemma is an invariant of M , which guarantees that the resources are held by those processeswho think to be holding them.Lemma 6.3.4 For each reachable state s of M and each i, 1 � i � n, Resi = taken i�Xi(s) 2 fS!; D!; P; C; EF ; ES!g or Xi+1(s) 2 fS ; D ; P; C; EF ; ES g. Moreover, for each reachablestate s of M and each i, 1 � i � n, it is not the case that Xi(s) 2 fS!; D!; P; C; EF ; ES!g andXi+1(s) 2 fS ; D ; P; C; EF ; ES g, i.e., only one process at a time can hold one resource.Proof. The proof of this lemma is a standard proof of invariants. Simply verify that the twoproperties are true for the start states of M and are preserved by each transition of M .Lemma 6.3.51. Let Xi�1 2 fER; R; Fg and Xi = W . If FIRST(flipi�1; left), then, eventually, eitherXi�1 = P or Xi = S.2. Let Xi�1 = D and Xi = W . If FIRST(flipi�1; left), then, eventually, either Xi�1 = Por Xi = S.3. Let Xi�1 = S and Xi = W . If FIRST(flipi�1; left), then, eventually, either Xi�1 = Por Xi = S.4. Let Xi�1 = W and Xi = W . If FIRST(flipi�1; left), then, eventually, either Xi�1 = Por Xi = S.Proof. The four proofs start in the same way. Let s be a state of M satisfying the respectiveproperties of items 1 or 2 or 3 or 4 . Let A be an adversary of Fairadvs, and let � be anexecution of 
prexec(M;fsg;A) where the result of the �rst coin 
ip of process i � 1, if it occurs,is left. 117



1. By hypothesis and Lemma 6.3.4, i � 1 does not hold any resource at the beginning of �and has to obtain Resi�2 (its left resource) before pursuing Resi�1. From the de�nitionof Fairadvs, i performs a transition eventually in �. If i � 1 does not hold Resi�1 wheni performs this transition, then i progresses into con�guration S. If not, it must be thecase that i� 1 succeeded in getting it in the meanwhile. But, in this case, since i� 1 
ipsleft, Resi�1 was the second resource needed by i� 1 and i� 1 therefore entered P .2. If Xi = S eventually, then we are done. Otherwise, process i � 1 performs a transitioneventually. Let � = �1 a �2 such that the last transition of �1 is the �rst transition takenby process i � 1. Then Xi�1(fstate(�2)) = F and Xi(fstate(�2)) = W . Since processi� 1 did not 
ip any coin during �1, from the �nite-history-insensitivity of Fairadvs andItem 1 we conclude.3. If Xi = S eventually, then we are done. Otherwise, process i � 1 performs a transitioneventually. Let � = �1 a �2 such that the last transition of �1 is the �rst transition takenby process i � 1. If Xi�1(fstate(�2)) = P then we are also done. Otherwise it must bethe case that Xi�1(fstate(�2)) = D and Xi(fstate(�2)) = W . Since process i� 1 did not
ip any coin during �1, from the �nite-history-insensitivity of Fairadvs and Item 2 weconclude.4. If Xi = S eventually, then we are done. Otherwise, process i checks its left resourceeventually and fails, process i � 1 gets its right resource before, and hence reaches atleast state S. Let � = �1 a �2 where the last transition of �1 is the �rst transition of �that leads process i� 1 to state S. Then Xi�1(fstate(�2)) = S and Xi(fstate(�2)) = W .Since process i� 1 did not 
ip any coin during �1, from the �nite-history-insensitivity ofFairadvs and Item 3 we conclude.Lemma 6.3.6 Assume that Xi�1 2 fER; R; Tg and Xi = W . If FIRST(flipi�1; left), then,eventually, either Xi�1 = P or Xi = S.Proof. Follows directly from Lemma 6.3.5 after observing thatXi�1 2 fER; R; Tg is equivalentto Xi�1 2 fER; R; F;W; S;D;Pg.The next lemma is a useful tool for the proofs of Lemmas 6.3.8, 6.3.9, and 6.3.10.Lemma 6.3.7 Let Xi 2 fW ; S g or Xi 2 fER; R; F; D g with FIRST(flipi; left). Further-more, let Xi+1 2 fW!; S!g or Xi+1 2 fER; R; F; D!g with FIRST(flipi+1; right). Then the�rst of the two processes i or i+ 1 testing its second resource enters P after having performedthis test (if this time ever comes).Proof. By Lemma 6.3.4 Resi is free. Moreover, Resi is the second resource needed by both iand i+ 1. Whichever tests for it �rst gets it and enters P .Lemma 6.3.8 If Xi = S and Xi+1 2 fW!; S!g then, eventually, one of the two processes i ori+ 1 enters P . The same result holds if Xi 2 fW ; S g and Xi+1 = S!.118



Proof. Being in state S, process i tests its second resource eventually. An application ofLemma 6.3.7 �nishes the proof.Lemma 6.3.9 Let Xi = S and Xi+1 2 fER; R; F; D!g. If FIRST(flipi+1; right), then, even-tually, one of the two processes i or i+1 enters P . The same result holds if Xi 2 fER; R; F;Dg,Xi+1 = S! and FIRST(flipi; left).Proof. Being in state S, process i tests its second resource eventually. An application ofLemma 6.3.7 �nishes the proof.Lemma 6.3.10 Assume that Xi�1 2 fER; R; Tg, Xi = W , and Xi+1 2 fER; R; F;W!; D!g. IfFIRST(flipi�1; left) and FIRST(flipi+1; right), then eventually one of the three processesi� 1, i or i+ 1 enters P .Proof. Let s be a state of M such that Xi�1(s) 2 fER; R; Tg, Xi(s) = W , and Xi+1(s) 2fER; R; F;W!; D!g. Let A be an adversary of Fairadvs, and let � be an extended execution of
prexec(M;fsg;A) where the result of the �rst coin 
ip of process i � 1 is left and the resultof the �rst coin 
ip of process i + 1 is right. By Lemma 6.3.6, eventually either processi � 1 reaches con�guration P in � or process i reaches con�guration S in �. If i � 1 reachescon�guration P , then we are done. If not, then let � = �1 a �2 such that lstate(�1) is the�rst state s0 of � with Xi(s0) = S . If i + 1 enters P before the end of �1, then we are done.Otherwise, Xi+1(fstate(�2)) is either in fW!; S!g or it is in fER; R; F; D!g and process i + 1has not 
ipped any coin yet in �. From the �nite-history-insensitivity of Fairadvs we can thenapply Lemma 6.3.7: eventually process i tests its second resource and by Lemma 6.3.7 processi enters P if process i+ 1 did not check its second resource in the meantime. If process i + 1checks its second resource before process i does the same, then by Lemma 6.3.7 process i + 1enters P .Lemma 6.3.11 Assume that Xi+2 2 fER; R; Tg, Xi+1 = W!, and Xi 2 fER; R; F;W ; D g. IfFIRST(flipi; left) and FIRST(flipi+2; right), then eventually one of the three processes i,i+ 1 or i+ 2, enters P .Proof. The proof is analogous to the one of Lemma 6.3.10. This lemma is the symmetric caseof Lemma 6.3.10.Proposition 6.3.12 Starting from a global con�guration in G, then, with probability at least1=4, some process enters P eventually. Equivalently:G �!1=4 P :Proof. Lemmas 6.3.8 and 6.3.9 jointly treat the case where Xi = S and Xi+1 2 fER; R; F;#!gand the symmetric case where Xi 2 fER; R; F;# g and Xi+1 = S!; Lemmas 6.3.10 and 6.3.11jointly treat the case where Xi = W and Xi+1 2 fER; R; F;W!; D!g and the symmetric casewhere Xi 2 fER; R; F;W ; D g and Xi+1 = W!.119



Speci�cally, each lemma shows that a compound event of the kind FIRST(flipi; x) andFIRST(flipj ; y) leads to P . Each of the basic events FIRST(flipi; x) has probability at least1=2. From Lemma 6.2.4 each of the compound events has probability at least 1=4. Thus theprobability of reaching P eventually is at least 1=4.We now turn to F �!1=2 G [ P . The proof is divided in two parts and constitute the globalargument of the proof of progress, i.e., the argument that focuses on the whole system ratherthan on a couple of processes.Lemma 6.3.13 Start with a state s of F . If there exists a process i for which Xi(s) = F and(Xi�1; Xi+1) 6= (#!;# ), then, with probability at least 1=2 a state of G[P is reached eventually.Proof. If s 2 G [P , then the result is trivial. Let s be a state of F � (G [P) and let i be suchthat Xi(s) = F and (Xi�1; Xi+1) 6= (#!;# ). Assume without loss of generality that Xi+1 6= # ,i.e., Xi+1 2 fER; R; F;#!g. The case for Xi�1 6= #! is similar. Furthermore, we can assumethat Xi+1 2 fER; R; F; D!g since if Xi+1 2 fW!; S!g then s is already in G. We show that theevent schema FIRST((flipi; left); (flipi+1; right)), which by Lemma 6.2.2 has probabilityat least 1=2, leads eventually to a state of G [ P . Let A be an adversary of Fairadvs, and let� be an extended execution of 
prexec(M;fsg;A) where if process i 
ips before process i+ 1 thenprocess i 
ips left, and if process i+ 1 
ips before process i then process i+ 1 
ips right.Then, eventually, i performs one transition and reaches W . Let j 2 fi; i+ 1g be the �rst ofi and i+1 that reaches W and let s1 be the state reached after the �rst time process j reachesW . If some process reached P in the meantime, then we are done. Otherwise there are twocases to consider. If j = i, then, flipi yields left and Xi(s1) = W whereas Xi+1 is (still) infER; R; F; D!g. Therefore, s1 2 G. If j = i + 1, then flipi+1 yields right and Xi+1(s1) = W!whereas Xi(s1) is (still) F . Therefore, s1 2 G.Lemma 6.3.14 Start with a state s of F . If there exists a process i for which Xi(s) = F and(Xi�1(s); Xi+1(s)) = (#!;# ). Then, with probability at least 1=2, a state of G [ P is reachedeventually.Proof. The hypothesis can be summarized into the form (Xi�1(s); Xi(s); Xi+1(s)) = (#!; F;# ).Since i�1 and i+1 point in di�erent directions, by moving to the right of i+1 there is a processk pointing to the left such that process k + 1 either points to the right or is in fER; R; F; Pg,i.e., Xk(s) 2 fW ; S ; D g and Xk+1(s) 2 fER; R; F;W!; S!; D!; Pg.If Xk(s) 2 fW ; S g and Xk+1(s) 6= P then s 2 G and we are done; if Xk+1(s) = P thens 2 P and we are done. Thus, we can restrict our attention to the case where Xk(s) = D .We show that FIRST((flipk; left); (flipk+1; right)), which by Lemma 6.2.2 has proba-bility at least 1=2, leads eventually to G [ P . Let A be an adversary of Fairadvs, and let �be an extended execution of 
prexec(M;fsg;A) where if process k 
ips before process k + 1 thenprocess k 
ips left, and if process k + 1 
ips before process k then process k + 1 
ips right.Then, eventually, process k performs at least two transitions and hence goes to con�gurationW . Let j 2 fk; k+1g be the �rst of k and k+1 that reaches W and let s1 be the state reachedafter the �rst time process j reachesW . If some process reached P in the meantime, then we are120



done. Otherwise, we distinguish two cases. If j = k, then, flipk yields left and Xk(s1) = W whereas Xk+1 is (still) in fER; R; F;#!g. Therefore, s1 2 G. If j = k + 1, then flipk+1 yieldsright and Xk+1(s1) = W! whereas Xk(s1) is (still) in fD ; Fg. Therefore, s1 2 G.Proposition 6.3.15 Start with a state s of F . Then, with probability at least 1=2, a state ofG [ P is reached eventually. Equivalently:F �!1=2 G [ P :Proof. The hypothesis of Lemmas 6.3.13 and 6.3.14 form a partition of F .Finally, we prove RT �!1 F [ G [ P .Proposition 6.3.16 Starting from a state s of RT , then a state of F [ G [ P is reachedeventually. Equivalently:RT �!1 F [ G [ P :Proof. Let s be a state of RT . If s 2 F [ G [ P , then we are trivially done. Supposethat s =2 F [ G [ P . Then in s each process is in fER; R;W; S;Dg and there exists at leastprocess in fW;S;Dg. Let A be an adversary of Fairadvs, and let � be an extended executionof 
prexec(M;fsg;A).We �rst argue that eventually some process reaches a state of fS;D; Fg in �. This is triviallytrue if in state s there is some process in fS;Dg. If this is not the case, then all processes areeither in ER or R or W . Eventually, some process in R or W performs a transition. If the�rst process not in ER performing a transition started in ER or R, then it reaches F and weare done; if the �rst process performing a transition is in W , then it reaches S since in s noresource is held. Once a process i is in fS;D; Fg, then eventually process i reaches either stateF or P , and we are done.6.4 General Coin LemmasThe coin lemmas of Section 6.2 are su�ciently general to prove the correctness of the Random-ized Dining Philosophers algorithm of Lehmann and Rabin. However, there are several othercoin events that are relevant for the analysis of distributed algorithms. For example, the toyresource allocation protocol that we used in Chapter 5 cannot be veri�ed yet. In this sectionwe present two general coin lemmas: the �rst one deals with multiple outcomes in a randomdraw; the second one gives a generalization of all the coin lemmas presented in the thesis.Unfortunately, generality and simplicity are usually incompatible: the two coin lemmas of thissection are conceptually more complicated than those of Section 6.2.6.4.1 Conjunction of Separate Coin Events with Multiple OutcomesThe coin lemma of Section 6.2.4 deals with the result of the intersection of several coin events.Thus, for example, if each coin event expresses the process of 
ipping a coin, then the coinlemma of Section 6.2.4 can be used to study the probability that all the coins yield head.121



However, we may be interested in the probability that at least half of the coins yield head,or in the probability that exactly 5 coins yield head. The coin lemmas of Section 6.2 are notadequate. Suppose now that we use each coin event to express the process of rolling a dice.The coin events of Section 6.2 are not adequate again since they can deal only with binaryoutcomes: we can observe only whether a speci�c set U is reached or not. How can we expressthe event that for each number i between 1 and 6 there is at least one dice that rolls i?In this section we de�ne a coin event and prove a coin lemma that can deal with the scenariosoutlined above. LetM be a probabilistic automaton, and let S be a set of n tuples fx1; : : : ; xng,where for each i, 1 � i � n, xi is a tuple (ai; Ui;1; : : : ; Ui;k) consisting of an action of M and kpairwise disjoint sets of states of M . Let the actions ai be all distinct. Let E be a set of tuples((1; j1); : : : ; (n; jn)) where for each i, 1 � i � n, the value of ji is between 1 and k. For eachextended execution � of M and each i, 1 � i � n, letUi(�) = 8><>: f(i; 1); : : : ; (i; k)g if ai does not occurf(i; j)g if ai occurs and its �rst occurrence leads to Ui;j; otherwise:Then de�ne GFIRST(S; E) to be the function that associates with each probabilistic executionfragment H of M the set of extended executions � of 
H such that E \ (U1(�.qH0 ) � � � � �Uk(�.qH0 )) 6= ;.We illustrate the de�nition above by encoding the dice rolling example. In each tuple(ai; Ui;1; : : : ; Ui;k) ai identi�es the action of rolling the ith dice, k = 6, and for each j, Ui;j isthe set of states where the ith dice rolls j. The set E identi�es the set of outcomes that areconsidered to be good. In the case of the dices E is the set of tuples ((1; j1); : : : ; (n; jn)) wherefor each number l between 1 and 6 there is at least one i such that ji = l. The function Ui(�)checks whether the ith dice is rolled and identi�es the outcome. If the dice is not rolled, then,we allow any outcome as a possible one; if the dice is rolled and hits Ui;j , then the outcome is(i; j); if the the dice is rolled and the outcome is not in any one of the sets Ui;j 's, then there isno outcome (this case does not arise in our example). Then, an extended execution � of 
His in the event GFIRST(S; E)(H) if at least one of the outcomes associated with �.qH0 is anelement of E, i.e., if by choosing the outcome of the dices that are not rolled in �.qH0 all thesix numbers appear as the outcome of some dice.Let p be the probability that by rolling n dices all the six numbers appear as the outcomeof some dice. Then, the lemma below states that PH [GFIRST(S; E)(H)]� p for each H .Proposition 6.4.1 LetM be a probabilistic automaton. Let S be a set of n tuples fx1; : : : ; xngwhere for each i, 1 � i � n, xi is a tuple (ai; Ui;1; : : : ; Ui;k) consisting of an action of M and kpairwise disjoint sets of states of M . Let the actions ai be all distinct. Let E be a set of tuples((1; j1); : : : ; (n; jn)) where for each i, 1 � i � n, the value of ji is between 1 and k. For eachi; j, 1 � i � n, 1 � j � k, let pi;j be a real number between 0 and 1 such that for each transition(s;P) of M where P [ai] > 0, P [Ui;j jai] � pi;j, and let C be the collection of the pi;js. Let PC [E]be the probability of the event E assuming that each experiment i is run independently, andthat for each i a pair (i; j) is chosen with probability pi;j. Then, for each probabilistic executionfragment H of M , PH [GFIRST(S; E)(H)]� PC [E].Proof. For each state q of H , each i 2 f1; : : : ; ng, and each j 2 f1; : : : ; kg, denote by 
(q; Ui;j)the set f(ai; q0) 2 
Hq j lstate(q0) 2 Ui;jg of pairs where ai occurs and leads to a state of Ui;j ,122



and denote by 
(q; Ui) the set f(ai; q0) 2 
Hq j lstate(q0) =2 [jUi;jg of pairs where ai occurs andnone of the Ui;js is reached. For each i 2 f1; : : : ; ng, let �i be the set of states q of H such thatno action aj , 1 � j � n, occurs in q.qH0 , and PHq [ai] > 0.We prove the lemma by induction on n. If n = 1 then the result follows from Lemma 6.2.1(the event can be transformed into a new event with two outcomes); otherwise,PH [GFIRST(S; E)(H)] = Xi2f1;:::;ng Xq2�i PH [Cq]0B@0B@ X(ai;q0)2
(q;Ui)PHq [(ai; q0)]1CA+ 0@ Xj2f1;:::;kg X(ai;q0)2
(q;Ui;j)PHq [(ai; q0)]PH.q0 [GFIRST(Si; E(i;j))(H.q0)]1A1A : (6.23)where Si is obtained from S by removing the tuple (ai; Ui;1; : : : ; Ui;k), and E(i;j) is the set of tu-ples ((1; j1); : : : ; (i�1; ji�1); (i+1; ji+1); : : : ; (n; jn)) such that ((1; j1); : : : ; (i�1; ji�1); (i; j); (i+1; ji+1); : : : ; (n; jn)) 2 E. Let Ci be obtained from C by removing all the probabilities of theform pi;j , 1 � j � k. Then, by induction,PH.q0 [GFIRST(Si; E(i;j))(H.q0)] � (1� PCi [E(i;j)]): (6.24)From the properties of conditional probabilities and the de�nition of C,PCi [E(i;j)] = PC[Ej(i; j)]: (6.25)Thus, by using (6.24) and (6.25) in (6.23), and by expressing PHq [(ai; q0)] as PHq [ai]PHq [(ai; q0)jai],we obtainPH [GFIRST(S; E)(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]0B@0B@ X(ai;q0)2
(q;Ui)PHq [(ai; q0)jai]1CA+ 0@ Xj2f1;:::;kg X(ai;q0)2
(q;Ui;j)PHq [(ai; q0)jai](1� PC [Ej(i; j)])1A1A : (6.26)For each i; j and q, let pi;j;q be PHq [
(q; Ui;j)jai]. Then, from (6.26),PH [GFIRST(S; E)(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]0@(1� pi;1;q � � � � � pi;k;q) +0@ Xj2f1;:::;kg pi;j;q(1� PC[Ej(i; j)])1A1A ; (6.27)which becomesPH [GFIRST(S; E)(H)]� Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]0@1� Xj2f1;:::;kgPC [Ej(i; j)]pi;j;q1A (6.28)123



after some simple algebraic simpli�cations. Using the same argument as in the proof ofLemma 6.2.1, for each i; j and each q, pi;j;q � pi;j . Thus,PH [GFIRST(S; E)(H)]� Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]0@1� Xj2f1;:::;kgPC [Ej(i; j)]pi;j1A : (6.29)Finally, observe that Pi2f1;:::;ngPq2�i PH [Cq]PHq [ai] is the probability that some action aioccurs, and observe that Pj2f1;:::;kg PC [Ej(i; j)]pi;j = PC [E]. Thus,PH [GFIRST(S; E)(H)] � 1� PC[E] (6.30)6.4.2 A Generalized Coin LemmaAll the coin lemmas that we have studied in this chapter share a common characteristic. Givena probabilistic execution fragmentH , we identify n separate classes of random draws to observe.Each class can be observed at most once in every execution � of 
H , and if any class cannotbe observed, then we allow for any arbitrary outcome. In this section we formalize this idea.Let H be a probabilistic execution fragment of a probabilistic automaton M . A coin-eventspeci�cation for H is a collection C of tuples (q;X;X1; : : : ; Xk) consisting of a state of H , asubset X of 
Hq , and m pairwise disjoint subsets of X , such that the following properties aresatis�ed:1. for each state q of H there is at most one tuple of C whose state is q;2. for each state q of H such that there exists a tuple of C with state q, there is no pre�x q0of q such that there exists a tuple (q0; X;X1; : : : ; Xk) in C and a pair (a; q00) in X whereq00 is a pre�x of q.The set C is the object that identi�es one of the classes of random draws to be observed. Foreach transition trHq and each tuple (q;X;X1; : : : ; Xk) of C, the set X identi�es the part of trHqthat is relevant for C, and the sets X1; : : : ; Xk identify some of the possible outcomes. The �rstrequirement for C guarantees that there is at most one way to observe what happens from astate q of H , and the second requirement states that along every execution of 
H there is atmost one place where C is observed.As an example, consider the observation of whether the �rst occurrence of an action a,which represents a coin 
ip, leads to head. Then C is the set of tuples (q;X;X1) where actiona does not occur in q.qH0 and PHq [a] > 0, X is the set of pairs of 
Hq where action a occurs,and X1 is the set of pairs of X where the coin 
ips head.Let � be an extended execution of 
H , and let q be a state of H such that q � �. We saythat C occurs in � at q i� there exists a tuple (q;X;X1; : : : ; Xk) in C and a pair (a; q0) in Xsuch that q0 � �. Moreover, if (a; q0) 2 Xj , we say that C occurs in � at q and leads to Xj .Two coin event speci�cations C1 and C2 are said to be separate i� from every state q ofH , if (q;X1; X1;1; : : : ; X1;k) is a tuple of C1 and (q;X2; X2;1; : : : ; X2;k) is a tuple of C2, thenX1 \X2 = ;. In other words, there is no interference between the observations of C1 and the124



observations of C2. Let S = fC1; : : : ; Cng be a set of pairwise separate coin-event speci�cations.For notational convenience, for each i 2 f1; : : : ; ng and each state q of H such that there existsa tuple in Ci with state q, denote such tuple by (q;Xq;i; Xq;i;1; : : : ; Xq;i;k)Let E be a set of tuples ((1; j1); : : : ; (n; jn)) where for each i, 1 � i � n, the value of ji isbetween 1 and k. For each extended execution � of 
H and each i, 1 � i � n, letUi(�) = 8><>: f(i; 1); : : : ; (i; k)g if Ci does not occur in �f(i; j)g if Ci occurs in � leading to Xq;i;j; otherwise:Then, de�ne GCOIN (S; E)(H) to be the set of extended executions of 
H such that E \(U1(�.qH0 )� � � � � Uk(�.qH0 )) 6= ;.Lemma 6.4.2 Let H be a probabilistic execution fragment of a probabilistic automaton M . LetS = fC1; : : : ; Cng be a set of separate coin-event speci�cations for H. For each i; j, 1 � i � n,1 � j � k, let pi;j be a real number between 0 and 1 such that for each i 2 f1; : : : ; ng and eachtuple (q;Xq;i; Xq;i;1; : : : ; Xq;i;m) of Ci, PHq [Xq;i;jjXq;i] � pi;j. Let C be the collection of the pi;j's.Let PC[E] be the probability of the event E assuming that each experiment i is run independently,and for each i a pair (i; j) is chosen with probability pi;j. Then, PH [GCOIN (S; E)(H)]� PC [E].Proof. For each state q of H and each i, 1 � i � n, if there exists a tuple in Ci with state q,then denote Xq;in [j2f1;:::;kg Xq;i;j by Xq;i. For each i, 1 � i � n, let �i be the set of states qof H such that there exists a tuple with state q in Ci and no coin-event Cj, 1 � j � n, occursin q.qH0 .We prove the lemma by induction on n, using n = 0 for the base case. For n = 0 we assumethat P [E] = 1 and that GCOIN (S; E)(H) = 
H . In this case the result is trivial. Otherwise,PH [GCOIN (S; E)(H)] = Xi2f1;:::;ng Xq2�i PH [Cq]0B@0B@ X(a;q0)2Xq;i PHq [(a; q0)]1CA+ 0@ Xj2f1;:::;kg X(a;q0)2Xq;i;j PHq [(a; q0)]PH.q0 [GCOIN (S.q0; E(i;j))(H.q0)]1A1A : (6.31)where S.q0 is obtained from S by removing Ci and, for each j 6= i, by transforming the set Cjinto f(q.q0; X.q0; X1.q0; : : : ; Xk.q0) j (q;X;X1; : : : ; Xk) 2 Cj; q0 � qg. Then, by induction,PH.q0 [GCOIN (S.q0; E(i;j))(H.q0)] � (1� PCi [E(i;j)]): (6.32)From the properties of conditional probabilities and the de�nition of C,PCi [E(i;j)] = PC[Ej(i; j)]: (6.33)Thus, by using (6.32) and (6.33) in (6.31), and expressing PHq [(a; q0)] as PHq [Xq;i]PHq [(a; q0)jXq;i],we obtainPH [GCOIN (S; E)(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [Xq;i]0B@0B@ X(a;q0)2Xq;i PHq [(a; q0)jXq;i]1CA+ 0@ Xj2f1;:::;kg X(a;q0)2Xq;i;j PHq [(a; q0)jXq;i](1� PC [Ej(i; j)])1A1A : (6.34)125



For each i; j and q, let pi;j;q be PHq [Xq;i;jjXq;i]. Then, from (6.34),PH [GCOIN (S; E)(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [Xq;i]0@(1� pi;1;q � � � � � pi;k;q) +0@ Xj2f1;:::;kg pi;j;q(1� PC[Ej(i; j)])1A1A ; (6.35)which becomesPH [GCOIN (S; E)(H)]� Xi2f1;:::;ng Xq2�i PH [Cq]PHq [Xi;j]0@1� Xj2f1;:::;kgPC [Ej(i; j)]pi;j;q1A (6.36)after some simple algebraic simpli�cations. From hypothesis, for each i; j and each q, pi;j;q �pi;j . Thus,PH [GCOIN (S; E)(H)]� Xi2f1;:::;ng Xq2�i PH [Cq]PHq [Xq;i]0@1� Xj2f1;:::;kgPC [Ej(i; j)]pi;j1A : (6.37)Finally, observe that Pi2f1;:::;ngPq2�i PH [Cq]PHq [Xq;i] is the probability that some Ci occurs,and observe that Pj2f1;:::;kg PC [Ej(i; j)]pi;j = PC [E]. Thus,PH [GCOIN (S; E)(H)] � 1� PC [E] (6.38)6.5 Example: Randomized Agreement with Stopping FaultsIn this section we analyze the Randomized Agreement algorithm of Ben-Or [BO83]. Its proofof correctness is an application of Lemma 6.4.2. The proof that we present in this section is notas detailed as the proof of the Dining Philosophers algorithm, but contains all the informationnecessary to �ll in all the details, which we leave to the reader.6.5.1 The ProblemConsider n asynchronous processes that communicate through a network of reliable channels(i.e., channels that deliver all the messages in the same order as they are received, and thatnever fail to deliver a message), and suppose that each process i starts with an initial valuevi 2 f0; 1g. Suppose that each process can broadcast a message to every other process in asingle operation. Each process runs an algorithm that at some point may decide on one valueof f0; 1g. Each process decides at most once. The algorithm should be designed so that thefollowing properties are satis�ed.1. Agreement: all the processes that decide choose the same value.126



2. Validity: if all the processes have the same initial value v, then v is the only possibledecision value.3. f-failure termination: if at most f processes fail, then all the non-failing processesdecide a value.We assume that a process fails by stopping, i.e., by failing to send messages to other processesfrom some point on. Since the processes are asynchronous, no processes can distinguish a slowprocess from a failing process.Unfortunately, it is known from [FLP85] that there is no deterministic algorithm for asyn-chronous processes that solves the agreement problem and guarantees 1-failure termination.Here we present the randomized algorithm of Ben-Or [BO83], which solves the agreement prob-lem with certainty, and guarantees f -failure termination with probability 1 whenever n > 3f .6.5.2 The AlgorithmEach process i has local variables x, initially vi, and y, initially null , and executes a series ofstages numbered 1; 2; : : :, each stage consisting of two rounds . Each process runs forever, evenafter it decides. At stage st � 1, process i does the following.1. Broadcast (�rst; st; v), where v is the current value of x, and then wait to obtain n � fmessages of the form (�rst; st; �), where � stands for any value. If all the messages havethe same value v, then set y := v, otherwise set y := null .2. Broadcast (second; st; v), where v is the current value of y, and then wait to obtain n� fmessages of the form (second; st; �). There are three cases:(a) if all the messages have the same value v 6= null , then set x := v and perform adecide(v)i operation if no decision was made already;(b) if at least n� 2f messages, but not all the messages, have the same value v 6= null ,then set x := v without deciding (the assumption n > 3f guarantees that therecannot be two di�erent such values v);(c) otherwise, set x to 0 with probability 1=2 and to 1 with probability 1=2.The intuition behind the use of randomness is that at each stage, if a decision is not made yet,with probability at least 1=2n all the processes that choose a value at random choose the same"good" value. Thus, with probability 1 there is eventually a stage where the processes thatchoose a value at random choose the same good value, and this leads to a decision.We now give an idea of the structure of the probabilistic automatonM that describes Ben-Or's algorithm. Each process i has the two variables x and y mentioned in the descriptionof the algorithm, plus a queue mj for each process j that records the unprocessed messagesreceived from process j, initially null , a stage counter st , initially 1, a program counter pc,and a boolean variable decided that is set to true i� process i has decided already. Thereis a channel Ci;j between every pair of processes. Each channel Ci;j is essentially a bu�erlike the bu�er described in Chapter 3 (cf. Figure 3-1), whose inputs are actions of the form(�rst; st ; v)i and (second; st; v)i, and whose outputs are actions of the form (�rst; st; v)i;j and(second; st; v)i;j. To broadcast a message (�rst ; st; v), process i performs the action (�rst ; st; v)i.127



A message (�rst; st; v) is received by process i from process j through the action (�rst ; st; v)j;i.The de�nition of the transition relation of M is straightforward.6.5.3 The High Level ProofAgreement and validity are easy to prove and do not involve any probabilistic argument.Lemma 6.5.1 Ben-Or's algorithm satis�es the agreement and validity conditions.Proof. We start with validity. Suppose that all the processes start with the same value v.Then it is easy to see that every process that completes stage 1 decides on v in that stage. Thisis because the only value sent or received by any process in the �rst round is v, and thus theonly value sent or received by any process in the second round is v, leading to the decision of v.For agreement, suppose that some process decides, and let process i be the �rst processthat decides. Let v and st be the value decided by process i and the stage at which processi decides, respectively. Then it must be the case that process i receives n � f (second; st; v)messages. This implies that any other process j that completes stage st receives at least n� 2f(second; st; v) messages, since it hears from all but at most f of the processes that process ihears from. This means that process j cannot decide on a value di�erent from v at stage st ;moreover, process j sets x := v at stage st . Since this is true for all the processes that completestage st , then an argument similar to the argument for validity shows that any process thatcompletes stage st + 1 and does not decide in stage st decides v at stage st + 1.The argument for f -failure termination involves probability. We assume that all the processesbut at most f are scheduled in�nitely many times. Thus, let f-fair be the set of adversaries forM such that for each probabilistic execution fragment H generated by an adversary of f-fairthe set 
H contains only executions ofM where at least n�f processes are scheduled in�nitelymany times. It is easy to check that f-fair is �nite-history-insensitive.Let B be the set of reachable states of M ; let F be the set of reachable states of M whereno process has decided yet and there exists a value st and a number i such that process ireceived exactly n� f messages (�rst; st ; �), and no other process has ever received more thann� f � 1 messages (�rst; st; �); �nally, let O be the set of reachable states of M where at leastone process has decided.It is easy to show thatB �!1 f-fair F [ O: (6.39)Speci�cally, let � be an f -fair execution fragment of M starting from a reachable state s ofM ,and let st be the maximum value of the stages reached by each process in s. Then, stage st +1is reached eventually in �, and thus there is a state s0 in � where some process is the �rst oneto receive n� f messages (�rst ; st + 1; �). The state s0 is a state of F [O.In Section 6.5.4 we show thatF �!1=2nO: (6.40)Thus, combining (6.39) and (6.40) with Theorem 5.5.2, and by using Proposition 5.5.6, weobtainB �!1 O: (6.41)128



Finally, we need to show that in every f -fair execution where at least one process decides allthe non-failing processes decide eventually. This is shown already in the second part of theproof of Lemma 6.5.1.6.5.4 The Low Level ProofIn this section we prove the progress statement of (6.40) using the generalized coin lemma.Consider a state s of F , and let i be the process that has received n� f messages (�rst ; st; v).Let A be an adversary of f-fair , and let H be prexec(M;A; s).For each j, 1 � j � n, let Cj be the set of triplets (q;X;X1) where q is a state ofH such thatprocess j is at stage st in lstate(q) and there is a non-zero probability that process j choosesrandomly between 0 and 1 from q, X is the set of pairs of 
Hq where process j performs atransition, and X1 is de�ned as follows. Let s0 be lstate(q), and let v be a good value if at leastf + 1 of the messages (�rst ; st; �) processed by process i have value v. We emphasize the word\processed" since, although each process can receive more that n�f messages (�rst; st; �), onlyn� f of those messages are used (processed).1. If 0 is a good value, then let X1 be the set of pairs of X where process i chooses 0;2. if 1 is a good value and 0 is not a good value, then let X1 be the set of pairs of X whereprocess i chooses 1.Observe that in s0 there is at least one good value, and at most two values; thus, Cj is wellde�ned. It is easy to check that C1; : : : ; Cn are separate coin event speci�cations; more-over, for each j, 1 � j � n, and each triplet (q;X;X1) of Cj , PHq [X1jX ] = 1=2. LetE = f((1; 1); (2; 1); : : : ; (n; 1)g. From Lemma 6.4.2, PH [GCOIN ((C1; : : : ; Cn); E)(H)]� 1=2n.We are left with the proof that in each extended execution of GCOIN ((C1; : : : ; Cn); E)(H)all the non-faulty processes choose a value. More precisely, we show that the non-faulty pro-cesses complete stage st setting x to the same value v. Then, the second part of the proof ofLemma 6.5.1 can be used to show that all the non-faulty processes decide on v at the end ofstage st + 1; in particular at least one process decides. We distinguish two cases.1. In s0 there is exactly one good value v.In this case every other process receives at least one copy of v during the �rst round ofstage st , and thus y is set either to v or to null . Therefore, v is the only value thata process chooses by a non-random assignment at the end of stage st . On the otherhand, if a process j chooses a value at random at the end of stage st , the de�nition of Cjguarantees that the value chosen is v. Thus, every process that completes stage st setsx := v.2. In s0 there are two good values.In this case every process receives at least one copy of 0 and one copy of 1, and thus yis set to null . Therefore, each process chooses a value at random at the end of stage st .The de�nition of C1; : : : ; Cn guarantees that every process that completes stage st setsx := 0. 129



6.6 Example: The Toy Resource Allocation ProtocolLemma 6.4.2 can be used also to prove formally that the toy resource allocation protocol ofSection 5.1 guarantees that, under any deterministic fair oblivious adversary (cf. Example 5.6.2for the de�nition of a fair oblivious adversary), process M1 eventually gets a resource. Thisresult can be extended to general oblivious adversaries by using the results about deterministicand randomized adversaries proved in Chapter 5 (cf. Proposition 5.7.11).Recall from Example 6.1.1 that we want to identify a coin event that expresses the followingproperty: the �rst coin 
ip of M1 after the �rst coin 
ip of M2 is di�erent from the last coin
ip of M2 before the �rst time M1 checks its resource after 
ipping. In the rest of the sectionwe specify two coin event speci�cations C1 and C2. The speci�cation C1 identi�es the �rst coin
ip of M1 after the �rst coin 
ip of M2, while the speci�cation C2 identi�es the last coin 
ip ofM2 before the �rst time M1 checks its resource after 
ipping.Let H be a probabilistic execution fragment, generated by a deterministic fair obliviousadversary, such that the �rst state of qH0 is reachable in M . Let C1 be the set of tuples(q;X;X1; X2) where1. q is a state of H such that M2 
ips at least once in q.qH0 , M1 does not 
ip in q.qH0 afterthe �rst time M2 
ips, and M1 
ips from q,2. X is the set 
Hq ,3. X1 is the set of pairs of X where M1 
ips head,4. X2 is the set of pairs of X where M1 
ips tail.Observe that C1 is a coin-event speci�cation. Moreover, observe that for each tuple of C1,PHq [X1jX ] = 1=2 and PHq [X2jX ] = 1=2. Let C2 be the set of tuples (q;X;X1; X2) where1. q is a state of H such that either(a) M1 does not 
ip in q.qH0 after M2 
ips, M2 
ips from q, and there exists a stateq0 � q such that M2 
ips exactly once in q0.q and M1 
ips and checks its resourceafter 
ipping in q0.q, or(b) M1 
ips and does not check its resource after the �rst 
ip of M2 in q.qH0 , M2 
ipsfrom q, and there exists a state q0 � q such that M2 
ips exactly once in q0.q, M1does not check its resource in q0.q, and M1 checks its resource from q0,2. X is the set 
Hq ,3. X1 is the set of pairs of X where M2 
ips head,4. X1 is the set of pairs of X where M2 
ips tail.Informally, C2 identi�es the coin 
ip of M2 that precedes the point where M1 checks theresource determined by C1. Figure 6-4 illustrates graphically the two cases of the de�nitionof C2. Observe that for each tuple of C2, PHq [X1jX ] = 1=2 and PHq [X2jX ] = 1=2. Since H isgenerated by an oblivious deterministic adversary, then it is easy to verify that C2 is a coin-eventspeci�cation. The important point is to verify that Condition 2 of the de�nition of a coin eventis satis�ed; this is the point where the fact that an adversary is oblivious and deterministic isused. 130
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6.7 The Partition TechniqueEven though the coin lemmas can be used to prove the correctness of several nontrivial algo-rithms, two of which have been illustrated in this chapter, there are algorithms for which thecoin lemmas do not seem to be suitable. One example of such an algorithm is the random-ized algorithm for maximal independent sets of Awerbuch, Cowen and Smith [ACS94]; anotherexample is the toy resource allocation protocol again.Example 6.7.1 (The coin lemmas do not work always) In Section 6.6 we have shownthat the toy resource allocation protocol guarantees progress against fair oblivious adversaries;however, in Example 5.6.2 we have stated that the toy resource allocation protocol guaranteesprogress also against adversaries that do not know only the outcome of those coins that havenot been used yet. Such a result cannot be proved using the coin lemmas of this chapter be-cause situations like those outlined in Example 6.6.1 arise. For example, after the �rst timeM2
ips, we could schedule M2 again and then schedule M1 to test its resource only if M2 gets theresource R1.Another way to obtain a situation where the coin lemmas of this chapter do not apply is tomodify the second instruction of the resource allocation protocol as follows2. if the chosen resource is free, then get it, otherwise go back to 1 .Example 6.7.1 shows us that some other techniques need to be developed; it is very likely thatseveral new techniques will be discovered by analyzing other algorithms. In this section we hintat a proof technique that departs considerably from the coin lemmas and that is su�cientlypowerful to deal with the toy resource allocation protocol. We illustrate the technique with anexample.Example 6.7.2 (The partition technique) Let A be a generic fair adversary for the toyresource allocation protocol that does not know the outcome of those coin 
ips that have notbeen used yet, and letH be a probabilistic execution generated by A. Assume for simplicity thatA is deterministic; the result for a generic adversary follows from Proposition 5.7.11. Consideran element of 
H , and consider the �rst point q where M1 
ips a coin (cf. Figure 6-6). Thecoin 
ipping transition leads to two states qh and qt that are not distinguishable by A, whichmeans that from qh and qt the adversary schedules the same process. If the process scheduledfrom qh and qt isM2, then the states reached from qh are in one-to-one correspondence with thestates reached from qt, since they di�er only in the value of the coin 
ipped by M1. Figure 6-6illustrates the case where M2 
ips a coin. Furthermore, two corresponding states are reachedwith the same probability. The one-to-one correspondence between the states reached form qhand qt is maintained until M1 tests its chosen resource.Consider now a point whereM1 tests its resource. Figure 6-6 illustrates four of these points,denoted by qt;1, qh;1, qt;2, and qh;2. If M1 fails to obtain the resource, it means that M2 holdsthat resource at that point. However, M2 holds the same resource in the corresponding statevia the one-to-one correspondence M2, while M1 tests the other resource. Thus, M1 succeedsin getting the chosen resource. (cf. states qt;1 and qh;1 of Figure 6-6.The bottom line is that we have partitioned the states where M1 checks its resource intwo sets, and we have shown that for each pair of corresponding states there is at least onestate where M1 succeeds in getting a resource. In some cases, like for states qt;2, and qh;2 of132
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Figure 6-6: The partition technique.Figure 6-6, M1 succeeds in getting its resource from both the corresponding states (M2 doesnot hold any resource). Thus, M1 gets a resource with probability at least 1=2.6.8 DiscussionTo our knowledge, no techniques similar to our coin lemmas or to our partition technique wereproposed before; however, similar arguments appear in several informal analysis of randomizedalgorithms. The idea of reducing the analysis of a randomized algorithm to the analysis of anordinary pure nondeterministic system was at the base of the qualitative analysis techniquesdescribed in Sections 2.5.1 and 2.5.2. Here we have been able to apply the same idea for aquantitative analysis of an algorithm.In this chapter we have focused mainly on how to apply a coin lemma for the veri�cation ofa randomized algorithm; once a good coin event is identi�ed, the analysis is reduced to verifyproperties of a system that does not contain randomization. We have carried out this last partusing detailed operational arguments, which can be error prone themselves. However, since theproblem is reduced to the analysis of a non-randomized system, several existing techniques canbe used to eliminate our operational arguments. In [PS95] Segala and Pogosyants show howsuch an analysis can be carried out formally and possibly mechanized.
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Chapter 7Hierarchical Veri�cation: TraceDistributions7.1 IntroductionSo far we have de�ned a model to describe randomized concurrent and distributed systems,and we have shown how to study the properties of a system by means of a direct analysis of itsstructure. A speci�cation is a set of properties that an implementation should satisfy, and animplementation is a probabilistic automaton that satis�es the desired properties.Another approach to the analysis of a system considers an automaton as a speci�cation itself.Then, an abstract notion of observation is de�ned on automata, and an automaton is said tobe an implementation of another automaton i� there is a speci�c relation, usually a preorderrelation, between their abstract observations. Examples of observations are traces [Hoa85, LV91](cf. Section 3.2.3), and failures [Hoa85, BHR84]; in these two cases implementation is expressedby set inclusion.7.1.1 Observational SemanticsFormally, an automaton A is associated with a set Obs(A) of observations, and a preorderrelation R is de�ned over sets of observations (for example R can be set inclusion). Then, anautomaton A1 is said to implement another automaton A2, denoted by A1 v A2, i� Obs(A1) RObs(A2). The function Obs() is called an observational semantics , or alternatively a behavioralsemantics ; in the second case the observations are thought as the possible behaviors of anautomaton.The methodology based on preorder relations is an instance of the hierarchical veri�cationmethod: a speci�cation, which is usually very abstract, can be re�ned successively into lessabstract speci�cations, each one implementing the more abstract speci�cation, till the actualimplementation is obtained. Figure 7-1 gives an example of a speci�cation that is re�ned twotimes to build the actual implementation. Of course it is implicitly assumed that the relevantproperties of a system are only those that are preserved by the chosen implementation relation.Thus, given a relation, it is important to understand what properties it preserves. Coarserelations may not preserve all the relevant properties, but they are usually easy to verify, i.e., itis usually easy to establish whether such a relation holds; �ner relations that preserve exactly the135
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’ ’ ’ ’Figure 7-2: Modular design.relevant properties are usually di�cult to characterize and verify; other relations that preserveall the relevant properties and that are easy to verify are usually too �ne, i.e., they distinguishtoo much. Some tradeo� is necessary.7.1.2 Substitutivity and CompositionalityWhen the size of a problem becomes large, it is common to decompose the problem into simplersubproblems that are solved separately. Figure 7-2 gives an example. A large speci�cation S isdecomposed into several subcomponentsM1; : : : ;Mn that interact together to implement S. Forexample, a complex computer system can be described by the interaction of a central processorunit, a memory unit, and an Input/Output unit. Then, each subcomponent speci�cation Mi isgiven to a development team that builds an implementation M 0i . Finally, the implementationsare put together to build an actual implementation of S. This kind of approach is called modulardesign; however, in order to guarantee the soundness of modular design, we need to guaranteethat an implementation works properly in every context where its speci�cation works properly,i.e., our implementation relation must be preserved by parallel composition (i.e., it must be aprecongruence). This property is called substitutivity of a preorder relation, and constitutes oneof the most important properties that an implementation relation should satisfy.A property that is strictly related to the substitutivity of v is called compositionalityof Obs(). That is, there is an operator k de�ned on pairs of sets of observations such thatObs(A1kA2) = Obs(A1)kObs(A2). Compositionality and substitutivity are used interchange-ably when talking informally about concurrent systems, and it is easy to get confused by themeanings of the two terms. To clarify every doubt, here is how the two concepts are related.136



Theorem 7.1.1 Let Obs() be an observational semantics, R be an equivalence relation oversets of observations, and let, for each set x of observations, [x]R be the equivalence class ofx under R. Let A1 � A2 i� Obs(A1) R Obs(A2). Then the following two statements areequivalent.1. � is substitutive, i.e., if A1 � A2 then for each A3, A1kA3 � A2kA3;2. Obs() is compositional, i.e., there exists an operator k on equivalence classes of observa-tions such that [Obs(A1kA2)]R = [Obs(A1)]Rk[Obs(A1)]R.If R is set equality, then we can remove the equivalence classes from the second statementsince each set of observations is an equivalence class. The substitutivity of a preorder relationis stronger than the substitutivity of its kernel equivalence relation, since the direction of theinequality must be preserved under parallel composition. For this reason our primary concernin this chapter is the substitutivity of the implementation relation.7.1.3 The Objective of this ChapterIn this chapter we study the simplest implementation relation based on observations, i.e., traceinclusion, and we extend the corresponding precongruence to the probabilistic framework. Thetrace preorder constitutes the basis for several other implementation relations and is known topreserve the safety properties of a system [AS85]. Roughly speaking, a safety property says that\something good holds forever" or that \something bad does not happen". The trace preorderis important for ordinary automata for its simplicity and for the availability of the simulationmethod [LT87, Jon91, LV91] (cf. Chapter 8), which provides several su�cient conditions forthe trace preorder relation to hold. Other relations, based either on failures [Hoa85, BHR84]or on any other form of enriched traces, can be obtained by following the same methodologythat we present here.In the probabilistic framework a trace is replaced by a trace distribution, where the tracedistribution of a probabilistic execution fragment H is the distribution over traces induced byPH , the probability space associated with H . The trace distribution preorder is de�ned asinclusion of trace distributions.Unfortunately, the trace distribution preorder is not a precongruence (cf. Example 7.4.1),which in turn means that the observational semantics based on trace distributions is not com-positional. A standard approach in this case is to de�ne the trace distribution precongruenceas the coarsest precongruence that is contained in the trace distribution preorder; then, inorder to have a compositional observational semantics that captures the trace distribution pre-congruence, an alternative, more operational and constructive characterization of the tracedistribution precongruence is derived. We give an alternative characterization of the trace dis-tribution precongruence by exhibiting a context, called the principal context , that distinguishestwo probabilistic automata whenever there exists a distinguishing context. This leads to thenotion of a principal trace distribution, which is a trace distribution of a probabilistic automatonin parallel with the principal context; the trace distribution precongruence can be characterizedalternatively as inclusion of principal trace distributions.Several other characterizations of the trace distribution precongruence could be found, pos-sibly leading to di�erent observational semantics equivalent to the principal trace distributionsemantics. Further experience with each one of the alternative semantics will determine which137
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’Figure 7-3: Trace distribution equivalent probabilistic automata.one is more useful. One of the problems with the principal trace distribution characterizationis that, although from Theorem 7.1.1 there exists an operator k de�ned on principal traces,the de�nition of k is not simple. For ordinary automata the traces of a parallel compositionof two automata are exactly those sequences of actions that restricted to each component givea trace of the component. This property does not hold for principal trace distributions (cf.Example 7.4.1). It is desirable to �nd a semantics that characterizes the trace distributionprecongruence and for which the corresponding parallel composition operator has a simplede�nition; however, it is not clear whether such a semantics exists.7.2 Trace DistributionsLet H be a probabilistic execution fragment of a probabilistic automaton M , and let f be afunction from 
H to 
 = ext(H)�[ext(H)! that assigns to each execution of 
H its trace. Thetrace distribution of H , denoted by tdistr(H), is the probability space completion((
;F ; P ))where F is the �-�eld generated by the cones C�, where � is a �nite trace ofH , and P = f(PH).Observe that, from Proposition 3.1.4, f is a measurable function from (
H ;FH) to (
;F), sincethe inverse image of a cone is a union of cones. Denote a generic trace distribution by D. A tracedistribution of a probabilistic automatonM is the trace distribution of one of the probabilisticexecutions of M . Denote by tdistrs(M) the set of the trace distributions of a probabilisticautomaton M .It is easy to see that trace distributions extend the traces of ordinary automata: the tracedistribution of a linear probabilistic execution fragment � is a distribution that assigns proba-bility 1 to trace(�).Given two probabilistic execution fragments H1 and H2, it is possible to check whethertdistr(H1) = tdistr(H2) just by verifying that Ptdistr(H1)[C�] = Ptdistr(H2)[C�] for each �nitesequence of actions �. This is an easy consequence of the extension theorem (cf. Theorem 3.1.2).Example 7.2.1 (Reason for the de�nition of 
) The reader may wonder why we havenot de�ned 
 to be trace(
H). This is to avoid to distinguish two trace distribution just be-cause they have di�erent sample spaces. Figure 7-3 illustrates the idea. The two probabilisticautomata of Figure 7-3 have the same trace distributions; however, the left probabilistic au-tomaton has a probabilistic execution where the trace a1 occurs with probability 0, while theright probabilistic automaton does not. Thus, by de�ning the sample space of tdistr(H) to betrace(
H), the two probabilistic automata of Figure 7-3 would be distinct. In Chapter 8 we138



de�ne several simulation relations for probabilistic automata, and we show that they are soundfor the trace distribution precongruence; such a result would not be true with the alternativede�nition of a trace distribution.Pre�xesThe notion of a pre�x for traces can be extended to the probabilistic framework by followingthe same idea as for the notion of a pre�x de�ned on probabilistic executions (cf. Section 4.2.6).A trace distribution D is a pre�x of a trace distribution D0, denoted by D � D0, i� for each�nite trace �, PD [C�] � PD0 [C�]. Thus, two trace distributions are equal i� each one is a pre�xof the other.Lemma 7.2.1 Let H1 and H2 be two probabilistic execution fragments of a probabilistic au-tomaton M . If H1 � H2, then tdistr(H1) � tdistr(H2).Action RestrictionSimilarly to the ordinary case, it is possible to de�ne an action restriction operator on tracedistributions. Let D = (
;F ; P ) be a trace distribution, and let V be a set of actions. Thenthe restriction of D to V , denoted by D � V , is the probability space completion((
0;F 0; P 0))where 
0 = 
 � V , F 0 is the �-�eld generated by the sets of cones of 
0, and P 0 is the inverseimage of P under the function that restricts traces to V .Lemma 7.2.2 Let D be a trace distribution. Then (D � V1) � V2 = D � (V1 \ V2).Proof. This is a direct consequence of the fact that restricting a trace to V1 and then to V2 isequivalent to restricting the same trace to V1\V2. Formally, � � (V1\V2) = (� � V2) � (� � V1).Finally, we want to show that, if M = M1kM2, then the projection of a trace distribution ofM onto M1 and M2 is a trace distribution of M1 and M2, respectively. Formally,Proposition 7.2.3 If D 2 tdistrs(M1kM2), then D � acts(Mi) 2 tdistrs(Mi), i = 1; 2.The converse of Proposition 7.2.3 is not true; an illustrating example is given in Section 7.4(cf. Example 7.4.1). The rest of this section is dedicated to the proof of Proposition 7.2.3. Westart with a de�nition of an internal trace distribution, which is a trace distribution that doesnot abstract from internal actions.Let � be an execution of a probabilistic automaton M . The internal trace of �, denotedby itrace(�), is the subsequence of � consisting of the actions of M . Let H be a probabilisticexecution fragment of M , and let f be a function from 
H to 
 = acts(H)� [ acts(H)! thatassigns to each execution of 
H its internal trace. The internal trace distribution of H , denotedby itdistr(H), is the probability space completion((
;F ; P )) where F is the �-�eld generatedby the cones of 
, and P = f(PH). Observe that, from Proposition 3.1.4, f is a measurablefunction from (
H ;FH) to (
;F). Denote a generic internal trace distribution by D. Denotethe set of internal trace distributions of a probabilistic automaton M by itdistrs(M).Lemma 7.2.4 Let H be a probabilistic execution fragment of a probabilistic automaton M .Then, tdistr(H) = itdistr(H) � ext(H). 139



Proof. This is a direct consequence of the fact that the set of executions of H whose tracecontains a given � is the set of executions of H whose internal trace restricted to the externalactions of H contains �. Formally, trace(�) = itrace(�) � (� � ext(H)).Lemma 7.2.5 Let H be a probabilistic execution fragment of M1kM2, where M1 and M2 aretwo compatible probabilistic automata. Then itdistr(HdMi) = itdistr(H) � acts(Mi), i = 1; 2.Proof. Let P denote itdistr(HdMi), and let P 0 denote itdistr(H) � acts(Mi). We need toshow that for each �nite internal trace �, P [C�] = P 0[C�]. Let P 00 denote itdistr(H). From thede�nition of an internal trace,P [C�] = PHdMi [� 2 
HdMi j � � itrace(�)]: (7.1)From the de�nition of P 0 and P 00,P 0[C�] = P 00[�0 2 
00 j � � �0 � acts(Mi)]: (7.2)From the de�nition of itdistr(H) and (7.2),P 0[C�] = PH [� 2 
H j � � itrace(�) � acts(Mi)]: (7.3)Thus, from (7.1) and (7.3), we need to show thatPHdMi[� 2 
HdMi j � � itrace(�)] = PH [� 2 
H j � � itrace(�) � acts(Mi)]: (7.4)By using a characterization of the involved events as a disjoint union of cones, and by rewritingEquation 7.4 accordingly, we obtainPHdMi[ [q2states(HdMi)jitrace(q)=�;lact(q)=lact(�)Cq] (7.5)= PH [ [q2states(H)jitrace(q)�acts(Mi)=�;lact(q)=lact(�)Cq]:Observe that for each q 2 states(H) such that itrace(q) � acts(Mi) = � and lact(q) =lact(�), the state qdMi is a state of HdMi such that itrace(qdMi) = � and lact(qdMi) =lact(�). Moreover, the states q of the left expression of (7.5) are partitioned by the relationthat relates q and q0 whenever qdMi = q0dMi. Thus, if we show that for each trace � and eachq 2 states(HdMi) such that itrace(q) = � and lact(q) = lact(�),PHdMi[Cq] = PH [[q02qeH jlact(q0)=lact(�)Cq0 ]; (7.6)Equation (7.5) is proved. Observe thatPH [[q02states(H)jq0dMi=q;lact(q0)=lact(�)Cq0 ] = Xq02min(qeH)PH [Cq0]; (7.7)since fq0 2 states(H) j q0dMi = q; lact(q0) = lact(�)g = min(qeH). Thus, Equation (7.6)becomesPHdMi[Cq] = Xq02min(qeH)PH [Cq0]; (7.8)which is true from Proposition 4.3.5. 140



Lemma 7.2.6 Let H be a probabilistic execution fragment of M1kM2, where M1 and M2 aretwo compatible probabilistic automata. Then tdistr(HdMi) = tdistr(H) � acts(Mi).Proof. From Lemma 7.2.4,tdistr(HdMi) = itdistr(HdMi) � ext(Mi): (7.9)From Lemma 7.2.5 and (7.9),tdistr(HdMi) = (itdistr(H) � acts(Mi)) � ext(Mi): (7.10)From Lemma 7.2.2 and (7.10),tdistr(HdMi) = (itdistr(H) � ext(H)) � acts(Mi): (7.11)From Lemma 7.2.4 and (7.11),tdistr(HdMi) = tdistr(H) � acts(Mi); (7.12)which is what we needed to prove.Proof of Proposition 7.2.3. Let D 2 tdistrs(M1kM2). Then there exists a probabilis-tic execution H of M1kM2 such that tdistr(H) = D. From Proposition 4.3.4, HdMi is aprobabilistic execution of Mi. From Lemma 7.2.6, tdistr(HdMi) = D � acts(Mi). Thus,D � acts(Mi) 2 tdistrs(Mi).7.3 Trace Distribution PreorderOnce trace distributions are de�ned, the trace distribution preorder can be de�ned as tracedistribution inclusion. Formally, let M1;M2 be two probabilistic automata with the sameexternal action signature. The trace distribution preorder is de�ned as follows.M1 vD M2 i� tdistrs(M1) � tdistrs(M2): (7.13)The trace distribution preorder is a conservative extension of the trace preorder of ordinaryautomata, and it preserves properties that resemble the safety properties of ordinary automata[AS85]. Here we give some examples of such properties.Example 7.3.1 The following property is preserved by the trace distribution preorder.\After some �nite trace � has occurred, then the probability that some other trace�0 occurs, is not greater than p."In fact, suppose that M1 vD M2, and suppose that M2 satis�es the property above, whileM1 does not. Then there is a trace distribution of M1 where the probability of �0 after �conditional to � is greater than p. Since M1 vD M2, there is a trace distribution of M2 wherethe probability of �0 after � conditional to � is greater than p. This contradicts the hypothesisthatM2 satis�es the property above. Observe that the property above would still be preservedif we replace �0 with a set of traces. 141



Example 7.3.2 The following property is preserved by the trace distribution preorder.\In every computation where in�nite external activity occurs with probability 1, ifa �nite trace � occurs, then the probability that some other trace �0 occurs after �given that � occurs is at least p."A more concrete instantiation of the property above is \under the hypothesis that a distributedsystem never deadlocks, every request of service eventually gets a response with probability atleast p". This property is de�nitely more interesting than the property of Example 7.3.1 since itinvolves a progress statement, one of the property of key interest for the analysis of randomizeddistributed algorithms. Thus, if in a system it is always possible to avoid a deadlock, underthe assumption that we always schedule a transition and under the condition that no in�niteinternal computation is possible, the property above guarantees progress. However, in order tobe sure that if M1 vD M2 and M2 satis�es the property above then M1 guarantee progress, weneed to make sure that from every state of M2 it is possible to avoid deadlock and there is nopossibility of in�nite internal computation. Such a property must be veri�ed separately since itis not guaranteed by the trace distribution preorder. Fortunately, there are several cases (e.g.,n processes running in parallel that communicate via shared memory) where it is easy to verifythat it is always possible to avoid a deadlock.To prove that the property above is preserved, suppose that M1 vD M2, and suppose thatM2 satis�es the the property above, while M1 does not. Then there is a trace distribution ofM1with in�nite external computation where the probability of �0 after � conditional to � is greaterthan p. Since M1 vD M2, there is a trace distribution ofM2 with in�nite external computationwhere the probability of �0 after � conditional to � is greater than p. This contradicts thehypothesis that M2 satis�es the property above.Example 7.3.3 The following property is preserved by the trace distribution preorder.\In every computation where in�nite external activity occurs with probability 1, if a�nite trace � occurs, then, no matter what state is reached, a trace �0 occurs ofter� with probability at least p."A more concrete instantiation of the property above is \under the hypothesis that a distributedsystem never deadlocks, if a process has requested a service (�), then, no matter what state isreached, either the service has received a positive acknowledgment already (�0), or a positiveacknowledgment will be received eventually with probability at least p". This property is pre-served by the trace distribution preorder since it is equivalent to the property of Example 7.3.2with p = 1 (cf. Proposition 5.5.5 to have an idea of why this is true).Essentially, the rule of thumb to determine what properties can be guaranteed to be preservedunder the trace distribution preorder is the following: express the property of interest as aproperty � of the trace distributions of a probabilistic automatonM plus a condition  on thestructure ofM . If M1 vD M2, then the trace distributions ofM1 satisfy the property �. Thus,if we know that M2 satis�es the property of interest, it is enough to verify separately that M1satis�es  in order to be guaranteed that also M1 satis�es the property of interest.142
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\After some �nite trace � has occurred, no matter what state is reached, the prob-ability that some other trace �0 occurs from the state reached is not greater thanp."This property is not preserved by the trace distribution preorder since trace distributions cannotdetect all the points where we may start to study the probability of �0 to occur. However, thistask is possible with the help of an external context. We use a context C that performs a freshaction o and then stops.Suppose that M1 vDC M2 and suppose that M2 satis�es the property above, while M1does not. Then there is a probabilistic execution H1 of M1 where some state q is reached afterthe occurrence of �, and the probability that �0 occurs from q is greater than p. Consider aprobabilistic execution H 01 ofM1kC such that H 01dM1 = H1 and such that action o is scheduledexactly from the minimal state q0 such that q0dM1 = q. Then, o occurs always after �, andthe conditional probability of �0 after o given that o occurred is greater than p in the tracedistribution of H 01. Since M1 vDC M2, then there is a probabilistic execution H 02 of M2kCwhose trace distribution is the same as the trace distribution of H 02. This means that there is atleast one state q00 in H 02, reached immediately after the occurrence of o, where the probabilitythat �0 occurs from q00 in H 02 is greater than p. Consider H 02dM2, and change its transitionrelation to obtain a probabilistic execution H2 such that H2.(q00dM2) = (H 02dM2).(q00dM2).Then the probability that �0 occurs from q00dM2 in H2 is greater than p. Moreover, � hasoccurred when qdM2 is reached. This contradicts the hypothesis that M2 satis�es the propertyabove.Example 7.4.3 The following property is preserved by the trace distribution precongruencebut not by the trace distribution preorder.\In every computation where in�nite external activity occurs with probability 1, if a�nite trace � occurs, then, no matter what state is reached, if another trace �00 hasnot occurred yet after �, then a trace �0 occurs with probability at least p."A more concrete instantiation of the property above is \under the hypothesis that a distributedsystem never deadlocks, if a process has requested a service (�) and has not received yet arefusal (�00) then, no matter what state is reached, a positive acknowledgment (�0) will bereceived eventually with probability at least p". Observe that the main di�erence from theproperty of Example 7.3.3 is in the use of �00. The presence of �00 does not guarantee that �0occurs with probability 1.Even in this case in the proof we use a context C with a fresh action o. Suppose thatM1 vDC M2 and suppose thatM2 satis�es the property above, while M1 does not. Then thereis a probabilistic execution H1 ofM1 where in�nite external activity occurs such that there is astate q of H1 that is reached after the occurrence of � and before the occurrence of �00, and suchthat the probability that �0 occurs from q is smaller than p. Consider a probabilistic executionH 01 of M1kC such that H 01dM1 = H1 and such that action o is scheduled exactly from theminimal state q0 such that q0dM1 = q. Then, o occurs always after � and before �00 occurs after�, and the conditional probability of �0 after o given that o occurred is greater than p in thetrace distribution of H 01. Since M1 vDC M2, then there is a probabilistic execution H 02 ofM2kCwhose trace distribution is the same as the trace distribution of H 02. This means that there is at144
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start startFigure 7-6: The principal context (left) and the simple principal context (right).least one state q00 in H 02, reached immediately after the occurrence of o, where the probabilitythat �0 occurs from q00 in H 02 is smaller than p. Consider H 02dM2, and change its transitionrelation to obtain a probabilistic execution H2 such that H2.(q00dM2) = (H 02dM2).(q00dM2).Then the probability that �0 occurs from q00dM2 in H2 is smaller than p. Moreover, � hasoccurred when qdM2 is reached and similarly �00 has not occurred after the occurrence of �.This contradicts the hypothesis that M2 satis�es the property above.7.5 Alternative Characterizations of the Trace DistributionPrecongruenceIn this section we give an alternative characterization of the trace distribution precongruencethat is easier to manipulate. We de�ne a principal context , denoted by CP , and we show thatthere exists a context C that can distinguish two probabilistic automata M1 and M2 i� theprincipal context distinguishes M1 and M2.7.5.1 The Principal ContextThe principal context is a probabilistic automaton with a unique state and three self-loop tran-sitions labeled with actions that do not appear in any other probabilistic automaton. Twoself-loop transitions are deterministic (Dirac) and are labeled with action left and right , respec-tively; the third self-loop transition is probabilistic, where one edge leads to the occurrence ofaction pleft with probability 1=2 and the other edge leads to the occurrence of action prightwith probability 1=2. Figure 7-6 shows the principal context.The principal context is not a simple probabilistic automaton; however, since it does nothave any action in common with any other probabilistic automaton, the parallel compositionoperator can be extended trivially: no synchronization is allowed. Alternatively, if we do notwant a non-simple context, we can replace the principal context with the simple principalcontext , represented in Figure 7-6, as well. In this case we need to assume that also action startdoes not appear in any other probabilistic automaton. The main theorem is the following.Theorem 7.5.1 M1 vDC M2 i� M1kCP vD M2kCP .As a corollary we obtain an alternative characterization of the trace distribution precongruenceand a compositional observational semantics for probabilistic automata. A principal trace distri-145



bution of a probabilistic automatonM is a trace distribution ofMkCP . Denote by ptdistrs(M)the set tdistrs(MkCP ).Corollary 7.5.2 M1 vDC M2 i� ptdistrs(M1) � ptdistrs(M2).The fact that the principal context is not a simple probabilistic automaton may appear tobe confusing. Here we shed some light on the problem. First of all, in Chapter 4 we havede�ned parallel composition only for simple probabilistic automata; in this section, in order toaccount for the principal context, we have extended parallel composition to pairs of probabilisticautomata, not necessarily simple, that do not have any action in common. This raises animmediate question: is the trace distribution precongruence de�ned based solely on contextsthat are simple probabilistic automata or is it de�ned based on any compatible context accordingto the new extended parallel composition? The answer to this question, as it will become clearfrom the proof of Theorem 7.5.1, is that it does not matter because the two de�nitions areequivalent. That is, if there is a non-simple context that distinguishes two simple probabilisticautomata M1 and M2, then the simple principal context distinguishes M1 and M2 as well.Our choice of the principal context is just stylistic since it contains less structure thanthe simple principal context. The reader should keep in mind that there are in�nitely manycontexts with the same properties as the principal and the simple principal contexts; any oneof those contexts can be chosen to give an alternative characterization to the trace distributionprecongruence.7.5.2 High Level ProofThe rest of this section is dedicated to the proof of Theorem 7.5.1. The proof is structuredin several steps where at each step a generic distinguishing context C is transformed intoa simpler distinguishing context C0. The proof of each transformation step is structured asfollows. Given a distinguishing context C for M1 vD M2, build a simpler context C0. Supposeby contradiction that C0 is not a distinguishing context and consider a trace distribution D ofM1kC that is not a trace distribution of M2kC. Let H1 be a probabilistic execution of M1kCsuch that tdistr(H1) = D. Transform H1 into a probabilistic execution H 01 ofM1kC0, and showthat if there is a probabilistic execution H 02 of M2kC 0 such that tdistr(H 02) = tdistr(H 01), thenH 02 can be transformed into a probabilistic execution H2 of M2kC such that tdistr(H2) = D.This leads to a contradiction.The high level proof of Theorem 7.5.1 is then the following.=): Assuming that the principal context distinguishes M1 and M2, we show that the simpleprincipal context distinguishes M1 and M2.(=: We consider a generic context C that distinguishes M1 and M2, and we transform it intothe principal context, showing that the principal context distinguishes M1 and M2. Thetransformation steps are the following.1. Ensure that C does not have any action in common withM1 andM2 (Lemma 7.5.3);2. Ensure that C does not have any cycles in its transition relation (Lemma 7.5.4);3. Ensure that the branching structure of C is at most countable (Lemma 7.5.5);146



4. Ensure that the branching structure of C is at most binary (Lemma 7.5.6);5. Ensure that the probabilistic transitions ofC lead to binary and uniform distributions(Lemma 7.5.7);6. Ensure that each action of C is external and appears exactly in one edge of thetransition relation of C (Lemma 7.5.8);7. Ensure that each state of C enables two deterministic transitions and one probabilis-tic transition with a uniform binary distribution (Lemma 7.5.9);8. Rename all the actions of the context of 7 according to the action names of theprincipal context and then collapse all the states of the new context into a uniquestate, leading to the principal context (Lemma 7.5.10).7.5.3 Detailed ProofLemma 7.5.3 Let C be a distinguishing context for two probabilistic automata M1 and M2.Then there exists a distinguishing context C0 for M1 and M2 with no actions in common withM1 and M2. C0 is called a separated context.Proof. The context C0 is built from C be replacing each action a in common with M1 and M2,called a shared action, with two new actions a1; a2, and by replacing each transition (c; a;P) ofC with two transitions (c; a1; c0) and (c0; a2;P), where c0 denotes a new state that is used onlyfor the transition (c; a;P). We denote c0 also by c(c;a;P) when convenient. We also denote theset of actions of the kind a1 and a2 by V1 and V2, respectively.Let D be a trace distribution of M1kC that is not a trace distribution ofM2kC. Consider aprobabilistic execution H1 of M1kC such that tdistr(H1) = D, and consider the scheduler thatleads to H1. Apply to M1kC0 the same scheduler with the following modi�cation: whenever atransition ((s1; c); a;P1
P) is scheduled in M1kC, schedule ((s1; c); a1;D((s1; c0))), where c0 isc(c;a;P), followed by ((s1; c0); a;P1
D(c0)), and, for each s01 2 
1, followed by ((s01; c0); a2;D(s01)
P). Denote the resulting probabilistic execution by H 01 and the resulting trace distribution byD0. Then,D0 � acts(M1kC) = D: (7.14)To prove (7.14) we de�ne a new construction, called collapse and abbreviated with clp, to beapplied to probabilistic executions of MikC 0, i = 1; 2, where each occurrence of a shared actiona is followed immediately by an occurrence of its corresponding action a2.Let H 0 be a probabilistic execution of MikC0 where each occurrence of a shared action a isfollowed immediately by an occurrence of its corresponding action a2. For convenience denoteclp(H 0) by H . A state q of H 0 is closed if each occurrence of a shared action a is followedeventually by an occurrence of the corresponding action a2. For each closed state q of H 0, letclp(q) be obtained from q as follows: each sequence(s0; c0)a1(s0; ctr)�2(s2; ctr) � � ��k(sk; ctr)a(s; ctr)a2(s; c)is replaced with(s0; c0)�2(s2; c0) � � ��k(sk; c0)a(s; c); 147



and each sequence(s0; c0)a1(s1; ctr)�2(s2; ctr) � � ��k(sk; ctr)occurring at the end of q is replaced with(s0; c0)�2(s2; c0) � � ��k(sk; c0):De�nestates(H) 4= fclp(q) j q 2 states(H 0); closed(q)g: (7.15)Let (q;P) be a restricted transition of H 0 where q is a closed state, and suppose that no actionof V1 [ V2 occurs. Consider a pair (a; q0) of 
. If a is not a shared action, then letP(a;q0) 4= D((a; clp(q0))); (7.16)if a is a shared action, then let
(a;q0) 4= f(a; clp(q00)) j (a2; q00) 2 
H 0q0 g; (7.17)and for each (a; q000) 2 
(a;q0), letP(a;q0)[(a; q000)] 4= Pq0 [a2 � clp�1(q000)]; (7.18)where for each state q of H , clp�1(q) is the set of closed states q0 of H 0 such that clp(q0) = q.The transition clp((q;P)) is de�ned to beclp((q;P)) 4= 0@clp(q); X(a;q0)2
P [(a; q0)]P(a;q0)1A : (7.19)For the transition relation of H , consider a state q of H Let min(clp�1(q)) be the set of minimalstates of clp�1(q) under pre�x ordering. For each state �q 2 clp�1(q), let�pclp�1(q)�q 4= PH 0 [C�q]Pq02min(clp�1(q)) PH 0 [Cq0] : (7.20)The transition enabled in H from q isXq02clp�1(q) �pclp�1(q)q0 PH 0q0 [acts(MikC)]clp(trH 0q0 � acts(MikC)): (7.21)Note the similarity with the de�nition of the projection of a probabilistic execution fragment(cf. Section 4.3.2).The probabilistic execution H satis�es the following properties.a. H is a probabilistic execution of MikC.The fact that each state of H is reachable can be shown by a simple inductive argument;the fact that each state of H is a �nite execution fragment ofMikC follows from a simpleanalysis of the de�nition of clp.From (7.21) it is enough to check that for each closed state q0 of H 0, the transitionclp(trH 0q0 � acts(MikC)) is generated by a combination of transitions of MikC. Since trH 0q0is a transition of H 0, (trH 0q0 � acts(MikC)) can be expressed as Pj pj(q0 a tr j), where eachtr j is a transition of MikC0. We distinguish three cases.148



1. tr j is a non-shared transition of Mi.Then tr j = ((s; c); a;P 
 D(c)) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(clp(q0)) = (s0; c0). Then, s0 = s, as it follows directlyfrom the de�nition of clp. De�ne tr 0j to be the transition ((s; c0); a;P
D(c0)). Thentr 0j is a transition of MikC and clp(q0 a tr j) = clp(q0) a tr 0j2. tr j is a non-shared transition of C 0.Then tr j = ((s; c); a;D(s)
 P) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(clp(q0)) = (s0; c0). Then, s0 = s and c0 = c, as it followsdirectly from the de�nition of clp after observing that q0 must be a closed state inorder to enable tr j . De�ne tr 0j to be tr j . Then tr 0j is a transition of MikC andclp(q0 a tr j) = clp(q0) a tr 0j3. tr j is a shared transition.Then tr j = ((s; ctr); a;P
D(ctr)) for some action a and probability space P , where(s; ctr) = lstate(q0). In particular, ctr is one of the states that are added to thoseof C, and tr is a simple transition of C with action a. Moreover, from each state(s0; ctr) 2 
P
D(ctr), there is a transition ((s0; ctr); a2;D(s0) 
 Ptr) enabled. Letlstate(clp(q0)) = (s0; c0). Then, s0 = s. De�ne tr 0j to be ((s; c0); a;P 
 Ptr). Then,from the de�nition of C0, tr 0j is a transition of MikC.Observe that clp distributes over combination of transitions. Moreover, from Equa-tion (7.19), observe that for each j clp(q0 a tr j) = clp(q0) a tr 0j . Thus, clp(trH 0q0 �acts(MikC)) = clp(q0) a (Pj pjtr 0j), which is generated by a combination of transitions ofMikC.b. For each state q of H ,PH [Cq] = Xq02min(clp�1(q))PH 0 [Cq0 ]: (7.22)This is shown by induction on the length of q. If q consists of a start state only, then the re-sult is trivial. Otherwise, from the de�nition of the probability of a cone, Equation (7.21),and a simple algebraic simpli�cation,PH [Cqas] = PH [Cq]0@ Xq02clp�1(q) �pclp�1(q)q0 Fq0(qas)1A ; (7.23)where Fq0(qas) expresses the probability of the completions of q0 to a state whose col-lapse gives qas without using actions from V1 [ V2 in the �rst transition. Formally,if a is not a shared action, then Fq0(qas) is PH 0q0 [a � clp�1(qas)]; otherwise, Fq0(qas)is PH 0q0 [(a; q0a(s0; ctr))]PH 0q0a(s0;ctr )[(a2; q0a(s0; ctr)a2(s0; c))], where ctr = lstate(q0)dC 0, ands = (s0; c). In the �rst case, 
H 0q0 \ (fag � clp�1(qas)) contains only one element, say(a; q0as00), and PH 0 [Cq0]Fq0(qas) gives PH 0 [Cq0as00 ]; in the second case PH 0 [Cq0]Fq0(qas)gives PH 0 [C(q0a(s0;ctr)a2s)]. 149



Observe that the states of min(clp�1(qas)) are the states of the form described above(simple cases analysis). Thus, by applying induction to (7.23), using (7.20), simplifyingalgebraically, and using the observations above,PH [Cqas] = Xq02min(clp�1(qas))PH 0 [Cq0]: (7.24)c. tdistr(H) = tdistr(H 0) � acts(MikC).Let � be a �nite trace of H or H 0. Then f� 2 
H 0 j � � trace(�) � acts(MikC)g can beexpressed as a union of disjoint cones [q2�Cq where, if the last action of � is a and a isnot a shared action,� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = ag; (7.25)and if the last action of � is a and a is a shared action,� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = a2g: (7.26)Observe that � is a set of closed states. The set clp(�) is the setclp(�) = fq 2 states(H) j trace(q) = �; lact(q) = ag; (7.27)which is a characterization of f� 2 
H j � � trace(�)g as a union of disjoint cones.Observe that min(clp�1(clp(�))) = �. Moreover, for each q1 6= q2 of clp(�), clp�1(q1) \clp�1(q2) = ;. Thus, from (7.22), PH 0 [[q2�Cq] = PH [[q2clp(�)Cq]. This is enough toconclude.To complete the proof of (7.14) it is enough to observe that H1 = clp(H 01). Property (7.14) isthen expressed by property (c).Suppose by contradiction that it is possible to obtain D0 fromM2kC 0. Consider the schedulerthat leads to D0 in M2kC0, and let H 02 be the corresponding probabilistic execution. First, webuild a new probabilistic execution H 002 of M2kC0 whose trace distribution is D0, and such thateach shared action a is followed immediately by its corresponding action a2. Then we let H2 beclp(H 002 ). This leads to a contradiction since tdistr(H2) = D. The rest of the proof is dedicatedto the construction of H 002 .For each state q of H 02, let exch(q) be the set of sequences q0 that can be obtained from qas follows: each sequence(s0; ctr)a(s1; ctr)�2(s2; ctr) � � ��h(sh; ctr)a2(sh; c)is replaced with(s0; ctr)a(s1; ctr)a2(s1; c)�2(s2; c) � � ��h(sh; c);each sequence(s0; ctr)a(s1; ctr)�2(s2; ctr) � � ��h(sh; ctr) 150



occurring at the end of q is replaced with(s0; ctr)a(s1; ctr)a2(s1; c)�2(s2; c) � � ��h(sh; c);where c is any of the states that a2 may lead to from ctr , and each sequence(s0; ctr)a(s1; ctr)occurring at the end of q, where a is a shared action, either it is replaced with(s0; ctr)a(s1; ctr)a2(s1; c);where c is any of the states that a2 may lead to from ctr , or it is not replaced. Then, de�nestates(H 002 ) 4= [q2states(H 02) exch(q): (7.28)Let (q;P) be a restricted transition of H 02, and suppose that no action of V2 occurs. Let q0 bea state of exch(q) that does not end with a shared action. Then, for each (a; q1) 2 
 there isexactly one q01 2 exch(q1) such that q0 � q01 and jq01j = jq0j+ 1 (simple analysis of the de�nitionof exch). Denote such q01 by exchq0(q1). Let 
0 = f(a; exchq0(q1) j (a; q1) 2 
g, and let, for each(a; q01) 2 
0, P 0[(a; q01)] = P [(a� exch�1(q01))], where exch�1(q) is the set of states q0 of H 02 suchthat q 2 exch(q0). Then de�ne the transition exchq0((q;P)) to beexchq0((q;P)) 4= (q0;P 0): (7.29)For each state q of H 002 , let min(exch�1(q)) be the set of minimal states of exch�1(q) underpre�x ordering. For each state q0 of exch�1(q), where q is closed, let� pqq0 4= PH 02 [Cq0 ] if q0 is closed , i.e., if each occurrence of a shared action a is followedeventually by an occurrence of its corresponding action a2;� pqq0 4= PH 02 [Cq0]Ptr [c] if q0 is open, where lstate(q0)dC0 = ctr and lstate(q)dC = c.For each q0 2 exch�1(q), let�pexch�1(q)q0 4= pqq0Pq002min(exch�1(q)) pqq00 : (7.30)If the last action of q is a shared action a, and lstate(q) = (s; ctr), then the transition enabledfrom q in H 002 isq a ((s; ctr); a2;D(s)
 Ptr): (7.31)If the last action of q is not a shared action, then the transition enabled from q in H 002 isXq02exch�1(q) �pexch�1(q)q0 PH 02q0 [acts(H 02)nV2]exchq(trH 02q0 � (acts(H 02)nV2)): (7.32)The probabilistic execution H 02 satis�es the following properties.151



a. H 002 is a probabilistic execution of M2kC0.The fact that each state of H 002 is reachable can be shown by a simple inductive argument;the fact that each state of H 002 is a �nite execution fragment of M2kC 0 follows from asimple analysis of the de�nition of exch .We need to check that for each state q of H 002 the transition enabled from q in H 002 isgenerated by a combination of transitions of M2kC 0. If the last action of q is a sharedaction, then the result follows immediately from Expression (7.31) and the de�nition ofC0. If the last action of q is not a shared action, then consider a state q0 2 exch�1(q).The transition trH 02q0 � (acts(H 02)nV2) can be expressed as Pi pi(q0 a tr i), where each tr i isa transition of M2kC 0 enabled from lstate(q0). We distinguish three cases.1. tr i is a non-shared transition of M2.Then tr i = ((s; c); a;P 
 D(c)) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s. De�ne tr 0i to be thetransition ((s; c0); a;P
D(c0)). Then tr 0i is a transition ofM2kC 0 and exchq(q0atr i) =q a tr 0i.2. tr i is a non-shared transition of C 0.Then tr i = ((s; c); a;D(s)
 P) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s and c = c0. De�ne tr 0i to betr i. Then tr 0i is a transition of M2kC 0 and exchq(q0 a tr i) = q a tr 0i.3. tr i is a shared transition.Then tr i = ((s; c); a;P 
 D(c)) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s and c = c0. De�ne tr 0i to betr i. Then tr 0i is a transition of M2kC 0 and exchq(q0 a tr i) = q a tr 0i.Observe that exch distributes over combination of transitions. Thus, exchq((trq0) �(acts(H 02)nV2)) can be expressed as Pi pi(q a tr 0i), which is generated by a combination oftransitions of M2kC 0. From (7.32), the transition enabled from q in H 002 is generated by acombination of transitions of M2kC 0.b. For each state q of H 002 ,PH 002 [Cq] = ( Pq02min(exch�1(q)) PH 02 [Cq0] if q ends with a shared action,Pq02min(exch�1(q)) pqq0 otherwise. (7.33)The proof is by induction on the length of q. If q consists of a start state only, then theresult is trivial. Otherwise, consider PH 002 [Cqas]. We distinguish two cases.1. q is open.In this case, since in H 02 each shared action is followed immediately by the corre-sponding action of V2, a is an action of V2. Moreover, from the de�nition of exch ,exch�1(q) = min(exch�1(qas)) = min(exch�1(q)); (7.34)and all the elements of exch�1(q) are open states. From induction,PH 002 [Cq] = Xq02min(exch�1(q))PH 02 [Cq0]: (7.35)152



Let c = sdM2, and let ctr = lstate(q)dC 0. Then, for each q0 2 min(exch�1(q)),ctr = lstate(q0)dC 0, andpqasq0 = PH 02 [Cq0 ]Ptr [c]: (7.36)Moreover, PH 002q [(a; qas)] = Ptr [c]. Thus, from the de�nition of the probability of acone and (7.35),PH 002 [Cqas] = Xq02min(exch�1(q))PH 02 [Cq0]Ptr [c]: (7.37)By using the fact that min(exch�1(q)) = min(exch�1(qas)), and using (7.36), weobtainPH 002 [Cqas] = Xq02min(exch�1(qas)) pqasq0 : (7.38)2. q is closed.In this case, from the de�nition of the probability of a cone and (7.32),PH 002 [Cqas] = PH 002 [Cq]0@ Xq02exch�1(q) �pexch�1(q)q0 PH 02q0 [a� exch�1(qas)]1A : (7.39)Let P tr q [q0] denote Ptr [c], where c = lstate(q)dC 0, and ctr = lstate(q0)dC0. Then,from induction and (7.30),PH 002 [Cqas] = Xq02exch�1(q)jclosed(q0)PH 02 [Cq0]PH 02q0 [a� exch�1(qas)] + (7.40)Xq02exch�1(q)jopen(q0)PH 02 [Cq0 ]P tr q[q0]PH 02q0 [a� exch�1(qas)]:We distinguish two subcases.(a) a is a shared action.In this case each state q0 of exch�1(q) such that PH 02q0 [a � exch�1(qas)] > 0is closed. Thus, only the �rst summand of (7.40) is used. Moreover, eachstate of min(exch�1(qas)) is captured by Expression (7.40). Thus, PH 02 [Cqas] =Pq02min(exch�1(qas)) PH 02 [Cq0]. Observe that qas is open.(b) a is not a shared action.In this case, for each q0 2 exch�1(q), if q0 is closed, then all the states reached in
q0\(fag�exch�1(qas)) are closed, and if q0 is open, then all the states reachedin 
q0\(fag�exch�1(qas)) are open. Moreover, each state of min(exch�1(qas))is captured by Expression (7.40). Thus, from the de�nition of pqasq0 , PH 02 [Cqas] =Pq02min(exch�1(qas)) pqasq0 . Observe that qas is closed.c. tdistr(H 02) = tdistr(H 002 ).Let � be a �nite trace of H 02 or H 002 . Then f� 2 
H 02 j � � trace(�)g can be expressed asa union of disjoint cones [q2�Cq where� = fq 2 states(H 0) j trace(q) = �; lact(q) = lact(�)g: (7.41)153



We distinguish two cases.1. � does not end with an action of V2.The set �0 = fq 2 exch(�) j lact(q) = lact(�)g is a characterization of f� 2 
H 002 j� � trace(�)g as a union of disjoint cones. Observe that min(exch�1(�0)) = � andthat for each pair of states q1 6= q2 of �0, min(exch�1(q1)) \ min(exch�1(q2)) =;. Thus, if � ends with a shared action, then (7.33) is su�cient to conclude thatPH 02 [f� 2 
H 02 j � � trace(�)g] = PH 002 [f� 2 
H 002 j � � trace(�)g]; if � does notend with a shared action, then, since all the states of � are closed, Equation (7.33)together with the de�nition of pqq0 are su�cient to conclude.2. � ends with an action of V2.In this case � = �0a2 for some action a2 2 V2. Observe that, both in H 02 and H 002 ,after the occurrence of a shared action a the corresponding action a2 occurs withprobability 1: for H 02 recall that tdistr(H 02) � acts(M2kC) = D; for H 002 see (7.31).Thus, the probability of � is the same as the probability of �0, and the problem isreduced to Case 1.Lemma 7.5.4 Let C be a distinguishing separated context for two probabilistic automata M1and M2. Then there exists a distinguishing cycle-free separated context C0 for M1 and M2.Proof. C0 can be built by unfolding C. Every scheduler for MikC can be transformed into ascheduler for MikC 0 and vice versa, leading to the same trace distributions.Lemma 7.5.5 Let C be a distinguishing cycle-free, separated context for two probabilistic au-tomata M1 and M2. Then there exists a distinguishing cycle-free separated context C0 for M1and M2 with a transition relation that is at most countably branching.Proof. Let D be a trace distribution of M1kC that is not a trace distribution of M2kC.Consider the corresponding probabilistic execution H . Observe that H has at most countablymany states, and that at each state of H there are at most countably many transitions of Cthat are scheduled. Thus, in total, only countably many transitions of C are used to generateD. Then C 0 is C without the unused transitions.Lemma 7.5.6 Let C be a distinguishing cycle-free, separated context for two probabilistic au-tomata M1 and M2 such that the transition relation of C is at most countably branching. Thenthere exists a distinguishing cycle-free separated context C0 for M1 and M2 that at each stateeither enables two deterministic transitions or a unique probabilistic transition with two possibleoutcomes. C 0 is called a binary separated context.Proof. For each state s of C, choose a new action start s. Let s enable the transitionstr1; tr2; : : :, where each tr i is a transition (s; ai;Pi). The transition relation of C0 is obtained intwo phases. First, a transition is chosen nondeterministically as shown in Figure 7-7, where eachsymbol � denotes a distinct state and each symbol � denotes a distinct internal action; then, foreach state �i, the transition tr i is encoded as follows. Let 
i be fsi;1; si;2; : : :g, pi;j 4= Pi[si;j ],and �pi;j 4= Pk�j pi;k. The transition relation from �i is represented in Figure 7-8, where each154
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is replaced with(s0; c0)bi1(si1 ; c0) � � �bil(si;l; c0)aj(s; c);where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions ofMi, and eachsequence either of the form(s0; c0)startc0(s0; �)b1(s1; �) � � �bh(sh; �j)�1(sh; �) � � ��k(sh; �)or of the form(s0; c0)startc0(s0; �)b1(s1; �) � � �bh(sh; �)occurring at the end of q is replaced with(s0; c0)bi1(si1 ; c0) � � �bil(si;l; c0);where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions of Mi. Then,states(H) 4= fshr(q) j q 2 states(H 0)g: (7.44)Let (q;P) be a restricted transition of H 0, and suppose that no action of acts(C0)nacts(C)occurs. Let 
0 = f(a; shr(q0)) j (a; q0) 2 
g, and for each (a; q00) 2 
0, let P 0[(a; q00)] =P [a � shr�1(q00)], where shr�1(q) is the set of states q0 of H 0 such that shr(q0) = q. Then thetransition shr((q;P)) is de�ned to beshr((q;P)) 4= (shr(q);P): (7.45)For the transition relation of H , consider a state q of H , and let min(shr�1(q)) be the set ofminimal states of shr�1(q) under pre�x ordering. For each state �q 2 shr�1(q), let�pshr�1(q)�q 4= PH 0 [C�q]Pq02min(shr�1(q)) PH 0 [Cq0] : (7.46)The transition enabled from q in H isXq02shr�1(q) �pshr�1(q)�q PH 0q0 [acts(MikC)]shr(trH 0q0 � acts(MikC)): (7.47)The probabilistic execution H satis�es the following properties.a. H is a probabilistic execution of MikC.The fact that each state of H is reachable can be shown by a simple inductive argument;the fact that each state of H is a �nite execution fragment ofMikC follows from a simpleanalysis of the de�nition of shr .We need to show that for each state q of H the transition of Expression (7.47) is generatedby a combination of transitions of MikC. The states of shr�1(q) that enable some actionofMikC can be partitioned into two sets �c and �o of closed and open states, respectively.We analyze �c �rst. Let q0 2 �c. Since tr q0 is a transition of H 0, (tr q0 � acts(MikC)) canbe expressed as Pj pj(q0 a tr j), where each tr j is a transition of MikC 0. We distinguishtwo cases. 156



1. tr j is a transition of Mi.Then tr j = ((s; c); a;P 
 D(c)) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(shr(q0)) = (s0; c0). Then, s0 = s, as it follows directlyfrom the de�nition of shr . Moreover, (s; a;P) is a transition of Mi. De�ne tr 0jto be the transition ((s; c0); a;P 
 D(c0)). Then tr 0j is a transition of MikC andshr q(q0 a tr i) = q a tr 0j .2. tr j is a transition of C 0.This case is not possible since, from the construction of C 0, no action of C can beenabled from a closed state.Observe that shr distributes over combination of transitions. Thus,shr(trH 0q0 � acts(MikC)) =Xj pj(shr(q0) a tr 0j); (7.48)which is generated by a combination of transitions of MikC.We now turn to �o. The set �o can be partitioned into sets (�j)j�0, where each set�j consists of those states q0 of �o where a particular state �j of C0 occurs without itsmatching action aj . Each element q0 of �j can be split into two parts q1 a q2, wherelstate(q1)dC0 = �j . Denote q1 by head(q0). Partition �j into other sets (�j;k)k�0, whereeach �j;k is an equivalence class of the relation that relates two states i� they have thesame head. Denote the common head of the states of �i;j by head(�i;j). For each pairof states q1; q2 of H 0 such that q1 � q2, denote by pq1q2 the probability value such thatPH 0 [CH 0q2 ] = PH 0 [CH 0q1 ]pq1q2 . Then, for each equivalence class �i;j , the expressionXq02�j;k �pshr�1(q)q0 PH 0q0 [acts(MikC)]shr(trH 0q0 � acts(MikC)) (7.49)can be rewritten into0@�pshr�1(q)head(�i;j) Xq02�j;k phead(q0)q01AXq02�j;k phead(q0)q0Pq02�j;k phead(q0)q0 PH 0q0 [aj ]shr(trH 0q0 � acts(MikC)) (7.50)where (7.50) is obtained from (7.49) by expressing each �pshr�1(q)q0 as �pshr�1(q)head(q0) phead(q0)q0 , bygrouping �pshr�1(q)head(�i;j), which is equal to �pshr�1(q)head(q0) for each q0 os �i;j , by substituting PH 0q0 [aj ]for PH 0q0 [acts(MikC] (action aj is the only action of MikC that can be performed from q0due to the structure of H 0), and by multiplying and dividing by Pq02�j;k phead (q0)q0 .Observe that each transition that appears in (7.50) is generated by some transitions ofMikC. Thus, the transition of (7.50) is generated by a combined transition of MikC.Denote this transition by tr j;k. Then, in Expression (7.47) it is possible to substi-tute each subexpression Pq02�j;k �pshr�1(q)q0 PH 0q0 [acts(MikC)]shr(tr q0 � acts(MikC)) with(�pshr�1(q)head(q0) Pq02�j;k phead(q0)q0)tr j;k. This is enough to conclude.157



b. For each state q of H ,PH [Cq] = Xq02min(shr�1(q))PH 0 [Cq0]: (7.51)This is shown by induction on the length of q. If q consists of a start state only, then theresult is trivial. Otherwise, from the de�nition of the probability of a cone and (7.47),PH [Cqas] = Xq02shr�1(q)PH 0 [Cq0]PH 0q0 [a� shr�1(qas)]: (7.52)Observe that the states ofmin(shr�1(qas)) are the states that appear in (a�shr�1(qas))\
q0 for some q0 2 shr�1(q). Thus, PH [Cqas] =Pq02min(shr�1(qas)) PH 0 [Cq0].c. tdistr(H) = tdistr(H 0) � acts(MikC).Let � be a �nite trace of H or the projection of a �nite trace of H 0. Then f� 2 
H 0 j � �trace(�) � acts(MikC)g can be expressed as a union of disjoint cones [q2�Cq where� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = lact(�)g: (7.53)Observe that � is a set of closed states. The set shr(�) is the setshr(�) = fq 2 states(H) j trace(q) = �; lact(q) = lact(�)g; (7.54)which is a characterization of f� 2 
H j � � trace(�)g as a union of disjoint cones.Observe that min(shr�1(shr(�))) = �. Moreover, for each q1 6= q2 of shr(�), shr�1(q1)\shr�1(q2) = ;. Thus, from (7.51), PH 0 [[q2�Cq] = PH [q 2 shr(�)Cq].To complete the proof of (7.43), it is enough to observe that H1 = shr(H 01). Property (7.43) isthen expressed by property (c).Suppose by contradiction that it is possible to obtain D0 fromM2kC 0. Consider the schedulerthat leads to D0 in M2kC0, and let H 02 be the corresponding probabilistic execution. First, webuild a new probabilistic execution H 002 ofM2kC 0 whose trace distribution is D0, such that thereis no action of M2 between each state of the kind �i and the occurrence of the correspondingexternal action of C, and such that all the transitions between a state of the kind �j and thecorresponding occurrences of action aj are scheduled. Then we let H2 = shr(H 002 ). This leadsto a contradiction since tdistr(H2) = D. The rest of the proof is dedicated to the constructionof H 002 .For each state q of H 02, let shf (q) be the set of sequences q0 that can be obtained from q asfollows: each sequence(s0; �j)b1(s1; �) � � �bk(sk; �)aj(s; c)is replaced with(s0; �j)bi1(s0; �) � � �bil(s0; �)aj(s0; c)bk1(sk1 ; c) � � �bkm(s; c)158



where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions of C 0, andk1; : : : ; km is the ordered sequence of the indexes of the b's that are actions ofM2; each sequence(s0; �j)b1(s1; �) � � �bk(sk; �)occurring at the end of q either is replaced with(s0; �j)bi1(s0; �) � � �bil(s0; �) a � a (s0; �)aj(s0; c)bk1(sk1 ; c) � � �bkm(s; c)where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions of C 0, k1; : : : ; kmis the ordered sequence of the indexes of the b's that are actions ofM2, and �, called an extensionfor q, is an arbitrary execution fragment of M2kC0 that leads to the occurrence of aj , or, isreplaced with a pre�x of (s0; �j)bi1(s0; �) � � �bil(s0; �). Then,states(H 002 ) 4= [q2states(H 02) shf (q): (7.55)Let (q;P) be a restricted transition of H 02, and suppose that only actions ofM2 and Vstart occur.Let q0 be a state of shf (q). Then, for each (a; q1) 2 
 there is exactly one q01 2 shf (q1) such thatq0 � q01 and jq01j = jq0j + 1. Denote such q01 by shf q0(q1). Let 
0 = f(a; shf q0(q1) j (a; q1) 2 
g,and let, for each (a; q01) 2 
0, P 0[(a; q01)] = P [(a� shf �1(q01))], where shf �1(q) is the set of statesq0 of H 02 such that q 2 shf (q0). Then de�ne the transition shf q0((q;P)) to beshf q0((q;P)) 4= (q0;P): (7.56)For each state q of H 002 , let min(shf �1(q)) be the set of minimal states of shf �1(q) under pre�xordering. Let q be a closed state of H 002 , and let q0 2 shf �1(q). If q0 is an open state, then let �be the extension for q0 that is used in q, and let Eqq0 be the product of the probabilities of theedges of �. For each state q0 of shf �1(q), where q is closed, let� pqq0 4= PH 02 [Cq0] if q0 is closed;� pqq0 4= PH 02 [Cq0]Eqq0 if q0 is open.For each q0 2 shf �1(q), let�pshf�1(q)q0 4= pqq0Pq002min(shf�1(q)) pqq00 : (7.57)If q is open, then the transition enabled from q in H 002 is the one due to the transition of C 0enabled from lstate(q)dC0; if q is closed, then the transition enabled from q in H 002 isXq02shf�1(q) �pshf�1(q)q0 PH 02q0 [acts(H 02)n(acts(C) [ V2)] (7.58)shf q(trH 02q0 � (acts(H 02)n(acts(C) [ V2))):The probabilistic execution H 002 satis�es the following properties.159



a. H 002 is a probabilistic execution of M2kC0.The fact that each state of H 002 is reachable can be shown by a simple inductive argument;the fact that each state of H 002 is a �nite execution fragment of M2kC 0 follows from asimple analysis of the de�nition of shf .We need to check that for each state q of H 002 the transition enabled from q in H 002 isgenerated by a combination of transitions ofM2kC0. If q is an open state, then the resultfollows immediately from the de�nition of the transition relation of H 002 . If q is a closedstate, then consider a state q0 2 shf �1(q). The transition trH 02q0 � (acts(H 02)nV2), whichappears in Expression (7.58), can be expressed as Pi pi(q0 a tr i), where each tr i is atransition of M2kC0 enabled from lstate(q0). We distinguish two cases.1. tr i is a transition of M2.Then tr i = ((s; c); a;P 
 D(c)) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s. De�ne tr 0i to be thetransition ((s; c0); a;P
D(c0)). Then tr 0i is a transition ofM2kC 0 and shf q(q0a tr i) =q a tr 0i.2. tr i is a transition of C0.Then tr i = ((s; c); a;D(s)
 P) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s and c = c0 (q is closed).De�ne tr 0i to be tr i. Then tr 0i is a transition of M2kC 0 and shf q(q0 a tr i) = q a tr 0i.Observe that shf distributes over combination of transitions, and thus, the transitionshf q(tH 02q0 � (acts(H 02)nV2)) can be expressed as Pi pi(q a t0i), which is generated by acombination of transitions of M2kC 0.b. For each state q of H 002 ,PH 002 [Cq] = ( Pq02min(shf�1(q)) pqq0 if q is closed,Pq02min(shf�1(q)) PH 02 [Cq0 ] if q is open. (7.59)The proof is by induction on the length of q. If q consists of a start state only, then theresult is trivial. Otherwise, consider PH 002 [Cqas]. We distinguish two cases.1. q is open.In this case a is an action of V2 [ acts(C), and each state of shf �1(q) is open. Fromthe de�nition of the probability of a cone and induction,PH 002 [Cqas] = 0@ Xq02min(shf�1(q))PH 02 [Cq0]1APH 002q [(a; qas)]: (7.60)We distinguish two other cases.(a) a 2 V2.Observe that all the states of min(shf �1(q)) enable the same transition of C 0that is enabled from q. Moreover, for each q0 2 min(shf �1(q)), action a occurswith probability 1 (in D0 each occurrence of a start action is followed by an160



external action with probability 1), and the probability of reaching a state ofmin(shf �1(qas)) given that a occurs is PH 002q [(a; qas)] (recall that q enables onlyaction a). Since all the states of min(shf �1(qas)) are open and have a pre�x inmin(shf �1(q)), we can concludePH 002 [Cqas] = Xq02min(shf�1(qas))PH 02 [Cq0 ]: (7.61)(b) a 2 acts(C).From the de�nition of H 002 , PH 002q [(a; qas)] = 1. Observe that all the states ofmin(shf �1(q)) enable the same transition of C that is enabled from q. Moreover,for each q0 2 min(shf �1(q)), action a occurs with probability 1 (in D0 eachoccurrence of a start action is followed by an external action with probability1), leading to a state of shf �1(qas) for sure (recall that q enables only action a).Thus, for each q0 2 shf �1(q),PH 02 [Cq0] = Xq002min(shf�1(qas))jq0�q00 PH 02 [Cq00]: (7.62)Combining (7.60) and (7.62), we obtainPH 002 [Cqas] = Xq02min(shf�1(qas))PH 02 [Cq0 ]: (7.63)For each q0 2 min(shf �1(qas)), if q0 is open, then pqasq0 = PH 02 [Cq0] by de�nition;if q0 is closed, then pqasq0 = PH 02 [Cq0] since Eqasq0 = 1 (no � must be added by shfto get q0 from qas). Thus, (7.63) becomesPH 002 [Cqas] = Xq02min(shf�1(qas)) pqasq0 : (7.64)2. q is closed.In this case, from the de�nition of the probability of a cone and (7.58),PH 002 [Cqas] = PH 002 [Cq]0@ Xq02shf�1(q) �pshf�1(q)q0 PH 02q0 [a� shf �1(qas)]1A (7.65)From induction, the de�nition of �pshf�1(q)q0 , and an algebraic simpli�cation,PH 002 [Cqas] = Xq02shf�1(q)jclosed(q0)PH 02 [Cq0]PH 02q0 [a� shf �1(qas)] + (7.66)Xq02shf�1(q)jopen(q0)PH 02 [Cq0]Eqq0PH 02q0 [a� shf �1(qas)]:We distinguish two subcases.(a) qas is open.In this case each state q0 of shf �1(q) such that PH 02q0 [a � shf �1(qas)] > 0 isclosed, and thus only the �rst summand of (7.66) is used. Moreover, for each q0of shf �1(q) the set 
H 02q0 \ a� shf �1(qas) is made of open states q0as0 such thatEqasq0as0 = 1. Observe that all the states of min(shf �1(qas)) are captured. Thus,PH 002 [Cqas] = Xq02min(shf�1(qas)) pqq0 : (7.67)161



(b) qas is closed.In this case, for each q0 2 shf �1(q), if q0 is closed, then all the states reached in
q0 \ (fag� shf �1(qas)) are closed, and if q0 is open, then all the states reachedin 
q0 \ (fag � shf �1(qas)) are open and the extension � does not change, i.e.,the term E does not change. Observe that all the states of min(shf �1(qas)) arecaptured. Thus,PH 002 [Cqas] = Xq02min(shf�1(qas)) pqq0 : (7.68)c. tdistr(H 02) = tdistr(H 002 ).Let � be a �nite trace of H 02 or H 002 . Then f� 2 
H 02 j � � trace(�)g can be expressed asa union of disjoint cones [q2�Cq. We distinguish two cases.1. � does not end with an action of C.Then � = fq 2 states(H 0) j trace(q) = �; lact(q) = lact(�)g: (7.69)The set �0 = fq 2 shf (�) j lact(q) = lact(�)g is a characterization of f� 2 
H 002 j� � trace(�)g as a union of disjoint cones. Observe that min(shf �1(�0)) = � andthat for each q1 6= q2 of �0, min(shf �1(q1))\min(shf �1(q2)) = ;. Thus, from (7.51),PH 02 [f� 2 
H 02 j � � trace(�)g] = PH 002 [f� 2 
H 002 j � � trace(�)g].2. � ends with an action of C.In this case � = �0aj for some action aj 2 acts(C). Since in H 02 and H 002 after theoccurrence of a state �j the corresponding action aj occurs with probability 1, wecan assume that all the states of � end in �j , i.e.,� = fq 2 states(H 0) j trace(q) = �0; and lstate(q) is one of the �j 'sg: (7.70)Then the set �0 = min(shf (�)) is a characterization of f� 2 
H 002 j � � trace(�)g as aunion of disjoint cones. Observe that all the elements of � are open. Property (7.59)is su�cient to conclude.Lemma 7.5.7 Let C be a distinguishing binary separated context for two probabilistic automataM1 and M2. Then there exists a distinguishing total binary separated context C0 for M1 andM2 where all the probabilistic transitions have a uniform distribution. C0 is called a balancedseparated context.Proof. We achieve the result in two steps. First we decompose a binary probabilistic transitioninto several binary uniform probabilistic transitions, leading to a new distinguishing contextC1; then we use Lemma 7.5.4 to make C1 into a cycle-free context.The context C1 is obtained from C by expressing each probabilistic transition of C bymeans of, possibly in�nitely many, binary probabilistic transitions. For each state s of C, letstarts be a new action. If s enables a probabilistic transition with actions a1; a2 to states s1; s2,respectively, and with probabilities p1; p2, respectively, then C1 enables from s a deterministictransition with action starts. Then, C1 enables an internal probabilistic transition with auniform distribution. If p1 > p2 (p2 > p1), then one of the states that is reached enables a162



deterministic transition with action a1 (a2). The other state enables a new internal probabilistictransition with a uniform binary distribution, and the transitions from the successive states aredetermined by giving a1 probability 2(p1 � 1=2) and a2 probability 2p2 (a1 probability 2p1and a2 probability 2(p2 � 1=2)). If p1 = p2, then one state enables a1, and the other stateenables a2. For example, if p1 = 5=8 and p2 = 3=8, then the corresponding transitions of C1are represented below. Let D be a trace distribution of M1kC that is not a trace distribution
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τof M2kC. Consider a probabilistic execution H1 of M1kC whose trace distribution is D, andconsider the scheduler that leads to H1 in M1kC. Apply to M1kC1 the same scheduler withthe following modi�cation: whenever a probabilistic transition of C is scheduled, schedule thestart action from C1, then schedule the internal transitions to resolve the probabilistic choice,and �nally schedule the chosen action. Denote the resulting probabilistic execution by H 01 andthe resulting trace distribution by D0. Then,D0 � acts(M1kC ) = D: (7.71)To prove (7.71), we de�ne a new construction shr1, similar to shr , to be applied to probabilisticexecutions ofMikC1 such that no action ofMi occurs between the occurrence of a starts actionand the occurrence of one of the corresponding external actions of C, and such that all thetransitions of C1 between the occurrence of an action start s and the occurrence of one of thecorresponding external actions of C are scheduled. The new function is identical to shr if weconsider each state reached immediately after the occurrence of a start action like the states �jused in Lemma 7.5.6. We leave the details to the reader.Suppose by contradiction that it is possible to obtainD0 fromM2kC1. Consider the schedulerthat leads to D0 in M2kC1, and let H 02 be the corresponding probabilistic execution. First, webuild a new probabilistic execution H 002 of M2kC1 whose trace distribution is D0, such thatno action of Mi occurs between the occurrence of a starts action and the occurrence of oneof the corresponding external action of C, and such that all the transitions of C1 betweenthe occurrence of an action start s and the occurrence of one of the corresponding externalaction of C are scheduled. Then we let H2 = shr1(H 002 ). This leads to a contradiction sincetdistr(H2) = D.The construction of H 002 , which is left to the reader, is the same as shf if we consider eachstate reached immediately after the occurrence of a start action like the states �j used inLemma 7.5.6.Lemma 7.5.8 Let C be a distinguishing balanced separated context for two probabilistic au-tomata M1 and M2. Then there exists a distinguishing binary separated context C0 for M1and M2 with no internal actions and such that each action appears exactly in one edge of thetransition tree. C0 is called a total balanced separated context.163



Proof. The context C0 is obtained from C by renaming all of its actions so that each edge ofthe new transition relation has its own action.Let D be a trace distribution of M1kC that is not a trace distribution ofM2kC. Consider aprobabilistic execution H1 of M1kC whose trace distribution is D, and consider the schedulerthat leads to H1 inM1kC. Apply toM1kC 0 the same scheduler with the following modi�cation:whenever a transition of C is scheduled, schedule the corresponding transition of C0. Denote theresulting probabilistic execution by H 01 and the corresponding trace distribution by D0. Fromconstruction, H1 and H 01 are the same up to the names of the actions of C. Thus, if �0 is thefunction that maps each action of C0 to its original name in C, D = �0(D0) (the renaming of atrace distribution is the probability space induced by the function that renames traces).Suppose by contradiction that it is possible to obtain D0 fromM2kC 0. Consider the schedulerthat leads to D0 in M2kC 0, and let H 02 be the corresponding probabilistic execution. Apply toM2kC the same scheduler with the following modi�cations: whenever a transition of C0 isscheduled, schedule the corresponding transition of C with the unrenamed actions. Let H2 bethe resulting probabilistic execution. From the construction, H2 and H 02 are the same up tothe names of the actions of C. Thus, tdistr(H2) = �0(D0) = D, which is a contradiction.Lemma 7.5.9 Let C be a distinguishing total balanced separated context for two probabilisticautomata M1 and M2. Then there exists a distinguishing total balanced separated context C 0for M1 and M2 that from every state enables two deterministic transitions and a probabilistictransition with a uniform distribution over two choices. C0 is called a complete context.Proof. In this case it is enough to complete C by adding all the missing transitions and states.If D is a trace distribution of M1kC that is not a trace distribution of M2kC, then it is enoughto use on M1kC 0 the same scheduler that is used in M1kC. In fact, since each new transitionof C 0 has a distinct action, none of the new transitions of C 0 can be used in M2kC0 to generateD.Lemma 7.5.10 Let C be a distinguishing complete context for two probabilistic automata M1and M2. Then the principal context CP is a distinguishing context for M1 and M2.Proof. The result is achieved in two steps. First the actions of C are renamed so that each stateenables two deterministic transitions with actions left and right , respectively, and a probabilistictransition with actions pleft and pright . Call this context C1. Then, by observing that eachstate s of C1 is uniquely determined by the trace of the unique execution of C1 that leads to s,all the states of C1 are collapsed into a unique one.Thus, we need to show only that C1 is a distinguishing context. Let D be a trace distributionof M1kC that is not a trace distribution of M2kC. Consider the scheduler that leads to D inM1kC, and apply to M1kC1 the same scheduler with the following modi�cation: whenever atransition of C is scheduled, schedule the corresponding transition of C1. Denote the resultingtrace distribution by D0. Note that if we rename all the actions of C1 into their original namein C, then we obtain D.Suppose by contradiction that it is possible to obtain D0 from M2kC1. Consider the sched-uler that leads to D0 in M2kC1, and apply to M2kC the same scheduler with the followingmodi�cation: whenever a transition of C1 is scheduled, schedule the corresponding transitionof C. The resulting trace distribution is D, which is a contradiction.164



Lemma 7.5.11 Let CP be a distinguishing context for two probabilistic automata M1 and M2.Then the simple principal context, denoted by C, is a distinguishing context for M1 and M2.Proof. Let D be a trace distribution of M1kCP that is not a trace distribution of M2kCP .Consider a probabilistic execution H1 of M1kCP whose trace distribution is D, and considerthe scheduler that leads to H1 in M1kCP . Apply to M1kC the same scheduler with the follow-ing modi�cation: whenever the probabilistic transition of CP is scheduled, schedule the startaction of C followed by the next transition of C that becomes enabled. Denote the resultingprobabilistic execution by H 01 and the resulting trace distribution by D0. Then,D0 � acts(M1kCP) = D: (7.72)To prove (7.72), we de�ne a new construction shr2, similar to shr , to be applied to probabilisticexecutions of MikC such that no action of Mi occurs between the occurrence of a start actionand the occurrence of one of the actions pleft and pright , and such that the transitions labeledwith pleft and pright occur whenever they are enabled. The new function is identical to shrif we consider each state reached after an action start as a state of the kind �j . We leave thedetails to the reader.Suppose by contradiction that it is possible to obtain D0 fromM2kC. Consider the schedulerthat leads to D0 in M2kC, and let H 02 be the corresponding probabilistic execution. First, webuild a new probabilistic execution H 002 of M2kC whose trace distribution is D0, such that noaction of M2 occurs between the occurrence of a start action and the occurrence of one ofthe actions pleft and pright , and such that the transitions labeled with pleft and pright occurwhenever they are enabled. Then we let H2 = clp2(H 002 ). This leads to a contradiction sincetdistr(H2) = D.The construction of H 002 , which is left to the reader, is the same as shf if we consider eachstate reached immediately after the occurrence of a start action like the states �j used inLemma 7.5.6.Proof of Theorem 7.5.1. Let M1 vDC M2. Then, from Lemma 7.5.11,M1kCP vD M2kCP .Conversely, let M1kCP vD M2kCP . Then, from Lemmas 7.5.3, 7.5.4, 7.5.5, 7.5.6, 7.5.7, 7.5.8,7.5.9, and 7.5.10,M1 vDC M2.7.6 DiscussionA trace-based semantics similar to ours is studied for generative processes by Jou and Smolka[JS90]. One of the processes of Jou and Smolka is essentially one of our probabilistic executions.The semantics of a process is given by a function, called a trace function, that associates a prob-ability with each �nite trace. Since our trace distributions are determined by the probabilitiesof the cones, our trace distributions are characterized completely by the trace functions of Jouand Smolka. In other words, the trace semantics of Jou and Smolka is the semantics that weuse to say that two probabilistic executions have the same trace distribution.Jou and Smolka de�ne also a notion of a maximal trace function. Given a probabilisticexecution H , the interpretation of a maximal trace function in our framework is a function thatassociates with each �nite trace � the probability of the extended executions on 
H that end in� and whose trace is �. Jou and Smolka show that the trace function of a process is su�cient165



to determine the maximal trace function of the process. In our trace distributions the maximaltrace function of a probabilistic execution is given by the probability of each �nite trace in thecorresponding trace distribution. From the de�nition of a trace distribution the probability ofeach �nite trace is determined uniquely by the probabilities of the cones, and thus the result ofJou and Smolka holds also in our framework.
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Chapter 8Hierarchical Veri�cation:Simulations8.1 IntroductionIn Chapter 7 we have studied the trace distribution precongruence as an instance of the hierar-chical method for the veri�cation of probabilistic systems. Another instance of the hierarchicalmethod is called the simulation method . According to the simulation method, rather thancomparing two probabilistic automata through some abstract observations, two probabilisticautomata are compared by establishing some relation between their states and by showing thatthe two probabilistic automata can simulate each other via the given relation. Standard workon simulation relations appears in [Mil89, Jon91, LV91]. Simulation relations are stronger thanthe trace preorder, and are often used as a sound proof technique for the trace preorder.In this chapter we study how to extend some of the relations of [Mil89, Jon91, LV91] to theprobabilistic framework. We start with the generalization of the simplest relations that do notabstract from internal computation, and we conclude with the generalization of the forwardsimulations of [LV91] that approximate closely the trace distribution preorder. We prove theequivalent of the Execution Correspondence Lemma [GSSL94] for probabilistic automata, whichstates that there is a strong connection between the probabilistic executions of two probabilisticautomata related by some simulation relation. Finally, we use the new Execution Correspon-dence Lemma to prove that the existence of a probabilistic forward simulation is su�cient toprove the trace distribution precongruence relation.8.2 Strong SimulationsOne of the �nest equivalence relations for ordinary automata would be graph isomorphism;however, it is widely recognized that graph isomorphism distinguishes too much. A coarserequivalence relation is strong bisimulation [Par81, Mil89], where two automata A1 and A2 areequivalent i� there is an equivalence relation between their states so that for each pair (s1; s2)of equivalent states,if s1 a�! s01, then there exists a state s02 equivalent to s01 such that s2 a�! s02.167
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1 must be represented by some states of 
2, and similarly, each state of 
2 mustrepresent one or more states of 
1. Figure 8-2 gives an example of two probability spaces that168
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Lemma 8.2.1 Let PX;i vR PY;i via a weight function wi, and let fpigi�0 be a family ofreal numbers between 0 and 1 such that Pi�0 pi = 1. Then Pi�0 piPX;i vR Pi�0 piPY;i viaPi�0 piwi.Proof. Let PX = Pi�0 piPX;i, PY = Pi�0 piPY;i, and w = Pi�0 piwi. Let x 2 
X . ThenPy2
Y w(x; y) = Py2
Y Pi�0 piwi(x; y) = Pi�0 pi(Py2
Y wi(x; y)) = Pi�0 piPX;i[x] = PX [x].Condition 2 of the de�nition of vR is veri�ed similarly. For Condition 3, let w(x; y) > 0. Thenthere exists an i such that wi(x; y) > 0, and thus x R y.Lemma 8.2.2 Let X; Y be two disjoint sets, R be an equivalence relation on X [ Y , and letP1 and P2 be probability spaces of Probs(X) and Probs(Y ), respectively. Then, P1 �R P2 i�for each equivalence class C of (X [ Y )=R, P1[C \ 
1] = P2[C \ 
2].Proof. Suppose that P1 �R P2, and let w be the corresponding weight function. Then, foreach equivalence class C of (X [ Y )=R,P1[C \ 
1] = Xx2C\
1 P1[x] = Xx2C\
1 Xy2C\
2 w(x; y); (8.1)and P2[C \ 
2] = Xy2C\
2 P2[y] = Xy2C\
2 Xx2C\
1 w(x; y): (8.2)From the commutativity and associativity of sum,P1[C \ 
1] = P2[C \ 
2]: (8.3)Conversely, suppose that each equivalence class (X [ Y )=R has the same probability in P1 andP2. We de�ne w(x; y) for each equivalence class of (X [ Y )=R, and we assume implicitly thatw is 0 for all the pairs (x; y) 2 
1 � 
2 that are not considered in the construction below.Consider any equivalence class C of (X [ Y )=R, and let X 0 = C \
1, and Y 0 = C \
2. Fromhypothesis we know that P1[X 0] = P2[Y 0]. Let x1; x2; : : : be an enumeration of the points ofX 0, and let y1; y2; : : : be an enumeration of the points of Y 0. For each i, let pi = Pk<i P1[xi]and let qi =Pk<i P2[yi]. Thenw(xi; yj) = ( 0 if pi+1 � qj or qj+1 � pimin(pi+1; qj+1)�max (pi; qj) otherwise.Informally, the construction above works as follows. Consider two intervals [0; P1[X 0]], andmark the �rst interval with the points pi and the second interval with the points qj . Eachinterval [pi; pi+1] has length P1[xi] and each interval [qj ; qj+1] has length P2[yj ]. The weightfunction w(xi; yj) is de�ned to be the length of the intersection of the intervals associated withxi and yj , respectively. It is simple to verify that w is a weight function for P1 and P2.170
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It is easy to check that 'P is an equivalence relation, that vSPS is a preorder relation, andthat both 'P and vSPS are preserved by the parallel composition operator. It is easy as wellto verify that a strong bisimulation is also a strong probabilistic bisimulation and that a strongsimulation is also a strong probabilistic simulation.8.4 Weak Probabilistic SimulationsThe abstraction from internal computation can be obtained in the same way as for ordinaryautomata: a transition of a probabilistic automaton should be simulated by a collection ofinternal and external transitions of another probabilistic automaton. For the formal de�nitionwe use the weak combined transitions of Chapter 4.For convenience assume that M1 and M2 do not have common states. A weak probabilisticbisimulation between two simple probabilistic automataM1 and M2 is an equivalence relationR over states(M1) [ states(M2) such that1. each start state of M1 is related to at least one start state of M2, and vice versa;2. for each pair of states s1 R s2 and each transition s1 a�! P1 of either M1 or M2, thereexists a weak combined transition s2 a�ext(M2)=)C P2 of either M1 orM2 such that P1 �R P2.We writeM1 =P M2 whenever ext(M1) = ext(M2) and there is a weak probabilistic bisimulationbetween M1 and M2.A weak probabilistic simulation between two simple probabilistic automataM1 and M2 is arelation R� states(M1)� states(M2) such that1. each start state of M1 is related to at least one start state of M2;2. for each pair of states s1 R s2 and each transition s1 a�! P1 of M1, there exists a weakcombined transition s2 a�ext(M2)=)C P2 of M2 such that P1 vR P2.We write M1 vWPS M2 whenever ext(M1) = ext(M2) and there is a weak probabilistic simula-tion from M1 to M2. We denote the kernel of weak probabilistic simulation by �WPS.It is easy to verify that a strong probabilistic bisimulation is also a weak probabilisticbisimulation and that a strong probabilistic simulation is also a weak probabilistic simulation.However, it is not as easy to verify that =P is an equivalence relation, that vWPS is a preorderrelation, and that both =P and vWPS are preserved by the parallel composition operator. Theveri�cation of these properties is a simpli�cation of the veri�cation of the same properties forthe relation of the next section. For this reason we omit the proofs from this section.8.5 Probabilistic Forward SimulationsOne of the main results of this chapter is that all the relations presented so far are sound forthe trace distribution precongruence. However, none of the relations of the previous sectionsallow for one probabilistic operation to be implemented by several probabilistic operations.172
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’Figure 8-4: Implementation of a probabilistic transition with several probabilistic transitions.
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’Figure 8-5: A more sophisticated implementation.Example 8.5.1 (Weak probabilistic simulations are too coarse) Consider the two prob-abilistic automata of Figure 8-4. The probabilistic automatonM2, which chooses internally oneelement out of four with probability 1=4 each, is implemented by the probabilistic automatonM1, which 
ips two fair coins to make the same choice. However, the �rst transition of M1cannot be simulated by M2 since the probabilistic choice of M2 is not resolved completely yetin M1. This situation suggests a new preorder relation where a state of M1 can be relatedto a probability distribution over states of M2. The informal idea behind a relation s1 R P2is that s1 represents an intermediate stage of M1 in reaching the distribution P2. For exam-ple, in Figure 8-4 state s1 would be related to a uniform distribution P over states s03 and s04(P = U(s03; s04)), meaning that s1 is an intermediate stage ofM1 in reaching the distribution P .It is also possible to create examples where the relationship between s and P does not meansimply that s is an intermediate stage of M1 in reaching the distribution P , but rather thats is an intermediate stage in reaching a probability distribution that can be reached from P .Consider the two probabilistic automata of Figure 8-5. Although not evident at the moment,M1 and M2 are in the trace distribution precongruence relation, i.e., M1 vDC M2. Followingthe same idea as for the example of Figure 8-4, state s1 is related to U(s03; s04). However, s1 is173



not an intermediate stage ofM1 in reaching U(s03; s04), since s1 enables a transition labeled withan external action l, while in M2 no external action occurs before reaching U(s03; s04). Rather,from s03 and s04 there are two transitions labeled with l, and thus the only way to simulatethe transition s1 l�! U(s3; s4) from U(s03; s04) is to perform the two transitions labeled withl, which lead to the distribution U(s07; s08; s09; s010). Now the question is the following: in whatsense does U(s07; s08; s09; s010) represent U(s3; s4)? The �rst observation is that s3 can be seen asan intermediate stage in reaching U(s07; s08), and that s4 can be seen as an intermediate stage inreaching U(s09; s010). Thus, s3 is related to U(s07; s08) and s4 is related to U(s09; s010). The secondobservation is that U(s07; s08; s09; s010) can be expressed as 1=2U(s07; s08) + 1=2U(s09; s010). Thus,U(s07; s08; s09; s010) can be seen as a combination of two probability spaces, each one representingan element of U(s3; s4). This recalls the lifting of a relation that we introduced at the beginningof this chapter.Based on Example 8.5.1, we can move to the formal de�nition of a probabilistic forward simu-lation. A probabilistic forward simulation between two simple probabilistic automata M1 andM2 is a relation R� states(M1)� Probs(states(M2)) such that1. each start state of M1 is related to at least one Dirac distribution over a start state ofM2;2. for each s R P 0, if s a�! P1, then(a) for each s0 2 
0 there exists a probability space Ps0 such that s0 a�ext(M2)=)C Ps0 , and(b) there exists a probability space P 02 of Probs(Probs(states(M2))) satisfying P1 vR P 02,such that Ps02
0 P 0[s0]Ps0 =PP2
02 P 02[P ]P .We write M1 vFS M2 whenever ext(M1) = ext(M2) and there is a probabilistic forward simu-lation from M1 to M2.Example 8.5.2 (A probabilistic forward simulation) The probabilistic forward simula-tion for the probabilistic automata M1 and M2 of Figure 8-5 is the following: s0 is relatedto U(s00); each state si, i � 7, is related to D(s0i); each state si, 1 � i � 6, is related toU(s02i+1; s02i+2). It is an easy exercise to check that this relation is a probabilistic forwardsimulation. Observe also that there is no probabilistic forward simulation from M2 to M1. In-formally, s03 cannot be simulated by M1, since the only candidate state to be related to s01 is s1,and s1 does not contain all the information contained in s03. The formal way to see that thereis no probabilistic forward simulation from M2 to M1 is to observe that M2 and M1 are not inthe trace distribution precongruence relation and then use the fact that probabilistic forwardsimulations are sound for the trace distribution precongruence relation (cf. Section 8.7). InM2kCP it is possible force action left to be scheduled exactly when M2 is in s03, and thus itis possible to create a correlation between action left and actions a and b; in M1kCP such acorrelation cannot be created since action left must be scheduled before action l.It is easy to check that a weak probabilistic simulation is a special case of a probabilistic forwardsimulation where each state ofM1 is related to a Dirac distribution. The veri�cation that vFS174



is a preorder that is preserved by parallel composition is more complicated. In this sectionwe show that vFS is preserved by parallel composition; the proof that vFS is a preorder ispostponed to Section 8.6.4.Proposition 8.5.1 vFS is preserved by the parallel composition operator.Proof. Let M1 vFS M2, and let R be a probabilistic forward simulation from M1 to M2. LetR0 be a relation between states(M1)� states(M3) and Probs(states(M2)� states(M3)), de�nedas follows:(s1; s3) R0 P i� P = P2 
D(s3) for some P2 such that s1 R P2. (8.4)Condition 1 of the de�nition of a probabilistic forward simulation is immediate to verify. Con-dition 2 for transitions that involve M1 only or M3 only is immediate to verify as well.Let (s1; s3) R0 P2 
 D(s3), and let (s1; s3) a�! P1 
 P3, where s1 a�! P1, and s3 a�!P3. From the de�nition of a probabilistic forward simulation, for each s 2 
2 there existsa weak combined transition s2 a=)C Ps of M2, and there exists a probability space P 02 ofProbs(Probs(states(M2))), such thatXs2
2 P2[s]Ps = XP2
02 P 02[P ]P ; (8.5)and P1 vR P 02: (8.6)For each s 2 
2, let Os be a generator for s a=)C Ps. De�ne a new generator O0s as follows:for each �nite execution fragment � of M2kM3 starting in (s; s3),1. if Os(�dM2) = (s0;P), where (s0;P) = Pi pi(s0; ai;Pi), each (s0; ai;Pi) is a transition ofM2, and �dM3 = s3, thenO0s(�) =Xi pi((s0; s3); ai;Pi 
 P 0i);whereP 0i = D(s3) if ai 6= a, and P 0i = P3 if ai = a.2. if Os(�dM2) = (s0;P), where (s0;P) = Pi pi(s0; ai;Pi), each (s0; ai;Pi) is a transition ofM2, �dM3 = s3as03, and s03 2 
3, thenO0s(�) =Xi pi((s0; s03); ai;Pi 
 D(s03));3. if none of the above cases holds, then O0s(�) = D(�).175



The weak combined transition generated by each O0s is (s; s3) a=)C Ps
P3. In fact, an executionfragment � of M2kM3 is terminal for O0s i� �dM2 is terminal for Os and �dM3 = s3as03 fors03 2 
3, and thus 
O0s = 
s � 
3. Moreover, for each � 2 
O0s , PO0s� = POs�dM2P3[lstate(�dM3)].Denote Ps 
 P3 by P(s;s3). Then, for each (s; s3) 2 
2 � D(s3), we have identi�ed a weakcombined transition (s; s3) a=)C P(s;s3). These are the spaces of Condition 2.a in the de�nitionof a probabilistic forward simulation. Note that P(s;s3) can be expressed alternatively asP(s;s3) = Xs032
3 P3[s03] �Ps 
 D(s03)� : (8.7)Let P 02;3 4= Xs032
3 P3[s03] �P 02 
D(D(s03))� ; (8.8)where the pairing of two probability spaces is meant to be their product. For each s03 2 
3,since P1 vR P 02, P1 
 D(s03) vR P 02 
 D(D(s03)). Thus, from Lemma 8.2.1, P1 
 P3 vR P 02;3.This is enough to show that Condition 2.b of the de�nition of a probabilistic forward simulationis satis�ed.We are left withPs2
2 P2[s]P(s;s3) =PP2
02;3 P 02;3[P ]P , which is shown as follows. From (8.7),Xs2
2 P2[s]P(s;s3) = Xs2
2 Xs032
3 P2[s]P3[s03] �Ps 
D(s03)� : (8.9)From (8.5),Xs2
2 P2[s]P(s;s3) = Xs032
3 XP2
02 P 02[P ]P3[s03] �P 
 D(s03)� : (8.10)From a simple algebraic manipulation,Xs2
2 P2[s]P(s;s3) = Xs032
3 XP2
P02
D(D(s03)) P3[s03]P 02[P ]P : (8.11)From (8.8),Xs2
2 P2[s]P(s;s3) = XP2
02;3 P 02;3[P ]P : (8.12)8.6 The Execution Correspondence TheoremThe existence of some simulation relation between two probabilistic automata implies that thereis some strict relation between their probabilistic executions. This relationship is known as theexecution correspondence lemma for ordinary automata [GSSL94] and is useful in the contextof liveness. In this section we prove the execution correspondence theorem for probabilisticautomata; a corollary, which is proved in Section 8.7, is that the existence of a probabilisticforward simulation is sound for the trace distribution precongruence.176
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IfR is a strong probabilistic simulation, then an execution correspondence structure is a pair(H1; H2): Conditions 1 and 2 are removed; Condition 3 becomes fringe(H1; i) vR fringe(H2; i)where q1 R q2 i� itrace(q1) = itrace(q2) and either q1 and q2 end in � and �-strip(lstate(q1)) R�-strip(lstate(q2)), or lstate(q1) R lstate(q2); Condition 4 says that for each i � 0, given q1 2fringe(H1; i) and q2 2 fringe(H2; i), if wi(q1; q2) = 0, then, for each extension q01 of q1 such thatq01 2 fringe(H1; i+1) and each extension q02 of q2 such that q02 2 fringe(H2; i+1), wi+1(q01; q02) = 0.8.6.3 The Main TheoremTheorem 8.6.1 Let M1 vFS M2 via the probabilistic forward simulation R, and let H1 be aprobabilistic execution of M1. Then there exists a probabilistic execution H2 of M2, a map-ping m from natural numbers to fringes of M2, and a mapping S from natural numbers toprobability distributions of Probs(Probs(states(H2))), such that (H1; H2; m; S) is an executioncorrespondence structure via R.Proof. Let q1 be a state of H1, and let P2 be a distribution over potential states of H2 suchthat q1 vR P2 according to the de�nition given in the de�nition of an execution correspondencestructure. Denote by Pq1H1 the probability space such that trH1q1 =Ptr2
q1H1 P q1H1 [tr ](q1 a tr ). Lettr1 2 
q1H1 , and let Ptr1 be the probability space reached in q1 a tr 1.Since R is a probabilistic forward simulation, then for each state q2 of 
2 there exists aweak transition tr q1P2tr1q2 of H2 with action a � ext(M2), leading to a distribution over statesPq1P2tr1q2 , such that there exists a probability distribution over probability distributions ofpotential states of H2, denoted by PSq1P2tr1 , satisfyingXP2
Sq1P2tr1 PSq1P2tr1 [P ]P = Xq22
2 P2[q2]Pq1P2tr1q2 (8.15)and Ptr1 vR PSq1P2tr1 (8.16)via a weight function wq1P2tr1 . Denote the probability spacePq22
2 P2[q2]Pq1P2tr1q2 by Pq1P2tr1 ,i.e., Pq1P2tr1 4= Xq22
2 P2[q2]Pq1P2tr1q2 : (8.17)Denote the generator of each weak transition tr q1P2tr1q2 by Oq1P2tr1q2 (cf. Section 4.2.7). For thesake of this proof, we change the notation for the generators of the transitions of a probabilisticexecution. Thus, for each q02 such that q2 � q02, Oq1P2tr1q2(q02) stands for Oq1P2tr1q2(q02"q2), andPOq1P2tr1q2q02 stands for POq1P2tr1q2q02"q2 .For each state q1 and each probability distribution over states P2, let �q1 4= D(q1�), �P2 4=Pq22
2 P2[q2]�q2 , �SP2 4= D(�P2), and w�q1P2 be a weight function such that w�q1P2(q1�;P2) = 1.Note that, if for each q2 2 
2, trace(q1) = trace(q2), then�q1 vR �SP2 (8.18)179



via w�q1P2 . Moreover,�P2 = XP2
SP2 P�SP2 [P ]P : (8.19)Let s1 be the start state of H1, and s2 be a start state ofM2 that is related to s1. We knowthat s2 exists since R is a probabilistic forward simulation. Let Active be the smallest set suchthat1. (s1;D(s2)) 2 Active;2. if (q1;P2) 2 Active, tr1 2 
q1H1 , and (q01;P 02) 2 
tr1 � 
Sq1P2tr1 , then (q01;P 02) 2 Active;3. if (q1;P2) 2 Active, P q1H1 [�] > 0, then (q1�; �SP2) 2 Active.Observe that for each pair (q1;P2) 2 Active, q1 R P2 (simple inductive argument). For each q1such that there exists some P2 with (q1;P2) 2 Active, each tr1 2 
q1H1 , and each q2 2 
2, letactive(q1;P2; tr1; q2) be the set of states that are active in Oq1P2tr1q2 , and let reach(q1;P2; tr1; q2)be the set of states that are reachable in Oq1P2tr1q2 . Let active denote the union of the setsreach(q1;P2; tr1; q2) where (q1;P2) 2 Active, tr1 2 
q1H1 , and q2 2 
2. For each i � 0, letActive(i) be the set of pairs (q1;P2) 2 Active such that either jq1j = i or jq1j � i and q1 endsin �. For each pair (q1;P2) of Active such that q1 does not end in �, letPq1 4= Xtr12
q1H1 P q1H1 [tr1]Ptr1 + P q1H1 [�]�q1 (8.20)be the probability space reached in H1 with the transition enabled from q1,Pq1P2 4= Xtr12
q1H1 P q1H1 [tr1]Pq1P2tr1 + P q1H1 [�]�P2 (8.21)be the probability space that is reached in the corresponding transition of P2,PSq1P2 4= Xtr12
q1H1 P q1H1 [tr1]PSq1P2tr1 + P q1H1 [�]�SP2 (8.22)be the probability space of probability spaces that corresponds to Pq1 , and for each q01;P 02,wq1P2(q01;P 02) 4= Xtr12
q1H1 P q1H1 [tr1]wq1P2tr1(q01;P 02) + P q1H1 [�]w�q1P2(q01;P 02) (8.23)be the corresponding weight function. From Lemma 8.2.1,Pq1 vR PSq1P2 (8.24)via the weight function wq1P2 .For each pair (q1;P2) of Active such that q1 ends in �, letPq1 4= D(q1); Pq1;P2 4= P2; PSq1;P2 4= D(P2); and wq1P2(q1;P2) 4= 1: (8.25)It is immediate to observe that Equation (8.24) holds also in this case.180



De�ne m(i); S(i) and wi inductively as follows.m(0) 4= D(s2); S(0) 4= D(m(0)); w0(s1; m(0)) 4= 1; (8.26)m(i+ 1) 4= X(q1;P2)2Active(i)wi(q1;P2)Pq1P2 ; (8.27)S(i+ 1) 4= X(q1;P2)2Active(i)wi(q1;P2)PSq1P2 ; (8.28)wi+1(q01;P 02) 4= X(q1;P2)2Active(i)wi(q1;P2)wq1P2(q01;P 02): (8.29)To show that Equations (8.27), (8.28),and (8.29) are well de�ned, we show by induction thatfor each i � 0, P(q1;P2)2Active(i)wi(q1;P2) = 1. The base case is a direct consequence of (8.26)and the de�nition of Active(0). For the inductive step,X(q1;P2)2Active(i+1)wi+1(q1;P2)= X(q1;P2)2Active(i+1) X(q01;P 02)2Active(i)wi(q01;P 02)wq01P 02(q1;P2)= X(q01;P 02)2Active(i)wi(q01;P 02)= 1;where the �rst step follows from Equation (8.29), the second step follows from the fact thatwq01;P 02 is a weight function that is non zero only in pairs of Active(i + 1), and the third stepfollows from induction. LetWq1P2tr1q2(q02) 4= w(q1;P2)P q1H1 [tr1]P2[q2]POq1P2tr1q2q02 : (8.30)Consider a state q2 of active. Then the transition enabled from q2 isX(q01;P 02)2Active Xtr12
H1q01 Xq022
02jq22active(q01;P 02;tr1;q02) (8.31)POq1P2tr1q02 (q2)[acts(M2)]Wq01P 02tr1q02(q2)=W (q2) �Oq01P2tr1q02(q2) � acts(M2)� ;where W (s2) 4= 1, and for each q2 6= s2,W (q2) 4= X(q01;P 02)2Active Xtr12
H1q01 Xq022
02jq02 6=q2;q22reach(q01;P 02;tr1 ;q02)Wq01P 02tr1q02(q2): (8.32)It is easy to verify that Expression (8.31) denotes a valid transition of a probabilistic executionfragment of M since it is the combination of legal transitions of a probabilistic executionfragment of M . The fact that the projection of a legal transition of a probabilistic executionfragment of M onto acts(M) is still a legal transition of a probabilistic execution fragment ofM follows from the fact that M is a simple probabilistic automaton.181



Informally, the set active is used to identify all the states ofH2. The transition enabled fromeach one of those states, say q2, is due to several states of H1, and each state of H1 in
uencesthe transition enabled from a speci�c state of H2 with a di�erent probability. Such a probabilitydepends on how much a state of H2 represents a state of H1, on the probability of the transitionof M1 that has to be matched, on the probability of reaching a speci�c state q02 of H2 duringthe matching operation, on the probability of reaching q2 from q02, and on the probability ofdeparting from q2. These conditions are captured by POq1P2tr1q02 (q2)[acts(M2)]Wq01P 02tr1q02(q2).These weights must be normalized with respect to the probability of reaching q2, which isexpressed by W (q2). The condition q02 6= q2 in the third sum of (8.32) is justi�ed by the factW (q2) is the probability of reaching q2.This completes the de�nition of H2, m(i), S(i), and the wi's. We need to show that(H1; H2; w; S) is an execution correspondence structure via R. Thus, we need to show thefollowing properties.1. For each i, m(i) is a fringe of H2;2. For each i, m(i) � m(i+ 1);3. For each state q of H2, limi!1Pq02
ijq�q0 Pi[q0] = PH [Cq];4. For each i, m(i) =PP2S(i) PS(i)[P ]P ;5. For each i, fringe(H1; i) vR S(i) via wi.6. For each i, each q1 2 fringe(H1; i), and each q2 2 states(H2), if Wi(q1; q02) = 0 for eachpre�x or extension q02 of q2, then, for each extension q01 of q1 such that q01 2 fringe(H1; i+1)and each pre�x or extension q02 of q2, Wi+1(q01; q02) = 0.We show each item separately.1. For each i, m(i) is a fringe of H2.By construction m(i) is a probability distribution. Thus, we need to show only that foreach state q2 of H2,Xq022
m(i)jq2�q02 Pm(i)[q02] � PH2 [Cq2] (8.33)First we show that for each q2 2 states(H2),W (q2) = PH2 [Cq2]; (8.34)then we show that for each q2 2 states(H2),Xq022
m(i)jq2�q02 Pm(i)[q02] � W (q2): (8.35)The proof of (8.34) is by induction on the length of q2. If q2 = s2, then (8.34) holds byde�nition. Otherwise, let ~q2 be q2 without its last action and state, i.e., q2 = ~q2as for182



some action a and some state s. Then, from the de�nition of the probability of a cone,induction, Equation (8.31) and an algebraic simpli�cation,PH2 [Cq2] = X(q01;P 02)2Active Xtr12
q01H1 Xq022
02 j~q22active(q01;P 02;tr1;q02)Wq01P 02tr1q02(~q2)POq01P2tr1q02(~q2)[q2]: (8.36)From Equation (8.30) and the de�nition of POq01P02tr1q02q2 (cf. Section 4.2.7), we obtainPH2 [Cq2] = X(q01;P 02)2Active Xtr12
q01H1 Xq022
02 j~q22active(q01;P 02;tr1;q02)w(q01;P 02)P q01H1 [tr1]P 02[q02]POq01P02tr1q02q2 : (8.37)Observe that q02 2 
02 and ~q2 2 active(q01;P 02; tr1; q02) i� q02 2 
02, q02 6= q2, and q2 2reach(q01;P 02; tr1; q02). Thus, from Equation (8.31),PH2 [Cq2] = X(q01;P 02)2Active Xtr12
q01H1 Xq022
02 jq02 6=q2;q22reach(q01;P 02;tr1;q02)Wq01P 02tr1q02(q2): (8.38)At this point Equation (8.32) is su�cient to conclude the validity of Equation (8.34).The proof of Equation (8.35) is also by induction. If i = 0, then the result follows directlyfrom the fact that a fringe is a probability distribution. Otherwise, let N(q1) be true i�q1 does not end in �. Then, from Equation (8.27),Xq022
m(i+1)jq2�q02 Pm(i+1)[q02] (8.39)can be rewritten intoXq022
m(i+1)jq2�q02 X(q1;P2)2Active(i)wi(q1;P2)Pq1P2 [q02]: (8.40)From the de�nition of Pq1;P2 (Equations (8.21) and (8.25)) and the de�nition of Pq1P2tr1(Equation (8.17)), Expression (8.40) can be rewritten intoXq022
m(i+1)jq2�q02 X(q1;P2)2Active(i);N(q1) Xtr12
q1H1 Xq0022
2 (8.41)wi(q1;P2)P q1H1 [tr1]P2[q002 ]Pq1P2tr1q002 [q02]+ Xq02�2
m(i+1)jq2�q02 X(q1;P2)2Active(i);N(q1)wi(q1;P2)P q1H1 [�]P2[q02]+ Xq02�2
m(i+1)jq2�q02 X(q1�;P2)2Active(i)wi(q1�;P2)P2[q02�]:183



By exchanging sums in Expression (8.41), we obtainX(q1;P2)2Active(i);N(q1) Xtr12
q1H1 Xq0022
2 Xq022
m(i+1)jq2�q02 (8.42)wi(q1;P2)P q1H1 [tr1]P2[q002 ]Pq1P2tr1q002 [q02]+ X(q1;P2)2Active(i);N(q1) Xq02�2
m(i+1)jq2�q02 wi(q1;P2)P q1H1 [�]P2[q02]+ X(q1�;P2)2Active(i) Xq02�2
m(i+1) jq2�q02 wi(q1�;P2)P2[q02�];where the �rst summand comes from the �rst summand of (8.22), the second summandcomes from the second summand of (8.22), and the third summand comes from (8.25).Consider the �rst summand of Expression (8.42), and partition the states q002 of 
2 intothose that include q2 (q2 � q002) and those that do not. In the �rst case, since from (8.27),(8.21), and (8.17), 
q1P2tr1q002 � 
m(i+1), and since each element q02 of 
q1P2tr1q002 satis�esq2 � q02, Xq022
m(i+1)jq2�q02 Pq1P2tr1q002 [q02] = 1; (8.43)in the second case the same sum gives POq1P2tr1q002q2 . Consider the second summand ofExpression (8.42), and observe that, from (8.27), (8.21), and the de�nition of �P2 , q02� 2
m(i+1), q2 � q02, and P2[q02] > 0 i� q02 2 
2, q2 � q02, and P2[q02] > 0. Finally, considerthe third summand of Expression (8.42), and observe that all the states of 
2 end with �,and, from (8.27) and (8.21), q02� 2 
m(i+1), q2 � q02, and P2[q02�] > 0 i� q02� 2 
2, q2 � q02�,P2[q02�] > 0. By combining the observations above, Expression (8.42) can be rewritteninto X(q1;P2)2Active(i);N(q1) Xtr12
q1H1 wi(q1;P2)P q1H1 [tr1] (8.44)0@ Xq0022
2jq2�q002 P2[q002 ] + Xq0022
2jq002<q2 P2[q002 ]POq1P2tr1q002q2 1A+ X(q1;P2)2Active(i);N(q1) Xq0022
2jq2�q002 wi(q1;P2)P q1H1 [�]P2[q002 ]+ X(q1�;P2)2Active(i) Xq0022
2jq2�q002 wi(q1�;P2)P2[q002 ]:By regrouping expressions and simplifying, we obtainX(q1;P2)2Active(i);N(q1) Xtr12
q1H1 Xq0022
2jq2�q002 wi(q1;P2)P q1H1 [tr1]P2[q002 ]POq1P2tr1q002q2 (8.45)+ X(q1;P2)2Active(i) Xq0022
2jq2�q002 wi(q1;P2)P2[q002 ]:184



Finally, from Equation (8.30), Expression (8.45) can be rewritten intoX(q1;P2)2Active(i);N(q1) Xtr12
q1H1 Xq0022
2jq2�q002 Wq1P2tr1q002 (q2) (8.46)+ X(q1;P2)2Active(i) Xq0022
2jq2�q002 wi(q1;P2)P2[q002 ]:We now analyze the second summand of Expression (8.46), and we show by induction oni that it is 0 if i = 0 and q2 6= s2, it is 1 if i = 0 and q2 = s2, and it isXj<i X(q1;P2)2Active(j) Xtr12
q1H1 Xq0022
2jq002<q2Wq1P2tr1q002 (q2) (8.47)otherwise. For i = 0 the result is trivial. Otherwise, from Equation (8.29),X(q1;P2)2Active(i+1) Xq0022
2jq2�q002 wi+1(q1;P2)P2[q002 ] (8.48)can be rewritten intoX(q1;P2)2Active(i+1) X(q01;P 02)2Active(i) Xq0022
2jq2�q002 wi(q01;P 02)wq01P 02(q1;P2)P2[q002 ]: (8.49)From the de�nition of wq01P 02 (Equations (8.23) and (8.25)), Expression (8.49) can berewritten intoX(q1;P2)2Active(i+1) X(q01;P 02)2Active(i);N(q01) Xtr 012
q01H1 Xq0022
2jq2�q002 (8.50)wi(q01;P 02)P q01H1 [tr 01]wq01P 02tr 01(q1;P2))P2[q002 ]+ X(q1�;P2)2Active(i+1) X(q01;P 02)2Active(i);N(q01) Xq0022
2jq2�q002wi(q01;P 02)P q01H1 [�]w�q01P 02(q1�;P2)P2[q002 ]+ X(q01�;P 02)2Active(i) Xq0022
02jq2�q002 wi(q01�;P 02)P2[q002 ]:Observe that in the �rst summand of (8.50)X(q1;P2)2Active(i+1) Xq0022
2jq2�q002 wq01P 02tr 01(q1;P2)P2[q002 ]= XP2j9q1;(q1;P2)2Active(i+1) Xq0022
2jq2�q002 PSq01P 02tr 01 [P2]P2[q002 ]= Xq0002 2
02 Xq0022
q01P02tr01 jq2�q002 Pq01P 02tr 01q0002 [q002 ];185



where the �rst step follows from the fact that wq01P 01tr 01q0002 is a weight function, and thesecond step follows from (8.17), (8.15) and the fact that 
q01P 02tr 01 is the set of probabilityspace P2 such that there is a state q1 where (q1;P2) 2 Active(i + 1) (cf. the de�nitionof Active and observe that jq1j = i + 1). For the second summand of (8.50), observethat for each pair (q01�;P2) of Active(i + 1), if P q01H1 [�] > 0, then there is exactly one pair(q1;P 02) of Active(i) such that w�q01P 02(q01�;P2) > 0. In particular, q1 = q01, P2 = �P 02 , andw�q01P 02(q01�;P2) = 1. Conversely, for each pair (q01;P 02) of Active(i) such that P q01H1 [�] > 0,the pair (q01�;P2) is in Active(i+1) and w�q01P 02(q01�;P2) = 1. Thus, the term w�q01P 02(q01�;P2)and the sum P(q01�;P2)2Active(i+1) can be removed from the second summand of (8.50).Thus, by applying the observations above to (8.50), we obtainX(q01;P 02)2Active(i);N(q01) Xtr 012
q01H1 Xq0002 2
02 Xq0022
q01P02tr01q0002 jq2�q002 (8.51)wi(q01;P 02)P q01H1 [tr 01]P 02[q0002 ]Pq01P 02tr 01q0002 [q002 ]+ X(q01;P 02)2Active(i);N(q01) Xq0002 2
02jq2�q002 wi(q01;P 02)P q01H1 [�]P 02[q0002 ]+ X(q01�;P 02)2Active(i) Xq0002 2
02jq2�q0002 wi(q01�;P 02)P 02[q0002 ]:Consider the �rst summand of Expression (8.51). If q2 � q0002 , thenXq0022
q01P02tr01q0002 jq2�q002 Pq01P 02tr 01q0002 [q002 ] = 1; (8.52)If q0002 � q2, thenXq0022
q01P02tr01q0002 jq2�q002 Pq01P 02tr 01q0002 [q002 ] = POq01P02tr01q0002q2 : (8.53)Thus, from Equations (8.52) and (8.53), Expression (8.51) can be rewritten intoX(q01;P 02)2Active(i);N(q01) Xtr 012
q01H1 wi(q01;P 02)P q01H1 [tr 01] (8.54)0@ Xq0002 2
02jq2�q0002 P 02[q0002 ] + Xq0002 2
02 jq0002 <q2 P 02[q0002 ]POq01P02tr01q0002q2 1A+ X(q01;P 02)2Active(i);N(q01) Xq0002 2
02jq2�q002 wi(q01;P 02)P q01H1 [�]P 02[q0002 ]+ X(q01�;P 02)2Active(i) Xq0002 2
02jq2�q0002 wi(q01�;P 02)P 02[q0002 ]:186



By regrouping the subexpressions in (8.54), we obtainX(q01;P 02)2Active(i);N(q01) Xtr 012
q01H1 Xq0002 2
02jq0002 <q2 wi(q01;P 02)P q01H1 [tr 01]P 02[q0002 ]POq01P02tr01q0002q2 (8.55)+ X(q01;P 02)2Active(i) Xq0002 2
02jq2�q0002 wi(q01;P 02)P 02[q0002 ]:From Equation (8.30), Expression (8.55) can be rewritten intoX(q01;P 02)2Active(i);N(q01) Xtr 012
q01H1 Xq0002 2
02jq0002 <q2Wq01P 02tr 01q0002 (q2) (8.56)+ X(q01;P 02)2Active(i) Xq0002 2
02jq2�q0002 wi(q01;P 02)P 02[q0002 ]:The induction hypothesis is now su�cient to conclude the validity of (8.47). From analternative characterization of the set fq002 2 
2 j q002 < q2g in Expressions (8.47) and (8.45),and by combining (8.45) and (8.47), we obtainXq022
m(i+1)jq2�q02 Pm(i+1)[q02] (8.57)= Xj�i X(q1;P2)2Active(j) Xtr12
q1H1 Xq0022
2jq002 6=q2 ;q0022reach(q1;P2;tr1;q2)Wq1P2tr1q002 (q2):Observe that the right expression of (8.57) contains a subset of the terms of the rightexpression of Equation (8.32). This is enough to conclude the validity of (8.35).2. For each i, m(i) � m(i+ 1).This result follows directly from Equation (8.57). In fact, for each state q2 of H2, Ex-pression (8.57) for m(i + 1) contains a subset of the terms of the Expression (8.57) form(i).3. For each state q of H2, limi!1Pq02
ijq�q0 Pi[q0] = PH [Cq].This result follows directly from Expression (8.57). In fact, as i!1, the right expressionof (8.57) converges to the right expression of (8.32).4. For each i, m(i) =PP2S(i) PS(i)[P ]P .For i = 0 the result is trivial. For i > 0, from Equation (8.27), m(i+ 1) is rewritten into.X(q1;P2)2Active(i)wi(q1;P2)Pq1P2 : (8.58)From Equation (8.21), Expression (8.58) can be rewritten intoX(q1;P2)2Active(i)wi(q1;P2)0B@ Xtr12
q1H1 P q1H1 [tr1]Pq1P2tr2 + P q1H1 [�]�P21CA : (8.59)187



From Equation (8.17) applied to Pq1P2tr2 and Equations (8.15) and (8.19) applied toP q1H1 [�]�P2 , Expression (8.59) can be rewritten intoX(q1;P2)2Active(i)wi(q1;P2)0B@ Xtr12
q1H1 P q1H1 [tr1]0B@ XP2
Sq1P2tr1 PSq1P2tr1 [P ]P1CA+ (8.60)P q1H1 [�] XP2
�P2 P�P2 [P ]P1CA :From Equation (8.22), Expression (8.60) can be rewritten intoX(q1;P2)2Active(i)wi(q1;P2)0B@ XP2
Sq1P2 PSq1P2 [P ]P1CA : (8.61)Finally, from Equation (8.28), Expression (8.61) can be rewritten intoXP2
S(i+1) PS(i+1)[P ]P ; (8.62)which is what we needed to show.5. For each i, fringe(H1; i) vR S(i) via wi.For i = 0 the result is trivial. By applying the de�nitions of a fringe and of fringe(H1; i+1),fringe(H1; i+ 1)= Xq12states(H2)jjq2j=ior q2=q02�;jq2j<iPH1 [Cq1]Pq1= X(q1;P2)2Active(i)wi(q1;P2)Pq1 :From (8.28),S(i+ 1) = X(q1;P2)2Active(i)wi(q1;P2)PSq1P2 :Since for each pair (q1;P2) of Active(i), Pq1 vR PSq1P2 via wq1;P2 , from Lemma 8.2.1,X(q1;P2)2Active(i)wi(q1;P2)Pq1 vR X(q1;P2)2Active(i)wi(q1;P2)PSq1P2via P(q1;P2)2Active(i)wi(q1;P2)wq1P2 , which is wi+1.188



6. For each i, each q1 2 fringe(H1; i), and each q2 2 states(H2), if Wi(q1; q02) = 0 for eachpre�x or extension q02 of q2, then, for each extension q01 of q1 such that q01 2 fringe(H1; i+1)and each pre�x or extension q02 of q2, Wi+1(q01; q02) = 0.Suppose by contradiction that there is an extension q01 of q1 such that q01 2 fringe(H1; i+1)and a pre�x or extension q02 of q2 such that Wi+1(q01; q02) > 0. From the de�nition of Wiand Equation (8.29),Wi+1(q1; q02) =XP X(�q1;P2)2Active(i)wi(�q1;P2)w �q1;P2(q1;P)P [q02]: (8.63)Since Wi(q1; q02) > 0, then there is at least one probability space P and one pair (�q1;P2) 2Active(i) such that wi(�q1;P2) > 0, w �q1;P2(q1;P) > 0, and P [q02] > 0. Then there is atleast one pre�x q002 of q02 such that P2[q002 ] > 0, which means that Wi(�q1; q002) > 0. However,this is a contradiction since q002 is either a pre�x or a su�x of q2.The execution correspondence theorem can be stated and proved similarly for weak and strongprobabilistic simulations. The proofs are simpler than the proof presented in this section, andthus we omit them from this thesis.8.6.4 Transitivity of Probabilistic Forward SimulationsNow we have enough machinery to prove that probabilistic forward simulations are transitive,i.e., if M1 vFS M2 and M2 vFS M3, then M1 vFS M3. We start by proving a lemma.Lemma 8.6.2 Let (H1; H2; m; S) be an execution correspondence structure via the probabilisticforward simulation R, and suppose that H1 represents a weak combined transition s a=)C P1.Then H2 represents a weak combined transition s0 a=)C P2 and there is a probability space PS2such that1. P1 vR PS2 and2. P2 =PP2
S2 PS2 [P ]P.Proof. Let wi be the weight functions for fringe(H1; i) vR S(i). Let P 01 be �-strip(PH1), P 02be �-strip(PH2), and letP 02;S 4= X��2
H1 XPjwj�j+1(��;P)>0wj�j+1(��;P)P : (8.64)For each �� 2 
H1 and each P 2 Probs(extstates(H2)), let w(��;P) 4= wj�j+1(��;P).We show that w is a weight function from P 01 to P 02;S and that P 02;S is well de�ned. This im-plies that P 01 vR P 02;S . Then we show that for each element �� of 
H2 ,PP2
02;S P 02;S [P ]P [��] =PH2 [C��]. Since all the elements of the probability spaces of 
02;S end with �, we obtain thatP 02 is well de�ned and that P 02 =PP2
02;S P 02;S [P ]P . Then the lemma is proved by de�ning P1to be lstate(P 01), P2 to be lstate(P 02), and P2;S to be lstate(P 02;S).To show that w is a weight function we have to verify the three conditions of the de�nitionof a weight function. If w(��;P) > 0, then, from the de�nition of w, wj�j+1(��;P) > 0.189



Since wj�j+1 is a weight function, then �� R P . Let P 2 
02;S . Then P��2
H1 w(��;P) =P��2
H1 wj�j+1(��;P), which is P 02;S [P ] by de�nition of P 02;S . Consider now an element �� of
H1 . Then, PP2
02;S w(��;P) =PP2
02;S wj�j+1(��;P). Since wj�j+1 is a weight function, thenthe sum above gives PH1 [C��] = P 01[��]. To show that P 02;S is well de�ned we need to show thatP��2
H1 PPjwj�j+1(��;P)>0wj�j+1(��;P) = 1. This follows immediately from the fact that w is aweight function and that, since H1 represents a weak combined transition,P��2
H1 P 01[��] = 1.We are left to show that for each element �� of 
H2 , PP2
02;S P 02;S [P ]P [��] = PH2 [C��].Observe that for each element �� of 
H1 , if i � j�j then wi(��;P) is unde�ned for each P , andif i > j�j, then for each j � i and each P , wi(��;P) is de�ned i� wj(��;P) is de�ned, and ifwi(��;P) is de�ned then wi(��;P) = wj(��;P). Thus, if we extend each wi by setting it to 0whenever it is not de�ned, then, for each �� 2 
H2 ,XP2
02;S P 02;S [P ]P [��] = XP2
02;S 0@ limi!1 X��2
H1 wi(��;P)1AP [��]: (8.65)Since for each i, wi is a weight function, and since from the de�nition of P 02;S each element Pfor which wi(��;P) > 0 is in 
02;S , then we deriveXP2
02;S P 02;S [P ]P [��] = XP2
02;S � limi!1PS(i)[P ]�P [��]: (8.66)By exchanging the limit with the sum and by using Condition 3 of the de�nition of an executioncorrespondence structure, the equation above can be rewritten intoXP2
02;S P 02;S [P ]P [��] = limi!1m(i)[��]; (8.67)which gives the desired result after using Condition 2 of the de�nition of an execution corre-spondence structure.Proposition 8.6.3 Probabilistic forward simulations are transitive.Proof. Let R1 be a probabilistic forward simulation from M1 to M2, and let R2 be a proba-bilistic forward simulation from M2 to M3. De�ne R so that s1 R P3 i� there is a probabilityspace P2, and a probability space PS3 , such that1. s1 R1 P2,2. P2 vR2 PS3 , and3. P3 =PP2
S3 PS3 [P ]P .We need to show that R is a probabilistic forward simulation fromM1 toM3. For this purpose,let s1 R P3, and let P2 and PS3 satisfy the three conditions above. Let s1 a�! P1. Let M 02be obtained from M2 by introducing a new state s02 and by adding a transition s02 ��! P2,where � is an internal action; similarly, let M 03 be obtained fromM3 by introducing a new states03 and by adding a transition s03 ��! P3, where � is an internal action. Let R01 be obtained190



from R1 by adding the pair (s1;D(s02)), and let R02 be obtained from R2 by adding the pair(s02;D(s03)). Observe that R01 is a probabilistic forward simulation from M1 toM 02 and that R02is a probabilistic forward simulation from M 02 to M 03.We want to �nd two probability spaces P 03 and P 03;S such that s03 a=)C P 03, P 01 vR P 03;S,and P 03 =PP2
03;S P 03;S [P ]P . From the de�nition of a weak transition, this is su�cient to showthat for each state s of P3 there is a weak combined transition s a=)C Ps of M3 such thatP 03 =Ps2
3 P3[s]Ps.Since R01 is a probabilistic forward simulation, there is a weak combined transition s02 a=)CP 02 of M 02 and a probability space P 02;S such thatP 02 = XP2
02;S P 02;S [P ]P and P 01 vR1 P 02;S : (8.68)Let H2 be the probabilistic execution fragment of M 02 that represents the weak combined tran-sition s02 a=)C P 02. Then, by de�nition of H2, P 02 = lstate(�-strip(PH2)) (cf. Section 4.2.7).From the Execution Correspondence Theorem there is an execution correspondence struc-ture (H2; H3; m; S), where H3 is a probabilistic execution fragment of M 03 that starts from s03.From Lemma 8.6.2, H3 represents a weak combined transition s03 a=)C P 003 for same probabilityspace P 003 . Moreover, there is a probability space P 003;S such thatP 003 = XP2
003;S P 003;S [P ]P and P 02 vR2 P 003;S: (8.69)Let w2 be the weight function for P 02 vR2 P 003;S . For each probability space P of 
02;S , letwP : states(M2) � Probs(states(M3)) ! [0; 1] be a function that is non-zero only in the set
� 
003;S and such that for each pair (s;P 0) of 
� 
003;S ,wP(s;P 0) = P [s]w2(s;P 0)P 02[s] : (8.70)Also, for each probability space P of 
02;S , letPP3;S 4= Xs2
 XP 02
003;S wP(s;P 0)D(P 0); (8.71)and letPP3 4= XP 02
P3;S PP3;S [P 0]P 0: (8.72)Let P 03;S be the discrete probability space where 
03;S = fPP3 j P 2 
2;Sg, and for each elementPP3 of 
03;S, P 03;S [PP3 ] =PP 02
02;S jPP3 =PP03 P 02;S [P 0]. Then, the following properties are true.1. For each probability space P of 
02;S, wP is a weight function from P to PP3;S .We verify separately each one of the conditions that a weight function must satisfy.191



(a) For each s 2 states(M2), P [s] =PP 02Probs(states(M3))wP(s;P 0).From the de�nition of wP , the right expression above can be rewritten intoXP 02Probs(states(M3)) P [s]w2(s;P 0)P 02[s] : (8.73)Since w2 is a weight function, PP 02Probs(states(M3))w2(s;P 0) = P 02[s], and thus Ex-pression 8.73 becomes P [s].(b) For each P 0 2 Probs(states(M3)), Ps2states(M2) wP(s;P 0) = PP3;S [P 0].From Equation (8.71), PP3;S [P 0] = Ps2
 wP(s;P 0). Since wP is non-zero only whenthe �rst argument is in 
, PP3;S [P 0] =Ps2states(M2)wP(s;P 0).(c) For each (s;P 0) 2 states(M2)� Probs(states(M3)), if wP(s;P 0) > 0 then s R2 P 0.If wP(s;P 0) > 0, then, from Equation (8.70), w2(s;P 0) > 0. Since w2 is a weightfunction, then s R2 P 0.2. PP2
03;S P 03;S [P ]P = P 003 .From the de�nition of P 03;S , Equation (8.72), Equation (8.71), and Equation (8.70),PP2
03;S P 03;S [P ]P can be rewritten intoXP2
02;S XP 02
003;S Xs2states(M2)P 02;S [P ]P [s]w2(s;P 0)P 02[s] P 0: (8.74)From (8.68), Expression (8.74) can be rewritten intoXP 02
003;S Xs2states(M2) P 02[s]w2(s;P 0)P 02[s] P 0: (8.75)After simplifying P 02[s], since w2 is a weight function from P 02 to P 003;S, Expression (8.75)can be rewritten intoXP 02
003;S P 003;S [P 0]P 0; (8.76)which can be rewritten into P 003 using Equation (8.69).3. For each pair (s01;P) such that s01 R1 P , s01 R3 PP3 .This follows directly from 1 and (8.72).Let P 03 be P 003 , and de�ne a new weight function w : states(M1) � Probs(states(M3)) ! [0; 1]such that, for each probability space P of 
02;S , w(s1;PP3 ) = w1(s1;P). Then, it is easy to checkthat P 01 vR P 03;S via w. This fact, together with 2, is su�cient to complete the proof.192



8.7 Probabilistic Forward Simulations and Trace DistributionsIn this section we show that probabilistic forward simulations are sound for the trace distributionprecongruence. Speci�cally, we show that M1 vFS M2 implies M1 vD M2. Thus, since vFS isa precongruence that is contained in vD , from the de�nition of vDC we obtain thatM1 vFS M2implies M1 vDC M2.Proposition 8.7.1 Let M1 vFS M2. Then M1 vD M2.Proof. Let R be a probabilistic forward simulation from M1 to M2, and let H1 be a proba-bilistic execution of M1 that leads to a trace distribution D1. From Lemma 8.6.1, there existsa probabilistic execution H2 of M2 and two mappings m;S such that (H1; H2; m; S) is an exe-cution correspondence structure for R. We show that H2 leads to a trace distribution D2 thatis equivalent to D1.Consider a cone C� of D1. The measure of C� is given byXq12states(H1)jtrace(q1)=�;lact(q1)=lact(�)PH1 [Cq1]: (8.77)The same value can be expressed aslimi!1 Xq12fringe(H1;i)j��trace(q1)PH1 [Cq1]: (8.78)Consider a cone C� of D2. The measure of C� is given byXq22states(H2)jtrace(q2)=�;lact(q2)=lact(�)PH2 [Cq2]: (8.79)The same value can be expressed aslimi!1 Xq22m(i)j��trace(q2)Pm(i)[Cq2]: (8.80)The reason for the alternative expression is that at the limit each cone of Expression (8.79) iscaptured completely. Thus, it is su�cient to show that for each �nite � and each i,Xq12fringe(H1;i)j��trace(q1)PH1 [Cq1] = Xq22m(i)j��trace(q2)Pm(i)[q2]: (8.81)This is shown as follows. Let wi be the weight function for m(i) vR S(i). Then,Xq2fringe(H1;i)j��trace(q)PH1 [Cq] = Xq12fringe(H1;i)j��trace(q1) XP22S(i)wi(q1;P2): (8.82)Observe that each probability space of S(i) has objects with the same trace, that each state qof fringe(H1; i) is related to some space of S(i), and that each space of S(i) is related to somestate q of fringe(H1; i). Thus, from (8.82),Xq2fringe(H1;i)j��trace(q)PH1 [Cq] = XP22S(i)j9q22
2��trace(q2) Xq12fringe(H1;i)wi(q1;P2): (8.83)193



Since wi is a weight function, we obtainXq2fringe(H1;i)j��trace(q)PH1 [Cq] = XP22S(i)j9q22
2��trace(q2)PS(i)[P2]: (8.84)Since in a probability space the probability of the whole sample space is 1, we obtainXq2fringe(H1;i)j��trace(q)PH1 [Cq] = XP22S(i)j9q22
2��trace(q2) Xq22
2 PS(i)[P2]P2[q2]: (8.85)From an algebraic manipulation based on Condition 3 of an Execution Correspondence Struc-ture, we obtainXq2fringe(H1;i)j��trace(q)PH1 [Cq] = Xq22m(i)j��trace(q2) XP22S(i)jq22
2 PS(i)[P2]P2[q2]: (8.86)Finally, from Condition 3 of an Execution Correspondence Structure again, we obtain Equa-tion (8.81).8.8 DiscussionStrong bisimulation was �rst de�ned by Larsen and Skou [LS89, LS91] for reactive processes.Successively it was adapted to the alternating model by Hansson [Han94]. In this thesis wehave de�ned the same strong bisimulation as in [Han94]. The formal de�nition di�ers from thede�nition given by Hansson in that we have used the lifting of a relation to probability spacesas de�ned by Jonsson and Larsen [JL91].Strong simulation is similar in style to the satisfaction relation for the probabilistic speci�-cation systems of Jonsson and Larsen [JL91]. It is from [JL91] that we have borrowed the ideaof the lifting of a relation to a probability space.The probabilistic versions of our simulation relations are justi�ed both by the fact that ascheduler can combine transitions probabilistically, as we have said in this thesis, and by the factthat several properties, namely the ones speci�ed by the logic PCTL of Hansson and Jonsson[Han94], are valid relative to randomized schedulers i� they are valid relative to deterministicschedulers. This fact was �rst observed by Segala and Lynch [SL94] and can be proved easilyusing the results about deterministic and randomized schedulers that we proved in Chapter 5.The weak probabilistic relations were introduced �rst by Segala and Lynch [SL94]. Nosimulation relations abstracting from internal computation were de�ned before. Probabilisticforward simulations are novel in their de�nition since it is the �rst time that a state is relatedto a probability distribution over states.
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