Chapter 6

Direct Verification: Proving a
Property

In this chapter we illustrate techniques to prove the validity of a probabilistic statement from
scratch. The main technique, which is based on coin lemmas, consists of reducing the analysis of
a property of a probabilistic automaton to the analysis of a property of an ordinary automaton.
We illustrate the methodology by applying it to some existing randomized algorithms.

Part of this chapter is based on joint work with Anna Pogosyants and Isaac Saias. Anna
Pogosyants suggested us the coin event OCC (Section 6.2.3) as a generalization of other less
elegant coin events that we had in mind and collaborated on the verification of the randomized
algorithm for agreement of Ben-Or (Section 6.5). The verification of the randomized dining
philosophers algorithm of Lehmann and Rabin (Section 6.3) is based on joint work with Nancy
Lynch and Isaac Saias [1.SS94], and the verification of the randomized algorithm for agreement
of Ben-Or is a formalization of a proof that appears in the book on distributed algorithms of
Nancy Lynch [Lyn95].

6.1 How to Prove the Validity of a Probabilistic Statement

In Chapter 5 we have defined formally what is a probabilistic statement and we have shown how
it is possible to combine probabilistic statements to derive more complex properties. However,
one question is left open: how do we prove the validity of a given probabilistic statement from
scratch?

The problem is not trivial: a property may rely on complicate global configurations of a
system that depend on several separated random draws. Analyzing the exact probability of an
event associated with a probabilistic execution fragment may be extremely hard. Fortunately,
there are usually some key points, known to the designer of a system, where specific probabilistic
choices lead to the desired property. In this chapter we formalize the idea above by introducing
a collection of coin lemmas. The idea behind a coin lemma is the following.

1. We define a mechanism to identify events of the kind “some specific probabilistic choices
yield some specific results”. We call such events coin events since a common source of
randomness is given by coin flips.

103

2. We prove a lower bound on the probability of the coin event that we identify.

Then, the analysis of a probabilistic statement for a probabilistic automaton M proceeds as
follows.

1. We find a coin event that expresses the key intuition behind the property to be shown.

2. We show that the coin event is a subevent of the event expressing the desired property,
i.e., we show that whenever the coin event is satisfied, the desired property is satisfied as
well.

3. We use the lower bound on the probability of the coin event to obtain a lower bound on
the probability of the desired property.

Example 6.1.1 (Coin lemmas and the toy resource allocation protocol) Let us con-
sider the toy resource allocation protocol of Chapter 5 again. Omne of the coin lemmas of
this chapter states that if we fix any two separate coin flips (flipping of different coins) and
we consider the event where the two coin flips yield different outcomes whenever they both
occur, then, no matter how the nondeterminism is resolved, the considered event is satisfied
with probability at least 1/2. On the other hand, if the first coin flip of M, after the first coin
flip of M, is different from the last coin flip of M5 before the first time M, checks its resource
after flipping, then M; succeeds in getting its resource. Thus, whenever the property above can
be expressed as a coin event in a form suitable to the coin lemma above, we are guaranteed that
M, eventually gets its resource with probability at least 1/2. It turns out that an adversary
must be fair, oblivious and deterministic in order to be able to define the desired coin event (cf.
Section 6.6). Our results about deterministic and randomized adversaries (Proposition 5.7.11)
can then be used to remove the constraint that an adversary is deterministic. [|

We present a large collection of coin lemmas, and we illustrate their use via two main examples:
Section 6.3 proves the correctness of the randomized Dining Philosophers algorithm of Lehmann
and Rabin [LR81], and Section 6.5 proves the correctness of the randomized algorithm of Ben-
Or for agreement in asynchronous networks in the presence of stopping faults [BO83]. At the
end of the chapter we hint at another technique, called the partition technique, that departs
considerably from the coin lemmas and that is necessary to prove stronger claims about the toy
resource allocation protocol. We leave to further work a deeper study of this other technique.

6.2 Some Simple Coin Lemmas

In this section we present some simple coin lemmas where we use actions to identify the random
draws of interest. Specifically, we study the following coin lemmas.

1. First occurrence of an action.

In this coin lemma we consider an action a and a set of states U, and we study the
probability that either action a does not occur or the first occurrence of action a leads to
a state of /. We show that this probability is at least the infimum of the probability of
reaching a state of U over all the transitions of M that are labeled with action a.

104

As an example, action a can identify the process of flipping a fair coin and U can identify
those states that are reached if the coin flip yields head. Then the coin lemma says that
no matter how the nondeterminism is resolved the probability that either the coin is not
flipped or the coin is flipped and yields head is at least 1/2.

Observe that in the definition of the coin event we allow for those executions where no
coin is flipped. One reason for this choice is to avoid trivial lower bounds due to the fact
that a generic adversary can always decide not to schedule any transition. Another reason
is that generally a randomized algorithm is structured so that that if no coin is flipped
then progress is guaranteed with certainty. Alternatively, a randomized algorithm can be
structured so that under any valid adversary some coin is flipped. In both cases it is of
absolute importance to be aware of the existence of executions where no coin is flipped.
Overlooking those executions is a common source of mistakes.

2. First occurrence of an action among many.

In this coin lemma we consider several pairs (a;, U;) of actions and sets of states, and we
study the probability that either none of the a;’s occur or the action a; that occurs first
leads to a state of U;. We show that, if for each 7 p; is the lower bound given for (a;, U;)
by the coin lemma of 1, then the probability mentioned above is at least the minimum of
the p;’s.

As an example, consider n processes that run in parallel, and suppose that each process
can flip a fair coin. Then, the probability that either no process flips a coin or that the
first process that flips a coin obtains head is at least 1/2.

3. I-th occurrence of an action among many.

In this coin lemma we consider the coin event of 2 with the difference that we consider
the 7 occurrence of an action rather than the first occurrence. The lower bound on the

probability of this event is the same as the lower bound on the probability of the event
of 2.

4. Conjunction of separate coin events.

In this coin lemma we consider the conjunction of several coin events of the kind of 3. We
show that if each one of the coin events involves disjoint occurrences of actions, then the
lower bound on the probability of the conjunction is the product of the lower bounds on
the probability of each of the involved coin events.

As an example, consider n processes that run in parallel, and suppose that each process
can flip a fair coin. For each ¢ let z; be either head or tail. Then, the probability that for
each process ¢ either no coin is flipped or the first coin that is flipped yields z; is at least
1/2m.

Some more general and complex coin lemmas are presented in Section 6.4; several other coin
lemmas are likely to be derived in the future. Before presenting the simple coin lemmas in full
detail we give just a rough idea of the coin lemmas of Section 6.4.

5. Conjunction of separate coin events with multiple outcomes.

105

In this coin lemma we consider again the conjunction of several coin events that involve
disjoint occurrences of actions. However we allow more freedom. First of all an action is
paired with more than one set of states, thus allowing the observation of more than one
outcome; second, we allow for multiple joint observations.

As an example, the coin lemma says that if n processes run in parallel and each one of
them can flip a coin, then the probability that at least half of the processes either do not
flip a coin or flip head is at least 1/2. Similarly, if each process can roll a dice, then the
probability that if process 1 rolls 1 then the other processes do not roll a number different
from 1 is at least (1/6)" + 5/6, which is essentially the probability of rolling n dices and
that either all processes give 1 or process 1 does not give 1.

6. A generalized coin lemma.

In this coin lemma we generalize the idea of 5, but this time we do not use actions to
identify the random draws of interest. The reader is referred to Section 6.4.2 for further
details.

6.2.1 First Occurrence of an Action

Let M be a probabilistic automaton, and let (a,U) be a pair consisting of an action of M and
a set of states of M. Let FIRST(a,U) be a function that applied to a probabilistic execution
fragment H of M returns the set of executions a of Qp such that either ¢ does not occur in
avqll, or a occurs in avgl! and the state reached after the first occurrence of a is a state of U.

It is simple to check that FIRST(a,U) is an event schema since, for each probabilistic
execution fragment H of M, the complement of FIRST(a,U)(H) is the set of executions a of
Qg such that action a occurs in avg, and the state reached after the first occurrence of a is
not a state of U. This set is expressible as a union of cones, and thus it is an event.

The event schema FIRST(a,U) identifies the first random draw associated with action a
that occurs in a probabilistic execution fragment H. and requires the outcome of the random
draw to be in a specific range, namely in U/. The intuition behind the use of such a coin event,
is that a system performs well if the outcome of the first random draw involving a is in U.
From the definition of FIRST(a,U), we assume also that the system performs well whenever «
does not occur at all. Thus, if an adversary has the possibility not to schedule a, then it has a
better chance to degrade the performance of a system by scheduling a.

The following lemma provides a lower bound to the probability of FIRST (a,U). Informally,
it states that if whenever there is a transition of M that involves action a the occurrence of a
implies that a state of U is reached with probability at least p, then p is a lower bound on the
probability of FIRST(a,U).

Lemma 6.2.1 Let M be a probabilistic automaton, and let (a,U) be a pair consisting of an
action of M and a set of states of M. Let p be a real number between 0 and 1 such that for
each transition (s, P) of M where Pla] > 0, P[U|a] > p. Then, for each probabilistic execution
fragment H of M, Py[FIRST(a,U)(H)] > p.

Proof. For convenience denote FIRST(a,U)(H) by FE, and for each state ¢ of H, denote by
Q(q,U) the set {(a,q') € QI | Istate(¢') ¢ U}. Let © be the set of states ¢ of H such that

106

action a does not occur in ¢o¢d’, and PqH[a] > 0. Then,

PpE] =3, Y. PulCP[(a,q)]. (6.1)

9€® (a,q’)EQ(q,U)

By expressing PqH[(a, q')] as a conditional probability and rearranging the expression, we obtain

PplE) =3 PulC,)P[d] > Pllla.q)d]]. (6.2)

9€® (a,q’)EQ(q,U)

From the definition of a probabilistic execution fragment and the definition of (g, U), for each
element ¢ of © there is a combined transition ¢r = 3. p;tr; of M such that tr? =¢q~ tr and

S Pl = Py [Tla) = L0004 _ Eipilull 0

U - PT - ; iPT‘
(,4)€(q.0) e > pi Pirla]

(6.3)

By multiplying and dividing each i*" summand of the enumerator by Py, [a], using the hypoth-
esis of the lemma, i.e., for each i Py, [UNa] < (1 — p), and simplifying algebraically, from (6.3)
we obtain

>, Pla,q)la] < (1-p). (6.4)

(a,9")€02(q,U)

By using (6.4) in (6.2) we obtain

Py[E] < (1 -p) (Z PH[Cq]PqH[a]) . (6.5)

q€®

Furthermore, the subexpression >~ o PH[Cq]PqH[a] is the probability that ¢ occurs in H, which
is at most 1. Thus,

PulE] < (1-p). (6.6)

This completes the proof. [|

6.2.2 First Occurrence of an Action among Many

The event schema FIRST(a,U) can be generalized to account for the first action that occurs
among several possible ones. Let M be a probabilistic automaton, and let (a1, Uy), ..., (a,, Uy)
be pairs consisting of an action of M and a set of states of M such that the actions a; are
all distinct. Then define FIRST((a1,U4),...,(ay,Uy,)) to be the function that applied to a
probabilistic execution fragment H of M returns the set of executions a of Qp such that either
none of the a;’s occurs in argl!, or some of the a;’s occur in avg, and if a; is the first of those
actions that occurs, then the state reached after the first occurrence of a; is a state of U;.

It is simple again to check that FIRST((ay,U1),...,(ay, Uy)) is an event schema since, for
each probabilistic execution fragment H, the complement of FIRST((a1,Uy),...,(an, Uy))(H)
can be expressed as a union of cones.

Lemma 6.2.1 extends to this case.

107

Lemma 6.2.2 Let M be a probabilistic automaton, and let (ay,Uy),...,(a,,U,) be pairs con-
sisting of an action of M and a set of states of M such that the actions a; are all distinct. Let
{piti=1,..n be a collection of real numbers between 0 and 1 such that for each i, 1 < i < n,
and each transition (s,P) of M where Pla;] > 0, P[U|a;] > p;. Then, for each probabilistic
execution fragment H of M, Py[FIRST((a1,Uy),...,(an, Uy))(H)] > min(p1,...,pn)-

Proof. Let V be {ay,...,a,}, and let p be the minimum of {py,...,p,}. For convenience,
denote FIRST((ay,Uy), ..., (an, U,))(H) by E, and for each state ¢ of H, denote by Q(q, F)
the set Ujeqr,.. o3 i(ai, ¢') € le | Istate(q') ¢ U;}. Then, for each transition (q,Pf) of H such
that P7[V] >0,

PIQ(q, E)[V] < (1= p). (6.7)

q

To prove (6.7), let, for each i = 1,...,n, Q(q,a;, U;) denote the set {(a;,q") € le | Istate(q") ¢
U;}. Then,

PR, E)V]= > PH[Qq,a,T)V] (6.8)
i€{1,..,n}

By using conditional probabilities, Equation (6.8) can be rewritten into

PR, E)V]= > PHa|VIPF[Q(q, a;, Ti)las]. (6.9)
i€{1,..,n}

Following the same argument as in the proof of Lemma 6.2.1, for each 1, PqH[Q(q, a;, Ui)la;] <
(1 — p); moreover, >°; PH[a;|V] = 1. Thus, (6.7) follows directly.

The rest of the proof follows te lines of the proof of Lemma 6.2.1. Let © be the set of states
q of H such that no action of V occurs in ¢ogf, and PqH[V] > 0. Then,

PyE]=3 > PulC]P)[(a.q)]. (6.10)
9€9 (a,9")€Q(q,E)

By expressing PqH[(a, ¢')] as a conditional probability and rearranging the expression, we obtain

PulE) =3 PulC P [V] Y. Bllad)vl]. (6.11)

9€0© (a,q')EQ(q,E)

The subexpression Z(a 7")eQ(q,E)

(1 —p) from (6.7). Thus,

H . H 7 . .
P (a,q")[V]is P [Q(q, E)|V], which is less than or equal to

Py[E] < (1 -p) (Z PH[Cq]PqH[V]) . (6.12)

q€®

Furthermore, the subexpression)~ o PH[Cq]PqH[V] is the probability that an action from V
occurs in H, which is at most 1. Thus,

Py[F] < (1-p). (6.13)

This completes the proof. [|

108

6.2.3 I-th Occurrence of an Action among Many

In the definition of FIRST we have considered the first action among a given set that occurs
in a probabilistic execution fragment H. However, the results for FIRST are valid also if
we consider the i*h occurrence of an action instead of the first occurrence. This observation
suggests a new more general event schema.

Let M be a probabilistic automaton, and let (ay,Uy),...,(a,, U,) be pairs consisting of
an action of M and a set of states of M such that the actions «; are all distinct. Then
define OCC(t,(a1,Uy),...,(an,U,)) to be the function that applied to a probabilistic execution
fragment H of M returns the set of executions a of Qp such that either there are less than ¢
occurrences of actions from {ay,...,a,} in argl, or there are at least i occurrences of actions
from {aq,...,a,}, and, if a; is the action that occurs as the it" one, then the state reached
after its occurrence is a state of U,.

Since in the proof of Lemma 6.2.2 we never use the fact that it is the first occurrence of an
action that is considered, Lemma 6.2.2 carries over to the i*h occurrence trivially.

Lemma 6.2.3 Let M be a probabilistic automaton, and let (ay,Uy),...,(a,,U,) be pairs con-
sisting of an action of M and a set of states of M such that the actions a; are all distinct. Let

{pj}j=1...n be a collection of real numbers between 0 and 1 such that for each j € {1,...,n}
and each transition (s,P) of M where Pla;] > 0, P[U|a;] > p;. Then, for each probabilistic
execution fragment H of M, Py[OCC(i,(a1,Uy),...,(a,, Uy))(H)] > min(p1,...,pn). [

6.2.4 Conjunction of Separate Coin Events

In this section we study what happens if we consider several events of the kind OCC together.
In order to simplify the notation, we consider only event schemas of the kind OCC(¢,(a,U))
since, as we have seen in the proof of Lemma 6.2.2, the case with multiple actions can be
reduced to the case with a single action.

The lemma that we prove states that if we consider several separate coin events, i.e., coin
events that involve different random draws, each one with its own lower bound, then the lower
bound of their conjunction is the product of the lower bounds. In other words, an adversary
can introduce dependencies by increasing the probability of the conjunction of events, but it
can never decrease the probability below the value that we would get by considering all the
events to be independent.

Lemma 6.2.4 Let M be a probabilistic automaton, and let (ki,a1,Uy),...,(kn,an,Uy) be a
collection of triplets consisting of a natural number, an action of M and a set of states of
M, such that the pairs (k;,a;) are all distinct. Let {p;};=1,.., be a collection of real num-
bers between 0 and 1 such that for each j € {1,...,n} and each transition (s,P) of M
where Pla;] > 0, PlU|a;] > p;. Then, for each probabilistic execution fragment H of M,
PylOCC(ky, (ar, U)(H)N - -0 OCC(ky, (an, Upy))(H) > p1-- - po-

Proof. For each I C {1,...,n}, denote a generic event schema N;c;OCC(k;,(a;, U;)) by ej.
For each 7 = 1,...,n and each state ¢ of H, denote by Q(q,i,U;) the set {(a;,¢') € le |
Istate(q") € U;} of pairs where a; occurs and U; is reached, and denote by Q(q, i, U;) the set
{(ai,q') € QI | Istate(q') ¢ U;} of pairs where a; occurs and U; is not reached. For each action

109

a and each state ¢ of H, let a(q) denote the number of occurrences of action a in qql!. For
each 7 =1,...,n, let ©; be the set of states ¢ of i such that each action a;,1 < j < n occurs
less than £; times in q>ql?, action a; occurs k; — 1 times in goql, and PqH[ai] > 0. For each
i =1,...,n and each state ¢ of H such that a;(q) < k;, let OCC(k;, (a;,U;))>q denote the event
schema OCC(k; — a;(q),(a;, U;)). Finally, for each I C {1,...,n} and each suitable state ¢ of
H,let erpq denote the event schema N;e; OCC(k;, (a;, Us))eq.

We prove the lemma by induction on n. If n = 1, then the result follows directly from
Lemma 6.2.1. Otherwise,

Pyler..o(H)= >3 > PulC] >, Pllaid)]

iE{l,...,n} q€®z‘ (ai7q/)eﬂ(q7i7ﬁi)

+ (Z PqH[(ai, f]/)]PH>q’[6{1,...,2'—1,2'4-1,...,n}DQ'(HW]/)])) . (6-14)
(alvq)

" eQ(q,i,Us)

The first summand of Expression (6.14) expresses the probability that action a; occurs from ¢
and leads to a state not in U;; the second summand expresses the probability that a; occurs, leads
to a state of U;, and from the reached state something happen so that the resulting execution
is not in ey, _,(H). From induction, and by using conditional probabilities, we obtain

Pyler. (< S Y PylC,]PHa)] > PM(ai,q)ai)

iE{l,...,n} q€®z‘ (ai7q/)eﬂ(q7i7ﬁi)

+ (> PqH[(aivq/)Mi])(l_pl"'pi—lpi-l-l"'pn))) : (6.15)
(aisg)

NeQ(q.3,U;)

Let, for each ¢ and each ¢, p; ; = P [Q(q, 1, U;)|a;]. Then, (6.15) becomes

PH[el, ,n(H)]

< > Y PulCIPMal((1 = pig) + (1= pr--picipist -+ Pa)Pig), (6.16)
1e{1,...,n} g€EO;

which becomes

Puler, (H) < > > PulClPI [ai](1 = pr - picapigPist -+ Pn) (6.17)
1e{1,...,n} €9,

after simple algebraic simplifications. Using the same argument as in the proof of Lemma 6.2.1,
for each 7 and each ¢, p; 4 > p;. Thus,

Pgler,..(H) < > > PylC [ail(1 = p1--pn). (6.18)

1€41,...,n} q€O;

Finally, observe that }Zicrq 012 0co, PH[Cq]PqH[ai] is the probability that for some ¢ action
a; occurs at least k; times. Thus,

Prler,. n(H)] < (1—pi--pa). (6.19)

This completes the proof. [|

110

Figure 6-1: The Dining Philosopher problem with 6 philosophers.

6.3 Example: Randomized Dining Philosophers

In this section we apply the methodology presented so far to prove the correctness of the Ran-
domized Dining Philosophers algorithm of Lehmann and Rabin [LR81]. The proof is structured
in two levels. The high level proof consists of a collection of progress statements that are con-
catenated together; the low level proof consists of the proofs of the statements of the high level
proof. The low level proof is based on the coin lemmas.

6.3.1 The Problem

There are n philosophers sat at a round table. Fach philosopher has a plate in from of him, a
fork on its left, and a fork on its right. The left fork is shared with his left neighbor philosopher,
and the right fork is shared with his right neighbor philosopher. At the center of the table there
is a bowl full of spaghetti. Figure 6-1 illustrates the situation for n = 6. FEach philosopher
goes repeatedly through phases where he is thinking and where he is eating. However, each
philosopher needs both of its forks in order to eat. The problem is the following:

“What procedure should each philosopher follow to get his forks and to put them
down in order to make sure that every philosopher that is hungry will eventually be
able to eat?”

A simpler problem is the following.

“What procedure should each philosopher follow to get his forks and to put them down
in order to make sure that whenever somebody is hungry somebody will eventually
be able to eat?”

The second problem is simpler than the first problem since it allows for some philosopher
to starve. It is known from [LR81] that there is no symmetric solution even for the simple
dining philosophers problem, i.e., there is no deterministic solution for the dining philosophers
problem where each philosopher follows exactly the same protocol; some mechanism to break
the symmetry is necessary. In the algorithm of Lehmann and Rabin each philosopher follows
exactly the same protocol and randomness is used to break the symmetry.

111

Shared variables: Res; € {free,taken}, j =1,...,n, initially free.
Local variables: u; € {left,right}, i=1,...,n

Code for process @:

0. try ** beginning of Trying Section **
1. < u; — random> ** choose left or right with equal probability **
2 < if Res(;,,) = free then
Res(; ;) 1= taken ** pick up first resource **
else goto 2. >
3. < if Res(; opp(u;)) = free then
Res(;,0pp(u;)) := taken; ** pick up second resource **
goto 5. >
4. < Res(; ;) 1= free; goto 1.> ** put down first resource **
5. crit ** end of Trying Section **
** Critical Section **
6. exit ** beginning of Exit Section **
7. < u; — left or right ** nondeterministic choice **
Res(; opp(u;)) := free > ** put down first resources **
8. < Res(;y,) 1= free > ** put down second resources **
9. rem ** end of Exit Section **

** Remainder Section **

Figure 6-2: The Lehmann-Rabin algorithm. The operations between angular brackets are
performed atomically.

6.3.2 The Algorithm

Each hungry philosopher proceeds according to the following protocol.

1. Flip a fair coin to choose between the left and the right fork.
2. Wait for the chosen fork to become free and get it.
3. Try to get the second fork:

if it is free, then get it;
if it is taken, then put down the first fork and go to 1.
4. Eat.

Each philosopher that has terminated to eat puts down his forks one at a time. The intuition
behind the use of randomness is that the actual protocol used by each philosopher is determined
by an infinite sequence of random coin flips. Thus, with probability 1 each philosopher follows
a different protocol.

Figure 6-2 gives a more precise representation of the protocol, using a terminology that
is closer to computer science; thus, a philosopher is called a process, and a fork is called a
resource. A philosopher who is thinking is said to be in its reminder region; a philosopher

112

Figure 6-3: Numbering processes and resources in the Dining Philosophers problem.

who is eating is said to be in its critical region; a philosopher who is trying to get its forks is
said to be in its trying region; and a philosopher who is putting down its forks is said to be in
its exit region. The n resources (forks) are represented by n shared variables Resy, ..., Res,,
each of which can assume values in {free,taken}. FEach process (philosopher) ¢ ignores its
own name and the names of its adjacent resources. However, each process ¢ is able to refer
to its adjacent resources by relative names: Res;1.¢r) is the resource located to the left, and
Res(; rignt) 1s the resource to the right of ¢. Each process ¢ has a private variable u;, whose value
is in {left,right}, which is used either to keep track of the resource that process ¢ currently
holds, or, if no resource is held, to keep track of the resource that process 7 is going to take
next. For notational convenience we define an operator opp that complements the value of its
argument, i.e., opp(right) = left and opp(left) = right.

We now define a probabilistic automaton M that represents the evolution of n philosophers.
We assume that process ¢« + 1 is on the right of process ¢ and that resource Res; is between
processes ¢ and ¢ + 1 (see Figure 6-3). We also identify labels modulo n so that, for instance,
process n + 1 coincides with process 1.

A state s of M is a tuple (Xy,..., X, Resy, ..., Res,) containing the local state X; of each
process ¢, and the value of each resource Res;. Each local state X; is a pair (pc;, u;) consisting
of a program counter pc; and the local variable u;. The program counter of each process keeps
track of the current instruction in the code of Figure 6-2. Rather than representing the value
of the program counter with a number, we use a more suggestive notation which is explained
in Table 6.1. Also, the execution of each instruction is represented by an action. Actions try,,
crit;, rem;, exit; are external; all the other actions are internal.

The start state of M assigns the value free to all the shared variables Res;, the value R to
each program counter pc;, and an arbitrary value to each variable w;. The transition relation
of M is derived directly from Figure 6-2. For example, for each state where pc, = F there is
an internal transition labeled with £1ip, that changes pc; into W and assigns left to u; with
probability 1/2 and right to u; with probability 1/2; from each state where X; = (W, left)
there is a transition labeled with wait; that does not change the state if Res(;1.¢r) = taken,
and changes pc; into S and Res(;1.¢¢) into taken if Res(;1eer) = free; for each state where

113

Nr. pc; Action Informal meaning

0 R try, Reminder region

1 I’ flip, Ready to Flip

2 W wait; Waiting for first resource

3 S second; Checking for Second resource
4 D drop; Dropping first resource

5 P crit; Pre-critical region

6 C exity Critical region

7 Er dropf, Exit: drop First resource

8 Es drops; Exit: drop Second resource
9 Fr rem; Exit: move to Reminder region

Table 6.1: Program counter and action names for the Lehmann-Rabin algorithm.

pc; = L there are two transitions labeled with action dropf;: one transition sets u; to right
and makes Res(; 1.¢¢) {ree, and the other transition sets u; to left makes Res(; rigny) free. The
two separate transitions correspond to a nondeterministic choice that is left to the adversary.

The value of each pair X; can be represented concisely by the value of pc, and an arrow
(to the left or to the right) which describes the value of u;. Thus, informally, a process 7 is in
state S or D (resp. 5 or D) when i is in state S or D while holding its right (resp. left)
resource; process ¢ is in state W (resp. W) when ¢ is waiting for its right (resp. left) resource
to become free; process 7 is in state %g (resp. %g) when ¢ is in its exit region and it is still
holding its right (resp. left) resource. Sometimes we are interested in sets of pairs; for example,
whenever pc, = F the value of u; is irrelevant. With the simple value of pc;, we denote the set of
the two pairs {(pc;,left), (pc,,right)}. Finally, with the symbol # we denote any pair where
pe; € {W, S, D}. The arrow notation is used as before.

For each state s = (X1,..., X,,Resy,...,Res,) of M we denote X; by X;(s) and Res; by
Res;(s). Also, for any set St of states of a process i, we denote by X; € St, or alternatively
X; = St the set of states s of M such that X;(s) € St. Sometimes we abuse notation in the
sense that we write expressions like X; € {F, D} with the meaning X; € F' U D. Finally, we
write X; = F for X; = {Ep, Fs, Er}, and we write X; =T for X; € {F,W,5, D, P}.

6.3.3 The High Level Proof

In this section we give the high level proof that the algorithm of Lehmann and Rabin guarantees
progress, i.e., that from every state where some process is in its trying region, some process
enters eventually its critical region with probability 1. We assume that each process that is
ready to perform a transition is allowed eventually to do so: process i is ready to perform a
transition whenever it enables an action different from try, or exit;. Actions try, and exit;
are under the control of the user (a philosopher decides whether to eat or think), and hence,
by assumption, under the control of the adversary.

Formally, consider the probabilistic automaton M of Section 6.3.2. Define an extended
execution a of M to be fair iff for each process i either « is finite and its last state enables

114

try, or exit;, or a is infinite and either actions of process ¢ occur infinitely many times in «
or a = ay ~ oy and all the states of ay enable either try, or exit;. Define Fairadvs to be the
set of adversaries A for M such that, for every finite execution fragment o of M the elements
of Q) cvec(M, A,0) are extended fair execution fragments of M. Then Fairadvs is finite-history-
insensitive: if A is an adversary of Fairadvs and ¢ is a finite execution fragment of M, then it
is easy to verify that the adversary A, such that

) Alarq) if¢g<a
Agler) = { A(a) otherwise

is an adversary of Fairadvs. Let rstates(M) denote the set of reachable states of M. Let
T = {s € rstates(M) | 3;X;(s) € {T}}

denote the sets of reachable states of M where some process is in its trying region, and let
C = {s e rstates(M)] 3, X;(s) = C}

denote the sets of reachable states of M where some process is in its critical region. We first
show that

T 1_/8>Faimdvs C, (620)

i.e., that, starting from any reachable state where some process is in its trying region, for all
the adversaries of Fairadvs, some process enters its critical region eventually with probability at
least 1/8. Note that (6.20) is satisfied trivially if some process is initially in its critical region.

Our proof is divided into several phases, each one concerned with the property of making
some partial progress toward C. The sets of states associated with the different phases are

expressed in terms of 7, R7,F,G,P,and C. Here,
RT £ {seT |V:Xi(s) € {Er, R.T}}

is the set of states where at least one process is in its trying region and where no process is in
its critical region or holds resources while being in its exit region.

F 2 {seRT|3%KXi(s)=F}
is the set of states of R7T where some process is ready to flip a coin.
P £ {s€rstates(M) | 3; Xi(s) = P}

is the sets of reachable states of M where some process is in its pre-critical region, i.e., where
some process is ready to enter its critical region. The set G is the most important for the
analysis. To motivate the definition, we define the following notions. We say that a process ¢
is committed if X; € {W, S5}, and that a process ¢ potentially controls Res; (resp. Res;_1) if
X; ¢ {V_I{,i,g} (resp. X; € {VZ, ﬁ, Q}) Informally said, a state in R7 is in G if and only
if there is a committed process whose second resource is not potentially controlled by another
process. Such a process is called a good process. Formally,

G = {seRT|3;
XZ(S) S {Il, ﬁ} and Xi-l—l(s) S {ER,R,F, i}, or
Xi(s) € {W, S} and Xi_1(s) € {Ep, R, F, # }}

115

Reaching a state of G is a substantial progress toward reaching a state of C. Somehow, a good
state is a place where the symmetry is broken. The progress statements of the proof are the

following.
T - RTUC (Proposition 6.3.3),
RT — FU GUP (Proposition 6.3.16),
F T/_2> GUuPpP (Proposition 6.3.15),
g T/_4> P (Proposition 6.3.12),
P—C (Proposition 6.3.1).

The first statement says that eventually every process in its exit region relinquishes its resources.
In this way we avoid to deal with resources held by processes who do not want to enter the
critical region. The second statement says that eventually either a good state is reached, or a
place where some process is ready to flip its coin is reached. The flipping points are potential
points where the symmetry is broken, and thus reaching a flipping point means progress. The
third statement says that from a flipping point there is probability 1/2 to reach a good state.
Finally, the fourth statement says that from a good state there is probability 1/4 to be ready
to enter the critical region. By combining the statements above by means of Proposition 5.5.3
and Theorem 5.5.2 we obtain

T 1_/8> C, (6.21)
which is the property that was to be proven. Observe that once some process is in the trying
region there is always some process in the trying region until some process reaches the critical
region. Formally, M satisfies 7 Unless C. Thus, Proposition 5.5.6 applies, leading to

T —C. (6.22)

6.3.4 The Low Level Proof

In this section we prove the five progress statements used in Section 6.3.3. The proofs are
detailed operational arguments. The main point to observe is that randomness is handled
exclusively by the coin lemmas, and thus, any technique for the verification of ordinary automata
could be applied as well.

For the sake of clarity, we do not prove the relations in the order they were presented.
Throughout the proof we abuse notation by writing expressions of the kind FIRST(f1ip,,left)
for the event schema FIRST(flip;,{s € states(M) | Xi(s) = W}). We write also sentences of
the form “If FIRST(flip,,left) then ¢” meaning that for each valid probabilistic execution
fragment H, each element of FIRST(flip,,left)(H) satisfies ¢.

Proposition 6.3.1 If some process is in P, then some process enters C, i.e.,

Proof. Let ¢ be the process in P. Then, from the definition of Fairadvs, process ¢ is scheduled
eventually, and enters C. [|

116

Lemma 6.3.2 [f some process is in its Fxit region, then it will eventually enter R.

Proof. The process needs to perform two transitions to relinquish its two resources, and then
one transition to send a rem message to the user. Every adversary of Fairadvs guarantees that
those three transitions are performed eventually. [|

Proposition 6.3.3 7 — R7T UC.

Proof. From Lemma 6.3.2, every process that begins in Fr or Fg relinquishes its resources.
If no process begins in €' or enters (' in the meantime, then the state reached at this point is
a state of R7; otherwise, the starting state or the state reached when the first process enters
(' is a state of . [

We now turn to the proof of G T/_4> P. The following lemmas form a detailed cases analysis

of the different situations that can arise in states of G. Informally, each lemma shows that a
specific coin event is a sub-event of the properties of reaching some other state. A preliminary
lemma is an invariant of M, which guarantees that the resources are held by those processes
who think to be holding them.

Lemma 6.3.4 For each reachable state s of M and each i, 1 < ¢ < n, Res; = taken iff
Xi(s) €{8,D,P,C,Ep,Es} or Xip1(s) €{ S, D, P,C, Ep, s}, Moreover, for each reachable
state s of M and each i, 1 < i < n, it is not the case that X;(s) € {i,Q,P, C, Ep, %g} and
Xit1(s) € {ﬁ, Q,P, C, Fr, gg}, i.e., only one process at a time can hold one resource. [

Proof. The proof of this lemma is a standard proof of invariants. Simply verify that the two
properties are true for the start states of M and are preserved by each transition of M. [|

Lemma 6.3.5

1. Let X;—y € {Fr,R, F} and X; = w. If FIRST(flip,_,,left), then, eventually, either
X, 1=PorX;,=5.

2. Let X; 1 =D and X; = w. If FIRST(flip,_,,left), then, eventually, either X;—1 = P
or X; = 5.

3 Let X; 1 =5 and X; = VZ If FIRST(flip,_,,left), then, eventually, either X;_4 = P
or X; = 5.

4. Let X; 1 =W and X; = w. If FIRST(f1ip,_,,left), then, eventually, either X;_1 = P
or X; = 5.

Proof. The four proofs start in the same way. Let s be a state of M satisfying the respective
properties of items 1 or 2 or & or 4. Let A be an adversary of Fairadvs, and let a be an
execution of €, ., (a1,{5},4) Where the result of the first coin flip of process ¢ — 1, if it occurs,
is left.

117

1. By hypothesis and Lemma 6.3.4, ¢ — 1 does not hold any resource at the beginning of «
and has to obtain Res;_s (its left resource) before pursuing Res;_;. From the definition
of Fairadvs, ¢ performs a transition eventually in a. If ¢ — 1 does not hold Res;_; when
¢ performs this transition, then ¢ progresses into configuration 5. If not, it must be the
case that ¢ — 1 succeeded in getting it in the meanwhile. But, in this case, since ¢ — 1 flips
left, Res;_; was the second resource needed by ¢ — 1 and ¢ — 1 therefore entered P.

2. If X; = 5 eventually, then we are done. Otherwise, process ¢ — 1 performs a transition
eventually. Let @ = a1 ™ ay such that the last transition of a;y is the first transition taken
by process i — 1. Then X;_i(fstate(az)) = F and Xi(fstate(az)) = W. Since process
¢ — 1 did not flip any coin during a1, from the finite-history-insensitivity of Fairadvs and
Item 1 we conclude.

3. If X; = 5 eventually, then we are done. Otherwise, process ¢ — 1 performs a transition
eventually. Let @ = a1~ as such that the last transition of ay is the first transition taken
by process ¢ — 1. If X;_4(fstate(ay)) = P then we are also done. Otherwise it must be
the case that X;_(fstate(az)) = D and Xy(fstate(az)) = W. Since process i — 1 did not

flip any coin during ay, from the finite-history-insensitivity of Fairadvs and Item 2 we
conclude.

4. If X; = S5 eventually, then we are done. Otherwise, process i checks its left resource
eventually and fails, process i — 1 gets its right resource before, and hence reaches at

least state 5. Let @ = a1 ™ ay where the last transition of «q is the first transition of «
that leads process i — 1 to state 5. Then X;_y(fstate(az)) = 5 and X;(fstate(az)) = W.

Since process ¢ — 1 did not flip any coin during ay, from the finite-history-insensitivity of
Fairadvs and Item 3 we conclude. [|

Lemma 6.3.6 Assume that X;_y € {Fgr, R, T} and X; = VZ If FIRST(flip,_,,left), then,
eventually, either X;_1 = P or X; = 5.

Proof. Follows directly from Lemma 6.3.5 after observing that X;_y € {Egr, R,T} is equivalent
to X;_y € {Fr, R, F,\W,5, D, P}. [

The next lemma is a useful tool for the proofs of Lemmas 6.3.8, 6.3.9, and 6.3.10.

Lemma 6.3.7 Let X; € {Vl,ﬁ} or X; € {Er,R,F, Q} with FIRST(£f1ip;,left). Further-
more, let Xipy € {W, S} or Xipy € {Eg, R, F, D} with FIRST(flip; . right). Then the
first of the two processes i or i + 1 testing its second resource enters P after having performed
this test (if this time ever comes).

Proof. By Lemma 6.3.4 Res; is free. Moreover, Res; is the second resource needed by both ¢
and ¢ + 1. Whichever tests for it first gets it and enters P. [

Lemma 6.3.8 If X; = ﬁ and X;1q € {V_T{, i} then, eventually, one of the two processes t or
i+ 1 enters P. The same result holds if X; € {Vl, ﬁ} and Xy = 5.

118

Proof. Being in state 5, process ¢ tests its second resource eventually. An application of
Lemma 6.3.7 finishes the proof. [|

Lemma 6.3.9 Let X; = ﬁ and X;41 € {ER,R,F,Q}. If FIRST(f1ip,, |, right), then, even-
tually, one of the two processesi or i+ 1 enters P. The same result holds if X; € {Er, R, F, D},
Xiy1 = 5 and FIRST(flip;, left).

Proof. Being in state 5, process ¢ tests its second resource eventually. An application of
Lemma 6.3.7 finishes the proof. [|

Lemma 6.3.10 Assume that X;_y € {Er, R, T}, X; = Vl, and X,y € {ER, R, F, LV,Q} If
FIRST(flip,_,,left) and FIRST(flip; ,,right), then eventually one of the three processes
t—1,20r14+ 1 enters P.

Proof. Let s be a state of M such that X;_y(s) € {Er, R, T}, Xi(s) = W, and X;11(s) €
{FERr,R, F, LV, 2} Let A be an adversary of Fairadvs, and let o be an extended execution of
Qprevee(M,{s},4) Where the result of the first coin flip of process ¢« — 1 is left and the result
of the first coin flip of process ¢ + 1 is right. By Lemma 6.3.6, eventually either process
¢ — 1 reaches configuration P in a or process ¢ reaches configuration ﬁ in a. If ¢ — 1 reaches
configuration P, then we are done. If not, then let @ = a3 ™ ay such that Istate(aq) is the
first state s’ of o with X;(s') = S. If i+ 1 enters P before the end of ay, then we are done.
Otherwise, X;i1(fstate(az)) is either in {V_I{,i} or it is in {Eg, R, F, Q} and process 7 + 1
has not flipped any coin yet in «. From the finite-history-insensitivity of Fairadvs we can then
apply Lemma 6.3.7: eventually process ¢ tests its second resource and by Lemma 6.3.7 process
1 enters P if process ¢ + 1 did not check its second resource in the meantime. If process ¢z + 1
checks its second resource before process ¢ does the same, then by Lemma 6.3.7 process ¢ + 1
enters P. [|

Lemma 6.3.11 Assume that X;y9 € {Fp, R, T}, X;y1 = W, and X; € {ER, R, F, VZ,Q} If
FIRST(flip,,left) and FIRST(flip, ,,right), then eventually one of the three processes i,
1+ 1 ori+ 2, enters P.

Proof. The proof is analogous to the one of Lemma 6.3.10. This lemma is the symmetric case
of Lemma 6.3.10. [|

Proposition 6.3.12 Starting from a global configuration in G, then, with probability at least
1/4, some process enters P eventually. Fquivalently:

g — P.
1/4
Proof. Lemmas 6.3.8 and 6.3.9 jointly treat the case where X; = ﬁ and X,y € {ER, R, F, ﬁ}

and the symmetric case where X; € {ERr, R, F, i} and X;49 = i; Lemmas 6.3.10 and 6.3.11
jointly treat the case where X; = VZ and X;11 € {ER, R, F, LV,Q} and the symmetric case
where X; € {ER, R, F, W, Q} and X; 41 =W

— .

119

Specifically, each lemma shows that a compound event of the kind FIRST(flip,,z) and
FIRST(£1ip;,y) leads to P. Each of the basic events FIRST(£1ip;,) has probability at least
1/2. From Lemma 6.2.4 each of the compound events has probability at least 1/4. Thus the
probability of reaching P eventually is at least 1/4. [|

We now turn to F T/_2> G U P. The proof is divided in two parts and constitute the global

argument of the proof of progress, i.e., the argument that focuses on the whole system rather
than on a couple of processes.

Lemma 6.3.13 Start with a state s of F. If there exists a process i for which X;(s) = F and
(Xic1, Xiq1) # (ﬁ, i), then, with probability at least 1/2 a state of GUP is reached eventually.

Proof. If s € GUP, then the result is trivial. Let s be a state of 7 — (GUP) and let ¢ be such
that X;(s) = F and (X;-1, Xi41) # (ﬁ, i) Assume without loss of generality that X, # i,
ie., X;11 € {Fg, R, F, ﬁ} The case for X;_1 # ﬁ is similar. Furthermore, we can assume
that Xiyi € {ER, R, F, D} since if Xiyy € {W, S} then s is already in G. We show that the
event schema FIRST((flip;,left),(flip; ,,right)), which by Lemma 6.2.2 has probability
at least 1/2, leads eventually to a state of G U P. Let A be an adversary of Fairadvs, and let
« be an extended execution of €1,,.,cc(ar,(s},4) Where if process ¢ flips before process ¢ 4+ 1 then
process ¢ flips left, and if process ¢ + 1 flips before process ¢ then process ¢ + 1 flips right.
Then, eventually, ¢ performs one transition and reaches W. Let j € {i,i+ 1} be the first of
v and ¢ + 1 that reaches W and let s; be the state reached after the first time process j reaches
W. If some process reached P in the meantime, then we are done. Otherwise there are two
cases to consider. If j = ¢, then, £1lip; yields left and Xi(si) = W whereas X4, is (still) in
{ER,R,F,Q}. Therefore, sy € G. If j = ¢ 4 1, then £1ip;,; yields right and X;;1(s1) = w
whereas X;(s1) is (still) F. Therefore, s; € G. |

Lemma 6.3.14 Start with a state s of F. If there exists a process i for which X;(s) = F and
(Xic1(s), Xiqa(s)) = (ﬁ, i) Then, with probability at least 1/2, a state of G U P is reached

eventually.

Proof. The hypothesis can be summarized into the form (X;_1(s), Xi(s), X;41(s)) = (ﬁ, F, i)
Since ¢t—1 and ¢4 1 point in different directions, by moving to the right of ¢+ 1 there is a process
k pointing to the left such that process k + 1 either points to the right or is in {Fg, R, F, P},
ie., Xi(s) € {Vl, ﬁ, Q} and Xyi1(s) € {Fp, R, F, LV,E,Q,P}.

If Xp(s) € {W, 5} and Xyq1(s) # P then s € G and we are done; if Xp41(s) = P then
s € P and we are done. Thus, we can restrict our attention to the case where Xj(s) = D.

We show that FIRST((f1ip,,left),(f1lip,,,,right)), which by Lemma 6.2.2 has proba-
bility at least 1/2, leads eventually to G U P. Let A be an adversary of Fairadvs, and let «
be an extended execution of €, c.c.(nr,{s},4) Where if process k flips before process k + 1 then
process k flips left, and if process k + 1 flips before process k then process k + 1 flips right.

Then, eventually, process k performs at least two transitions and hence goes to configuration
W. Let j € {k,k+ 1} be the first of & and k4 1 that reaches W and let s; be the state reached

after the first time process j reaches W. If some process reached P in the meantime, then we are

120

done. Otherwise, we distinguish two cases. If j = k, then, £f1ip, yields left and Xy(s1) = VZ
whereas X141 is (still) in {Eg, R, F, ﬁ} Therefore, sy € G. If j = k + 1, then £1ip, , yields
right and Xj11(s1) = W whereas Xy (s1) is (still) in { D, F'}. Therefore, 51 € G. |

Proposition 6.3.15 Start with a state s of F. Then, with probability at least 1/2, a state of
G U P is reached eventually. Fquivalently:

F— GUTP.
1/2
Proof. The hypothesis of Lemmas 6.3.13 and 6.3.14 form a partition of F. [|

Finally, we prove R7T - FUgGuUP.

Proposition 6.3.16 Starting from a state s of R7T, then a state of F U G U P is reached
eventually. Equivalently:

RT—1—>]-"UQU77.

Proof. Let s be a state of R7. If s € F UG U P, then we are trivially done. Suppose
that s ¢ 7 UG UP. Then in s each process is in {Fg, R,W,S5, D} and there exists at least
process in {W, S, D}. Let A be an adversary of Fairadvs, and let a be an extended execution
of Qprevec(M {5},.4)-

We first argue that eventually some process reaches a state of {5, D, F'} in a. This is trivially
true if in state s there is some process in {5, D}. If this is not the case, then all processes are
either in Fp or R or W. Eventually, some process in R or W performs a transition. If the
first process not in Ep performing a transition started in Fr or R, then it reaches I’ and we
are done; if the first process performing a transition is in W, then it reaches 5 since in s no
resource is held. Once a process 7 is in {5, D, F'}, then eventually process i reaches either state
F or P, and we are done. [|

6.4 General Coin Lemmas

The coin lemmas of Section 6.2 are sufficiently general to prove the correctness of the Random-
ized Dining Philosophers algorithm of Lehmann and Rabin. However, there are several other
coin events that are relevant for the analysis of distributed algorithms. For example, the toy
resource allocation protocol that we used in Chapter 5 cannot be verified yet. In this section
we present two general coin lemmas: the first one deals with multiple outcomes in a random
draw; the second one gives a generalization of all the coin lemmas presented in the thesis.
Unfortunately, generality and simplicity are usually incompatible: the two coin lemmas of this
section are conceptually more complicated than those of Section 6.2.

6.4.1 Conjunction of Separate Coin Events with Multiple Outcomes

The coin lemma of Section 6.2.4 deals with the result of the intersection of several coin events.
Thus, for example, if each coin event expresses the process of flipping a coin, then the coin
lemma of Section 6.2.4 can be used to study the probability that all the coins yield head.

121

However, we may be interested in the probability that at least half of the coins yield head,
or in the probability that exactly 5 coins yield head. The coin lemmas of Section 6.2 are not
adequate. Suppose now that we use each coin event to express the process of rolling a dice.
The coin events of Section 6.2 are not adequate again since they can deal only with binary
outcomes: we can observe only whether a specific set U is reached or not. How can we express
the event that for each number ¢ between 1 and 6 there is at least one dice that rolls ¢7

In this section we define a coin event and prove a coin lemma that can deal with the scenarios
outlined above. Let M be a probabilistic automaton, and let S be a set of n tuples {zy,...,2,},
where for each ¢, 1 <1i <mn, z; is a tuple (a;,U;1,...,U; ;) consisting of an action of M and k
pairwise disjoint sets of states of M. Let the actions a; be all distinct. Let F be a set of tuples
((1,71)y---,(n,jn)) where for each 7, 1 < i < n, the value of j; is between 1 and k. For each
extended execution a of M and each 7, 1 <7 < n, let

{(i,1),...,(¢,k)} if a; does not occur
Ui(a) =< {(4,7)} if a; occurs and its first occurrence leads to U, ;
0 otherwise.

Then define GFIRST(S, I) to be the function that associates with each probabilistic execution
fragment H of M the set of extended executions a of Qy such that E N (U;(avgdl) x -+ x
Unlavqtl)) # 0.

We illustrate the definition above by encoding the dice rolling example. In each tuple
(ai,Ui,..., Ui) a; identifies the action of rolling the ith dice, k = 6, and for each j, U, ; is
the set of states where the it" dice rolls j. The set F identifies the set of outcomes that are
considered to be good. In the case of the dices £ is the set of tuples ((1,71),...,(n,j,)) where
for each number [between 1 and 6 there is at least one ¢ such that j; = [. The function U;(«a)
checks whether the 7*h dice is rolled and identifies the outcome. If the dice is not rolled, then,
we allow any outcome as a possible one; if the dice is rolled and hits U; ;, then the outcome is
(7, 7); if the the dice is rolled and the outcome is not in any one of the sets U; ;’s, then there is
no outcome (this case does not arise in our example). Then, an extended execution a of Qp
is in the event GFIRST(S, E)(H) if at least one of the outcomes associated with avgl! is an
element of F, i.e., if by choosing the outcome of the dices that are not rolled in agl! all the
six numbers appear as the outcome of some dice.

Let p be the probability that by rolling n dices all the six numbers appear as the outcome
of some dice. Then, the lemma below states that Py[GFIRST(S, E)(H)] > p for each H.

Proposition 6.4.1 Let M be a probabilistic automaton. Let S be a set of n tuples {x1,...,2,}
where for each i, 1 <1 < n, z; is a tuple (a;,U;1,...,U;) consisting of an action of M and k
pairwise disjoint sets of states of M. Let the actions a; be all distinct. Let E be a set of tuples
((1,71)y---5(n,Jn)) where for each i, 1 < i < n, the value of j; is between 1 and k. For each
1,7, 1 <1< n, 1 <5<k, let p;; be a real number between 0 and 1 such that for each transition
(s,P) of M where Pla;] >0, PlU; ;|a;] > p; ;, and let C be the collection of the p; js. Let Fe[E]
be the probability of the event E assuming that each experiment i is run independently, and
that for each i a pair (i,7) is chosen with probability p; ;. Then, for each probabilistic execution

fragment H of M, Py[GFIRST(S, E)(H)] > Fc[F].

Proof. For each state ¢ of H,each ¢ € {1,...,n}, and each j € {1,...,k}, denote by Q(¢, U, ;)
the set {(a;,q') € le | Istate(q") € U;;} of pairs where a; occurs and leads to a state of U, ;,

122

and denote by Q(q,U;) the set {(a;,q") € le | Istate(q') ¢ U;U; ;} of pairs where a; occurs and
none of the U, ;s is reached. For each 7 € {1,...,n}, let ©; be the set of states ¢ of H such that
no action a;, 1 < j <n, occurs in q>qéq, and PqH[ai] > 0.

We prove the lemma by induction on n. If n = 1 then the result follows from Lemma 6.2.1
(the event can be transformed into a new event with two outcomes); otherwise,

Pu[GFIRST(S, EY(H) = > > PulCy] >, Bl(aid)]

i€{l,..,n} €0, (ai,9")EQ(g,Us)

+ (> > PqH[(ai,q’)]PHDq/[GFIRST(SZ»,E(Z»J))(Hw]’)])). (6.23)

Je{1,. ik} (as,a")EQ(e,Ui 5)

where §; is obtained from § by removing the tuple (a;, U;1,...,U; 1), and E: ;) is the set of tu-
ples ((17j1)7 SRR (7/_ 17ji—1)7 (i+17ji+1)7 SRR (nvjn)) such that ((17j1)7 SRS (7/_ 17ji—1)7 (7/7])7 (Z—I_
1,5i41)s---»(n,Jn)) € E. Let C; be obtained from C by removing all the probabilities of the
form p; ;, 1 <7 < k. Then, by induction,

PHDq/[GFIRST(SZ’, E(i7]‘))(Hl>q/)] S (1 — Pci [E(%])]) (6.24)
From the properties of conditional probabilities and the definition of C,
Fe,[Eq j)) = Pe[E|(3, 7). (6.25)

Thus, by using (6.24) and (6.25) in (6.23), and by expressing P” [(a;, ¢')] as P [a;] PP [(a;, ¢')|ai],
we obtain

P[GFIRST(S, E)(H) < > > PulCy)PM[a] > P (i, q')ai]

i€{1,...n} q€O; (ai,a')€Q(q,T;)

+ (> > Pfuai,q')m(l—Pc[E|<i,j>]>)). (6.26)

Je{1,. ik} (as,a")EQ(e,Ui 5)

For each ¢,7 and ¢, let p; ; , be PqH[Q(q, U; j)|a;]. Then, from (6.26),

Py[GFIRST(S, EY(H) < Y. Y PulC,)PMa]
1€{1,...,n} 9€O;

((1 —Pilg =~ Pikg) T (Yo pijal- Pc[El(i,j)]))) : (6.27)

]6{177k}

which becomes

Py[GFIRST(S, E)(H)|
< > Y PulCR]al] (1 - > PC[El(iaJ)]Pi,j,q) (6.28)
ie {1} 7€0; ie{th)

123

after some simple algebraic simplifications. Using the same argument as in the proof of
Lemma 6.2.1, for each ¢, and each ¢, p; j, > pi ;. Thus,

Py[GFIRST(S, E)(H)]
< Y Y PelCIPMal (1= Y Pe[EIGD)pig) - (6.29)
1e{1,...,n} g€EO; Je{1,....k}

Finally, observe that 3=,cry .12 ,c0, Py[CylPH[a;] is the probability that some action a;

occurs, and observe that 3= ey 1y Pe[E[(i,7)]pi; = Pe[E]. Thus,

Py[GFIRST(S, E)(H)| < 1 — P[E] (6.30)

6.4.2 A Generalized Coin Lemma

All the coin lemmas that we have studied in this chapter share a common characteristic. Given
a probabilistic execution fragment H, we identify n separate classes of random draws to observe.
Each class can be observed at most once in every execution « of Qy, and if any class cannot
be observed, then we allow for any arbitrary outcome. In this section we formalize this idea.

Let H be a probabilistic execution fragment of a probabilistic automaton M. A coin-event
specification for H is a collection C of tuples (¢, X, X1,..., Xj) consisting of a state of H, a
subset X of Qf, and m pairwise disjoint subsets of X, such that the following properties are
satisfied:

1. for each state ¢ of H there is at most one tuple of C' whose state is ¢;

2. for each state ¢ of H such that there exists a tuple of C' with state ¢, there is no prefix ¢’
of ¢ such that there exists a tuple (¢/, X, X1,..., Xz) in C' and a pair (a,¢”) in X where
q" is a prefix of q.

The set ' is the object that identifies one of the classes of random draws to be observed. For
each transition tr? and each tuple (¢, X, X1,..., Xj) of C, the set X identifies the part of tr?
that is relevant for €', and the sets Xy,..., X\ identify some of the possible outcomes. The first
requirement for C' guarantees that there is at most one way to observe what happens from a
state ¢ of H, and the second requirement states that along every execution of p there is at
most one place where C' is observed.

As an example, consider the observation of whether the first occurrence of an action a,
which represents a coin flip, leads to head. Then C'is the set of tuples (¢, X, X1) where action
a does not occur in gegf and PqH[a] > 0, X is the set of pairs of le where action a occurs,
and X is the set of pairs of X where the coin flips head.

Let a be an extended execution of {2y, and let ¢ be a state of H such that ¢ < a. We say
that C' occurs in « at ¢ iff there exists a tuple (¢, X, X1,..., X;) in C and a pair (a,q’) in X
such that ¢’ < a. Moreover, if (a,¢") € X;, we say that C' occurs in « at ¢ and leads to X.

Two coin event specifications €7 and (5 are said to be separate iff from every state ¢ of
H,if (¢, X1, X14,...,X1%) is a tuple of € and (¢, X2, X21,...,X2k) is a tuple of Cy, then
X1 N Xy = 0. In other words, there is no interference between the observations of 'y and the

124

observations of Cy. Let § = {C'y,...,C,} be a set of pairwise separate coin-event specifications.
For notational convenience, for each i € {1,...,n} and each state ¢ of H such that there exists
a tuple in C; with state ¢, denote such tuple by (¢, Xy, Xgi1,..., Xqik)

Let ¥ be a set of tuples ((1,j1),...,(n,j,)) where for each i, 1 < i < n, the value of j; is
between 1 and k. For each extended execution « of Qg and each 7, 1 <17 < n, let

{(i,1),...,(¢,k)} if C; does not occur in «
Ui(a) =< {(4,7)} it C; occurs in « leading to X, ; ;
0 otherwise.

Then, define GCOIN(S,E)(H) to be the set of extended executions of Qg such that £ N
(Ur(awgh’) x -+ x Uk(avqg!)) # 0.

Lemma 6.4.2 Let H be a probabilistic execution fragment of a probabilistic automaton M. Let
S ={Cy,....,C,} be a set of separate coin-event specifications for H. For each i,j, 1 < i <n,
1 <j <k, let p;; be a real number between 0 and 1 such that for each i € {1,...,n} and each
tuple (¢, X4, Xgi1,-- ., Xgim) of Ci, PqH[Xq’Z"ﬂXq’i] > p; ;. Let C be the collection of the p; ;’s.
Let Pe[E] be the probability of the event ' assuming that each experiment i is run independently,
and for each i a pair (i, 7) is chosen with probability p; ;. Then, Pg[GCOIN(S, E)(H)] > Pe[L].

Proof. For each state ¢ of H and each i, 1 < ¢ < n, if there exists a tuple in C; with state ¢,
then denote X, ;\ Ujeq1,..ky X,y by Xy, For each 7, 1 < i < m, let ©; be the set of states ¢
of H such that there exists a tuple with state ¢ in C; and no coin-event C;, 1 < j < n, occurs
: H
in ¢rqy .

We prove the lemma by induction on n, using n = 0 for the base case. For n = 0 we assume
that P[F] = 1 and that GCOIN(S, E)(H)= Qp. In this case the result is trivial. Otherwise,

PulGCONE D = Y. S Palcd || 3 PPl
iE{l,...,n}qE@i (a7q/)em

+ (> > Pf[(a,q’)]PHDq,[GCOIN(Sm/,E(m«))(mq/)])). (6.31)

]6{177k} (a7q/)qu7i7]

where Sr¢ is obtained from § by removing C; and, for each j # ¢, by transforming the set C;
into {(¢rq¢’, Xo¢', Xavg', ..., Xipd') | (¢, X, X4, ..., Xk) € C, ¢’ < ¢q}. Then, by induction,

PHDq/[GCOIN(SD(]/, E(i7]‘))(Hl>q/)] S (1 — Pci [E(%])]) (6.32)
From the properties of conditional probabilities and the definition of C,
Fe,[Eq j)) = Pe[E|(3, 7). (6.33)

Thus, by using (6.32) and (6.33) in (6.31), and expressing P [(a, ¢')] as P [X, 1P [(a,¢')| X,,],
we obtain

Py[GCOINGS. BN < . S Pulc)PP, || 8 PMla.q)IX,.]
1e{1,...,n} €9, (a,q’)Em

+ (> X Pfua,q'nxq,ﬂu—Pc[E|<i,j>]>)). (6.34)

JE{L,.k} (a,9")€X g, 5

125

For each ¢,j and ¢, let p; ;, be Pf[Xq7i7j|Xq7i]. Then, from (6.34),

Py[GCOIN(S, EYH) < > > PulCy]P[X,,]
1e{1,...,n} €9,

((1 — Pidg— t— Dikg) T (o Pl Pc[El(i,j)]))) : (6.35)

]6{177k}

which becomes

Pu[GCOIN(S, E)(IT)]
< > T PrlCIPRIXG) (1 - > PC[EKivj)]pi,j,q) (6.36)
1e{1,...,n} g€EO; JE{1,....k}

after some simple algebraic simplifications. From hypothesis, for each 4, and each ¢, p; ;4 >
pi ;- Thus,

Py[GCOIN(S, E)(H)|
< Y X PalCIPYIX, (1— > PC[E|<i,j>]pi,j)- (6.37)
i€{1,..n} 9€0; GEL, ok}

Finally, observe that }Zicrq 012 4co, PH[Cq]PqH[Xq’i] is the probability that some C; occurs,
and observe that 3",y 4y Pe[E|(4, j)]pi,; = Fe[E]. Thus,

Py[GCOIN(S, E)(H)| < 1 — Pe[E] (6.38)

6.5 Example: Randomized Agreement with Stopping Faults

In this section we analyze the Randomized Agreement algorithm of Ben-Or [BOS83]. Its proof
of correctness is an application of Lemma 6.4.2. The proof that we present in this section is not
as detailed as the proof of the Dining Philosophers algorithm, but contains all the information
necessary to fill in all the details, which we leave to the reader.

6.5.1 The Problem

Consider n asynchronous processes that communicate through a network of reliable channels
(i.e., channels that deliver all the messages in the same order as they are received, and that
never fail to deliver a message), and suppose that each process ¢ starts with an initial value
v; € {0,1}. Suppose that each process can broadcast a message to every other process in a
single operation. Each process runs an algorithm that at some point may decide on one value
of {0,1}. Each process decides at most once. The algorithm should be designed so that the
following properties are satisfied.

1. Agreement: all the processes that decide choose the same value.

126

2. Validity: if all the processes have the same initial value v, then v is the only possible
decision value.

3. f-failure termination: if at most f processes fail, then all the non-failing processes
decide a value.

We assume that a process fails by stopping, i.e., by failing to send messages to other processes
from some point on. Since the processes are asynchronous, no processes can distinguish a slow
process from a failing process.

Unfortunately, it is known from [FLP85] that there is no deterministic algorithm for asyn-
chronous processes that solves the agreement problem and guarantees 1-failure termination.
Here we present the randomized algorithm of Ben-Or [BOS83], which solves the agreement prob-
lem with certainty, and guarantees f-failure termination with probability 1 whenever n > 3f.

6.5.2 The Algorithm

Each process 7 has local variables z, initially v;, and y, initially null, and executes a series of
stages numbered 1,2, ..., each stage consisting of two rounds. Each process runs forever, even
after it decides. At stage st > 1, process ¢ does the following.

1. Broadcast (first, st,v), where v is the current value of x, and then wait to obtain n — f
messages of the form (first, st, x), where % stands for any value. If all the messages have
the same value v, then set y := v, otherwise set y := null.

2. Broadcast (second, st,v), where v is the current value of y, and then wait to obtain n — f
messages of the form (second, st,*). There are three cases:

(a) if all the messages have the same value v # null, then set z := v and perform a
decide(v); operation if no decision was made already;

(b) if at least n — 2f messages, but not all the messages, have the same value v # null,
then set # := v without deciding (the assumption n > 3f guarantees that there
cannot be two different such values v);

(c) otherwise, set & to 0 with probability 1/2 and to 1 with probability 1/2.

The intuition behind the use of randomness is that at each stage, if a decision is not made yet,
with probability at least 1/2" all the processes that choose a value at random choose the same
?good” value. Thus, with probability 1 there is eventually a stage where the processes that
choose a value at random choose the same good value, and this leads to a decision.

We now give an idea of the structure of the probabilistic automaton M that describes Ben-
Or’s algorithm. FEach process ¢ has the two variables & and y mentioned in the description
of the algorithm, plus a queue m; for each process j that records the unprocessed messages
received from process j, initially null, a stage counter st, initially 1, a program counter pec,
and a boolean variable decided that is set to true iff process ¢ has decided already. There
is a channel C;; between every pair of processes. Fach channel C;; is essentially a buffer
like the buffer described in Chapter 3 (cf. Figure 3-1), whose inputs are actions of the form
(first, st,v); and (second, st,v);, and whose outputs are actions of the form (first, st,v); ; and
(second, st,v); ;. To broadcast a message (first, st, v), process ¢ performs the action (first, st, v);.

127

A message (first, st,v) is received by process ¢ from process j through the action (first, st,v); ;.
The definition of the transition relation of M is straightforward.

6.5.3 The High Level Proof

Agreement and validity are easy to prove and do not involve any probabilistic argument.
Lemma 6.5.1 Ben-Or’s algorithm satisfies the agreement and validity conditions.

Proof. We start with validity. Suppose that all the processes start with the same value v.
Then it is easy to see that every process that completes stage 1 decides on » in that stage. This
is because the only value sent or received by any process in the first round is v, and thus the
only value sent or received by any process in the second round is v, leading to the decision of v.

For agreement, suppose that some process decides, and let process ¢ be the first process
that decides. Let v and st be the value decided by process ¢ and the stage at which process
i decides, respectively. Then it must be the case that process ¢ receives n — f (second, st,v)
messages. This implies that any other process 7 that completes stage st receives at least n — 2 f
(second, st,v) messages, since it hears from all but at most f of the processes that process i
hears from. This means that process 7 cannot decide on a value different from » at stage st;
moreover, process j sets & := v at stage st. Since this is true for all the processes that complete
stage st, then an argument similar to the argument for validity shows that any process that
completes stage st + 1 and does not decide in stage st decides v at stage st + 1. [

The argument for f-failure termination involves probability. We assume that all the processes
but at most f are scheduled infinitely many times. Thus, let f-fair be the set of adversaries for
M such that for each probabilistic execution fragment H generated by an adversary of f-fair
the set Qg contains only executions of M where at least n — f processes are scheduled infinitely
many times. It is easy to check that f-fair is finite-history-insensitive.

Let B be the set of reachable states of M; let F be the set of reachable states of M where
no process has decided yet and there exists a value st and a number ¢ such that process i
received exactly n — f messages (first, st,*), and no other process has ever received more than
n — f — 1 messages (first, st,*); finally, let O be the set of reachable states of M where at least
one process has decided.

It is easy to show that

B —f-fair FuQO. (6.39)

Specifically, let o be an f-fair execution fragment of M starting from a reachable state s of M,
and let st be the maximum value of the stages reached by each process in s. Then, stage st 4+ 1
is reached eventually in «, and thus there is a state s’ in @ where some process is the first one
to receive n — f messages (first, st + 1,*). The state s’ is a state of F U O.

In Section 6.5.4 we show that

F—o0. (6.40)
1/27

Thus, combining (6.39) and (6.40) with Theorem 5.5.2, and by using Proposition 5.5.6, we
obtain

B— 0. (6.41)

128

Finally, we need to show that in every f-fair execution where at least one process decides all
the non-failing processes decide eventually. This is shown already in the second part of the
proof of Lemma 6.5.1.

6.5.4 The Low Level Proof

In this section we prove the progress statement of (6.40) using the generalized coin lemma.
Consider a state s of F, and let i be the process that has received n — f messages (first, st,v).
Let A be an adversary of f-fair, and let H be prezec(M, A, s).

For each j, 1 < j < n,let C; be the set of triplets (¢, X, X1) where ¢ is a state of / such that
process j is at stage st in Istate(q) and there is a non-zero probability that process j chooses
randomly between 0 and 1 from ¢, X is the set of pairs of ng where process j performs a
transition, and X is defined as follows. Let s’ be Istate(q), and let v be a good value if at least
f+ 1 of the messages (first, st,) processed by process ¢ have value v. We emphasize the word
“processed” since, although each process can receive more that n — f messages (first, st, *), only
n — f of those messages are used (processed).

1. If 0 is a good value, then let X; be the set of pairs of X where process ¢ chooses 0;

2. if 1 is a good value and 0 is not a good value, then let Xy be the set of pairs of X where
process ¢ chooses 1.

Observe that in s’ there is at least one good value, and at most two values; thus, C; is well
defined. It is easy to check that C4,...,(, are separate coin event specifications; more-
over, for each j, 1 < j < n, and each triplet (¢, X, X;) of Cj, PqH[X1|X] = 1/2. Let
E={((1,1),(2,1),...,(n,1)}. From Lemma 6.4.2, Pg[GCOIN((Cy,...,Cy), E)(H)] > 1/2".

We are left with the proof that in each extended execution of GCOIN((Cy,...,Cy), E)(H)
all the non-faulty processes choose a value. More precisely, we show that the non-faulty pro-
cesses complete stage st setting z to the same value ». Then, the second part of the proof of
Lemma 6.5.1 can be used to show that all the non-faulty processes decide on v at the end of
stage st + 1; in particular at least one process decides. We distinguish two cases.

1. In s’ there is exactly one good value v.

In this case every other process receives at least one copy of v during the first round of
stage st, and thus y is set either to v or to null. Therefore, v is the only value that
a process chooses by a non-random assignment at the end of stage st. On the other
hand, if a process j chooses a value at random at the end of stage st, the definition of C;
guarantees that the value chosen is v. Thus, every process that completes stage st sets
x = .

2. In s’ there are two good values.

In this case every process receives at least one copy of 0 and one copy of 1, and thus y
is set to null. Therefore, each process chooses a value at random at the end of stage st.
The definition of Cq,..., (), guarantees that every process that completes stage st sets
z := 0.

129

6.6 Example: The Toy Resource Allocation Protocol

Lemma 6.4.2 can be used also to prove formally that the toy resource allocation protocol of
Section 5.1 guarantees that, under any deterministic fair oblivious adversary (cf. Example 5.6.2
for the definition of a fair oblivious adversary), process My eventually gets a resource. This
result can be extended to general oblivious adversaries by using the results about deterministic
and randomized adversaries proved in Chapter 5 (cf. Proposition 5.7.11).

Recall from Example 6.1.1 that we want to identify a coin event that expresses the following
property: the first coin flip of My after the first coin flip of My is different from the last coin
flip of M before the first time M, checks its resource after flipping. In the rest of the section
we specify two coin event specifications € and Cy. The specification € identifies the first coin
flip of My after the first coin flip of M;, while the specification 5 identifies the last coin flip of
M before the first time My checks its resource after flipping.

Let H be a probabilistic execution fragment, generated by a deterministic fair oblivious
adversary, such that the first state of /! is reachable in M. Let C; be the set of tuples
(¢, X, X1, X2) where

1. q is a state of H such that M, flips at least once in goql/, My does not flip in goqf after
the first time M, flips, and M; flips from ¢,

2. X is the set Qf,

3. X is the set of pairs of X where M, flips head,

4. X5 is the set of pairs of X where M, flips tail.

Observe that 7 is a coin-event specification. Moreover, observe that for each tuple of (7,
PqH[X1|X] =1/2 and PqH[X2|X] = 1/2. Let C; be the set of tuples (¢, X, X1, X3) where

1. g is a state of H such that either

(a) My does not flip in qoq}! after My flips, My flips from ¢, and there exists a state
q' > q such that M, flips exactly once in ¢'>¢ and M, flips and checks its resource
after flipping in ¢'vq, or

(b) M; flips and does not check its resource after the first flip of My in qqbl, M, flips
from ¢, and there exists a state ¢’ > ¢ such that M, flips exactly once in ¢'vq, M;
does not check its resource in ¢'vq, and M, checks its resource from ¢,

2. X is the set Qf,
3. X is the set of pairs of X where M, flips head,

4. X1 is the set of pairs of X where M, flips tail.

Informally, 5 identifies the coin flip of My that precedes the point where My checks the
resource determined by (. Figure 6-4 illustrates graphically the two cases of the definition
of C3. Observe that for each tuple of Cy, PA[X1|X] = 1/2 and P¥[X,|X] = 1/2. Since H is
generated by an oblivious deterministic adversary, then it is easy to verify that (5 is a coin-event
specification. The important point is to verify that Condition 2 of the definition of a coin event
is satisfied; this is the point where the fact that an adversary is oblivious and deterministic is
used.

130

L M, flips 1 M, flips

a < M;flips 1 M, flips
1 My flips
q & M,flips
| M; checks q -+ M, checks
q

© ®

Figure 6-4: The definition of C5 for the toy resource allocation protocol.

Mt
Mf NEf NU Mlt
Hi: M H, ~ Mf
C, G G G Mt (%
. G
M Mf Mt

Figure 6-5: How (3 could not be a coin event specification.

Example 6.6.1 (How C, could not be a coin event specification.) To give a rough idea
of why Condition 2 does not fail, Figure 6-5 shows how Condition 2 could fail. Consider the
execution of Hq that is marked with *, and denote it by a; denote by o' the other execution of
Hy that appears in the figure. The unfilled circles mark the points where a coin event speci-
fication is observed. By following « from left to right we observe C7 and then we observe (5.
The reason why we observe (5 the first time is that along o’ M tests its resource. However,
continuing to follow «, we observe (' again because along a M tests its resource later. Using
oblivious adversaries we are guaranteed that such a situation does not arise because if along o’
M tests its resource before M, flips again, then the same property holds along a.

The probabilistic execution Hy of Figure 6-5 illustrates how Condition 2 can fail by using
randomized schedulers. After M, flips, the adversary chooses randomly whether to let My test
its resource (higher filled circle) or to let My continue. []

Let £ be the set {((1,1)(2,2)),((1,2),(2,1))}, which expresses the fact that Cy and Cj yield
two different outcomes. It is easy to check that in every execution of GCOIN((Cy,C3), E)(H)
My eventually gets one resource. Thus, from Lemma 6.4.2, the probability that M; gets its
resource in H is at least 1/4. Since H is a generic probabilistic execution fragment, then, under
any deterministic fair oblivious adversary M; gets a resource eventually with probability at
least 1/4. Since the set of deterministic fair oblivious adversaries is finite-history-insensitive,
Lemma 5.5.6 applies, and we conclude that under any deterministic fair oblivious adversary My
gets a resource eventually with probability 1.

131

6.7 The Partition Technique

Even though the coin lemmas can be used to prove the correctness of several nontrivial algo-
rithms, two of which have been illustrated in this chapter, there are algorithms for which the
coin lemmas do not seem to be suitable. One example of such an algorithm is the random-
ized algorithm for maximal independent sets of Awerbuch, Cowen and Smith [ACS94]; another
example is the toy resource allocation protocol again.

Example 6.7.1 (The coin lemmas do not work always) In Section 6.6 we have shown
that the toy resource allocation protocol guarantees progress against fair oblivious adversaries;
however, in Example 5.6.2 we have stated that the toy resource allocation protocol guarantees
progress also against adversaries that do not know only the outcome of those coins that have
not been used yet. Such a result cannot be proved using the coin lemmas of this chapter be-
cause situations like those outlined in Example 6.6.1 arise. For example, after the first time M,
flips, we could schedule M3 again and then schedule M; to test its resource only if Ms gets the
resource Rq.

Another way to obtain a situation where the coin lemmas of this chapter do not apply is to
modify the second instruction of the resource allocation protocol as follows

2. if the chosen resource is free, then get it, otherwise go back to 1. [|

Example 6.7.1 shows us that some other techniques need to be developed; it is very likely that
several new techniques will be discovered by analyzing other algorithms. In this section we hint
at a proof technique that departs considerably from the coin lemmas and that is sufficiently
powerful to deal with the toy resource allocation protocol. We illustrate the technique with an
example.

Example 6.7.2 (The partition technique) Let A be a generic fair adversary for the toy
resource allocation protocol that does not know the outcome of those coin flips that have not
been used yet, and let H be a probabilistic execution generated by .A. Assume for simplicity that
A is deterministic; the result for a generic adversary follows from Proposition 5.7.11. Consider
an element of Qy, and consider the first point ¢ where My flips a coin (cf. Figure 6-6). The
coin flipping transition leads to two states ¢ and ¢; that are not distinguishable by A, which
means that from ¢, and ¢; the adversary schedules the same process. If the process scheduled
from ¢, and ¢; is M, then the states reached from ¢ are in one-to-one correspondence with the
states reached from g, since they differ only in the value of the coin flipped by M;. Figure 6-6
illustrates the case where Mj flips a coin. Furthermore, two corresponding states are reached
with the same probability. The one-to-one correspondence between the states reached form gy
and ¢; is maintained until My tests its chosen resource.

Consider now a point where M; tests its resource. Figure 6-6 illustrates four of these points,
denoted by ¢¢ 1, qn1, qi2, and qp 2. If My fails to obtain the resource, it means that My holds
that resource at that point. However, M5 holds the same resource in the corresponding state
via the one-to-one correspondence My, while M, tests the other resource. Thus, My succeeds
in getting the chosen resource. (cf. states ¢;1 and ¢ 1 of Figure 6-6.

The bottom line is that we have partitioned the states where M; checks its resource in
two sets, and we have shown that for each pair of corresponding states there is at least one
state where M; succeeds in getting a resource. In some cases, like for states ¢ 2, and g2 of

132

Figure 6-6: The partition technique.

Figure 6-6, M; succeeds in getting its resource from both the corresponding states (M, does
not hold any resource). Thus, M; gets a resource with probability at least 1/2. [|

6.8 Discussion

To our knowledge, no techniques similar to our coin lemmas or to our partition technique were
proposed before; however, similar arguments appear in several informal analysis of randomized
algorithms. The idea of reducing the analysis of a randomized algorithm to the analysis of an
ordinary pure nondeterministic system was at the base of the qualitative analysis techniques
described in Sections 2.5.1 and 2.5.2. Here we have been able to apply the same idea for a
quantitative analysis of an algorithm.

In this chapter we have focused mainly on how to apply a coin lemma for the verification of
a randomized algorithm; once a good coin event is identified, the analysis is reduced to verify
properties of a system that does not contain randomization. We have carried out this last part
using detailed operational arguments, which can be error prone themselves. However, since the
problem is reduced to the analysis of a non-randomized system, several existing techniques can
be used to eliminate our operational arguments. In [PS95] Segala and Pogosyants show how
such an analysis can be carried out formally and possibly mechanized.

133

134

Chapter 7

Hierarchical Verification: Trace
Distributions

7.1 Introduction

So far we have defined a model to describe randomized concurrent and distributed systems,
and we have shown how to study the properties of a system by means of a direct analysis of its
structure. A specification is a set of properties that an implementation should satisfy, and an
implementation is a probabilistic automaton that satisfies the desired properties.

Another approach to the analysis of a system considers an automaton as a specification itself.
Then, an abstract notion of observation is defined on automata, and an automaton is said to
be an implementation of another automaton iff there is a specific relation, usually a preorder
relation, between their abstract observations. Examples of observations are traces [Hoa85, LV91]
(cf. Section 3.2.3), and failures [Hoa85, BHR84]; in these two cases implementation is expressed
by set inclusion.

7.1.1 Observational Semantics

Formally, an automaton A is associated with a set Obs(A) of observations, and a preorder
relation R is defined over sets of observations (for example R can be set inclusion). Then, an
automaton A; is said to implement another automaton A;, denoted by Ay C Ay, iff Obs(A1) R
Obs(Az). The function Obs() is called an observational semantics, or alternatively a behavioral
semantics; in the second case the observations are thought as the possible behaviors of an
automaton.

The methodology based on preorder relations is an instance of the hierarchical verification
method: a specification, which is usually very abstract, can be refined successively into less
abstract specifications, each one implementing the more abstract specification, till the actual
implementation is obtained. Figure 7-1 gives an example of a specification that is refined two
times to build the actual implementation. Of course it is implicitly assumed that the relevant
properties of a system are only those that are preserved by the chosen implementation relation.
Thus, given a relation, it is important to understand what properties it preserves. Coarse
relations may not preserve all the relevant properties, but they are usually easy to verify, i.e., it
is usually easy to establish whether such a relation holds; finer relations that preserve exactly the

135

, Intermediate A
I mplementation E . . [Specification
) implementation)
implements implements

Figure 7-1: Refinement of a specification.

S
444444444444444444444444444444444 [
\-'_______d_-'________‘:_-:' ___________________________ |
EEEEI e
| ::________‘__________P________‘_\
TRIETRIN T
ittt ot Sttty v tieliedieditintintin vttt et \
[v, R — v, |
| ol |

Figure 7-2: Modular design.

relevant properties are usually difficult to characterize and verify; other relations that preserve
all the relevant properties and that are easy to verify are usually too fine, i.e., they distinguish
too much. Some tradeofl is necessary.

7.1.2 Substitutivity and Compositionality

When the size of a problem becomes large, it is common to decompose the problem into simpler
subproblems that are solved separately. Figure 7-2 gives an example. A large specification 5 is
decomposed into several subcomponents My, ..., M, that interact together to implement 5. For
example, a complex computer system can be described by the interaction of a central processor
unit, a memory unit, and an Input/Output unit. Then, each subcomponent specification M; is
given to a development team that builds an implementation M!. Finally, the implementations
are put together to build an actual implementation of 5. This kind of approach is called modular
design; however, in order to guarantee the soundness of modular design, we need to guarantee
that an implementation works properly in every context where its specification works properly,
i.e., our implementation relation must be preserved by parallel composition (i.e., it must be a
precongruence). This property is called substitutivity of a preorder relation, and constitutes one
of the most important properties that an implementation relation should satisfy.

A property that is strictly related to the substitutivity of C is called compositionality
of Obs(). That is, there is an operator || defined on pairs of sets of observations such that
Obs(Aq]|A2) = Obs(A1)||Obs(Az). Compositionality and substitutivity are used interchange-
ably when talking informally about concurrent systems, and it is easy to get confused by the
meanings of the two terms. To clarify every doubt, here is how the two concepts are related.

136

Theorem 7.1.1 Let Obs() be an observational semantics, R be an equivalence relation over
sets of observations, and let, for each set x of observations, [x|r be the equivalence class of
x under R. Let Ay = Ay iff Obs(A1) R Obs(Az). Then the following two statements are

equivalent.
1. = is substitutive, i.e., if Ay = Ay then for each As, A1||As = A3l|As;

2. Obs() is compositional, i.e., there exists an operator || on equivalence classes of observa-

tions such that [Obs(A1||A2)]r = [Obs(A1)]r]|[Obs(A1)]r. |

If R is set equality, then we can remove the equivalence classes from the second statement
since each set of observations is an equivalence class. The substitutivity of a preorder relation
is stronger than the substitutivity of its kernel equivalence relation, since the direction of the
inequality must be preserved under parallel composition. For this reason our primary concern
in this chapter is the substitutivity of the implementation relation.

7.1.3 The Objective of this Chapter

In this chapter we study the simplest implementation relation based on observations, i.e., trace
inclusion, and we extend the corresponding precongruence to the probabilistic framework. The
trace preorder constitutes the basis for several other implementation relations and is known to
preserve the safety properties of a system [AS85]. Roughly speaking, a safety property says that
“something good holds forever” or that “something bad does not happen”. The trace preorder
is important for ordinary automata for its simplicity and for the availability of the simulation
method [LT87, Jon91, LVI1] (cf. Chapter 8), which provides several sufficient conditions for
the trace preorder relation to hold. Other relations, based either on failures [Hoa85, BHR&4]
or on any other form of enriched traces, can be obtained by following the same methodology
that we present here.

In the probabilistic framework a trace is replaced by a trace distribution, where the trace
distribution of a probabilistic execution fragment H is the distribution over traces induced by
Pir, the probability space associated with H. The trace distribution preorder is defined as
inclusion of trace distributions.

Unfortunately, the trace distribution preorder is not a precongruence (cf. Example 7.4.1),
which in turn means that the observational semantics based on trace distributions is not com-
positional. A standard approach in this case is to define the trace distribution precongruence
as the coarsest precongruence that is contained in the trace distribution preorder; then, in
order to have a compositional observational semantics that captures the trace distribution pre-
congruence, an alternative, more operational and constructive characterization of the trace
distribution precongruence is derived. We give an alternative characterization of the trace dis-
tribution precongruence by exhibiting a context, called the principal contezt, that distinguishes
two probabilistic automata whenever there exists a distinguishing context. This leads to the
notion of a principal trace distribution, which is a trace distribution of a probabilistic automaton
in parallel with the principal context; the trace distribution precongruence can be characterized
alternatively as inclusion of principal trace distributions.

Several other characterizations of the trace distribution precongruence could be found, pos-
sibly leading to different observational semantics equivalent to the principal trace distribution
semantics. Further experience with each one of the alternative semantics will determine which

137

” @so?z s S0~ S —=95

Figure 7-3: Trace distribution equivalent probabilistic automata.

one is more useful. One of the problems with the principal trace distribution characterization
is that, although from Theorem 7.1.1 there exists an operator || defined on principal traces,
the definition of || is not simple. For ordinary automata the traces of a parallel composition
of two automata are exactly those sequences of actions that restricted to each component give
a trace of the component. This property does not hold for principal trace distributions (cf.
Example 7.4.1). It is desirable to find a semantics that characterizes the trace distribution
precongruence and for which the corresponding parallel composition operator has a simple
definition; however, it is not clear whether such a semantics exists.

7.2 Trace Distributions

Let H be a probabilistic execution fragment of a probabilistic automaton M, and let f be a
function from Qp to Q = ext(H)*Uext(H)* that assigns to each execution of Qp its trace. The
trace distribution of H, denoted by tdistr(H), is the probability space completion((Q2, F, P))
where F is the o-field generated by the cones Cg, where § is a finite trace of I, and P = f(Pp).
Observe that, from Proposition 3.1.4, f is a measurable function from (Q, Frr) to (2, F), since
the inverse image of a cone is a union of cones. Denote a generic trace distribution by D. A trace
distribution of a probabilistic automaton M is the trace distribution of one of the probabilistic
executions of M. Denote by tdistrs(M) the set of the trace distributions of a probabilistic
automaton M.

It is easy to see that trace distributions extend the traces of ordinary automata: the trace
distribution of a linear probabilistic execution fragment « is a distribution that assigns proba-
bility 1 to trace(a).

Given two probabilistic execution fragments Hy and Hg, it is possible to check whether
tdistr(Hy) = tdistr(Hy) just by verifying that Pyim,)[Cal = Pigistr(#,)[C] for each finite
sequence of actions 5. This is an easy consequence of the extension theorem (cf. Theorem 3.1.2).

Example 7.2.1 (Reason for the definition of £2) The reader may wonder why we have
not defined Q to be trace(Qy). This is to avoid to distinguish two trace distribution just be-
cause they have different sample spaces. Figure 7-3 illustrates the idea. The two probabilistic
automata of Figure 7-3 have the same trace distributions; however, the left probabilistic au-
tomaton has a probabilistic execution where the trace ¢ occurs with probability 0, while the
right probabilistic automaton does not. Thus, by defining the sample space of tdistr(H) to be
trace(Qyr), the two probabilistic automata of Figure 7-3 would be distinct. In Chapter 8 we

138

define several simulation relations for probabilistic automata, and we show that they are sound
for the trace distribution precongruence; such a result would not be true with the alternative
definition of a trace distribution. [

Prefixes

The notion of a prefix for traces can be extended to the probabilistic framework by following
the same idea as for the notion of a prefix defined on probabilistic executions (cf. Section 4.2.6).
A trace distribution D is a prefiz of a trace distribution D', denoted by D < D', iff for each
finite trace , Pp[Cg] < Pp/[Cp]. Thus, two trace distributions are equal iff each one is a prefix
of the other.

Lemma 7.2.1 Let Hi and Hy be two probabilistic execution fragments of a probabilistic au-
tomaton M. If Hy < Hy, then tdistr(H,) < tdistr(Hs).]

Action Restriction

Similarly to the ordinary case, it is possible to define an action restriction operator on trace
distributions. Let D = (Q,F, P) be a trace distribution, and let V' be a set of actions. Then
the restriction of D to V, denoted by D | V, is the probability space completion((¥',F’, P'))
where Q' = Q 'V, F'is the o-field generated by the sets of cones of ', and P’ is the inverse
image of P under the function that restricts traces to V.

Lemma 7.2.2 Let D be a trace distribution. Then (D | Vi) [Vo =D [(V1N Vy).

Proof. This is a direct consequence of the fact that restricting a trace to V; and then to V3 is
equivalent to restricting the same trace to V3 NV, Formally, - | (ViNVy) = (- [Va)o(- [V7). m

Finally, we want to show that, if M = M;j|| M3, then the projection of a trace distribution of
M onto My and M, is a trace distribution of My and Ms, respectively. Formally,

Proposition 7.2.3 If D € tdistrs(M;||M;), then D [acts(M;) € tdistrs(M;), ¢ = 1,2.

The converse of Proposition 7.2.3 is not true; an illustrating example is given in Section 7.4
(cf. Example 7.4.1). The rest of this section is dedicated to the proof of Proposition 7.2.3. We
start with a definition of an internal trace distribution, which is a trace distribution that does
not abstract from internal actions.

Let a be an execution of a probabilistic automaton M. The internal trace of a, denoted
by itrace(a), is the subsequence of a consisting of the actions of M. Let H be a probabilistic
execution fragment of M, and let f be a function from Qg to Q = acts(H)* U acts(H)* that
assigns to each execution of Qyy its internal trace. The internal trace distribution of H, denoted
by itdistr(H), is the probability space completion((2, F, P)) where F is the o-field generated
by the cones of Q, and P = f(Ppg). Observe that, from Proposition 3.1.4, f is a measurable
function from (Qp, Fgr) to (2, F). Denote a generic internal trace distribution by D. Denote
the set of internal trace distributions of a probabilistic automaton M by itdistrs(M).

Lemma 7.2.4 Let H be a probabilistic execution fragment of a probabilistic automaton M.

Then, tdistr(H) = itdistr(H) | ext(H).

139

Proof. This is a direct consequence of the fact that the set of executions of H whose trace
contains a given [is the set of executions of H whose internal trace restricted to the external
actions of H contains . Formally, trace(-) = itrace(-) o (- | ext(H)). |

Lemma 7.2.5 Let H be a probabilistic execution fragment of M| Mz, where My and My are
two compatible probabilistic automata. Then itdistr(H [M;) = itdistr(H) | acts(M;), i = 1,2.

Proof. Let P denote itdistr(H [M;), and let P’ denote itdistr(H) | acts(M;). We need to
show that for each finite internal trace 3, P[Cg] = P'[C3]. Let P” denote itdistr(H). From the
definition of an internal trace,

P[Cgl = Py le € Qppag, | 8 < itrace(a)]. (7.1)
From the definition of P’ and P”,
P'Cgl = P'[p € Q" | 3 < B | acts(M;)]. (7.2)

From the definition of itdistr(H) and (7.2),

P'[C3] = Pgla € Qu | B < itrace(a) | acts(M;)]. (7.3)
Thus, from (7.1) and (7.3), we need to show that

Py la € Qg | B <itrace(a)] = Pyla € Qp | 8 < idtrace(a) | acts(M;)]. (7.4)

By using a characterization of the involved events as a disjoint union of cones, and by rewriting
Equation 7.4 accordingly, we obtain

Prriag] U] (7.5)
gEstates(H [M;)|itrace(q)=03,lact(q)=lact(3)

= Pyl UJ Cyl-
gEstates(H)|itrace(q) Macts(M;)=0,lact(g)=lact(B)
Observe that for each ¢ € states(l) such that itrace(q) | acts(M;) = § and lact(q) =
lact(3), the state ¢[M; is a state of H[M; such that itrace(q[M;) = p and lact(q[M;) =
lact(3). Moreover, the states ¢ of the left expression of (7.5) are partitioned by the relation

that relates ¢ and ¢’ whenever ¢[M; = ¢'[M;. Thus, if we show that for each trace 3 and each
q € states(H [M;) such that itrace(q) = 8 and lact(q) = lact(3),

PH|—M1 [Cq] = PH[Uq’Eq]H|lact(q’):lact(ﬁ)cq']7 (76)
Equation (7.5) is proved. Observe that
PH[Uq’Estates(H)|q'fMi:q,lact(q'):lact(ﬁ)cq’] = Z PH[Cq’]v (77)

qg'€émin(q]H)
since {¢' € states(H) | ¢'|M; = q,lact(q") = lact(f)} = min(q|H). Thus, Equation (7.6)

becomes

PuplCll= > PulCyl, (7.8)
qg'émin(q|H)

which is true from Proposition 4.3.5. [|

140

Lemma 7.2.6 Let H be a probabilistic execution fragment of M| Mz, where My and My are
two compatible probabilistic automata. Then tdistr(H[M;) = tdistr(H) | acts(M;).

Proof. From Lemma 7.2.4,
tdistr(H [M;) = itdistr(H [M;) | ext(M;). (7.9)
From Lemma 7.2.5 and (7.9),
tdistr(H [M;) = (itdistr(H) | acts(M;)) | ext(M;). (7.10)
From Lemma 7.2.2 and (7.10),
tdistr(H [M;) = (itdistr(H) | ext(H)) | acts(M;). (7.11)
From Lemma 7.2.4 and (7.11),
tdistr(H [M;) = tdistr(H) | acts(M;), (7.12)

which is what we needed to prove. [|

Proof of Proposition 7.2.3. Let D € tdistrs(M;||M3). Then there exists a probabilis-
tic execution H of M;||M; such that tdistr(H) = D. From Proposition 4.3.4, H[M; is a
probabilistic execution of M;. From Lemma 7.2.6, tdistr(H[M;) = D | acts(M;). Thus,
D 1 acts(M;) € tdistrs(M;). |

7.3 Trace Distribution Preorder

Once trace distributions are defined, the trace distribution preorder can be defined as trace
distribution inclusion. Formally, let My, My be two probabilistic automata with the same
external action signature. The trace distribution preorder is defined as follows.

My Ep My iff tdistrs(My) C tdistrs(Myz). (7.13)

The trace distribution preorder is a conservative extension of the trace preorder of ordinary
automata, and it preserves properties that resemble the safety properties of ordinary automata
[AS85]. Here we give some examples of such properties.

Example 7.3.1 The following property is preserved by the trace distribution preorder.

“After some finite trace B has occurred, then the probability that some other trace
3’ occurs, is not greater than p.”

In fact, suppose that My Cp My, and suppose that M, satisfies the property above, while
M, does not. Then there is a trace distribution of A; where the probability of 3’ after
conditional to 3 is greater than p. Since My Cp My, there is a trace distribution of My where
the probability of 3’ after 3 conditional to 3 is greater than p. This contradicts the hypothesis
that My satisfies the property above. Observe that the property above would still be preserved
if we replace 3’ with a set of traces. [|

141

Example 7.3.2 The following property is preserved by the trace distribution preorder.

“In every computation where infinite external activity occurs with probability 1, if
a finite trace (3 occurs, then the probability that some other trace 3 occurs after (3
given that 3 occurs is at least p.”

A more concrete instantiation of the property above is “under the hypothesis that a distributed
system never deadlocks, every request of service eventually gets a response with probability at
least p”. This property is definitely more interesting than the property of Example 7.3.1 since it
involves a progress statement, one of the property of key interest for the analysis of randomized
distributed algorithms. Thus, if in a system it is always possible to avoid a deadlock, under
the assumption that we always schedule a transition and under the condition that no infinite
internal computation is possible, the property above guarantees progress. However, in order to
be sure that if My Cp M5 and M, satisfies the property above then My guarantee progress, we
need to make sure that from every state of M it is possible to avoid deadlock and there is no
possibility of infinite internal computation. Such a property must be verified separately since it
is not guaranteed by the trace distribution preorder. Fortunately, there are several cases (e.g.,
n processes running in parallel that communicate via shared memory) where it is easy to verify
that it is always possible to avoid a deadlock.

To prove that the property above is preserved, suppose that My Cp Ms, and suppose that
M, satisfies the the property above, while M7 does not. Then there is a trace distribution of My
with infinite external computation where the probability of 3’ after 5 conditional to (3 is greater
than p. Since My Ep Ms, there is a trace distribution of My with infinite external computation
where the probability of 3’ after § conditional to 3 is greater than p. This contradicts the
hypothesis that My satisfies the property above. [|

Example 7.3.3 The following property is preserved by the trace distribution preorder.

“In every computation where infinite external activity occurs with probability 1, if a
finite trace 3 occurs, then, no matter what state is reached, a trace 3' occurs ofter
8 with probability at least p.”

A more concrete instantiation of the property above is “under the hypothesis that a distributed
system never deadlocks, if a process has requested a service (3), then, no matter what state is
reached, either the service has received a positive acknowledgment already (3’), or a positive
acknowledgment will be received eventually with probability at least p”. This property is pre-
served by the trace distribution preorder since it is equivalent to the property of Example 7.3.2
with p = 1 (cf. Proposition 5.5.5 to have an idea of why this is true). [|

Essentially, the rule of thumb to determine what properties can be guaranteed to be preserved
under the trace distribution preorder is the following: express the property of interest as a
property ¢ of the trace distributions of a probabilistic automaton M plus a condition % on the
structure of M. If My Cp Mo, then the trace distributions of M, satisfy the property ¢. Thus,
if we know that M, satisfies the property of interest, it is enough to verify separately that My
satisfies 1) in order to be guaranteed that also M; satisfies the property of interest.

142

1 M, C
Figure 7-4: The trace distribution preorder is not a precongruence.

c (Sl,cl)é(%,cl)%(83,03)%(55,%)

172

(S),CO) é(sllco) "

¢ 9

(%,Cz)é(sﬂf,cz)%(%,%) —_— (56,04)

Figure 7-5: A probabilistic execution of M,||C.

7.4 Trace Distribution Precongruence

Although the trace distribution preorder preserves some properties that are useful for the anal-
ysis of randomized distributed systems, the trace distribution preorder is not a precongruence,
and thus it does not allow us to use modular analysis.

Example 7.4.1 (The trace distribution preorder is not substitutive) Consider the two
probabilistic automata M; and My of Figure 7-4. It is easy to check that My and M, have
the same trace distributions. Consider now the context C of Figure 7-4. Figure 7-5 shows a
probabilistic execution of M;||C' where there is a total correlation between the occurrence of
actions d and f and actions e and ¢g. Such a correlation cannot be obtained from M;]||C, since
the choice between f and g must be resolved before knowing what action among d and e is
chosen probabilistically. Thus, M;||C" and M;||C' do not have the same trace distributions. m

This leads us to the definition of the trace distribution precongruence, denoted by Cpe, as the
coarsest precongruence that is contained in the trace distribution preorder. This definition of the
trace distribution precongruence is not constructive, and thus it is difficult to understand what
we have defined. Furthermore, we do not have any observational semantics that characterizes
the trace distribution precongruence. In Section 7.5 we give an alternative characterization
of the trace distribution precongruence that gives a better idea of the relation that we have
defined. Here we give some examples of properties that are preserved by the trace distribution
precongruence and that are not preserved by the trace distribution preorder.

Example 7.4.2 The following property is preserved by the trace distribution precongruence
but not by the trace distribution preorder.

143

“After some finite trace 8 has occurred, no matter what state is reached, the prob-

ability that some other trace ' occurs from the state reached is not greater than
2

Pp.
This property is not preserved by the trace distribution preorder since trace distributions cannot
detect all the points where we may start to study the probability of 3’ to occur. However, this
task is possible with the help of an external context. We use a context C' that performs a fresh
action o and then stops.

Suppose that My Cpc M, and suppose that My satisfies the property above, while M,
does not. Then there is a probabilistic execution Hy of M; where some state ¢ is reached after
the occurrence of 3, and the probability that 3 occurs from ¢ is greater than p. Consider a
probabilistic execution H{ of M;||C such that H{[M; = Hy and such that action o is scheduled
exactly from the minimal state ¢’ such that ¢'[M; = ¢. Then, o occurs always after 3, and
the conditional probability of 3 after o given that o occurred is greater than p in the trace
distribution of H{. Since My Cpc Mz, then there is a probabilistic execution Hj of Ms||C
whose trace distribution is the same as the trace distribution of HJ. This means that there is at
least one state ¢” in H}, reached immediately after the occurrence of o, where the probability
that 8’ occurs from ¢” in H) is greater than p. Consider H}[Mj, and change its transition
relation to obtain a probabilistic execution Hy such that Hox(¢"[My) = (HY[Ma)e(q"[My).
Then the probability that 5" occurs from ¢”[My in Hy is greater than p. Moreover, 3 has
occurred when ¢[Mj is reached. This contradicts the hypothesis that M; satisfies the property
above. [|

Example 7.4.3 The following property is preserved by the trace distribution precongruence
but not by the trace distribution preorder.

“In every computation where infinite external activity occurs with probability 1, if a
finite trace (3 occurs, then, no matter what state is reached, if another trace 3" has
not occurred yet after 3, then a trace 3’ occurs with probability at least p.”

A more concrete instantiation of the property above is “under the hypothesis that a distributed
system never deadlocks, if a process has requested a service (/) and has not received yet a
refusal (") then, no matter what state is reached, a positive acknowledgment (5’) will be
received eventually with probability at least p”. Observe that the main difference from the
property of Example 7.3.3 is in the use of 5”. The presence of 3" does not guarantee that 3’
occurs with probability 1.

Even in this case in the proof we use a context €' with a fresh action o. Suppose that
My Epc My and suppose that My satisfies the property above, while My does not. Then there
is a probabilistic execution Hy of My where infinite external activity occurs such that there is a
state ¢ of Hy that is reached after the occurrence of 3 and before the occurrence of 3”, and such
that the probability that 5’ occurs from ¢ is smaller than p. Consider a probabilistic execution
Hi of M;||C such that H{[M; = Hy and such that action o is scheduled exactly from the
minimal state ¢’ such that ¢'[My = ¢. Then, o occurs always after 5 and before 3 occurs after
(3, and the conditional probability of 3’ after o given that o occurred is greater than p in the
trace distribution of H{. Since My Cpe Mz, then there is a probabilistic execution H} of My||C'
whose trace distribution is the same as the trace distribution of HJ. This means that there is at

144

left right left right

pleft pright pleft 2 12 pright

Cy C,

Figure 7-6: The principal context (left) and the simple principal context (right).

least one state ¢ in H}, reached immediately after the occurrence of o, where the probability
that ' occurs from ¢” in H) is smaller than p. Consider H}[Mj, and change its transition
relation to obtain a probabilistic execution Hy such that Hox(¢"[My) = (HY[Ma)e(q"[My).
Then the probability that 5" occurs from ¢”[M;y in Hjy is smaller than p. Moreover, 3 has
occurred when ¢[Ms is reached and similarly 5 has not occurred after the occurrence of .
This contradicts the hypothesis that My satisfies the property above. [|

7.5 Alternative Characterizations of the Trace Distribution
Precongruence

In this section we give an alternative characterization of the trace distribution precongruence
that is easier to manipulate. We define a principal context, denoted by C'p, and we show that
there exists a context ' that can distinguish two probabilistic automata M; and My iff the
principal context distinguishes My and M.

7.5.1 The Principal Context

The principal context is a probabilistic automaton with a unique state and three self-loop tran-
sitions labeled with actions that do not appear in any other probabilistic automaton. Two
self-loop transitions are deterministic (Dirac) and are labeled with action left and right, respec-
tively; the third self-loop transition is probabilistic, where one edge leads to the occurrence of
action pleft with probability 1/2 and the other edge leads to the occurrence of action pright
with probability 1/2. Figure 7-6 shows the principal context.

The principal context is not a simple probabilistic automaton; however, since it does not
have any action in common with any other probabilistic automaton, the parallel composition
operator can be extended trivially: no synchronization is allowed. Alternatively, if we do not
want a non-simple context, we can replace the principal context with the simple principal
contezt, represented in Figure 7-6, as well. In this case we need to assume that also action start
does not appear in any other probabilistic automaton. The main theorem is the following.

Theorem 7.5.1 M1 Cpco M2 ZﬂMl"Cp Cp MQHCP. |

As a corollary we obtain an alternative characterization of the trace distribution precongruence
and a compositional observational semantics for probabilistic automata. A principal trace distri-

145

bution of a probabilistic automaton M is a trace distribution of M||C'p. Denote by ptdistrs(M)
the set tdistrs(M||Cp).

Corollary 7.5.2 My Cpe My iff ptdistrs(My) C ptdistrs(Ms).]

The fact that the principal context is not a simple probabilistic automaton may appear to
be confusing. Here we shed some light on the problem. First of all, in Chapter 4 we have
defined parallel composition only for simple probabilistic automata; in this section, in order to
account for the principal context, we have extended parallel composition to pairs of probabilistic
automata, not necessarily simple, that do not have any action in common. This raises an
immediate question: is the trace distribution precongruence defined based solely on contexts
that are simple probabilistic automata oris it defined based on any compatible context according
to the new extended parallel composition? The answer to this question, as it will become clear
from the proof of Theorem 7.5.1, is that it does not matter because the two definitions are
equivalent. That is, if there is a non-simple context that distinguishes two simple probabilistic
automata My and My, then the simple principal context distinguishes M; and M, as well.

Our choice of the principal context is just stylistic since it contains less structure than
the simple principal context. The reader should keep in mind that there are infinitely many
contexts with the same properties as the principal and the simple principal contexts; any one
of those contexts can be chosen to give an alternative characterization to the trace distribution
precongruence.

7.5.2 High Level Proof

The rest of this section is dedicated to the proof of Theorem 7.5.1. The proof is structured
in several steps where at each step a generic distinguishing context (' is transformed into
a simpler distinguishing context C’. The proof of each transformation step is structured as
follows. Given a distinguishing context C' for My Cp M,, build a simpler context C’. Suppose
by contradiction that C” is not a distinguishing context and consider a trace distribution D of
M,||C that is not a trace distribution of M,||C. Let Hy be a probabilistic execution of M;||C
such that tdistr(Hy) = D. Transform H; into a probabilistic execution H| of M;||C’, and show
that if there is a probabilistic execution Hj of My||C’ such that tdistr(Hj) = tdistr(H]), then
H} can be transformed into a probabilistic execution Hy of My||C' such that tdistr(Hg) = D.
This leads to a contradiction.
The high level proof of Theorem 7.5.1 is then the following.

—>: Assuming that the principal context distinguishes M; and M;, we show that the simple
principal context distinguishes My and Ms.

<=: We consider a generic context ' that distinguishes M; and My, and we transform it into
the principal context, showing that the principal context distinguishes My and M,. The
transformation steps are the following.
1. Ensure that C' does not have any action in common with M; and M; (Lemma 7.5.3);
2. Ensure that C' does not have any cycles in its transition relation (Lemma 7.5.4);

3. Ensure that the branching structure of C' is at most countable (Lemma 7.5.5);

146

4. Ensure that the branching structure of C' is at most binary (Lemma 7.5.6);

5. Ensure that the probabilistic transitions of C' lead to binary and uniform distributions
(Lemma 7.5.7);

6. Ensure that each action of C is external and appears exactly in one edge of the
transition relation of C' (Lemma 7.5.8);

7. Ensure that each state of C' enables two deterministic transitions and one probabilis-
tic transition with a uniform binary distribution (Lemma 7.5.9);

8. Rename all the actions of the context of 7 according to the action names of the
principal context and then collapse all the states of the new context into a unique
state, leading to the principal context (Lemma 7.5.10).

7.5.3 Detailed Proof

Lemma 7.5.3 Let C be a distinguishing context for two probabilistic automata My and M.
Then there exists a distinguishing context C' for My and My with no actions in common with
My and My. C’ is called a separated context.

Proof. The context C’ is built from ' be replacing each action a in common with M7 and M,
called a shared action, with two new actions ay,ag, and by replacing each transition (¢, a,P) of
C with two transitions (¢, ay,¢’) and (¢, a2, P), where ¢’ denotes a new state that is used only
for the transition (¢,a,P). We denote ¢’ also by C(c,a,p) When convenient. We also denote the
set of actions of the kind a; and a; by Vi and Vs, respectively.

Let D be a trace distribution of M;||C' that is not a trace distribution of M;||C'. Consider a
probabilistic execution H; of M;||C such that tdistr(H,) = D, and consider the scheduler that
leads to Hy. Apply to M;]|C’ the same scheduler with the following modification: whenever a
transition ((s1,¢),a, P;® P) is scheduled in M;||C, schedule ((s1,¢),a1,D((s1,¢’))), where ¢ is
C(c,a,P)> followed by ((s1,¢'), @, P1@D(c’)), and, for each s} € Qy, followed by ((s},¢’), az, D(s])®
P). Denote the resulting probabilistic execution by H{ and the resulting trace distribution by
D'. Then,

D' | acts(M;||C) = D. (7.14)

To prove (7.14) we define a new construction, called collapse and abbreviated with clp, to be
applied to probabilistic executions of M;||C”, i = 1,2, where each occurrence of a shared action
a is followed immediately by an occurrence of its corresponding action a,.

Let H' be a probabilistic execution of M;||C" where each occurrence of a shared action a is
followed immediately by an occurrence of its corresponding action a,. For convenience denote
clp(H') by H. A state ¢ of H' is closed if each occurrence of a shared action a is followed
eventually by an occurrence of the corresponding action as. For each closed state ¢ of H', let
clp(q) be obtained from ¢ as follows: each sequence

(507 CO)a1(507 CtT)TZ(S% Ctr) tc Tk(5k7 Ctr)a(sv CtT)QQ(Sv C)

is replaced with

(807 00)7'2(827 Co) . 'Tk(skv 00)0(57 C)v

147

and each sequence
(S0, co)ai(s1, cir)Ta(52, ¢4) - TSk Cor)
occurring at the end of ¢ is replaced with
(s0,¢0)T2(52,¢0) -+ - TE(Sk, €0)-
Define
states(H) = {clp(q) | q € states(H'), closed(q)}. (7.15)

Let (g, P) be a restricted transition of H’ where ¢ is a closed state, and suppose that no action
of V4 U V5 occurs. Consider a pair (a,q’) of Q. If @ is not a shared action, then let

Pagy = Dl(a, clp())); (7.16)
if a is a shared action, then let

gy = {(a,clp(q") | (az,q") € QF}, (7.17)
and for each (a,¢") € Q(q,4, let

Plagnlla, "] = Pylag x elp™ (¢")], (7.18)

where for each state ¢ of H, clp™'(q) is the set of closed states ¢’ of H' such that ¢lp(q') = q.
The transition ¢lp((q,P))is defined to be

clp((q,P)) 2 (Clp(Q)v > P[(avq/)]P(a,q’))' (7.19)

(a,q")EQ

For the transition relation of H, consider a state ¢ of H Let min(clp™'(q)) be the set of minimal
states of ¢lp™'(q) under prefix ordering. For each state ¢ € clp™'(q), let

e (g) A Pr[Cy]
5 2 , (7.20)
! 2 gremin(eip—(a)) LH/[Co]
The transition enabled in H from ¢ is
ST T P acts(Mi|C)]elp(trl] | acts(M;[[C)). (7.21)

q'€clp™(q)

Note the similarity with the definition of the projection of a probabilistic execution fragment
(cf. Section 4.3.2).
The probabilistic execution H satisfies the following properties.

a. H is a probabilistic execution of M;||C.

The fact that each state of H is reachable can be shown by a simple inductive argument;
the fact that each state of H is a finite execution fragment of M;||C follows from a simple
analysis of the definition of clp.

From (7.21) it is enough to check that for each closed state ¢’ of H', the transition
clp(tré{/ I acts(M;]|C)) is generated by a combination of transitions of M;||C'. Since tré{/

is a transition of H', (tré{/ [acts(M;]|C')) can be expressed as 3, p;(¢' ~ tr;), where each
tr; is a transition of M;[|C”. We distinguish three cases.

148

1. tr; is a non-shared transition of M;.
Then tr; = ((s,¢),a,P® D(c)) for some action a and probability space P, where
(s,c) = Istate(q"). Let Istate(clp(q')) = (s',¢'). Then, s’ = s, as it follows directly
from the definition of ¢lp. Define tr; to be the transition ((s,c’),a, P@D(c’)). Then
tr' is a transition of M;||C" and clp(q' ™ tr;) = clp(q') ™ tr)

2. tr; is a non-shared transition of C".
Then tr; = ((s,¢),a,D(s) @ P) for some action ¢ and probability space P, where
(s,¢) = Istate(q'). Let Istate(clp(q’)) = (8',¢'). Then, s’ = s and ¢’ = ¢, as it follows
directly from the definition of clp after observing that ¢’ must be a closed state in
order to enable tr;. Define tr’ to be tr;. Then #r) is a transition of M;[|C and
clp(q' ™ trj) = elp(¢') ™ tr]

3. tr; is a shared transition.
Then tr; = ((s,¢tr),a, P @ D(cyy)) for some action a and probability space P, where
(s,c4) = lstate(q’). In particular, ¢4 is one of the states that are added to those
of ', and tr is a simple transition of ' with action a. Moreover, from each state
(8's¢1r) € Qpgp(ey,), there is a transition ((s',cq,), a2, D(s') @ Pyy) enabled. Let
Istate(clp(q')) = (s',¢'). Then, s’ = s. Define tr to be ((s,¢'),a,P @ Py). Then,

from the definition of C”, tr) is a transition of M;||C.

Observe that clp distributes over combination of transitions. Moreover, from kqua-
tion (7.19), observe that for each j clp(q’ ™ trj) = «clp(q’) ™ tri. Thus, clp(tré{/ i
acts(M;[|C)) = elp(q') ™ (32; pjtr’;), which is generated by a combination of transitions of
M;||C.

. For each state ¢ of H,

PgCy] = Z P [Cy]. (7.22)

q'emin(clp™1(q))

This is shown by induction on the length of ¢. If ¢ consists of a start state only, then the re-
sult is trivial. Otherwise, from the definition of the probability of a cone, Equation (7.21),
and a simple algebraic simplification,

Pr[Cyas] = PulCy] (Z p(;/lp_l(q)Fq’(qas))) (7.23)

g'€clp™(q)

where Fii(qas) expresses the probability of the completions of ¢’ to a state whose col-
lapse gives gas without using actions from Vi U V5 in the first transition. Formally,
if a is not a shared action, then Fy/(qas) is Pf,ll[a x clp~'(qas)]; otherwise, Fj(qas)
is Pf/[(a,q’a(s’,cw))]PHl)[(ag,q’a(s’,cw)ag(s’,c))], where ¢, = Istate(¢')[C’, and

q/a(5/7ct7‘
s = (s',¢). In the first case, Qg{/ N ({a} x elp™'(qas)) contains only one element, say
(a,q'as"), and Pp/[CyplFy(qas) gives Pri[Cyysr]; in the second case Ppi[Cy]Fy(qas)
gives Ppi[C

q'a(s’,ctr)ags)] .

149

Observe that the states of min(clp™'(qas)) are the states of the form described above
(simple cases analysis). Thus, by applying induction to (7.23), using (7.20), simplifying
algebraically, and using the observations above,

Py[Cuas] = > Pi[Cy). (7.24)
¢’ €min(clp™(gas))
c. tdistr(H) = tdistr(H') | acts(M;||C).

Let 3 be a finite trace of H or H'. Then {a € Qg | B < trace(a) | acts(M;]|C')} can be
expressed as a union of disjoint cones U,ce(, where, if the last action of 3 is a and a is
not a shared action,

O = {q € states(H') | trace(q) | acts(M;||C') = 3, lact(q) = a}, (7.25)
and if the last action of 3 is @ and a is a shared action,

O = {q € states(H') | trace(q) | acts(M;||C') = 3, lact(q) = az}. (7.26)
Observe that © is a set of closed states. The set ¢lp(©) is the set

clp(©) = {q € states(H) | trace(q) = 3, lact(q) = a}, (7.27)

which is a characterization of {a& € Qy | § < trace(a)} as a union of disjoint cones.
Observe that min(clp™ (clp(©))) = O. Moreover, for each ¢; # g2 of clp(©), clp™(q1) N
clp™ (q2) = 0. Thus, from (7.22), Py/[UseaC,] = PrlUgecp@)Cyl- This is enough to
conclude.

To complete the proof of (7.14) it is enough to observe that Hy = clp(H]). Property (7.14) is
then expressed by property (c).

Suppose by contradiction that it is possible to obtain D’ from M;||C’. Consider the scheduler
that leads to D’ in My||C’, and let Hj be the corresponding probabilistic execution. First, we
build a new probabilistic execution HY of M,||C” whose trace distribution is D', and such that
each shared action «a is followed immediately by its corresponding action ay. Then we let Hy be
clp(HY). This leads to a contradiction since tdistr(Hz) = D. The rest of the proof is dedicated
to the construction of HY.

For each state ¢ of H}, let exch(q) be the set of sequences ¢’ that can be obtained from ¢
as follows: each sequence

(80, cer)a(s1, cur)Ta(82, Cor) = Th(Shy Ctr)a2(Sh, €)
is replaced with

(30, Cer)a(s1, iy)az(s1, c)Ta(S2,¢) - - - Th(Sp,),
each sequence

(507 Ctr)a(slv CtT)TZ(S% Ctr) ce Th(5h7 Ctr)

150

occurring at the end of ¢ is replaced with

(807 CtT)a(Slv CtT)a2(817 C)T2(827 C) o 'Th(shv C)7

where ¢ is any of the states that as may lead to from ¢4, and each sequence

(507 Ctr)a(slv Ctr)

occurring at the end of ¢, where a is a shared action, either it is replaced with

(507 Ctr)a(slv Ctr)a2(517 C)v
where ¢ is any of the states that as may lead to from ¢y, or it is not replaced. Then, define

states(HY) = L exch(q). (7.28)
qEstates(HJ)

Let (q,P) be a restricted transition of H), and suppose that no action of V3 occurs. Let ¢’ be
a state of exch(q) that does not end with a shared action. Then, for each (a,q) € © there is
exactly one ¢y € exch(q1) such that ¢’ < ¢f and |¢j| = |¢'| + 1 (simple analysis of the definition
of exch). Denote such ¢f by exchy(q1). Let Q' = {(a, exchy(q1) | (a,q1) € Q}, and let, for each
(a,q;) € ', P'[(a,q))] = P[(a x exch™"(q}))], where exch™'(q) is the set of states ¢’ of H} such
that ¢ € exch(q’). Then define the transition exzchy((gq,P)) to be

exchy((¢,P)) = (¢, P"). (7.29)

For each state ¢ of HY, let min(exch™'(q)) be the set of minimal states of exch™'(g) under
prefix ordering. For each state ¢’ of exch™'(q), where ¢ is closed, let

° pg, = PHZ; [Cy] if ¢ is closed, i.e., if each occurrence of a shared action a is followed
eventually by an occurrence of its corresponding action as;

q A

o py = Puy[Cy]Pic]if ¢’ is open, where Istate(q')[C” = ¢y and Istate(q)[C = c.

For each ¢’ € exch™'(q), let

q
by

Zq”Emin(exch_l (2)) pg” ‘

_exchT1(q)
q/

>

(7.30)

If the last action of ¢ is a shared action a, and Istate(q) = (s, ¢4), then the transition enabled
from ¢ in HY is

q" ((s,¢r), a2, D(8) @ Pyy). (7.31)

If the last action of ¢ is not a shared action, then the transition enabled from ¢ in HY is

S o T P [acts(Hy)\VaJeach, (trlF T (acts(H})\V2)). (7.32)

q
¢’ €exch™1(q)

The probabilistic execution H} satisfies the following properties.

151

a. HY is a probabilistic execution of Ms||C".

The fact that each state of HY is reachable can be shown by a simple inductive argument;
the fact that each state of HY is a finite execution fragment of M,||C” follows from a

simple analysis of the definition of exch.

We need to check that for each state ¢ of HJ the transition enabled from ¢ in HY is
generated by a combination of transitions of My||C’. If the last action of ¢ is a shared
action, then the result follows immediately from Expression (7.31) and the definition of
C'. If the last action of ¢ is not a shared action, then consider a state ¢’ € eacch_l(q).
H,
q/

The transition ¢r ,* | (acts(H})\V;) can be expressed as Y, p;(¢' ™ tr;), where each tr; is

a transition of M;||C” enabled from Istate(q’). We distinguish three cases.

1. tr; is a non-shared transition of Ms.
Then tr; = ((s,¢),a,P @ D(c)) for some action e and probability space P, where
? ? ? p y p ?
(s,c) = lIstate(q'). Let Istate(q) = (s',¢’). Then, s’ = s. Define tr: to be the
transition ((s,¢’),a, PQD(¢')). Then tr} is a transition of M;||C’ and exch,(¢'"tr;) =
g~ trh.
2. tr; is a non-shared transition of C".
Then tr; = ((s,¢),a,D(s) @ P) for some action ¢ and probability space P, where
? ? ? p y p ?
(s,¢) = Istate(q"). Let Istate(q) = (¢',¢’). Then, & = s and ¢ = ¢/. Define tr! to be
tr;. Then tr! is a transition of M,||C" and exchy(q' ™~ tr;) = ¢~ trh.
3. tr; is a shared transition.

Then tr; = ((s,¢),a, P ® D(c)) for some action a and probability space P, where
(s,c) = Istate(q'). Let Istate(q) = (s',¢'). Then, s’ = s and ¢ = ¢/. Define ¢! to be
tr;. Then tr} is a transition of M||C” and exchy(q' ™ try) = ¢~ trh.

Observe that exch distributes over combination of transitions. Thus, exchy((try) |
(acts(H5)\V3)) can be expressed as 3, pi(¢~ tr}), which is generated by a combination of
transitions of My||C’. From (7.32), the transition enabled from ¢ in HY is generated by a
combination of transitions of Ms||C".

b. For each state g of HY,

Zq/emm(wch_1(q)) PHZ; [Cy] if ¢ ends with a shared action,

i 7.33
Zq/emm(wch—l(q))pgl otherwise. ()

PHé’[Cq] = {

The proof is by induction on the length of g. If ¢ consists of a start state only, then the
result is trivial. Otherwise, consider PHé’[ans]- We distinguish two cases.
1. ¢ is open.
In this case, since in H) each shared action is followed immediately by the corre-
sponding action of V3, a is an action of V5. Moreover, from the definition of exch,

exch™(q) = min(exch™ (qas)) = min(exch™(q)), (7.34)
and all the elements of eavch_l(q) are open states. From induction,

PpyplCy] = > P [Cy]- (7.35)

¢’ €min(exch ~1(q))

152

Let ¢ = s[Mj, and let ¢, = Istate(q)[C’. Then, for each ¢’ € min(exch™(q)),
¢y = Istate(q')[C’, and
§E = P [l Pyl (7.36)

1

Moreover, PqH2 [(a,qas)] = Py [c]. Thus, from the definition of the probability of a
cone and (7.35),

Pyp[Coas) = > Py [Cyl Prlc]. (7.37)
¢’ €min(exch ~1(q))

By using the fact that min(exch™'(q)) = min(exch™(qas)), and using (7.36), we
obtain
Pry[Coas] = > pire. (7.38)
o' €min(exch = (qas))
2. ¢ is closed.
In this case, from the definition of the probability of a cone and (7.32),

_exch ! H) _
PH;[cqu:PH;[cq](X w R e x each 1<qas>]). (7.39)

¢’ Cexch™i(q)

Let Ptr,[q'] denote Py.[c], where ¢ = Istate(q)[C’, and ¢y = Istate(q’')[C’. Then,
from induction and (7.30),

H) —
Ppn[Cyas) = Z Py [Cy) P, % [a X exch Y(qas)] + (7.40)
q'€exch™1(q)|closed(q")
H) —
> Pry[CylPtry[q') P, ?[a x each™ (gas)).

¢’ €exch ™1 (q)|open(q’)
We distinguish two subcases.
(a) ais a shared action.

In this case each state ¢’ of exch™'(q) such that P;,Ié [a x exch™'(qas)] > 0
is closed. Thus, only the first summand of (7.40) is used. Moreover, each
state of min(exch™"(qas)) is captured by Expression (7.40). Thus, Py [Coas] =
2 g e min(ewch = (qas)) LHS [C'y]. Observe that gas is open.
(b) @ is not a shared action.

In this case, for each ¢’ € exch_l(q), if ¢’ is closed, then all the states reached in
Q. N({a} x exch™(qas)) are closed, and if ¢ is open, then all the states reached
in QN ({a} x exzch™"(qas)) are open. Moreover, each state of min(exch™'(qas))
is captured by Expression (7.40). Thus, from the definition of pgils, PHZ; [Cgas] =
Zq,emn(emh_1(qas))pgils. Observe that qas is closed.

c. tdistr(HY) = tdistr(HY).

Let 3 be a finite trace of Hj or Hj. Then {a € Qp; | B < trace(a)} can be expressed as
a union of disjoint cones U,ce(C, where

0 = {q € states(H') | trace(q) = 3, lact(q) = lact(B)}. (7.41)

153

We distinguish two cases.

1. 8 does not end with an action of V5.
The set ©" = {q € exch(0) | lact(q) = lact(3)} is a characterization of {a € Qpyy |

3 < trace(a)} as a union of disjoint cones. Observe that min(exch™'(0’)) = © and
that for each pair of states q; # ¢o of O, min(exch™ (q1)) N min(exch™ (¢q3)) =
(. Thus, if § ends with a shared action, then (7.33) is sufficient to conclude that
Pri[{a € Qp; | B < trace(a)}] = Pyp[{a € Qpy | B < trace(a)}]; if § does not
end with a shared action, then, since all the states of O are closed, Equation (7.33)
together with the definition of pg, are sufficient to conclude.

2. 3 ends with an action of V5.

In this case 8 = ('aq for some action az € V;. Observe that, both in H} and HY,
after the occurrence of a shared action a the corresponding action ap occurs with
probability 1: for H) recall that tdistr(H)) | acts(M;||C') = D; for HY see (7.31).
Thus, the probability of 3 is the same as the probability of 4#’, and the problem is
reduced to Case 1. [|

Lemma 7.5.4 Let C be a distinguishing separated context for two probabilistic automata My
and My. Then there exists a distinguishing cycle-free separated context C' for My and M.

Proof. C’ can be built by unfolding C'. Every scheduler for M;||C’ can be transformed into a
scheduler for M;||C" and vice versa, leading to the same trace distributions. []

Lemma 7.5.5 Let C' be a distinguishing cycle-free, separated context for two probabilistic au-
tomata My and My. Then there exists a distinguishing cycle-free separated context C' for M,
and My with a transition relation that is at most countably branching.

Proof. Let D be a trace distribution of M;||C' that is not a trace distribution of M;||C.
Consider the corresponding probabilistic execution H. Observe that H has at most countably
many states, and that at each state of H there are at most countably many transitions of C'
that are scheduled. Thus, in total, only countably many transitions of C' are used to generate
D. Then C’is ' without the unused transitions. [

Lemma 7.5.6 Let C' be a distinguishing cycle-free, separated context for two probabilistic au-
tomata My and My such that the transition relation of C' is at most countably branching. Then
there exists a distinguishing cycle-free separated context C' for My and My that at each state
either enables two deterministic transitions or a unique probabilistic transition with two possible
outcomes. C" is called a binary separated context.

Proof. For each state s of (', choose a new action starts;. Let s enable the transitions
tri,tra, ..., where each tr; is a transition (s, a;, P;). The transition relation of C” is obtained in
two phases. First, a transition is chosen nondeterministically as shown in Figure 7-7, where each
symbol e denotes a distinct state and each symbol 7 denotes a distinct internal action; then, for
each state e;, the transition ¢r; is encoded as follows. Let Q; be {s;1,5;2,...}, pi ; 2 Pils: 5]

and p; ; = >_k>; Pi,k- The transition relation from e; is represented in Figure 7-8, where each

154

Figure 7-7: Nondeterministic choice of a transition.

Si 1 Si 2 Si, 3
([J [J (]
T T) 1)
Pi1 Pi2 /P, Pis/ Pig
Pi2 Pis/ Piz
T ([J

.i T @ =@ t-eoiionn

Figure 7-8: Transforming a transition into binary transitions.

symbol o denotes a distinct state and each symbol 7 denotes a distinct internal action. Observe
that by scheduling all the transitions of the diagram above, for each j we have

Pls; ;] = Pi[si ;] (7.42)

where P[s; ;] is the probability of reaching s; ; from e;. Denote the set of actions of the kind
start, by V. Denote the auxiliary actions of €’ that occur between a start action and a
state o; by Vi, and denote the auxiliary actions of C” that occur between a state o; and the
corresponding occurrence of action a; by Va.

Let D be a trace distribution of M;||C that is not a trace distribution of Ms||C. Consider
a probabilistic execution Hy of M;||C' whose trace distribution is D in M;||C, and consider the
scheduler that leads to Hy in M;||C. Apply to M;||C’ the same scheduler with the following
modification: whenever some transition of C' is scheduled, schedule the start action from C’,
then schedule the internal transitions to choose the transition of €' to perform with the right
probability, and then schedule the transitions of the chosen transition till the corresponding
external action of ' occurs. Denote the resulting probabilistic execution by H{ and the resulting
trace distribution by D’. Then,

D' | acts(M,||C) = D. (7.43)

To prove (7.43), we define a new construction, called shrink and abbreviated with shr, to be
applied to probabilistic executions of M;||C” such that no action of M; occurs between a state
of the form e; and the occurrence of the corresponding action a; of (', and such that all the
transitions between a state of the kind e; and the corresponding occurrences of action a; are
scheduled.

Let H' be such a probabilistic execution of M;||C’. Denote shr(H') by H. A state g of H'
is closed if each occurrence of a state of the kind e; is followed eventually by the occurrence of
the corresponding action a;. For each state ¢ of H' let shr(g) be obtained from ¢ as follows:
each sequence

(80, co)starte, (s, 0)bi(s1,0) - -bp(sp, ;)T1(sh, @) Tr(sp, 0)a;(s, c)

1585

is replaced with
(50, €0)bi, (8iy 5 Co) - - -y (500, co)a(s, ¢),

where ¢, ...,7; is the ordered sequence of the indexes of the b’s that are actions of M;, and each
sequence either of the form

(80, co)starte(so,)bi(s1,e) - -bp(sp, ;)T1(sh, @) Tr(5p, @)
or of the form
(s0,co)start.,(so, ®)bi(s1,0) - -bp(sp,e)
occurring at the end of ¢ is replaced with
(80, €0)bi, (84,5 ¢0) - b (Si1,¢0),
where 21,...,1 is the ordered sequence of the indexes of the b’s that are actions of M;. Then,
states(H) = {shr(q) | q € states(H')}. (7.44)

Let (¢,P) be a restricted transition of H’, and suppose that no action of acts(C’)\acts(C)
occurs. Let @ = {(a,shr(¢)) | (a,¢') € Q}, and for each (a,q¢”) € &, let P'[(a,q")] =
Pla x shr™*(q")], where shr™'(q) is the set of states ¢’ of H' such that shr(q') = q. Then the
transition shr((q,P)) is defined to be

shr((¢,P)) = (shr(q),P). (7.45)

For the transition relation of H, consider a state ¢ of H, and let min(shr~'(q)) be the set of
minimal states of shr™'(q) under prefix ordering. For each state ¢ € shr™'(q), let

Sshr =l (g) & Prr[Cq] (
7 - . 7.46)
! Z:q'Emin(s/’W_l(q)) PH'[C!}']
The transition enabled from ¢ in H is
S T @ P aers(My||)] shr(rE T acts(M]|C)). (7.47)

q'€shr! (g)

The probabilistic execution H satisfies the following properties.

a. H is a probabilistic execution of M;||C.

The fact that each state of H is reachable can be shown by a simple inductive argument;
the fact that each state of H is a finite execution fragment of M;||C follows from a simple
analysis of the definition of shr.

We need to show that for each state ¢ of H the transition of Expression (7.47) is generated
by a combination of transitions of M;||C'. The states of shr~'(¢) that enable some action
of M;||C can be partitioned into two sets O, and 0, of closed and open states, respectively.

We analyze O, first. Let ¢’ € O.. Since try is a transition of H', (r, | acts(M;]|C')) can
be expressed as Y_; p;(¢' ~ tr;), where each tr; is a transition of M;||C". We distinguish
two cases.

156

1. tr; is a transition of M;.
Then tr; = ((s,¢),a,P® D(c)) for some action a and probability space P, where
(s,c) = Istate(q’). Let Istate(shr(q')) = (¢',¢’). Then, s’ = s, as it follows directly
from the definition of shr. Moreover, (s,a,P) is a transition of M;. Define tr;
to be the transition ((s,c’),a,P @ D(c’)). Then tr’ is a transition of M;[|C and
shry(q' ™ tri) = q 7~ tr'.

2. tr; is a transition of C".
This case is not possible since, from the construction of C’, no action of C' can be
enabled from a closed state.

Observe that shr distributes over combination of transitions. Thus,

shr(tr?l I acts(M;]||C)) Zp] (shr(q') ™ trh), (7.48)

which is generated by a combination of transitions of M;||C.

We now turn to O,. The set ©, can be partitioned into sets (0;);>0, where each set
O, consists of those states ¢’ of O, where a particular state o; of (" occurs without its
matching action a;. Each element ¢’ of ©; can be split into two parts ¢; ~ ¢z, where
Istate(q1)[C’ = o;. Denote ¢; by head(q’). Partition ©; into other sets (0;)r>0, Where
each O; is an equlvalence class of the relation that relates two states iff they have the
same head. Denote the common head of the states of ©;; by head(©, ;). For each pair
of states ¢1,¢2 of H' such that ¢; < ¢3, denote by p,,,, the probability value such that
Py[C = PalC

a1 1Pa1q.- Then, for each equivalence class ©; ;, the expression

ST T P Laets(M||CY)shr(trH | acts(Mi]|C)) (7.49)

q
qlee)],k

can be rewritten into

_shr—
(/zead Z phead)
q GG)] k

Phead(q")q’
9'€O, Zq’E@Lk Phead(q")q’

PH'a;)shr(trf) acts(M;]|C)) (7.50)

q q
h 7.50) is obtained f 7.49) b ; h _shr~'(q) __ —shr™'(q) b
where (7.50) is obtained from () by expressmg each p,, a8 P 1 4(q'y Phead(s')a's DY
-1
grouping ﬁzzzd(éf)) which is equal to p/Z d(e)) for each ¢’ 0s O, ;, by substituting PH [a;]

for Pf,fl[acts(MiHC] (action a; is the only action of M;||C that can be performed from ¢
due to the structure of H'), and by multiplying and dividing by Zq,e@)] . Phead (¢')q’

Observe that each transition that appears in (7.50) is generated by some transitions of
M;||C. Thus, the transition of (7.50) is generated by a combined transition of M;||C.
Denote this transition by ¢r;x. Then, in Expression (7.47) it is possible to substi-

tute each subexpression 3, cq, kﬁsm ()qulp[acts(MiHC)]shr(trq/ [acts(M;||C)) with

h .
(pzezd(q(,q)) Zq'eG)J,k phead(q’)q’)trj,k' This is enough to conclude.

157

b. For each state ¢ of H,

PylCy] = > Pi[Cy). (7.51)

¢’ €Emin(shr~1(q))

This is shown by induction on the length of ¢. If ¢ consists of a start state only, then the
result is trivial. Otherwise, from the definition of the probability of a cone and (7.47),

PulCud = X PanlCylPH o x shr(gas)] (7.52)
q’EshT_l(q)

Observe that the states of min(shr~'(gas)) are the states that appear in (a x shr™*(qas))N

Q, for some ¢' € shr™'(g). Thus, Pu[Cyas] = ¥y min(shr (gasy) P [Carl:

c. tdistr(H) = tdistr(H') | acts(M;||C).

Let (3 be a finite trace of H or the projection of a finite trace of H'. Then {a € Qg | 5 <
trace(a) | acts(M;]|C')} can be expressed as a union of disjoint cones U,eeC, where

0 = {q € states(H') | trace(q) 1 acts(M;||C) = 3, lact(q) = lact(B)}. (7.53)
Observe that © is a set of closed states. The set shr(©) is the set
shr(Q) = {q € states(H) | trace(q) = B, lact(q) = lact(5)}, (7.54)

which is a characterization of {a& € Qy | § < trace(a)} as a union of disjoint cones.
Observe that min(shr~'(shr(©))) = @. Moreover, for each q; # g2 of shr(@), shr~'(g;)N
shr™!(qy) = 0. Thus, from (7.51), Py:[UseaC,] = Pulq € shr(0)C,].

To complete the proof of (7.43), it is enough to observe that Hy = shr(Hj). Property (7.43) is
then expressed by property (c).

Suppose by contradiction that it is possible to obtain D’ from M;||C’. Consider the scheduler
that leads to D’ in My||C’, and let Hj be the corresponding probabilistic execution. First, we
build a new probabilistic execution HY of M||C” whose trace distribution is D', such that there
is no action of M between each state of the kind e; and the occurrence of the corresponding
external action of €', and such that all the transitions between a state of the kind e; and the
corresponding occurrences of action a; are scheduled. Then we let Hy = shr(HY). This leads
to a contradiction since tdistr(Hz) = D. The rest of the proof is dedicated to the construction
of HY.

For each state ¢ of H), let shf(q) be the set of sequences ¢’ that can be obtained from ¢ as
follows: each sequence

(s0,9;)b1(s51, @) -bi(sk,®)a;(s,c)
is replaced with

(S0, 9;)bi, (80, 0) -+ -b; (S0, ®)aj(S0,€)bry (Sky 5 €) -+ g, (8, €)

158

where iq,...,4; is the ordered sequence of the indexes of the b’s that are actions of C’, and
ki,...,ky is the ordered sequence of the indexes of the b’s that are actions of M»; each sequence

(80, 0]')()1(517 .) .. 'bk(slm .)
occurring at the end of ¢ either is replaced with
(50, 9;)biy (50, 0) - bi(s0,0) " @™ (30, ®)a;(s0,)bk, (Skys) bg,, (8,)

where iy, ..., is the ordered sequence of the indexes of the b’s that are actions of C’, k1, ..., k,
is the ordered sequence of the indexes of the b’s that are actions of My, and «, called an extension
for ¢, is an arbitrary execution fragment of M,||C’ that leads to the occurrence of a;, or, is
replaced with a prefix of (sq, e;)b;, (s0,9)--b;,(s0,e). Then,

states(HY) = U shf(q). (7.55)
g€ states(HJ)

Let (¢, P) be a restricted transition of H}, and suppose that only actions of M3 and Vi, occur.
Let ¢’ be a state of shf(q). Then, for each (a,q1) € Q there is exactly one ¢; € shf(q1) such that
¢ < ¢; and |¢;| = |¢'| + 1. Denote such ¢; by shf(q1). Let Q@ = {(a,shf(q1) | (¢,q1) € Q},
and let, for each (a,q}) € @, P'[(a,q})] = P[(ax shf ~*(q}))], where shf ~'(q) is the set of states
q' of Hj such that ¢ € shf(q'). Then define the transition shf ((¢,P)) to be

shf (¢, P)) £ (¢, P). (7.56)

For each state ¢ of HY, let min(shf~'(q)) be the set of minimal states of shf ~*(¢) under prefix
ordering. Let ¢ be a closed state of H}, and let ¢’ € shf ~!(q). If ¢’ is an open state, then let a
be the extension for ¢’ that is used in ¢, and let Eg, be the product of the probabilities of the
edges of a. For each state ¢’ of shf ~'(q), where ¢ is closed, let

g A

* Pl Py [Cy] if q' is closed;

q
[] pq,

>

Py [Cy] B, if ¢ is open.
For each ¢’ € shf ~'(q), let

e & Py
q' -

(7.57)

7T
Zq”Emin(shf_l(q)) pq”

If ¢ is open, then the transition enabled from ¢ in HY is the one due to the transition of C’
enabled from Istate(q)[C"; if ¢ is closed, then the transition enabled from ¢ in HY is

S m P acts(HL)\(acts(C) U V)] (7.58)
q'€shf~1(q)

shf (112 1 (acts(H)\(acts(C') U V2))).

The probabilistic execution HY satisfies the following properties.

159

a. HY is a probabilistic execution of Ms||C".

The fact that each state of HY is reachable can be shown by a simple inductive argument;
the fact that each state of HY is a finite execution fragment of M;||C” follows from a
simple analysis of the definition of shf.

We need to check that for each state ¢ of HJ the transition enabled from ¢ in HY is
generated by a combination of transitions of My||C’. If ¢ is an open state, then the result
follows immediately from the definition of the transition relation of H}. If ¢ is a closed
state, then consider a state ¢’ € shf "'(q). The transition trgé I (acts(H%)\Vz), which
appears in Expression (7.58), can be expressed as Y .p;(¢' ™ tr;), where each tr; is a
transition of M;||C’ enabled from Istate(q"). We distinguish two cases.

1. tr; is a transition of Ms.
Then tr; = ((s,¢),a, P ® D(c)) for some action a and probability space P, where
(s,c) = lIstate(q’'). Let Istate(q) = (s',¢). Then, s’ = s. Define ¢r! to be the
transition ((s,c'),a, P@D(c')). Then tr} is a transition of My||C’ and shf (¢’ tr;) =
g~ trh.

2. tr; is a transition of .
Then tr; = ((s,¢),a,D(s) ® P) for some action a and probability space P, where
(s,c) = Istate(q'). Let Istate(q) = (s',¢’). Then, s’ = s and ¢ = ¢ (¢ is closed).
Define tr{ to be tr;. Then tr] is a transition of M,||C" and shf (¢’ ™ tr;) = ¢~ trl.

Observe that shf distributes over combination of transitions, and thus, the transition
shfq(tgz’ I (acts(H5)\Vz)) can be expressed as) ;p;(¢ ™ t.), which is generated by a
combination of transitions of Ms||C".

b. For each state g of HY,

(7.59)

I emin(shi— o if ¢ is closed,
Pry[Cy] = { 2 gremin(shi=(a)) Pq 1L g 15 close

Y gremin(shi—(a)) Pry[Cyr] i ¢ is open.

The proof is by induction on the length of g. If ¢ consists of a start state only, then the
result is trivial. Otherwise, consider PHé/[ans]. We distinguish two cases.

1. ¢ is open.
In this case a is an action of Vy U acts(C'), and each state of shf ~'(q) is open. From
the definition of the probability of a cone and induction,

H//
Pri[Coas] = (Z Py [Cq/]) P, 2 [(a, qas)]. (7.60)
¢’ €min(shf~1(q))
We distinguish two other cases.
(a) a € V.
Observe that all the states of min(shf™(q)) enable the same transition of C’

that is enabled from ¢. Moreover, for each ¢’ € min(shf~'(q)), action a occurs
with probability 1 (in D’ each occurrence of a start action is followed by an

160

external action with probability 1), and the probability of reaching a state of

min(shf '(qas)) given that a occurs is PqHé [(a,qas)] (recall that ¢ enables only
action a). Since all the states of min(shf~'(gas)) are open and have a prefix in
min(shf~'(q)), we can conclude
PHQ’[anS] = Z PHé [Cy]. (7.61)
o/Emin(shi = (gas))
(b) a € acts(C).
From the definition of HY, PqHé/[(a,qas)] = 1. Observe that all the states of
min(shf~(q)) enable the same transition of C' that is enabled from ¢. Moreover,
for each ¢’ € min(shf~'(q)), action a occurs with probability 1 (in D’ each
occurrence of a start action is followed by an external action with probability
1), leading to a state of shf ~!(qas) for sure (recall that ¢ enables only action a).
Thus, for each ¢' € shf ~*(q),
Py [Cy] = > P [Cyn]. (7.62)
q"" €min(shf ~*(qas))la’<q"
Combining (7.60) and (7.62), we obtain
PHé’[anS] = Z PHé [Cy]. (7.63)
o/Emin(shi = (gas))
For each ¢' € min(shf ™ (qas)), if ¢ is open, then pgils = Py, [Cy] by definition;
if ¢’ is closed, then pli"* = P [Cy] since ELY =1 (no a must be added by shf
to get ¢’ from gas). Thus, (7.63) becomes
PHé/[an'S] = Z pg?s. (7.64)
o/Emin(shi ~ (gas))
2. ¢ is closed.
In this case, from the definition of the probability of a cone and (7.58),

Pry[Cyas] = PuplCy] (Z ﬁ;flf_ (q)P;,IZ’ [a X shf_l(qas)]) (7.65)
g'€shf~ ()
()

From induction, the definition of ﬁ;flf , and an algebraic simplification,

H! —
PuslCy] = S PGP sk N qas + (7.66)
¢’ €shf 1 (q)|closed(g’)
o’ —
> P [CylEL P2 [a x shf Y(qas)).

q'€shf " (g)]open(q’)
We distinguish two subcases.
(a) qas is open.
In this case each state ¢’ of shf '(q) such that P;,Ié [a x shf " (qas)] > 0 is
closed, and thus only the first summand of (7.66) is used. Moreover, for each ¢
of shf 7! (q) the set Qgé Na x shf ~'(qas) is made of open states ¢’as’ such that
El s = 1. Observe that all the states of min(shf~'(qas)) are captured. Thus,
Pry[Coas] = > Pl (7.67)
o/ Emin(shi = (gas))

161

(b) gas is closed.

In this case, for each ¢’ € shf ~!(q), if ¢ is closed, then all the states reached in
Q. N ({a} x shf "*(qas)) are closed, and if ¢’ is open, then all the states reached
in Q, N ({a} x shf ~*(qas)) are open and the extension a does not change, i.e.,
the term E does not change. Observe that all the states of min(shf~!(qas)) are
captured. Thus,

PHé’[ans] = Z pgl- (768)

q'€min(shf 1 (qas))

c. tdistr(HY) = tdistr(HY).

Let § be a finite trace of Hj or Hy. Then {a € Qp, | 5 < trace(a)} can be expressed as
a union of disjoint cones Uyce(C,. We distinguish two cases.

1. B does not end with an action of C.
Then

0 = {q € states(H') | trace(q) = 3, lact(q) = lact(B)}. (7.69)

The set ©" = {q € shf(0) | lact(q) = lact(3)} is a characterization of {a € Qpy |
B < trace(a)} as a union of disjoint cones. Observe that min(shf~'(@')) = © and
that for each ¢; # g2 of @', min(shf ' (q1))Nmin(shf~*(g2)) = 0. Thus, from (7.51),
Pyyl{o € Quy | 5 < trace(a)}] = Ppyl{a € Qpy | B < trace(a)]].

2. 3 ends with an action of C'.

In this case § = 'a; for some action a; € acts(C'). Since in H) and HY after the
occurrence of a state o; the corresponding action a; occurs with probability 1, we
can assume that all the states of © end in e;, i.e.,

O = {q € states(H') | trace(q) = ', and Istate(q) is one of the o;’s}. (7.70)

Then the set ©" = min(shf(©))is a characterization of {& € Qpy | § < trace(a)} as a
union of disjoint cones. Observe that all the elements of © are open. Property (7.59)
is sufficient to conclude. [

Lemma 7.5.7 Let C be a distinguishing binary separated context for two probabilistic automata
My and Msy. Then there exists a distinguishing total binary separated context C' for My and
My where all the probabilistic transitions have a uniform distribution. C" is called a balanced
separated context.

Proof. We achieve the result in two steps. First we decompose a binary probabilistic transition
into several binary uniform probabilistic transitions, leading to a new distinguishing context
(C'1; then we use Lemma 7.5.4 to make ('] into a cycle-free context.

The context €7 is obtained from (' by expressing each probabilistic transition of C' by
means of, possibly infinitely many, binary probabilistic transitions. For each state s of C, let
start, be a new action. If s enables a probabilistic transition with actions a1, as to states sy, s9,
respectively, and with probabilities py, p2, respectively, then 'y enables from s a deterministic
transition with action start;. Then, ' enables an internal probabilistic transition with a
uniform distribution. If p; > pay (p2 > p1), then one of the states that is reached enables a

162

deterministic transition with action a; (ag). The other state enables a new internal probabilistic
transition with a uniform binary distribution, and the transitions from the successive states are
determined by giving a; probability 2(p; — 1/2) and az probability 2p; (a1 probability 2p,
and ap probability 2(p; — 1/2)). If p1 = pa, then one state enables ay, and the other state
enables ay. For example, if py = 5/8 and py = 3/8, then the corresponding transitions of Cy
are represented below. Let D be a trace distribution of M7||C' that is not a trace distribution

e
LS

of My||C. Consider a probabilistic execution H; of M;||C' whose trace distribution is D, and
consider the scheduler that leads to Hy in M;]|C. Apply to M;||Cy the same scheduler with
the following modification: whenever a probabilistic transition of C'is scheduled, schedule the
start action from 7, then schedule the internal transitions to resolve the probabilistic choice,
and finally schedule the chosen action. Denote the resulting probabilistic execution by H{ and
the resulting trace distribution by D’. Then,

S

D' | acts(M,||C) = D. (7.71)

To prove (7.71), we define a new construction shry, similar to shr, to be applied to probabilistic
executions of M;||Cy such that no action of M; occurs between the occurrence of a starts action
and the occurrence of one of the corresponding external actions of €', and such that all the
transitions of C'; between the occurrence of an action start, and the occurrence of one of the
corresponding external actions of C' are scheduled. The new function is identical to shr if we
consider each state reached immediately after the occurrence of a start action like the states o;
used in Lemma 7.5.6. We leave the details to the reader.

Suppose by contradiction that it is possible to obtain D’ from M;||C';. Consider the scheduler
that leads to D’ in M||Cq, and let H} be the corresponding probabilistic execution. First, we
build a new probabilistic execution Hj of M;||Cy whose trace distribution is D', such that
no action of M; occurs between the occurrence of a starts action and the occurrence of one
of the corresponding external action of €', and such that all the transitions of C; between
the occurrence of an action start; and the occurrence of one of the corresponding external
action of C' are scheduled. Then we let Hy = shryi(HY). This leads to a contradiction since
tdistr(Hy) = D.

The construction of HY, which is left to the reader, is the same as shf if we consider each
state reached immediately after the occurrence of a start action like the states o; used in
Lemma 7.5.6. [|

Lemma 7.5.8 Let C' be a distinguishing balanced separated context for two probabilistic au-
tomata My and My. Then there exists a distinguishing binary separated context C' for M,
and My with no internal actions and such that each action appears exactly in one edge of the
transition tree. C' is called a total balanced separated context.

163

Proof. The context (' is obtained from C' by renaming all of its actions so that each edge of
the new transition relation has its own action.

Let D be a trace distribution of M;||C' that is not a trace distribution of M;||C'. Consider a
probabilistic execution H; of M;||C' whose trace distribution is D, and consider the scheduler
that leads to Hy in M;||C. Apply to M;||C’ the same scheduler with the following modification:
whenever a transition of C' is scheduled, schedule the corresponding transition of C’. Denote the
resulting probabilistic execution by H{ and the corresponding trace distribution by D’. From
construction, Hy and H| are the same up to the names of the actions of C'. Thus, if p’ is the
function that maps each action of C’ to its original name in C', D = p/(D’) (the renaming of a
trace distribution is the probability space induced by the function that renames traces).

Suppose by contradiction that it is possible to obtain D’ from M;||C’. Consider the scheduler
that leads to D’ in M3||C”, and let H} be the corresponding probabilistic execution. Apply to
M,||C the same scheduler with the following modifications: whenever a transition of C is
scheduled, schedule the corresponding transition of C' with the unrenamed actions. Let Hy be
the resulting probabilistic execution. From the construction, Hy and H) are the same up to
the names of the actions of C'. Thus, tdistr(Hs) = p'(D’) = D, which is a contradiction. |

Lemma 7.5.9 Let C' be a distinguishing total balanced separated context for two probabilistic
automata My and My. Then there exists a distinguishing total balanced separated context C’
for My and My that from every state enables two deterministic transitions and a probabilistic
transition with a uniform distribution over two choices. C' is called a complete context.

Proof. In this case it is enough to complete C' by adding all the missing transitions and states.
If D is a trace distribution of M;||C that is not a trace distribution of Ms||C, then it is enough
to use on M;||C” the same scheduler that is used in M;||C. In fact, since each new transition

of C’ has a distinct action, none of the new transitions of C’ can be used in M;||C’ to generate
D. u

Lemma 7.5.10 Let C be a distinguishing complete context for two probabilistic automata My
and My. Then the principal context Cp is a distinguishing context for My and M.

Proof. The result is achieved in two steps. First the actions of C' are renamed so that each state
enables two deterministic transitions with actions left and right, respectively, and a probabilistic
transition with actions pleft and pright. Call this context C;. Then, by observing that each
state s of (' is uniquely determined by the trace of the unique execution of €'y that leads to s,
all the states of 'y are collapsed into a unique one.

Thus, we need to show only that ' is a distinguishing context. Let D be a trace distribution
of M;]|C' that is not a trace distribution of M||C'. Consider the scheduler that leads to D in
M||C, and apply to M;]|Cy the same scheduler with the following modification: whenever a
transition of €' is scheduled, schedule the corresponding transition of (1. Denote the resulting
trace distribution by D’. Note that if we rename all the actions of € into their original name
in ', then we obtain D.

Suppose by contradiction that it is possible to obtain D’ from M;||C';. Consider the sched-
uler that leads to D' in Ms||Cy, and apply to M;||C' the same scheduler with the following
modification: whenever a transition of (' is scheduled, schedule the corresponding transition
of €. The resulting trace distribution is D, which is a contradiction. [

164

Lemma 7.5.11 Let C'p be a distinguishing context for two probabilistic automata My and M.
Then the simple principal context, denoted by C, is a distinguishing context for My and M.

Proof. Let D be a trace distribution of M;||Cp that is not a trace distribution of M,||Cp.
Consider a probabilistic execution Hy of My||Cp whose trace distribution is D, and consider
the scheduler that leads to Hy in My ||Cp. Apply to M;||C the same scheduler with the follow-
ing modification: whenever the probabilistic transition of C'p is scheduled, schedule the start
action of €' followed by the next transition of C' that becomes enabled. Denote the resulting
probabilistic execution by H{ and the resulting trace distribution by D’. Then,

D' | acts(M;||Cp) = D. (7.72)

To prove (7.72), we define a new construction shry, similar to shr, to be applied to probabilistic
executions of M;||C' such that no action of M; occurs between the occurrence of a start action
and the occurrence of one of the actions pleft and pright, and such that the transitions labeled
with pleft and pright occur whenever they are enabled. The new function is identical to shr
if we consider each state reached after an action start as a state of the kind o;. We leave the
details to the reader.

Suppose by contradiction that it is possible to obtain D’ from M;||C. Consider the scheduler
that leads to D" in M3||C', and let H} be the corresponding probabilistic execution. First, we
build a new probabilistic execution Hj of Mz||C" whose trace distribution is D', such that no
action of My occurs between the occurrence of a start action and the occurrence of one of
the actions pleft and pright, and such that the transitions labeled with pleft and pright occur
whenever they are enabled. Then we let Hy = clp,(HY). This leads to a contradiction since
tdistr(Hy) = D.

The construction of HY, which is left to the reader, is the same as shf if we consider each
state reached immediately after the occurrence of a start action like the states o; used in
Lemma 7.5.6. [|

Proof of Theorem 7.5.1. Let My Cpc My. Then, from Lemma 7.5.11, My||Cp Cp M;||Cp.
Conversely, let M;||Cp Cp Ms||Cp. Then, from Lemmas 7.5.3, 7.5.4, 7.5.5, 7.5.6, 7.5.7, 7.5.8,
7.5.9, and 7.5.10, M; Cpe M. n

7.6 Discussion

A trace-based semantics similar to ours is studied for generative processes by Jou and Smolka
[JS90]. One of the processes of Jou and Smolka is essentially one of our probabilistic executions.
The semantics of a process is given by a function, called a trace function, that associates a prob-
ability with each finite trace. Since our trace distributions are determined by the probabilities
of the cones, our trace distributions are characterized completely by the trace functions of Jou
and Smolka. In other words, the trace semantics of Jou and Smolka is the semantics that we
use to say that two probabilistic executions have the same trace distribution.

Jou and Smolka define also a notion of a maximal trace function. Given a probabilistic
execution H, the interpretation of a maximal trace function in our framework is a function that
associates with each finite trace § the probability of the extended executions on Qx that end in
6 and whose trace is #. Jou and Smolka show that the trace function of a process is sufficient

165

to determine the maximal trace function of the process. In our trace distributions the maximal
trace function of a probabilistic execution is given by the probability of each finite trace in the
corresponding trace distribution. From the definition of a trace distribution the probability of

each finite trace is determined uniquely by the probabilities of the cones, and thus the result of
Jou and Smolka holds also in our framework.

166

Chapter 8

Hierarchical Verification:
Simulations

8.1 Introduction

In Chapter 7 we have studied the trace distribution precongruence as an instance of the hierar-
chical method for the verification of probabilistic systems. Another instance of the hierarchical
method is called the simulation method. According to the simulation method, rather than
comparing two probabilistic automata through some abstract observations, two probabilistic
automata are compared by establishing some relation between their states and by showing that
the two probabilistic automata can simulate each other via the given relation. Standard work
on simulation relations appears in [Mil89, Jon91, LV91]. Simulation relations are stronger than
the trace preorder, and are often used as a sound proof technique for the trace preorder.

In this chapter we study how to extend some of the relations of [Mil89, Jon91, LV91] to the
probabilistic framework. We start with the generalization of the simplest relations that do not
abstract from internal computation, and we conclude with the generalization of the forward
simulations of [LV91] that approximate closely the trace distribution preorder. We prove the
equivalent of the Execution Correspondence Lemma [GSS1.94] for probabilistic automata, which
states that there is a strong connection between the probabilistic executions of two probabilistic
automata related by some simulation relation. Finally, we use the new Execution Correspon-
dence Lemma to prove that the existence of a probabilistic forward simulation is sufficient to
prove the trace distribution precongruence relation.

8.2 Strong Simulations

One of the finest equivalence relations for ordinary automata would be graph isomorphism;
however, it is widely recognized that graph isomorphism distinguishes too much. A coarser
equivalence relation is strong bisimulation [Par81, Mil89], where two automata A; and As are
equivalent iff there is an equivalence relation between their states so that for each pair (s1,s2)
of equivalent states,

. a . . a
if s1 — s/, then there exists a state s}, equivalent to s| such that s, — .

167

4--""— RN

b\L & ib bi
%é>s44'\“§%4>.>%
Al A2 A3

Figure 8-1: The difference between strong bisimulation and the kernel of strong simulation.

That is, Ay and Ay simulate each other. A preorder relation that is closely connected to
strong bisimulation is strong simulation. An automaton A; is strongly simulated by another
automaton As iff there is a relation between the states of A; and the states of Ay so that for
each pair (s1,s2) of related states,

. a . a .
if sy — ¢, then there exists a state s} such that s, — s} and s is related to s.

The kernel of strong simulation is an equivalence relation that is coarser than bisimulation.

Example 8.2.1 (Strong simulation and strong bisimulation) Figure 8-1 shows the dif-
ference between strong bisimulation and the kernel of strong simulation. The double-arrow
dotted links represent a strong bisimulation between Ay and Ay; thus, A; and A; are strongly
bisimilar. There is also a strong simulation from As to Az, expressed by the dotted lines that
have an arrow pointing to As, and a strong simulation from Az to As, expressed by the dotted
lines that have an arrow pointing to A;. Thus, Ay and As are equivalent according to the kernel
of strong simulation. However, there is no bisimulation between Ay and Aj since state sy of Aj
must be related to state s; of A, in order for A, to be able to simulate the transition sg — s

of Az, but then it is not possible to simulate the transition s; LN s3 of Ay from s9in A35. W

The extension of strong bisimulation and strong simulation to the probabilistic framework
presents a problem due to the fact that a probabilistic transition leads to a probability distri-
bution over states rather than to a single state. Thus, a relation over states needs to be lifted
to distributions over states. Here we borrow an idea from [JL.91].

Let RC X X Y be a relation between two sets X,Y, and let P; and Py be two probability
spaces of Probs(X) and Probs(Y'), respectively. Then P; and P, are in relation Cg, written
Py Er Pa, iff there exists a weight function w: X xY — [0, 1] such that

L. for each z € X, }° oy w(z,y) = P[],
2. foreach y € Y,)" cxw(z,y) = Pyl

3. for each (z,y) € X x Y, if w(z,y) > 0 then z R y.

Example 8.2.2 (Lifting of one relation) The idea behind the definition of C is that each
state of €y must be represented by some states of {25, and similarly, each state of 25 must
represent one or more states of ;. Figure 8-2 gives an example of two probability spaces that

168

1/2 51,1-::"—.—“»

- .. U6

e 322 1/3

Y6 .---""

1/2 Sl,2=::::‘.—‘

T

Tt 323 1/3

Figure 8-2: Lifting one relation.

are related. The dotted lines connect states that are related by R. Thus, state s;; can be
represented by sy for a third of its probability, and by s, 9 for the reminder. Similarly, state
59,2 represents s; 1 for one sixth of its probability and s; 5 for the reminder. A useful property
of Cx is its preservation over combination of probability spaces. [|

If R is an equivalence relation, then we denote the relation Cx alternatively by =x. The reason
for the alternative notation is that whenever R is an equivalence relation and Py =r Pq, each
equivalence class of R is assigned the same probability in P; and P3 (cf. Lemma 8.2.2).

The definition of strong bisimulation and strong simulation for probabilistic automata are
now straightforward. For convenience assume that M; and M; do not have common states.
A strong bisimulation between two simple probabilistic automata My, My is an equivalence
relation R over states(M;) U states(My) such that

1. each start state of My is related to at least one start state of My, and vice versa;

2. for each pair of states s; R sy and each transition sy — Py of either My or M, there
exists a transition s, —— Py of either My or M, such that P; = Ps.

We write My ~ M, whenever acts(M;) = acts(Mz) and there is a strong bisimulation between
M1 and MQ.

A strong simulation between two simple probabilistic automata My, M3 is a relation RC
states(My) X states(M;) such that

1. each start state of My is related to at least one start state of Ms;

2. for each pair of states s; R sy and each transition sy — Py of M, there exists a transition
S9 —— Py of My such that P; Cr Ps.

We write My Cgs My whenever acts(My) = acts(My) and there is a strong simulation from M,
to My. We denote he kernel of strong simulation by =gg. Because of Lemma 8.2.2, our strong
bisimulations are the same as the bisimulations of [Han94], and our strong simulations are a
generalization of the simulations of [JL.91].

It is easy to check that ~ is an equivalence relation, that Cgg is a preorder relation, and
that both ~ and Cgg are preserved by the parallel composition operator.

We conclude this section by proving two results about the lifting of a relation. The first
result shows that the lifting of a relation is preserved by the combination of probability spaces;
the second result shows that Py =g P, iff Py and P, assign the same probability to each
equivalence class of R.

169

Lemma 8.2.1 Let Px; Cr Py,; via a weight function w;, and let {Pi}izo be a family of
real numbers between 0 and 1 such that) .~op; = 1. Then 3 .~opiPx,i Cr > ;50 PiPy; via
2530 Pi;-

Proof. Let Px = > i50piPx,is Py = YXiso PPy, and w = 3 75opiw;. Let @ € Qx. Then
Yoyeay W Y) = Y pcay Lo Piwi@,Y) = Xiso Pil Xyeqy wilz,y)) = Xisopilx 2] = Px[z].
Condition 2 of the definition of Cx is verified similarly. For Condition 3, let w(z,y) > 0. Then
there exists an ¢ such that w;(z,y) > 0, and thus z R y. [

Lemma 8.2.2 lLet X,Y be two disjoint sets, R be an equivalence relation on X UY, and let
Py and Py be probability spaces of Probs(X) and Probs(Y), respectively. Then, P1 =r Py iff
for each equivalence class C of (X UY)/R, Pi[C N Q] = P[C N Q).

Proof. Suppose that P; = Po, and let w be the corresponding weight function. Then, for
each equivalence class C' of (X UY)/R,

PCNQy] = Z Pilz] = Z Z w(z,y), (8.1)

l’ECﬁQl l’ECﬁQl yEOﬂQQ

and

BCNQ)= > Rll= > > wy). (8:2)

yEOﬂQQ yEOﬂQQ l’ECﬁQl

From the commutativity and associativity of sum,
P[CNQy] = RICNQs. (8.3)

Conversely, suppose that each equivalence class (X UY)/R has the same probability in P; and
Py. We define w(x,y) for each equivalence class of (X UY)/R, and we assume implicitly that
w is 0 for all the pairs (z,y) € @1 X Q3 that are not considered in the construction below.
Consider any equivalence class C' of (X UY)/R, and let X' = CNQy,and V' = C N Q. From
hypothesis we know that P[X'] = P,[Y’]. Let 2y,29,... be an enumeration of the points of
X', and let y1,92,... be an enumeration of the points of Y. For each i, let p; = > ;.; Pi[z]
and let ¢; = 3", .; Pa[yi]. Then

w(zi,y;) = 0 if piy1 < g5 or g < p;
v min(piy1, ¢j+1) — maz(p;, q;) otherwise.

Informally, the construction above works as follows. Consider two intervals [0, P[X]], and
mark the first interval with the points p; and the second interval with the points ¢;. Each
interval [p;, p;41] has length Pj[;] and each interval [g;,¢;41] has length Ps[y;]. The weight
function w(x;,y;) is defined to be the length of the intersection of the intervals associated with
x; and y;, respectively. It is simple to verify that w is a weight function for P; and P. [|

170

Figure 8-3: Combining transitions to simulate a transition.

8.3 Strong Probabilistic Simulations

In the definition of strong bisimulations and strong simulations we have not taken into account
the fact that the nondeterminism can be resolved by combining several transitions probabilis-
tically into a unique one. That is, a transition of a probabilistic automaton could be simulated
by combining several transitions of another probabilistic automaton.

Example 8.3.1 (Combining transitions to simulate another transition) Consider the
two probabilistic automata My and M, of Figure 8-3. M; contains the transitions of M; plus
a transitions that is obtained by combining probabilistically the transitions of M;. For this
reason there is no simulation from My to M; (the additional transition cannot be simulated).
On the other hand, M; and M; have exactly the same probabilistic executions, and therefore
we do not see any reason to distinguish them. [

Example 8.3.1 suggests two new relations, which are coarser than strong bisimulation and strong
simulation, where the only difference is that a transition can be simulated by a probabilistic
combination of transitions.

For convenience assume that My and M, do not have common states. A strong probabilistic
bisimulation between two simple probabilistic automata My, M5 is an equivalence relation R
over states(My) U states(M3) such that

1. each start state of My is related to at least one start state of My, and vice versa;

2. for each pair of states s; R sy and each transition sy — Py of either My or M, there
exists a combined transition s; ——¢ Py of either M or My such that P; =x Ps.

We write My ~p M, whenever acts(My) = acts(Mz) and there is a strong probabilistic bisim-
ulation between M; and M.

A strong probabilistic stimulation between two simple probabilistic automata My and M, is
a relation RC states(My) X states(My) such that

1. each start state of My is related to at least one start state of Ms;

2. for each pair of states s; R sy and each transition s; — Py of My, there exists a combined
transition sy ——¢ Py of My such that P; T Ps.

We write My Cgps My whenever acts(My) = acts(My) and there is a strong probabilistic
simulation from My to M;. We denote the kernel of strong probabilistic simulation by =gpsg.

171

It is easy to check that ~p is an equivalence relation, that Cgpg is a preorder relation, and
that both ~p and Cgpsg are preserved by the parallel composition operator. It is easy as well
to verify that a strong bisimulation is also a strong probabilistic bisimulation and that a strong
simulation is also a strong probabilistic simulation.

8.4 Weak Probabilistic Simulations

The abstraction from internal computation can be obtained in the same way as for ordinary
automata: a transition of a probabilistic automaton should be simulated by a collection of
internal and external transitions of another probabilistic automaton. For the formal definition
we use the weak combined transitions of Chapter 4.

For convenience assume that M; and M5 do not have common states. A weak probabilistic
bisimulation between two simple probabilistic automata My and M is an equivalence relation
R over states(My) U states(My) such that

1. each start state of My is related to at least one start state of My, and vice versa;

2. for each pair of states s; R sy and each transition sy — Py of either My or M, there
alext(Ms)

exists a weak combined transition s, ==~ Ps of either My or M5 such that Py =x Ps.
We write My =p M, whenever ext(My) = ext(Mz) and there is a weak probabilistic bisimulation
between My and M.
A weak probabilistic simulation between two simple probabilistic automata My and M, is a
relation RC states(My) x states(M;) such that

1. each start state of My is related to at least one start state of Ms;

2. for each pair of states s; R sy and each transition s; — P; of My, there exists a weak
alext(Ms)

combined transition ss ==~ Py of My such that Py Cr Ps.
We write My Cwps Mo whenever ext(My) = ext(M;) and there is a weak probabilistic simula-
tion from M, to My. We denote the kernel of weak probabilistic simulation by =wps.

It is easy to verify that a strong probabilistic bisimulation is also a weak probabilistic
bisimulation and that a strong probabilistic simulation is also a weak probabilistic simulation.
However, it is not as easy to verify that =p is an equivalence relation, that Cwpg is a preorder
relation, and that both =p and Cywps are preserved by the parallel composition operator. The
verification of these properties is a simplification of the verification of the same properties for
the relation of the next section. For this reason we omit the proofs from this section.

8.5 Probabilistic Forward Simulations

One of the main results of this chapter is that all the relations presented so far are sound for
the trace distribution precongruence. However, none of the relations of the previous sections
allow for one probabilistic operation to be implemented by several probabilistic operations.

172

S3—2 =35,
1/2

S1
) 1/2
T T b
172 S4———=S
So
2 1/2 . SS c S o
1/2
S,
2) 1/2
T
Sg % S0
M 1

c
T | T Sg ——— =S
1/2 Sy 1/2 9 17
1/2 d
T

So
T Sy —2=5 =
N2 Ss o1 S19
m 1/2 f
1/2 T Sp—mMmm= Sy
$2<) 112 . s
m
S 121 =Sz
12 h
t Syu——=5,,
M, M,

Figure 8-5: A more sophisticated implementation.

Example 8.5.1 (Weak probabilistic simulations are too coarse) Consider the two prob-
abilistic automata of Figure 8-4. The probabilistic automaton M, which chooses internally one
element out of four with probability 1/4 each, is implemented by the probabilistic automaton
My, which flips two fair coins to make the same choice. However, the first transition of M;
cannot be simulated by Ms since the probabilistic choice of M5 is not resolved completely yet
in My. This situation suggests a new preorder relation where a state of M; can be related
to a probability distribution over states of M. The informal idea behind a relation sy R Ps
is that s represents an intermediate stage of M; in reaching the distribution P,. For exam-
ple, in Figure 8-4 state s; would be related to a uniform distribution P over states s5 and s
(P =U(sh,s})), meaning that s; is an intermediate stage of My in reaching the distribution P.

It is also possible to create examples where the relationship between s and P does not mean
simply that s is an intermediate stage of M; in reaching the distribution P, but rather that
s is an intermediate stage in reaching a probability distribution that can be reached from P.
Consider the two probabilistic automata of Figure 8-5. Although not evident at the moment,
My and M, are in the trace distribution precongruence relation, i.e., My Cpc M;. Following
the same idea as for the example of Figure 8-4, state sy is related to U(sh, s}). However, sq is

173

not an intermediate stage of Mj in reaching U{(s5, s}), since s; enables a transition labeled with
an external action [, while in My no external action occurs before reaching (s}, s;). Rather,
from s§ and s there are two transitions labeled with [, and thus the only way to simulate

the transition s; —— U(s3,54) from U(sh, s}) is to perform the two transitions labeled with
[, which lead to the distribution U(s%, s§, s§, s1o). Now the question is the following: in what
sense does U(s%, sg, 54, 8) represent U(ss, s4)? The first observation is that s; can be seen as
an intermediate stage in reaching U(s%, sg), and that s4 can be seen as an intermediate stage in
reaching U(sf, s}y). Thus, s3 is related to U(s%, s5) and s4 is related to U(sg, sjy). The second
observation is that U(s%, s§, s4, 819) can be expressed as 1/2U(s%,s5) + 1/2U(sg, s4g). Thus,
U(s%, sg, S5, 81p) can be seen as a combination of two probability spaces, each one representing
an element of U(ss, s4). This recalls the lifting of a relation that we introduced at the beginning
of this chapter. [|

Based on Example 8.5.1, we can move to the formal definition of a probabilistic forward simu-
lation. A probabilistic forward simulation between two simple probabilistic automata My and
Mj is a relation RC states(My) x Probs(states(Mz)) such that

1. each start state of M; is related to at least one Dirac distribution over a start state of
Msy;

2. for each s R P/, if s =% Py, then

M.
(a) for each s’ € Q' there exists a probability space Py such that s ar€:ﬂ§c2) Py, and

(b) there exists a probability space P4 of Probs(Probs(states(Myz))) satisfying Py Cr P3,
such that }~ o/ P[Py = Zpeﬁé P[PIP.

We write My Crg My whenever ext(My) = ext(M;) and there is a probabilistic forward simu-
lation from M; to M.

Example 8.5.2 (A probabilistic forward simulation) The probabilistic forward simula-
tion for the probabilistic automata M; and M, of Figure 8-5 is the following: sg is related
to U(s(); each state s;, ¢ > 7, is related to D(s}); each state s;, 1 < ¢ < 6, is related to
U(shi115894)- It is an easy exercise to check that this relation is a probabilistic forward
simulation. Observe also that there is no probabilistic forward simulation from My to My. In-
formally, s§ cannot be simulated by My, since the only candidate state to be related to s} is sy,
and s; does not contain all the information contained in s5. The formal way to see that there
is no probabilistic forward simulation from M5 to M; is to observe that My and My are not in
the trace distribution precongruence relation and then use the fact that probabilistic forward
simulations are sound for the trace distribution precongruence relation (cf. Section 8.7). In
M,||Cp it is possible force action left to be scheduled exactly when My is in s}, and thus it
is possible to create a correlation between action left and actions @ and b; in M;||Cp such a
correlation cannot be created since action left must be scheduled before action /. [|

It is easy to check that a weak probabilistic simulation is a special case of a probabilistic forward
simulation where each state of M; is related to a Dirac distribution. The verification that Cpg

174

is a preorder that is preserved by parallel composition is more complicated. In this section
we show that Cgg is preserved by parallel composition; the proof that Cgg is a preorder is
postponed to Section 8.6.4.

Proposition 8.5.1 Crg is preserved by the parallel composition operator.

Proof. Let My Cgs My, and let R be a probabilistic forward simulation from M; to Ms. Let
R’ be a relation between states(Mi) X states(Msz) and Probs(states(Ms) x states(Ms)), defined
as follows:

(81,83) R' P iff P = Py ® D(s3) for some Py such that s; R Ps. (8.4)

Condition 1 of the definition of a probabilistic forward simulation is immediate to verify. Con-
dition 2 for transitions that involve My only or Mj3 only is immediate to verify as well.

Let (s1,53) R’ Py @ D(s3), and let (s1,s3) —— Py @ P3, where s; —— Py, and s3 —
Ps3. From the definition of a probabilistic forward simulation, for each s € Q5 there exists
a weak combined transition sy ==¢ P, of My, and there exists a probability space P} of
Probs(Probs(states(Ms))), such that

>, PalslPa = > P[PIP, (8.5)

s€Q, Pef

and
P1Er Py (8.6)

For each s € 5, let Oy be a generator for s == P,. Define a new generator (0% as follows:
for each finite execution fragment a of M;|| M5 starting in (s, s3),

L. if Oy(a[M3) = (s',P), where (s, P) = >, pi(s', a;, P;), each (s',a;,P;) is a transition of
Ms, and a[Ms = s3, then

Oy(a) = pi((s'. s3), a5, P @ PY),
where
P! = D(s3) if a; # a, and P! = Ps if a; = a.

2. it Oy(a[Mz) = (s, P), where (s/,P) = >, pi(s',a;, P;), each (s',a;,P;) is a transition of
My, a[Ms3 = szash, and s§ € Qs, then

O;(a) = Zpi((slv Sé)v ai, Pi @ D(Sé));

3. if none of the above cases holds, then O (a) = D(é).

175

The weak combined transition generated by each O, is (s, 83) ==¢ P,@Ps. In fact, an execution
fragment a of Ms||Ms is terminal for O} iff a[M; is terminal for O, and a[Ms = szash for

s3 € 23, and thus Qo = Q, x Q3. Moreover, for each a € Qo Pgé = PS[MQPg[lstate(a[Mg)].

Denote Ps @ Pz by P(s,,). Then, for each (s,s3) € Q2 x D(s3), we have identified a weak
combined transition (s,s3) ==¢ Pls,55)- These are the spaces of Condition 2.a in the definition
of a probabilistic forward simulation. Note that P, ,,) can be expressed alternatively as

Plsss) = D Palss] (Ps @ D(s3)). (8.7)
55€Q3
Let
Pos = 3 Plsi) (Po @ D(D(s5))), (8.8)
sLEQ,

where the pairing of two probability spaces is meant to be their product. For each s§ € Qs,
since P; Cr Py, P1 @ D(s3) Er Py @ D(D(sy)). Thus, from Lemma 8.2.1, Py @ P3 Cr Py 5.
This is enough to show that Condition 2.b of the definition of a probabilistic forward simulation
is satisfied.

We are left with 3" cq, Pa[s]P(s,s,) = Zpegéﬁ P; 3[P]P, which is shown as follows. From (8.7),

Y PasIPlsy = D D Pals|Ps[sh] (Pe @ D(sh)) . (8.9)

sEQ2 s€Q2 sLeQs

From (8.5),
Y PlsIPlsy = D, >, Py[PIPs[sh] (P @ D(sh)). (8.10)
sEQ séEQg PEQé

From a simple algebraic manipulation,

> PPy = D Y. BssBPIP. (8.11)

5€Q2 SgGQS PGQpé ®D(D(sg))

From (8.8),
> Ps]Pisy = > PialPIP. (8.12)
SESL PEQé73

8.6 The Execution Correspondence Theorem

The existence of some simulation relation between two probabilistic automata implies that there
is some strict relation between their probabilistic executions. This relationship is known as the
execution correspondence lemma for ordinary automata [GSSL94] and is useful in the context
of liveness. In this section we prove the execution correspondence theorem for probabilistic
automata; a corollary, which is proved in Section 8.7, is that the existence of a probabilistic
forward simulation is sound for the trace distribution precongruence.

176

Figure 8-6: Fringes.

8.6.1 Fringes

Let H be a probabilistic execution of a probabilistic automaton M. Define the extended states
of H, denoted by eatstates(H), to be states(H) U {qd | q € states(H), Pg[Cys] > 0}. A fringe
of H is a discrete probability space P of Probs(extstates(H)) such that for each state ¢ of H,

> Pl] < PylCy). (8.13)
q'€Qq<q’
Two fringes Py and P, are in the < relation iff for each state ¢ of H,
Y mld< Y Bl (8.14)
¢’ € |g<q’ q'€Q2109<q’

Informally, a fringe is a line that cuts a probabilistic execution in two parts (see Figure 8-6). A
fringe is smaller than another one if the first fringe cuts the probabilistic execution earlier than
the second fringe. Figure 8-6 shows three fringes Fy, Iy and F5, where F} < Fy < Fj.

A fringe of particular interest is the fringe that cuts a probabilistic execution fragment at
some depth 7. Let fringe(H,?) denote the fringe of H where Q = {q € extstates(H) | |q| =
i} U {qb € extstates(H) | |¢| < i}, and for each ¢q € Q, Plq] = Py[C,].

8.6.2 Execution Correspondence Structure

Let R be a probabilistic forward simulation from M; to Ms;. An execution correspondence
structure via R is a tuple (Hq, Hy,m,5), where Hy is a probabilistic execution of My, Hj is a
probabilistic execution of M3, m is a mapping from natural numbers to fringes of My, and §
is a mapping from natural numbers to probability distributions of Probs(Probs(states(Hz))),
such that

1. For each ¢, m(i) < m(i + 1);
2. For each state gz of Ha, limi—oo 2= 4eq,iq,<q Dild] = PrlCyl;
3. Let ¢1 R P iff for each ¢ € Q, trace(q) = trace(q), and either

(a) ¢ does not end in 4, each state of @ does not end in &, and Istate(qy) R Istate(P),
or

(b) ¢ and each state of Q end in 6 and Istate(é-strip(q1)) R Istate(é-strip(P)).

Then, for each ¢ > 0, m(7) = > pensy st [PIP, and fringe(Hq,7) Cr S(7).

177

F

Figure 8-7: Execution Correspondence Structures: the role of Condition 2.

2

4. Let, for each 7 > 0, each ¢ € fringe(H1,17), and each ¢y € states(Hz), Wilq1, q2)
Yopwi(qr, P)Plqa]. If Wi(q1,qh) = 0 for each prefix or extension ¢ of ¢, then, for each
extension ¢ of ¢y such that ¢} € fringe(Hy,i+ 1) and each prefix or extension ¢} of ¢z,

Wit (di,q5) = 0.

Informally, an execution correspondence structure is an object that shows how a probabilistic
execution Hq of M is represented by a probabilistic execution Ho of My via R. H, is said to
be the probabilistic execution fragment that corresponds to Hy. Conditions 1 and 3 state that
each fringe fringe(Hq,1) is represented by the fringe m(i) in Hy, and Condition 2 states that
at the limit each state of Hy represents some part of Hy. Figure 8-7 gives an example of an
execution correspondence structure (left) and of a structure that fails to satisfy Condition 2
since state ¢ is not captured (right). Condition 4 enforces the correspondence between Hy and
H,. Informally, it states that if two states ¢; and ¢y of Hy and Hy, respectively, are connected
through the i*h fringes, then for each j < i there are two prefixes ¢} and ¢} of ¢; and ¢,
respectively, that are connected through the j* fringes. This condition allows us to derive a
correspondence structure between the execution fragments of M; and M, that denote the states
of Hy and H,. We do not use Condition 4 to prove any of the results that we present in this
thesis; however, this condition is necessary to prove the results that Segala and Lynch present
in [SL94].

If R is a weak probabilistic simulation, then an execution correspondence structure is a
triplet (Hq, Hz, m): Condition 3 becomes fringe(Hy,t) Cr m(7), where ¢1 R ¢z iff trace(q1) =
trace(qy) and either ¢; and ¢z end in 6 and 6-strip(Istate(qy)) R 6-strip(Istate(qz)), or Istate(q1) R
Istate(q2); Wi(q1,q2) becomes w;(q1,q2), and Condition 4 says that for each ¢ > 0, given
q1 € fringe(Hy,1) and gy € states(Hs), if wi(q1,q5) = 0 for each prefix or extension ¢} of ¢,
then, for each extension ¢ of ¢y such that ¢; € fringe(Hy,i+ 1), and each prefix or extension
05 of g2, wiy1(qy,q3) = 0.

178

If R is a strong probabilistic simulation, then an execution correspondence structure is a pair
(Hq, Hy): Conditions 1 and 2 are removed; Condition 3 becomes fringe(Hq,1) Cr fringe(Hz,)
where ¢1 R ¢q iff itrace(qy) = itrace(qz) and either ¢4 and ¢; end in 6 and 6-strip(Istate(qr)) R
0-strip(lstate(qz)), or Istate(q1) R Istate(qz); Condition 4 says that for each ¢ > 0, given ¢; €
fringe(H1,1) and g3 € fringe(Hz, 1), if wi(q1,q2) = 0, then, for each extension ¢; of ¢; such that
¢4 € fringe(Hy,i+1) and each extension ¢} of ¢y such that ¢} € fringe(Ha,i+1), wit1(q1, ¢5) = 0.

8.6.3 The Main Theorem

Theorem 8.6.1 Let My Crg My via the probabilistic forward simulation R, and let Hy be a
probabilistic execution of M. Then there exists a probabilistic execution Hy of My, a map-
ping m from natural numbers to fringes of My, and a mapping S from natural numbers to
probability distributions of Probs(Probs(states(Hy))), such that (Hy, Hy,m,S) is an execution
correspondence structure via R.

Proof. Let ¢; be a state of Hy, and let 7?3 be a distribution over potential states of Hy such
that ¢y Er P32 according to the definition given in the definition of an execution correspondence
structure. Denote by 77?_}1 the probability space such that trgl = Ztreﬂgl Pf}l [tr](q1 " tr). Let

trq € Q%N and let Py, be the probability space reached in ¢; ™ #ry.

Since R is a probabilistic forward simulation, then for each state g of Q5 there exists a
weak transition ¢ry,p,i,4, of Hy with action a | ext(Ms;), leading to a distribution over states
Py Pstrigss Such that there exists a probability distribution over probability distributions of
potential states of Hy, denoted by 77(1517;2”,1, satisfying

Z PgPQtTl [P]P = Z PZ[QZ]qupgtrqu (815)
PEQ§1P2”1 g2 E€Q2
and
Pt“ Cr Pfipﬁﬁ (8.16)

via a weight function wy, p, s, . Denote the probability space 3=, cq, P2[02]PgiPsiriqn BY Py pyiry »
i.e.,

A
73!117727571 = Z PQ[(]?]Pq1P2tT1q2' (8'17)
q2€82

Denote the generator of each weak transition ¢ry,p, 1,4, by OgyPytry g, (cf. Section 4.2.7). For the
sake of this proof, we change the notation for the generators of the transitions of a probabilistic

execution. Thus, for each ¢} such that ¢z < ¢5, Oy, P, tr,4,(¢5) stands for Oy, pyir,4,(¢57¢2), and

o Potr o Potr
P /q1 281192 gtands for P /q1 20192
95 95192

For each state ¢; and each probability distribution over states P, let é,, = D(q6), bp, =

A

Y goeq, Pal2)bq,, 85 = D(6p,), and wsy, p, be a weight function such that wsg, »,(q16, P2) = 1.
Note that, if for each ¢z € 3, trace(q1) = trace(qz), then

by Cr 87, (8.18)

179

via wsg, p,. Moreover,

op, = > Pss. [P]P. (8.19)
PeQs,
Let sq be the start state of Hy, and s3 be a start state of My that is related to s;. We know

that s, exists since R is a probabilistic forward simulation. Let Active be the smallest set such
that

1. (s1,D(s2)) € Active;

2. if (q1,Pa) € Active, try € Qf , and (g7, P3) € Qupy X Qqslpﬁﬁ, then (¢}, P}) € Active;

3. if (q1,Pa) € Active, P} [6] > 0, then (g16, 6%2) € Active.

Observe that for each pair (¢1,P2) € Active, ¢ R P2 (simple inductive argument). For each ¢
such that there exists some Py with (¢1,P2) € Active, each try € Q%N and each g3 € Qg, let
active(qq, P2, tr1, g2) be the set of states that are active in Oy, p, 17, ¢, and let reach(qr, Pz, tri, q2)
be the set of states that are reachable in Oy p,¢,4,. Let active denote the union of the sets
reach(qq, Pz, tr1,q2) where (q1,P2) € Active, trq € Q(ﬁl, and g2 € Q5. For each ¢ < 0, let
Active(t) be the set of pairs (¢1,P2) € Active such that either |¢;| = 7 or |¢1| < ¢ and ¢; ends
in 8. For each pair (g1, P2) of Active such that ¢; does not end in ¢, let

Py =) Ptr]Pu, + Pi[6]8, (8.20)

iry 6021
be the probability space reached in Hy with the transition enabled from ¢,

Z Pl?fl1[tr1]7)q17’2757°1 + Pl?lll [6]ép, (8.21)

q1
iry GQHl

A
Pfh Pa

be the probability space that is reached in the corresponding transition of Ps,

Por, = Y PP e, + PH 667, (8.22)

q1
iry GQHl

be the probability space of probability spaces that corresponds to P,,, and for each ¢f, P3,

A

wq1732((]1,775) = Z P]?Ill[trl]wmpﬁﬁ (qivpé) + P]?Ill [6]w5q1p2(Q17P£) (8'23)

iry 6021
be the corresponding weight function. From Lemma 8.2.1,

P, Cr P, (8.24)

via the weight function wg,p,.
For each pair (g1, Pz) of Active such that ¢, ends in 4, let

A

73!11 = D((h)v 73!117772 = P2, PS = D(PQ)v and wq1772((h77)2)

A
q1,P2 -

1. (8.25)

It is immediate to observe that Equation (8.24) holds also in this case.

180

Define m(1), 5(¢) and w; inductively as follows.

m(0) = D(sy), 5(0) = D(m(0)), wo(sy,m(0)) = 1, (8.26)

m(i+1) = Z wi(q1, P2) Py Py (8.27)
(q1,P2)€ Active(i)

S(i+1) = > wi(qr, P2)PY p, (8.28)
(q1,P2)€ Active(i)

wipi(ql, Py = S wilq, Po)wgp, (4, Ph). (8.29)

(q1,P2)€ Active(i)

To show that Equations (8.27), (8.28),and (8.29) are well defined, we show by induction that
for each i > 0, 32, p,)eactive(i) Wil@1, P2) = 1. The base case is a direct consequence of (8.26)
and the definition of Active(0). For the inductive step,

> wiy1(q1, P2)

(g1,P2)€ Active (i+1)

- > > wi(q1, Py wyrpy (g1, P2)
(q1,P2)€E Active(i+1) (q1,P)EActive (i)

= >, wilgPs)
(g1, PL)EActive(7)

b

where the first step follows from Equation (8.29), the second step follows from the fact that
wyr py is a weight function that is non zero only in pairs of Active(i 4+ 1), and the third step
follows from induction. Let
o r
W pstmg(@h) = w(qr, P2) PR [tr] Palga] P, 722 (8.30)

92

Consider a state gy of active. Then the transition enabled from go is

>, X 2 (8.31)

(q1,P4) € Active 1 EQI‘{l qb €QL g2 € active(qy, PS,tr1,95)
9

([0t (MW pr 11 (42) /W () (Ot pytryat (2) 1 acts(Ma))

Oq1 Patriq,

where W (s2) £ 1, and for each ¢, £ S,

W) = 3> 3 2. Waippiris (42 (8:32)
(91, P3)€Active meﬂjl 93 €923 |95 #a2,92 € reach (a1, P, tr1,05)
1

It is easy to verify that Expression (8.31) denotes a valid transition of a probabilistic execution
fragment of M since it is the combination of legal transitions of a probabilistic execution
fragment of M. The fact that the projection of a legal transition of a probabilistic execution
fragment of M onto acts(M) is still a legal transition of a probabilistic execution fragment of
M follows from the fact that M is a simple probabilistic automaton.

181

Informally, the set active is used to identify all the states of Hy. The transition enabled from
each one of those states, say ¢o, is due to several states of Hq, and each state of H{ influences
the transition enabled from a specific state of H, with a different probability. Such a probability
depends on how much a state of Hy represents a state of Hy, on the probability of the transition
of My that has to be matched, on the probability of reaching a specific state ¢5 of Hy during
the matching operation, on the probability of reaching ¢, from ¢4, and on the probability of
departing from ¢o. These conditions are captured by Py /(q2)[aCtS(MQ)]qupétqué(QQ).

a1 P2lria,
These weights must be normalized with respect to the probability of reaching go, which is

expressed by W(qz). The condition ¢5 # ¢ in the third sum of (8.32) is justified by the fact
W (q2) is the probability of reaching ¢;.

This completes the definition of Hy, m(¢), S(¢), and the w;’s. We need to show that
(Hy,Hy,w,S) is an execution correspondence structure via R. Thus, we need to show the
following properties.

1. For each ¢, m(i) is a fringe of Hy;

2. For each 7, m(7) < m(i + 1);

3. For each state ¢ of Ha, lim; .o 3- 1cq,jq<q Fild'] = PulCyl;
4. For each i, m(2) = Yopeg) Psii) [PIP;

5. For each i, fringe(H,i) Cr S(¢) via w;.

6. For each 7, each ¢ € fringe(Hy,1), and each gy € states(Hz), if Wi(q1,q5) = 0 for each
prefix or extension ¢} of g3, then, for each extension ¢| of ¢; such that ¢| € fringe(Hy,i+1)
and each prefix or extension ¢4 of g2, Wit1(¢1, %) = 0.

We show each item separately.

1. For each ¢, m(i) is a fringe of Hj.

By construction m(¢) is a probability distribution. Thus, we need to show only that for
each state ¢o of Hy,

Y. Pu@ld] < Pu[C] (8.33)

45 €Qm(iyla2<q]
First we show that for each ¢z € states(Hs),
Wi(q2) = P, [Cq,]; (8.34)

then we show that for each g, € states(H3),

Yo Pupla] < Wig). (8.35)

45 €Qm(iyla2<q]

The proof of (8.34) is by induction on the length of go. If g3 = s2, then (8.34) holds by
definition. Otherwise, let §; be ¢ without its last action and state, i.e., g2 = goas for

182

some action ¢ and some state s. Then, from the definition of the probability of a cone,
induction, Equation (8.31) and an algebraic simplification,

P, [Cy,] = Z Z Z

(g1, PL)EActive o a] qh€QL|Ga€active(q],Phitr1,qh)

1680,
qupgmqg(Qz)Poqipwlqé(qQ)[f]2]- (8.36)

O ptpr. o
From Equation (8.30) and the definition of Pq2qlp2t Y2 (cf. Section 4.2.7), we obtain

P, [Cy,] = Z Z Z

(g1, PS)E Active q; 94 €QL|GaEactive(q], P}, tr1,q5)
irq GQHl

! O ! ! r '
w(qy, Py)PE. [tri)Pylgh] P (8.37)

Observe that ¢4 € Q) and ¢y € active(qy, Py, tri,¢5) iff ¢5 € Q4 ¢b # ¢2, and ¢ €
reach(qy, Py, tr1,¢5). Thus, from Equation (8.31),

PH2 [qu] = Z Z Z qupétrlqé(qQ)‘ (838)

(g1, PL)EActive a) q5€Qh|ab#q2,92€reach (q], P}, tr1,95)
irq GQHl

At this point Equation (8.32) is sufficient to conclude the validity of Equation (8.34).

The proof of Equation (8.35) is also by induction. If ¢ = 0, then the result follows directly
from the fact that a fringe is a probability distribution. Otherwise, let N(¢1) be true iff
¢1 does not end in é. Then, from Equation (8.27),

> P 42] (8.39)

45 €Qm(iy1)la2<ah

can be rewritten into

2) wi(q1, P2) Pyyp, [0 (8.40)

45 €Qm(iy1)la2 <) (1, P2) € Active (i)

From the definition of Py, p, (Equations (8.21) and (8.25)) and the definition of Py, p, s,
(Equation (8.17)), Expression (8.40) can be rewritten into

> > >y (8.41)
35 €Qm(iy1yla2<ah (a1,P2)EActive(d),N(q1) try 6021 95 €
wz’(f]th)ngll [trl]Pz[f]g]quQmqg[‘]é]

+ > > wi(q1, P2) Pi [6]Pa[qh)

938€Qm(i41)la2<a5 (q1,P2)E Active(i),N(q1)

+ Z Z w;i(q18, P2) P2[q36].

qé5€Qm(i+1) lg2<qb (916,P2) € Active (1)

183

By exchanging sums in Expression (8.41), we obtain

) > 2 > (8.42)

(q1,P2) € Active(i),N(q1) trq 6021 95 €02 a5 €Qpig1yla2<ad
. 91 1" !
wz((ZhP?)PHl [trl]Pz[fZQ]qupmlqg[‘]z]

+ > > wi(q1, Pa) P[] Palg)]
(q1,P2)€Active(i),N(q1) 256 €Qm(i41)laz<a)

+) > wi(18, P2) Palghé],

(916,P2) € Active(s) 045 €Qm(i11yl22<a

where the first summand comes from the first summand of (8.22), the second summand
comes from the second summand of (8.22), and the third summand comes from (8.25).
Consider the first summand of Expression (8.42), and partition the states ¢} of Q3 into
those that include g3 (¢2 < ¢5) and those that do not. In the first case, since from (8.27),
(8.21), and (8.17), Q4 Pytr1qy S Lin(i41), and since each element ¢, of Q
42 < ¢4,

a1 Patrigl) satisfies

> Pypotrigyla] = 1; (8.43)

45 €Qm(iy1)la2<ah

@ 1
. . q1P2triq .
in the second case the same sum gives P, >. Consider the second summand of

Expression (8.42), and observe that, from (8.27), (8.21), and the definition of ép,, ¢56 €
Qr(it1)s 2 < @3, and Pafg] > 0iff g5 € Q2, ¢2 < g5, and P[gy] > 0. Finally, consider
the third summand of Expression (8.42), and observe that all the states of {23 end with 4,
and, from (8.27) and (8.21), ¢56 € Qp(i11), G2 < G5, and Py[q36] > 0iff g56 € Qa, g2 < 36,
Py[¢56] > 0. By combining the observations above, Expression (8.42) can be rewritten
into

> >~ wilqr, Pa) P [ird] (8.44)

(q1,P2)€Active(i),N(q1) try EQ21

O —
(> RlgI+ D) Pz[Qé’]quqlp2t1q2)

95 €Q2|g2<q 95 €Q2q7 <q2

+ > o wilgr, Pa) P [6]P2[g5)
(q1,P2) € Active(i),N(q1) q) €Q2lq2<ql

+ Z Z wi(q16, Pz)Pz[‘]g]-

(q16,P2)€ Active(i) g4 €Q2]q2<q

By regrouping expressions and simplifying, we obtain

O -
3 S Y wila, POPR PR, (8.45)

(g1,P2)€Active(?),N(q1) trq eQ?}l a4 €Q2l92<qY

+ Y > wilqr, Pa)Pag].

(q1,P2)EActive(i) ¢) €Q2]g92<qY

184

Finally, from Equation (8.30), Expression (8.45) can be rewritten into

2 > Yo Worigy(a) (8.46)

(g1,P2)€Active(?),N(q1) trq eQ?}l a4 €Q2l92<qY

+ Y > wilqr. Pa)Palg].

(q1,P2)€ Active(i) g €Q2]q2<ql

We now analyze the second summand of Expression (8.46), and we show by induction on
¢ that it is 0 if ¢ = 0 and ¢y # s, it is 1 if ¢ = 0 and ¢z = s, and it is

Z Z Z Z Wq1P2tT1q§’(Q2) (8'47)

J<1 (g1,P2)EActive() 757“1€le gy €Qa gy <2

otherwise. For ¢ = 0 the result is trivial. Otherwise, from Equation (8.29),

> >, wiiq P2)P2lgd] (8.48)

(q1,P2)EActive(i+1) g €Q2|q2<qf

can be rewritten into

> > Y. wildh, Py)wyps(qr, Pa) Palgs]. (8.49)

(q1,P2) € Active(i+1) (q],P}) € Active(z) qi €Q2]q2<qf

From the definition of w,p; (Equations (8.23) and (8.25)), Expression (8.49) can be
rewritten into

> > > > (8.50)

(q1,P2)EActive(i+1) (g7, P5)E Active(4),N(q7) 9] 9y €Q2|g2<ql
Hy

wilqy, Py) Pit, [tri]wyrpr i (g1, P2)) Palgh)

LD 2 2.

(q16,P2)€ Active(i+1) (q],P})EActive(i),N(q7) a5 €Q2]q2<ql
wilqy, Py) Py [&]wsqrpr (416, P2) Pa[5]
DY > wilgid, Py)Palgs).

(q18,P5) € Active(s) g5 €0} |q2<ql

triEQ

Observe that in the first summand of (8.50)

Z Z Wl pler! (q1, P2)Pa[q5]

(q1,P2) € Active(i+1) g €Q2]q2<ql

= > > Pipé tr [P2] P2[d5]

P2|391,(q1,P2) EActive (i4+1) ¢ €Q2]g2<g

= Z Z Pqipé triql’ [qg]v

tHt ' H H
gl el g e 1 141 |g2<g
2 2 42 9 732 t7‘1 | =42

185

where the first step follows from the fact that Wyl Pl irt gl is a weight function, and the
second step follows from (8.17), (8.15) and the fact that Q. p; . is the set of probability
space Py such that there is a state ¢; where (¢1,P2) € Active(i 4 1) (cf. the definition
of Active and observe that |¢;| = ¢ + 1). For the second summand of (8.50), observe
that for each pair (¢16, Ps) of Active(i + 1), if ngl [6] > 0, then there is exactly one pair
(q1,P3) of Active(i) such that wsyps(¢16,P2) > 0. In particular, ¢ = ¢j, P2 = 6py, and
Wsqrps(416,P2) = 1. Conversely, for each pair (g7, P;) of Active(i) such that PI?I% [6] > 0,
the pair (¢16, P2) is in Active(i+1) and wsyrp; (¢16, P2) = 1. Thus, the term wsyrp; (16, P2)
and the sum 3 rs5p,)cactive(i+1) can be removed from the second summand of (8.50).
Thus, by applying the observations above to (8.50), we obtain

2 2. > > (8.51)

! ! ; ; ! ! 1t ! 1" 1"
(91, P)€Active(d),N(g7) t%eQ‘ﬁ 93" €82) a3 qu{Pétriqé”"J?S‘h

Hy
wi(qy, Py) Pit [t Pyl 1Py pr vt g [45]
+ 3 S wilgl, Py PR 8] P[]

(¢4, P4) € Active (i), N (af) a5’ €04 a2 <ay
+ > >, wileid, Py)Pley)-

(q16,P3)€ Active(d) ¢4 € |q2<q}’

Consider the first summand of Expression (8.51). If g2 < ¢’, then

> Pypyirgplay] = 1 (8.52)

H H
g eQ 1 iy 1|g2<g
2 9, Potri 4, | —12

If ¢4 < g5, then

Y

1 (8.53)

O 1t
m _ q1732tr
> Popyirtgrldy] = Po

qé’Equ 735 tri qé” |q2 ng
Thus, from Equations (8.52) and (8.53), Expression (8.51) can be rewritten into

> S wilal PP (1] (8.54)

(g1, P3)E Active(i),N(q}) - EQqul

O 1 pt gt o111
(S B+ Y Pg[q;"1pq;”’2“q2)
q

'€ q2<qh’ 95 €Qh gy <q2
I
1 iy pla 1o
+ Z Z wl(q17P2)PHl [0]P3[q5']
(q1,P3)€Active(d),N(qy) a' €Q) |q2<q

+ > > wilgis, Py Pigy).

(q16,P3)€ Active(d) ¢4 € |q2<q}’

186

By regrouping the subexpressions in (8.54), we obtain

! O ! I ,r/ 1t
2 > > wilqy, Py) P [t PP, 2% (8.55)
(q1,P3)€ Active(d),N(q}) ¢ qeQh gt <
Hy
to2 > el PP

(41, P)€Active(i) g3’ €Qf g2 <q3’

triEQ

From Equation (8.30), Expression (8.55) can be rewritten into

> > Yo Wuprgn(ae) (8.56)

(g1, P3)E Active(i),N(q}) a gle|ql <gn
Hy

+ > S wilal, Py)Psley]-

(a1, P3) € Active(d) ' € g2 < gl

triEQ

The induction hypothesis is now sufficient to conclude the validity of (8.47). From an
alternative characterization of the set {¢} € Qs | ¢§ < g2} in Expressions (8.47) and (8.45),
and by combining (8.45) and (8.47), we obtain

> Prgirn 2] (8.57)

45 €Qm(iy1)la2<ah

= Z Z Z Z Wq17)2757“1q§'(q2)'

ISt (q1,P2)€Active(5) try€Qf} a5 €Q2lay#az,a5 €reach (a1, P2, tr1,42)

Observe that the right expression of (8.57) contains a subset of the terms of the right
expression of Equation (8.32). This is enough to conclude the validity of (8.35).

. For each ¢, m(i) < m(i+1).

This result follows directly from Equation (8.57). In fact, for each state ¢z of Hz, Ex-
pression (8.57) for m(i 4 1) contains a subset of the terms of the Expression (8.57) for

m(i).
. For each state g of Hy, lim;.co 3- 1cq,jq<q Fild'] = PulClyl-

This result follows directly from Expression (8.57). In fact, as i — oo, the right expression
of (8.57) converges to the right expression of (8.32).

. For each i, m(i) = Zpes(i) Ps(i)[PIP.

For i = 0 the result is trivial. For 7 > 0, from Equation (8.27), m(¢+ 1) is rewritten into.

Z wi(ql?PQ)PfhPr (8.58)
(q1,P2)€ Active(i)

From Equation (8.21), Expression (8.58) can be rewritten into

S wilan P | PR Py, + P 66, | - (8.59)
(q1,P2)€ Active(i) 757“16921

187

From Equation (8.17) applied to Py p,s, and Equations (8.15) and (8.19) applied to
Pf} [6]6p,, Expression (8.59) can be rewritten into

Yoo wila,Pa) [Y, PRI Y. Php,,[PIP |+ (8.60)

weli a1 s
(g1,P2) € Active(i) tTleQHl Pqu1P2”1

From Equation (8.22), Expression (8.60) can be rewritten into

S wila,P) | DD PIpPIP|. (8.61)
(q1,P2)€ Active(i) P€Q§1p2

Finally, from Equation (8.28), Expression (8.61) can be rewritten into

> Psus)[PIP, (8.62)
PeQsiit)

which is what we needed to show.
. For each ¢, fringe(Hy,1) Cr S(i) via w;.
For i = 0 the result is trivial. By applying the definitions of a fringe and of fringe(Hy, i1+1),
fringe(Hy,1+ 1)
= Z P, [Cq1]Pq1

q1Estates(Hz)||gz|=ior ga=q}8,|q2|<i

= Z wi(q177)2)7)q1-
(q1,P2)€ Active(i)

From (8.28),

SGi+1)= Z wi(q1,7)2)7)(ip2.
(q1,P2)€ Active(i)

Since for each pair (g1, P2) of Active(i), Py, Cr Pjp, Via wy, p,, from Lemma 8.2.1,

> wi(q1, P2)Py, Cr > wi(q1, P2) Py,
(91,P2) € Active () (91,P2)€ Active ()

via 37, Py detive(i) Wilq1s P2)wg, p,, which is wit. |

188

6. For each 7, each ¢ € fringe(Hy,1), and each gy € states(Hz), if Wi(q1,q5) = 0 for each
prefix or extension ¢} of g3, then, for each extension ¢| of ¢; such that ¢| € fringe(Hy,i+1)
and each prefix or extension ¢4 of g2, Wit1(¢1, %) = 0.

Suppose by contradiction that there is an extension ¢} of ¢ such that ¢} € fringe(Hy,i+1)
and a prefix or extension ¢ of g3 such that W;1(¢{,q¢5) > 0. From the definition of W;
and Equation (8.29),

Witi(q. g5) =Y > wi(q1, P2)wg, p, (91, P)Plgy)- (8.63)
P (q1,P2)€Active(i)

Since W;(q1,¢5) > 0, then there is at least one probability space P and one pair (g1, P2) €
Active(i) such that w;(g1,P2) > 0, wg p,(q1,P) > 0, and P[g5] > 0. Then there is at
least one prefix ¢4 of ¢} such that Py[¢5] > 0, which means that W;(qy, ¢)) > 0. However,
this is a contradiction since ¢4 is either a prefix or a suffix of ¢,.

The execution correspondence theorem can be stated and proved similarly for weak and strong
probabilistic simulations. The proofs are simpler than the proof presented in this section, and
thus we omit them from this thesis.

8.6.4 Transitivity of Probabilistic Forward Simulations

Now we have enough machinery to prove that probabilistic forward simulations are transitive,
e, if My Cpg My and My Epg Ms, then My Cpg Ms. We start by proving a lemma.

Lemma 8.6.2 Let (Hy, Hy,m,S) be an execution correspondence structure via the probabilistic
forward simulation R, and suppose that Hy represents a weak combined transition s =>c P;.
Then Hy represents a weak combined transition s' == Py and there is a probability space Py
such that

1. Py Cr Py and
2. Py = Ypeqs PS[PIP.

Proof. Let w; be the weight functions for fringe(Hq,1) Cgr S(¢). Let Pi be é-strip(Pm,), P
be §-strip(Pm,), and let

Pis = 3 S Wapalad, PIP. (8.64)
adelly, P|w|a|+1(a5,P)>0

For each aé € Qp, and each P € Probs(extstates(Hy)), let w(ad, P) = W)a)41(ad, P).
We show that w is a weight function from Py to P; g and that P; g is well defined. This im-
plies that P; Cr P; 5. Then we show that for each element a6 of QH2, Yopeq) . P s[PPlad] =

Pr,[Cysl. Since all the elements of the probablhty spaces of €/ 5.5 end with 6 we obtain that
Pl is well defined and that P) = ZPEQ’ > g[P]P. Then the lemma is proved by defining P4

to be Istate(Py), Py to be Istate(P)), and 77275 to be Istate(P; g).
To show that w is a weight function we have to verify the three conditions of the definition

of a weight function. If w(aé,P) > 0, then, from the definition of w, wy,41(aé, P) > 0.

189

Since wq |41 is a weight function, then aé R P. Let P € 9’275. Then Zaéeﬂgl w(ad,P) =
Yasean, W]o|41(@d, P), which is Py s[P] by definition of P 5. Consider now an element aé of
Qp, . Then, ZPGQQ,S w(ad, P) = ZPGQQ,S W|o41(ad, P). Since w,4q is a weight function, then
the sum above gives Pp, [Co5] = Pi[ad]. To show that P; is well defined we need to show that
Zaéeﬂgl 27’|w|a|+1(a577’)>0 W|441(ad, P) = 1. This follows immediately from the fact that w is a
weight function and that, since H; represents a weak combined transition, Zaéeﬂgl Pllad] = 1.

We are left to show that for each element aé of Qp,, ZPE%,S P, s[P1P[ad] = Pp,[Cas).

Observe that for each element aé of Qp,, if i < |a| then w;(ad, P) is undefined for each P, and
if ¢ > |af, then for each j > ¢ and each P, w;(ad,P) is defined iff w;(aé,P) is defined, and if
wi(abd,P) is defined then w;(ad, P) = w;(ad, P). Thus, if we extend each w; by setting it to 0
whenever it is not defined, then, for each aé € Qp,,

> Py s[PIPlad]l= > (Zlim > wi(aé,P)) Plad)]. (8.65)

o0
PEQ; o PEQ; o adeQm,

Since for each 7, w; is a weight function, and since from the definition of P} ¢ each element P
for which w;(ad,P) > 0is in), ¢, then we derive

> Pys[PIPlad]l= > (1520 PS(Z»)[P]) Plaé]. (8.66)
PeQ o PeQ o

By exchanging the limit with the sum and by using Condition 3 of the definition of an execution
correspondence structure, the equation above can be rewritten into

> Py 5[P]P[aé] = lim m(i)[ad], (8.67)

1T—00
PeQ;ys

which gives the desired result after using Condition 2 of the definition of an execution corre-
spondence structure.]

Proposition 8.6.3 Probabilistic forward simulations are transitive.

Proof. Let Ry be a probabilistic forward simulation from M; to M>, and let Ry be a proba-
bilistic forward simulation from My to Ms. Define R so that sy R Ps iff there is a probability
space Py, and a probability space P5, such that

1. S1 Rl 7)2,
2. Py ERz Pégv and

We need to show that R is a probabilistic forward simulation from My to Ms. For this purpose,
let sy R Ps, and let Py and 77:3)9 satisfy the three conditions above. Let s — P;. Let M,
be obtained from M, by introducing a new state s, and by adding a transition s, —— Py,
where 7 is an internal action; similarly, let M} be obtained from Mj3 by introducing a new state
st and by adding a transition s§ — P, where 7 is an internal action. Let R} be obtained

190

from Ry by adding the pair (s1,D(s})), and let R, be obtained from R by adding the pair
(s5,D(s5)). Observe that R} is a probabilistic forward simulation from M; to M} and that R,
is a probabilistic forward simulation from M} to Mj.

We want to find two probability spaces P and Pj g such that s = PL, Pl Cr P3 s
and Py = 3peqr P3 g[P]P. From the definition of a weak transition, this is sufficient to show

that for each state s of P3 there is a weak combined transition s ==c P, of M3 such that
Pé = 25693 P3[8]7D5-

Since R/ is a probabilistic forward simulation, there is a weak combined transition s} == ¢
P}, of M} and a probability space P} ¢ such that

Py= Y Pyg[PIP and P{Cgr, Pjs. (8.68)
PEQ, ¢

Let Hj be the probabilistic execution fragment of M} that represents the weak combined tran-
sition s, == P5. Then, by definition of Hy, P} = Istate(-strip(Pm,)) (cf. Section 4.2.7).

From the Execution Correspondence Theorem there is an execution correspondence struc-
ture (Hy, Hs,m,S), where Hs is a probabilistic execution fragment of M4 that starts from s.
From Lemma 8.6.2, H3 represents a weak combined transition sj == P4 for same probability
space PY. Moreover, there is a probability space 77:’))’75 such that

Py= >, P{S[PIP and PyCr, Pis. (8.69)
PEQQS

Let wy be the weight function for P; Cr, Py g. For each probability space P of Qf g, let
wp : states(My) X Probs(states(Ms)) — [0,1] be a function that is non-zero only in the set
Q x QF 5 and such that for each pair (s,P’) of Q x Q7 ,

P[s]wy(s, P")

WAl P = =

. (8.70)

Also, for each probability space P of 9’275, let

PIs 2 30 3 wp(s, PYD(P), (8.71)

SEQPIEQ)
and let
PT 2 S0 PIPP (8.72)
P'eﬂzs

Let P; 5 be the discrete probability space where Q3 ¢ = {P] | P € Qy.5}, and for each element
P P _ - -
Py oof Q5 g, Py [P] = ZPIGQ§75|P;3=P;DI P; g[P']. Then, the following properties are true.

1. For each probability space P of 9’275, wp is a weight function from P to 7755.

We verify separately each one of the conditions that a weight function must satisfy.

191

(a) For each s € StateS(M2)7 P[S] = ZP'EPTobs(states(Mg)) wP(‘S?P/)‘
From the definition of wp, the right expression above can be rewritten into
P , P!
3 %. (8.73)
P'eProbs(states(Ms)) 2[8]

Since wy is a weight function, 3 prc props(states(My)) W2(s, P) = Psls], and thus Ex-
pression 8.73 becomes P[s].

(b) For each P" € Probs(states(Ms)), 3 sestates(viy) WP(8, P') = Pg?S[P’].
From Equation (8.71), P{g[P'] = 3 ,cq wp(s,P’). Since wp is non-zero only when
the first argument is in Q, Pg?S[P’] = D sestates(My) WP(8, P).
(c) For each (s,P’) € states(My) x Probs(states(Ms)), if wp(s,P’) > 0 then s Ry P'.
If wp(s,P') > 0, then, from Equation (8.70), wy(s,P’) > 0. Since wy is a weight
function, then s Ry P’.
2. Yopeay P3s[PIP =Py,

From the definition of Pj g, Equation (8.72), Equation (8.71), and Equation (8.70),
Ypeqy . P3 s[PIP can be rewritten into

> > X PP 7" (8.74)

PEQéys P’EQg’ys s€states(My)

From (8.68), Expression (8.74) can be rewritten into

3 3 DolsJwa(s, P7) (8.75)

Pils
P'eqQl o s€states(Ma) 2[]

After simplifying P;[s], since wy is a weight function from Pj to Pg 5, Expression (8.75)
can be rewritten into

Y. P[P, (8.76)
’P/ng/yS
which can be rewritten into P4 using Equation (8.69).
3. For each pair (s}, P) such that sj Ry P, s} R3 PJ.
This follows directly from 1 and (8.72).

Let P} be P, and define a new weight function w : states(My) X Probs(states(Ms)) — [0,1]
such that, for each probability space P of 9’275, w(s1, PY) = wi(s1,P). Then, it is easy to check
that P; Cr 77:’%75 via w. This fact, together with 2, is sufficient to complete the proof. [|

192

8.7 Probabilistic Forward Simulations and Trace Distributions

In this section we show that probabilistic forward simulations are sound for the trace distribution
precongruence. Specifically, we show that My Cpg My implies My Ep M;. Thus, since Cpg is
a precongruence that is contained in Cp, from the definition of Cpo we obtain that My Epg M,
implies My Cpo Ms.

Proposition 8.7.1 Let My Cps My. Then My Cp M,.

Proof. Let R be a probabilistic forward simulation from My to Ms, and let Hy be a proba-
bilistic execution of My that leads to a trace distribution Dy. From Lemma 8.6.1, there exists
a probabilistic execution Hy of My and two mappings m, S such that (Hy, Hz,m,5) is an exe-
cution correspondence structure for R. We show that Hs leads to a trace distribution D, that
is equivalent to Dq.

Consider a cone Cg of Dy. The measure of (g is given by

Z P, [Cy,). (8.77)
q1E€states(Hq)|trace(g1)=0,lact(q1)=lact(F)

The same value can be expressed as

lim > P, [Cy) (8.78)

1—00

q1€fringe(Hy,i)|3<trace(q1)
Consider a cone Cg of Dy. The measure of (g is given by
Z P, [Cq2]' (8.79)
q2Estates(Hy)|trace(g2)=0,lact(g2)=lact(3)
The same value can be expressed as
Jim > P [Cgs]- (8.80)
g2€m(i)|B<trace(g2)

The reason for the alternative expression is that at the limit each cone of Expression (8.79) is
captured completely. Thus, it is sufficient to show that for each finite 3 and each 1,

Z Pr, [C!h] = Z Pm(i)[QQ]' (8'81)
q1Efringe(H1 7)|B<trace(g1) g2€m(i)|B<trace(g2)
This is shown as follows. Let w; be the weight function for m(z) Cg S(7). Then,
> P, [Cy) = 3 S wila, Pa). (8.82)
g€fringe(Hy ,i)|B<trace(q) q1Efringe(Hq 7)|B<trace(q1) P2€S(7)

Observe that each probability space of S(7) has objects with the same trace, that each state ¢
of fringe(H;,1) is related to some space of 5(¢), and that each space of 5(¢) is related to some
state ¢ of fringe(Hq,7). Thus, from (8.82),

> P[] = > 2wl Py (8.83)

g€fringe(Hq 7)|B<trace(q) P2€5(i)| 3y e, A< trace (q2) 1 Efringe(Hy i)

193

Since w; is a weight function, we obtain

> P [Co] = > Ps(iy[P2]. (8.84)

g€fringe(Hq 7)|B<trace(q) P2€S5(i)| 3y e, A< trace (g2)

Since in a probability space the probability of the whole sample space is 1, we obtain

> P, [Cy] = > Y Psi[PalPalge]- (8.85)

g€fringe(Hq 7)|B<trace(q) P2€85(i)| Ty e, A< trace(g2) 026820

From an algebraic manipulation based on Condition 3 of an Execution Correspondence Struc-
ture, we obtain

> Py, [Cy] = > Y. PspPalPalaal. (8.86)

q€fringe(H 1)|B<trace(q) g2€m(1)|B<trace(q2) P2€S(1)|92€0

Finally, from Condition 3 of an Execution Correspondence Structure again, we obtain Equa-
tion (8.81). |

8.8 Discussion

Strong bisimulation was first defined by Larsen and Skou [LS89, 1.S91] for reactive processes.
Successively it was adapted to the alternating model by Hansson [Han94]. In this thesis we
have defined the same strong bisimulation as in [Han94]. The formal definition differs from the
definition given by Hansson in that we have used the lifting of a relation to probability spaces
as defined by Jonsson and Larsen [JL91].

Strong simulation is similar in style to the satisfaction relation for the probabilistic specifi-
cation systems of Jonsson and Larsen [JLI1]. It is from [JL91] that we have borrowed the idea
of the lifting of a relation to a probability space.

The probabilistic versions of our simulation relations are justified both by the fact that a
scheduler can combine transitions probabilistically, as we have said in this thesis, and by the fact
that several properties, namely the ones specified by the logic PCTL of Hansson and Jonsson
[Han94], are valid relative to randomized schedulers iff they are valid relative to deterministic
schedulers. This fact was first observed by Segala and Lynch [S1.94] and can be proved easily
using the results about deterministic and randomized schedulers that we proved in Chapter 5.

The weak probabilistic relations were introduced first by Segala and Lynch [SL94]. No
simulation relations abstracting from internal computation were defined before. Probabilistic
forward simulations are novel in their definition since it is the first time that a state is related
to a probability distribution over states.

194

