
Modeling and Veri�cation of Randomized DistributedReal-Time SystemsbyRoberto SegalaS.M., Electrical Engineering and Computer ScienceMassachusetts Institute of Technology(1992)Diploma, Computer ScienceScuola Normale Superiore - Pisa(1991)Laurea, Computer ScienceUniversity of Pisa - Italy(1991)Submitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degree ofDoctor of Philosophy in Electrical Engineering and Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYJune 1995c
 Massachusetts Institute of Technology 1995Signature of Author Department of Electrical Engineering and Computer ScienceMay 15, 1995Certi�ed by Nancy A. LynchProfessor of Computer ScienceThesis SupervisorAccepted by Frederic R. MorgenthalerChair, Departmental Committee on Graduate Students



2



Modeling and Veri�cation of Randomized Distributed Real-Time SystemsbyRoberto SegalaSubmitted to the Department of Electrical Engineering and Computer Scienceon May 15, 1995, in partial ful�llment of therequirements for the degree ofDoctor of Philosophy in Electrical Engineering and Computer ScienceAbstractRandomization is an exceptional tool for the design of distributed algorithms, sometimes yield-ing e�cient solutions to problems that are inherently complex, or even unsolvable, in the settingof deterministic algorithms. However, this tool has a price: even simple randomized algorithmscan be extremely hard to verify and analyze.This thesis addresses the problem of veri�cation of randomized distributed algorithms. Weconsider the problem both from the theoretical and the practical perspective. Our theoreticalwork builds a new mathematical model of randomized distributed computation; our practicalwork develops techniques to be used for the actual veri�cation of randomized systems. Ouranalysis involves both untimed and timed systems, so that real-time properties can be investi-gated.Our model for randomized distributed computation is an extension of labeled transitionsystems. A probabilistic automaton is a state machine with transitions, where, unlike for labeledtransition systems, a transition from a state leads to a discrete probability distribution over pairsconsisting of a label and a state, rather than to a single label and a single state. A probabilisticautomaton contains pure nondeterministic behavior since from each state there can be severaltransitions, and probabilistic behavior since once a transition is chosen the label that occurs andthe state that is reached are determined by a probability distribution. The resolution of purenondeterminism leads to probabilistic executions , which are Markov chain like structures. Oncethe pure nondeterminism is resolved, the probabilistic behavior of a probabilistic automatoncan be studied.The properties of a randomized algorithm are stated in terms of satisfying some other prop-erty with a minimal or maximal probability no matter how the nondeterminism is resolved.In stating the properties of an algorithm we also account for the possibility of imposing re-strictions on the ways in which the nondeterminism is resolved (e.g., fair scheduling, obliviousscheduling,: : :). We develop techniques to prove the correctness of some property by reducingthe problem to the veri�cation of properties of non-randomized systems. One technique isbased on coin lemmas , which state lower bounds on the probability that some chosen randomdraws give some chosen outcomes no matter how the nondeterminism is resolved. We identifya collection of progress statements which can be used to prove upper bounds to the expectedrunning time of an algorithm. The methods are applied to prove that the randomized diningphilosophers algorithm of Lehmann and Rabin guarantees progress in expected constant timeand that the randomized algorithm for agreement of Ben-Or guarantees agreement in expectedexponential time.To ensure that our new model has strong mathematical foundations, we extend some of the3



common semantics for labeled transition systems to the probabilistic framework. We de�ne acompositional trace semantics where a trace is replaced by a probability distribution over traces,called a trace distribution, and we extend the classical bisimulation and simulation relations inboth their strong and weak version. Furthermore, we de�ne probabilistic forward simulations ,where a state is related to a probability distribution over states. All the simulation relationsare shown to be sound for the trace distribution semantics.In summary, we obtain a framework that accounts for the classical theoretical results ofconcurrent systems and that at the same time proves to be suitable for the actual veri�cationof randomized distributed real-time systems. This double feature should lead eventually to theeasy extension of several veri�cation techniques that are currently available for non-randomizeddistributed systems, thus rendering the analysis of randomized systems easier and more reliable.Thesis Supervisor: Nancy A. LynchTitle: Professor of Computer ScienceKeywords: Automata, Distributed Algorithms, Formal Methods, Labeled Transition Systems,Randomized Systems, Real-Time Systems, Veri�cation

4



AcknowledgementsEight years ago, when I was getting my high school diploma from the Istituto Tecnico IndustrialeG. Marconi in Verona, I did not know the meaning of the acronym PhD or even the meaningof the acronym MIT. However, Maurizio Benedetti, my teacher of Computer Science, stronglyencouraged me to apply to the Scuola Normale Superiore of Pisa, a place I would have neverthought I was quali�ed for. If it were not for him I probably would not be here writing thisacknowledgements section. Also, my �rst grade teacher, Ines Martini, had an important rolein all of this: she is an exceptional person who was able to deal with a terrible kid like me andmake him into a person who does not hate school.Thanks to Rocco De Nicola, my former thesis advisor, for the support that he gave meduring my education in Pisa and during my years as a student at MIT; thanks to Sanjoy Mitterwho introduced me to MIT and who continuously kept me away from the temptation to focuson just one area of Computer Science.Nancy Lynch, my advisor here at MIT, deserves strong recognition for the freedom she gaveme and for her patience in listening to my fuzzy conjectures, reading and correcting my drafts,improving my English, giving suggestions all over, and most of all, allowing me to bene�t fromher experience. Whenever I got stuck on something I would invariantly hear her ask \how is itgoing?", and I was surprised to discover how many times explaining my problems and answeringher questions was su�cient to get new ideas.Albert Meyer was a second advisor for me. Although my research focus is the study oftheory for practice, I have always been attracted by nice and clean theoretical results, andAlbert was a great source. Several times I stopped by his o�ce, both for research questionsor to seek advice on my career choices. He has always been a great source of knowledge andexperience, and a great help.Thanks to Butler Lampson and Albert Meyer for agreeing to be readers of the thesis.Frits Vaandrager deserves a special thank since he is the person who started me on research.He suggested the topic of my Master's thesis and he guided me during the project althoughthere was an ocean (I was in Italy, he was in the States) between us. It is from my experiencewith Frits that my idea of studying theory for practice took shape.The friendly environment here at MIT was a great stimulus for my research. I had manydiscussions with Rainer Gawlick, Anna Pogosyants, Isaac Saias, and J�rgen S�gaard-Andersen,that lead to some of the papers that I have written in these years. Thanks to all of them.Rainer was also a great advisor for my English and for my understanding of American culture,which sometimes is not so easy to grasp if you are European.Thanks also go to David Gupta, Alex Russell and Ravi Sundaram for all the help that theygave me on measure theory. Thanks to Mark Tuttle for valuable comments that in
uenced thepresentation of the results of this thesis.I want to thank several other fellow students and post docs, some of whom are now inbetter positions, for the help that in various occasions they gave me and for a lot of fun that wehad together. In particular, thanks go to Javed Aslam, Margrit Betke, Lenore Cowen, RosarioGennaro, Shai Halevi, Trevor Jim, Angelika Leeb, Gunter Leeb, Arthur Lent, Victor Luchangco,Daniele Micciancio, Nir Shavit, Mona Singh, Mark Smith, David Wald, H.B. Weinberg. Thanksalso to Be Hubbard, our \mum", Joanne Talbot, our group secretary, and Scott Blomquist, oursystem manager, for their valuable support. 5



Thanks also go to some other \outsiders" who had an impact on this work. In particular,thanks go to Scott Smolka for useful discussions and for providing me with a rich bibliographyon randomized computation, and thanks go to Lenore Zuck for useful discussions on veri�cationtechniques.Last, but not least, a very special thank to my parents, Claudio and Luciana, and to my�ance Arianna for all the love and support that they gave me. This thesis is dedicated to them.

The research in this thesis was supported by NSF under grants CCR-89-15206 and CCR-92-25124, by DARPA under contracts N00014-89-J-1988 and N00014-92-J-4033, and by AFOSR-ONR under contracts N00014-91-J-1046 and F49620-94-1-0199.6



Contents1 Introduction 131.1 The Challenge of Randomization : : : : : : : : : : : : : : : : : : : : : : : : : : : 131.1.1 Modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 141.1.2 Veri�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 151.2 Organization of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 181.3 Reading the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 222 An Overview of Related Work 232.1 Reactive, Generative and Strati�ed Models : : : : : : : : : : : : : : : : : : : : : 232.1.1 Reactive Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 242.1.2 Generative and Strati�ed Models : : : : : : : : : : : : : : : : : : : : : : : 252.2 Models based on Testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 262.3 Models with Nondeterminism and Denotational Models : : : : : : : : : : : : : : 282.3.1 Transitions with Sets of Probabilities : : : : : : : : : : : : : : : : : : : : : 282.3.2 Alternating Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 282.3.3 Denotational Semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : : 282.4 Models with Real Time : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 292.5 Veri�cation: Qualitative and Quantitative Methods : : : : : : : : : : : : : : : : : 292.5.1 Qualitative Method: Proof Techniques : : : : : : : : : : : : : : : : : : : : 292.5.2 Qualitative Method: Model Checking : : : : : : : : : : : : : : : : : : : : 302.5.3 Quantitative Method: Model Checking : : : : : : : : : : : : : : : : : : : : 313 Preliminaries 333.1 Probability Theory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 333.1.1 Measurable Spaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 333.1.2 Probability Measures and Probability Spaces : : : : : : : : : : : : : : : : 333.1.3 Extensions of a Measure : : : : : : : : : : : : : : : : : : : : : : : : : : : : 343.1.4 Measurable Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 343.1.5 Induced Measures and Induced Measure Spaces : : : : : : : : : : : : : : : 353.1.6 Product of Measure Spaces : : : : : : : : : : : : : : : : : : : : : : : : : : 353.1.7 Combination of Discrete Probability Spaces : : : : : : : : : : : : : : : : : 353.1.8 Conditional Probability : : : : : : : : : : : : : : : : : : : : : : : : : : : : 363.1.9 Expected Values : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 363.1.10 Notation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 373.2 Labeled Transition Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 377



3.2.1 Automata : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 373.2.2 Executions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 393.2.3 Traces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 403.2.4 Trace Semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 403.2.5 Parallel Composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 404 Probabilistic Automata 434.1 What we Need to Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 434.2 The Basic Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 464.2.1 Probabilistic Automata : : : : : : : : : : : : : : : : : : : : : : : : : : : : 464.2.2 Combined Transitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 474.2.3 Probabilistic Executions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 484.2.4 Notational Conventions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 514.2.5 Events : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 524.2.6 Finite Probabilistic Executions, Pre�xes, Conditionals, and Su�xes : : : 554.2.7 Notation for Transitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 584.3 Parallel Composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 614.3.1 Parallel Composition of Simple Probabilistic Automata : : : : : : : : : : 614.3.2 Projection of Probabilistic Executions : : : : : : : : : : : : : : : : : : : : 624.3.3 Parallel Composition for General Probabilistic Automata : : : : : : : : : 704.4 Other Useful Operators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 724.4.1 Action Renaming : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 724.4.2 Action Hiding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 734.5 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 735 Direct Veri�cation: Stating a Property 755.1 The Method of Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 755.2 Adversaries and Adversary Schemas : : : : : : : : : : : : : : : : : : : : : : : : : 795.2.1 Application of an Adversary to a Finite Execution Fragment : : : : : : : 805.2.2 Application of an Adversary to a Finite Probabilistic Execution Fragment 805.3 Event Schemas : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 825.3.1 Concatenation of Event Schemas : : : : : : : : : : : : : : : : : : : : : : : 825.3.2 Execution-Based Event Schemas : : : : : : : : : : : : : : : : : : : : : : : 835.4 Probabilistic Statements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 845.4.1 The Concatenation Theorem : : : : : : : : : : : : : : : : : : : : : : : : : 845.5 Progress Statements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 855.5.1 Progress Statements with States : : : : : : : : : : : : : : : : : : : : : : : 865.5.2 Finite History Insensitivity : : : : : : : : : : : : : : : : : : : : : : : : : : 865.5.3 The Concatenation Theorem : : : : : : : : : : : : : : : : : : : : : : : : : 875.5.4 Progress Statements with Actions : : : : : : : : : : : : : : : : : : : : : : 885.5.5 Progress Statements with Probability 1 : : : : : : : : : : : : : : : : : : : 895.6 Adversaries with Restricted Power : : : : : : : : : : : : : : : : : : : : : : : : : : 905.6.1 Execution-Based Adversary Schemas : : : : : : : : : : : : : : : : : : : : : 915.6.2 Adversaries with Partial On-Line Information : : : : : : : : : : : : : : : : 915.7 Deterministic versus Randomized Adversaries : : : : : : : : : : : : : : : : : : : : 928



5.7.1 Execution-Based Adversary Schemas : : : : : : : : : : : : : : : : : : : : : 935.7.2 Execution-Based Adversary Schemas with Partial On-Line Information : 995.8 Probabilistic Statements without Adversaries : : : : : : : : : : : : : : : : : : : : 995.9 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1006 Direct Veri�cation: Proving a Property 1036.1 How to Prove the Validity of a Probabilistic Statement : : : : : : : : : : : : : : : 1036.2 Some Simple Coin Lemmas : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1046.2.1 First Occurrence of an Action : : : : : : : : : : : : : : : : : : : : : : : : : 1066.2.2 First Occurrence of an Action among Many : : : : : : : : : : : : : : : : : 1076.2.3 I-th Occurrence of an Action among Many : : : : : : : : : : : : : : : : : 1096.2.4 Conjunction of Separate Coin Events : : : : : : : : : : : : : : : : : : : : : 1096.3 Example: Randomized Dining Philosophers : : : : : : : : : : : : : : : : : : : : : 1116.3.1 The Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1116.3.2 The Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1126.3.3 The High Level Proof : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1146.3.4 The Low Level Proof : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1166.4 General Coin Lemmas : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1216.4.1 Conjunction of Separate Coin Events with Multiple Outcomes : : : : : : 1216.4.2 A Generalized Coin Lemma : : : : : : : : : : : : : : : : : : : : : : : : : : 1246.5 Example: Randomized Agreement with Stopping Faults : : : : : : : : : : : : : : 1266.5.1 The Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1266.5.2 The Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1276.5.3 The High Level Proof : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1286.5.4 The Low Level Proof : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1296.6 Example: The Toy Resource Allocation Protocol : : : : : : : : : : : : : : : : : : 1306.7 The Partition Technique : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1326.8 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1337 Hierarchical Veri�cation: Trace Distributions 1357.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1357.1.1 Observational Semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1357.1.2 Substitutivity and Compositionality : : : : : : : : : : : : : : : : : : : : : 1367.1.3 The Objective of this Chapter : : : : : : : : : : : : : : : : : : : : : : : : 1377.2 Trace Distributions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1387.3 Trace Distribution Preorder : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1417.4 Trace Distribution Precongruence : : : : : : : : : : : : : : : : : : : : : : : : : : : 1437.5 Alternative Characterizations of the Trace Distribution Precongruence : : : : : : 1457.5.1 The Principal Context : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1457.5.2 High Level Proof : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1467.5.3 Detailed Proof : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1477.6 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1659



8 Hierarchical Veri�cation: Simulations 1678.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1678.2 Strong Simulations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1678.3 Strong Probabilistic Simulations : : : : : : : : : : : : : : : : : : : : : : : : : : : 1718.4 Weak Probabilistic Simulations : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1728.5 Probabilistic Forward Simulations : : : : : : : : : : : : : : : : : : : : : : : : : : 1728.6 The Execution Correspondence Theorem : : : : : : : : : : : : : : : : : : : : : : : 1768.6.1 Fringes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1778.6.2 Execution Correspondence Structure : : : : : : : : : : : : : : : : : : : : : 1778.6.3 The Main Theorem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1798.6.4 Transitivity of Probabilistic Forward Simulations : : : : : : : : : : : : : : 1898.7 Probabilistic Forward Simulations and Trace Distributions : : : : : : : : : : : : : 1938.8 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1949 Probabilistic Timed Automata 1959.1 Adding Time : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1959.2 The Timed Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1969.2.1 Probabilistic Timed Automata : : : : : : : : : : : : : : : : : : : : : : : : 1969.2.2 Timed Executions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1989.3 Probabilistic Timed Executions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2009.3.1 Probabilistic Time-Enriched Executions : : : : : : : : : : : : : : : : : : : 2019.3.2 Probabilistic Timed Executions : : : : : : : : : : : : : : : : : : : : : : : : 2049.3.3 Probabilistic Executions versus Probabilistic Timed Executions : : : : : : 2099.4 Moves : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2179.5 Parallel Composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2189.6 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22210 Direct Veri�cation: Time Complexity 22310.1 General Considerations About Time : : : : : : : : : : : : : : : : : : : : : : : : : 22310.2 Adversaries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22410.3 Event Schemas : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22410.4 Timed Progress Statements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22610.5 Time Complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22610.5.1 Expected Time of Success : : : : : : : : : : : : : : : : : : : : : : : : : : : 22710.5.2 From Timed Progress Statements to Expected Times : : : : : : : : : : : : 22710.6 Example: Randomized Dining Philosophers : : : : : : : : : : : : : : : : : : : : : 23210.6.1 Representation of the Algorithm : : : : : : : : : : : : : : : : : : : : : : : 23210.6.2 The High Level Proof : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23310.6.3 The Low Level Proof : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23310.7 Abstract Complexity Measures : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23810.8 Example: Randomized Agreement with Time : : : : : : : : : : : : : : : : : : : : 24010.9 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24210



11 Hierarchical Veri�cation: Timed Trace Distributions 24311.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24311.2 Timed Traces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24311.3 Timed Trace Distributions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24611.3.1 Three ways to De�ne Timed Trace Distributions : : : : : : : : : : : : : : 24611.3.2 Timed Trace Distribution of a Trace Distribution : : : : : : : : : : : : : : 24811.3.3 Action Restriction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24911.4 Timed Trace Distribution Precongruence : : : : : : : : : : : : : : : : : : : : : : : 24911.5 Alternative Characterizations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25012 Hierarchical Veri�cation: Timed Simulations 25712.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25712.2 Probabilistic Timed Simulations : : : : : : : : : : : : : : : : : : : : : : : : : : : 25712.3 Probabilistic Timed Forward Simulations : : : : : : : : : : : : : : : : : : : : : : 25812.4 The Execution Correspondence Theorem: Timed Version : : : : : : : : : : : : : 25912.4.1 Timed Execution Correspondence Structure : : : : : : : : : : : : : : : : : 25912.4.2 The Main Theorem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26012.4.3 Transitivity of Probabilistic Timed Forward Simulations : : : : : : : : : : 26012.5 Soundness for Timed Trace Distributions : : : : : : : : : : : : : : : : : : : : : : 26013 Conclusion 26313.1 Have we Met the Challenge? : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26313.2 The Challenge Continues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26413.2.1 Discrete versus Continuous Distributions : : : : : : : : : : : : : : : : : : 26413.2.2 Simpli�ed Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26413.2.3 Beyond Simple Probabilistic Automata : : : : : : : : : : : : : : : : : : : 26513.2.4 Completeness of the Simulation Method : : : : : : : : : : : : : : : : : : : 26613.2.5 Testing Probabilistic Automata : : : : : : : : : : : : : : : : : : : : : : : : 26613.2.6 Liveness in Probabilistic Automata : : : : : : : : : : : : : : : : : : : : : : 26613.2.7 Temporal Logics for Probabilistic Systems : : : : : : : : : : : : : : : : : : 26713.2.8 More Algorithms to Verify : : : : : : : : : : : : : : : : : : : : : : : : : : : 26713.2.9 Automatic Veri�cation of Randomized Systems : : : : : : : : : : : : : : : 26813.3 The Conclusion's Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 268Bibliography 269Table of Symbols 277
11



12



Chapter 1Introduction1.1 The Challenge of RandomizationIn 1976 Rabin published a paper titled Probabilistic Algorithms [Rab76] where he presentede�cient algorithms for two well-known problems: Nearest Neighbors , a problem in computa-tional geometry, and Primality Testing , the problem of determining whether a number is prime.The surprising aspect of Rabin's paper was that the algorithms for Nearest Neighbors and forPrimality Testing were e�cient, and the key insight was the use of randomized algorithms,i.e., algorithms that can 
ip fair coins. Rabin's paper was the beginning of a new trend ofresearch aimed at using randomization to improve the complexity of existing algorithms. It iscurrently conjectured that there are no e�cient deterministic algorithms for Nearest Neighborsand Primality Testing.Another considerable achievement came in 1982, when Rabin [Rab82] proposed a solutionto a problem in distributed computing which was known to be unsolvable without random-ization. Speci�cally, Rabin proposed a randomized distributed algorithm for mutual exclusionbetween n processes that guarantees no-lockout (some process eventually gets to the criticalregion whenever some process tries to get to the critical region) and uses a test-and-set sharedvariable with O(logn) values. On the other hand, Burns, Fisher, Jackson, Lynch and Patter-son [BFJ+82] showed that 
(n) values are necessary for a deterministic distributed algorithm.Since then, several other randomized distributed algorithms were proposed in the literature,each one breaking impossibility results proved for deterministic distributed algorithms. Severalsurveys of randomized algorithms are currently available; among those we cite [Kar90, GSB94].The bottom line is that randomization has proved to be exceptionally useful for problems indistributed computation, and it is slowly making its way into practical applications. However,randomization in distributed computation leaves us with a challenge whose importance increasesas the complexity of algorithms increases:\How can we analyze randomized distributed algorithms? In particular, how can weconvince ourselves that a randomized distributed algorithm works correctly?"The analysis of non-randomized distributed systems is challenging already, due to a phenomenoncalled nondeterminism. Speci�cally, whenever two systems run concurrently, the relative speedsof the two systems are not known in general, and thus it is not possible to establish a priorithe order in which the systems complete their tasks. On the other hand, the ordering of the13



completion of di�erent tasks may be fundamental for the global correctness of a system, since,for example, a process that completes a task may prevent another process from completingits task. The structure of the possible evolutions of a system can become intricate quickly,justifying the statement \there is rather a large body of sad experience to indicate that aconcurrent program can withstand very careful scrutiny without revealing its errors" [OL82].The introduction of randomization makes the problem even more challenging since twokinds of nondeterminism arise. We call them pure nondeterminism and probabilistic nondeter-minism. Pure nondeterminism is the nondeterminism due to the relative speeds of di�erentprocesses; probabilistic nondeterminism is the nondeterminism due to the result of some ran-dom draw. Alternatively, we refer to pure nondeterminism as the nondeterministic behavior ofa system and to probabilistic nondeterminism as the probabilistic behavior of a system. Themain di�culty with randomized distributed algorithms is that the interplay between probabil-ity and nondeterminism can create subtle and unexpected dependencies between probabilisticevents; the experience with randomized distributed algorithms shows that \intuition often failsto grasp the full intricacy of the algorithm" [PZ86], and \proofs of correctness for probabilisticdistributed systems are extremely slippery" [LR81].In order to meet the challenge it is necessary to address two main problems.� Modeling: How do we represent a randomized distributed system?� Veri�cation: Given the model, how do we verify the properties of a system?The main objective of this thesis is to make progress towards answering these two questions.1.1.1 ModelingFirst of all we need a collection of mathematical objects that describe a randomized algorithmand its behavior, i.e., we need a formal model for randomized distributed computation. Themodel needs to be su�ciently expressive to be able to describe the crucial aspects of randomizeddistributed computation. Since the interplay between probability and nondeterminism is oneof the main sources of problems for the analysis of an algorithm, a �rst principle guiding ourtheory is the following:1. The model should distinguish clearly between probability and nondeterminism.That is, if either Alice or Bob is allowed to 
ip a coin, the choice of who is 
ipping a coin isnondeterministic, while the outcome of the coin 
ip is probabilistic.Since the model is to be used for the actual analysis of algorithms, the model should allowthe description of randomized systems in a natural way. Thus, our second guiding principle isthe following:2. The model should correspond to our natural intuition of a randomized system.That is, mathematical elegance is undoubtedly important, but since part of the veri�cationprocess for an algorithm involves the representation of the algorithm itself within the formalmodel, the chance of making errors is reduced if the model corresponds closely to our view ofa randomized algorithm. A reasonable tradeo� between theory and practice is necessary.14



Our main intuition for a computer system, distributed or not, is as a state machine thatcomputes by moving from one state to another state. This intuition leads to the idea of LabeledTransition Systems (LTS) [Kel76, Plo81]. A labeled transition system is a state machine withlabels associated with the transitions (the moves from one state to another state). Labeledtransition systems have been used successfully for the modeling of ordinary distributed systems[Mil89, Jon91, LV91, LT87, GSSL94], and for their veri�cation [WLL88, SLL93, SGG+93,BPV94]; in this case the labels are used to model communication between several systems. Dueto the wide use of labeled transition systems, the extensive collection of veri�cation techniquesavailable, and the way in which labeled transition systems correspond to our intuition of adistributed system, two other guiding principles for the thesis are the following:3. The new model should extend labeled transition systems.4. The extension of labeled transition systems should be conservative, i.e., whenever a systemdoes not contain any random choices, our new system should reduce to an ordinary labeledtransition system.In other words our model is an extension of the labeled transition system model so that ordinarynon-randomized systems turn out to be a special case of randomized systems. Similarly, all theconcepts that we de�ne on randomized systems are generalizations of corresponding conceptsof ordinary non-randomized systems. In this way all the techniques available should generalizeeasily without the need to develop completely new and independent techniques. Throughoutthe thesis we refer to labeled transition systems as automata and to their probabilistic extensionas probabilistic automata.1.1.2 Veri�cationOnce the model is built, our primary goal is to use the model to describe the properties thata generic randomized algorithm should satisfy. If the model is well designed, the propertiesshould be easy to state. Then, our second goal is to develop general techniques that can beused for veri�cation.We investigate veri�cation techniques from two perspectives. On one hand we formalizesome of the kinds of the informal arguments that usually appear in existing papers; on theother hand we extend existing abstract veri�cation techniques for labeled transition systemsto the probabilistic framework. Examples of abstract techniques include the analysis of traces[Hoa85], which are ordered sequences of labels that can occur during the evolution of a system,and of simulation relations [Mil89, Jon91, LV91], which are relations between the states oftwo systems such that one system can simulate the transitions of the other via the simulationrelation. To provide some intuition for traces and simulations, Figure 1-1 represents threelabeled transition systems, denoted by A1; A2, and A3. The empty sequence and the sequencesa and ab are the traces of A1; A2, and A3. For example, a computation that leads to ab is theone that starts from s0, moves to s1, and then to s3. The dotted lines from one state to anotherstate (the arrows identify the from-to property) are examples of simulation relations from oneautomaton to the other. For example, consider the simulation relation from A3 to A2. State s0of A3 is related to state s0 of A2; states s1 and s2 of A3 are related to state s1 of A2; state s3of A3 is related to state s3 of A2. The transition of A3 from s0 to s2 with action a is simulatedin A2 by the transition from s0 to s1 with label a. There is a strong simulation also from A215



s0

s1 s2

s3 s4

a a

b b

s0

s1

s3

a

b

s0

s1 s2

s3

a a

b

A1 A2 A3Figure 1-1: Simulation relations for automata.to A3 (each state si of A2 is related to state si of A3), from A1 to A2, and from A2 to A1.There is an even stronger relation between A1 and A2, which is called a bisimulation and isrepresented by the double-arrow dotted lines between the states of A1 and A2. A bisimulationis an equivalence relation between the states of two automata. In this case each automaton cansimulate the transitions of the other via the bisimulation relation.Direct Veri�cationIn the description of a randomized distributed algorithm pure nondeterminism represents theundetermined part of its behavior, namely, in what order the processes are scheduled. Schedul-ing processes is the activity of removing the nondeterminism, and the object that does thescheduling is usually referred to as a scheduler or an adversary . The intuition behind the name\adversary" is in proving the correctness of an algorithm a scheduler is viewed as a maliciousentity that degrades the performance of the system as much as possible.Once the nondeterminism is removed, a system looks like a Markov chain, and thus it ispossible to reason about probabilities. A common argument is then\no matter how the scheduler acts, the probability that some good property holds isat least p."Actually, in most of the existing work p is 1, since the proofs are easier to carry out in this case.In this thesis we are interested in every p since we are concerned also with the time complexityof an algorithm. Throughout the thesis it will become clear why we need every p for the studyof time complexity.One of our major goals is to remove from the informal arguments of correctness all \danger-ous" statements, i.e., all statements that rely solely on intuition rather than on actual deduc-tions, and yet keep the structure of a proof simple. In other words, we want to provide toolsthat allow people to argue as before with a signi�cantly higher con�dence that what they say iscorrect. Then, we want to develop techniques that allow us to decompose the veri�cation taskof complex properties into simpler veri�cation tasks. This feature is important for scalability.Here we give examples of two issues that we believe to be important.� Make sure that you know what probability space you are working in. Or, at least, makesure that you are working in a probability space. This is a rule of thumb that is valid inother �elds like Information Theory and Detection Theory. Probability is very tricky. The16



fact that a speci�c probability space was not identi�ed was the reason for a bug discoveredby Saias [Sai92] in the original algorithm of Rabin [Rab82], later �xed by Kushilevitz andRabin [KR92]. Of course, in order to make sure we know what probability spaces we areworking in, we need some easy mechanisms to identify those probability spaces. Suchmechanisms were not available in 1982.� Avoid arguments of the kind \now the worst thing that can happen is the following."These arguments are usually based on the intuition that the designers have about theirown algorithm. Speci�cally, as has happened in the past, the designers argue based onworst cases they can think of rather than the actual worst case. What is missing is aproof showing that the worst case has been identi�ed. A much better statement wouldbe \no matter what happens, something else will happen", since it does not require us toidentify the worst scenario. Using our methodology, Aggarwal [Agg94] discovered a bugin an algorithm designed by himself and Kutten [AK93] which was due to an argument ofthe kind cited above. Similarly, we discovered a bug in the timing analysis of the mutualexclusion algorithm of Pnueli and Zuck [PZ86]. This bug arose for the same reason.The reader familiar with existing work, and in particular familiar with model checking, maybe a bit puzzled at this point. There is a considerable amount of work on model checkingof randomized distributed systems, and yet we are introducing new techniques. Furthermore,although there is some ongoing work on automating part of the proof methods developed in thisthesis [PS95], we do not address any decidability issue here. Our favorite analogy to justify ourapproach is that we view model checking as the program \Mathematica", a popular programfor symbolic manipulation of analytic expressions. If we are given a simple analytical problem,we can use Mathematica to get the solution from a computer. On the other hand, if we havea complex analytical problem, say a complex function that we have de�ned, and we want toverify that it respects some speci�c constraints, or maybe we want to �nd the constraints, thenthings are very di�erent, since the problem in general is undecidable, i.e., not solvable by acomputer. We can plot part of the given function using Mathematica and have a rough idea ofwhether it satis�es the desired constraints. If the plot shows that the function violates someof the constraints, then we have to change either the function or the constraints; if the plotshows that the function does not violate the constraints, then we can start to use all the toolsof analysis to prove that the given function satis�es the constraints. In this way Mathematicasaves us a lot of time. In using the analytical tools we need to use our creativity and ourintuition about the problem so that we can solve its undecidable part. We view our research asbuilding the analytical tools.SimulationsThe study of traces and simulations carried out in the thesis contributes more directly to theorythan to practice. In particular, we do not give any examples of veri�cation using simulations.However, due to the success that simulation relations have had for the veri�cation of ordinarylabeled transition systems, it is likely that the same methods will also work for randomizedsystems.A considerable amount of research has been carried out in extending trace semantics andsimulation relations to the probabilistic case, especially within process algebras [Hoa85, Mil89,17



BW90]; however, most of the existing literature does not address pure nondeterminism, andthus it has limited practical applicability. We believe it is important to have a model that isboth useful for realistic problems and accounts for the existing theoretical work. In particu-lar, based on some of the interpretations that are given to nondeterminism within ordinaryautomata, we realize that, also in the probabilistic case, pure nondeterminism can be used toexpress much more than just the relative speeds of processes running concurrently. Speci�cally,nondeterminism can be used to model the following phenomena.1. Scheduling freedom. This is the classical use of nondeterminism, where several processesrun in parallel and there is freedom in the choice of which process performs the nexttransition.2. External environment . Some of the labels can represent communication events due to theaction of some external user, or more generally, to the action of an external environment .In this case nondeterminism models the arbitrary behavior of the external environment,which is chosen by an adversary.3. Implementation Freedom. A probabilistic automaton is viewed as a speci�cation, andnondeterminism represents implementation freedom. That is, if from some state thereare two transitions that can be chosen nondeterministically, then an implementation canhave just one of the two transitions. In this case an adversary chooses the implementationthat is used.It is important to recognize that, in the labeled transition system model, the three uses ofnondeterminism described above can coexist within the same automaton. It is the speci�cinterpretation that is given to the labels that determines what is expressed by nondeterminismat each point.1.2 Organization of the ThesisThe thesis is divided in two main parts: the �rst part deals with the untimed model and thesecond part deals with the timed model. The second part relies heavily on the �rst part andadds a collection of results that are speci�c to the analysis of real-time properties. We describethe technical contributions of the thesis chapter by chapter.An Overview of Related Work. Chapter 2 gives an extensive overview of existing workon modeling and veri�cation of randomized distributed systems.Preliminaries. Chapter 3 gives the basics of probability theory that are necessary to under-stand the thesis and gives an overview of the labeled transition systems model. All the topicscovered are standard, but some of the notation is speci�c to this thesis.Probabilistic Automata. Chapter 4 presents the basic probabilistic model. A probabilisticautomaton is a state machine whose transitions lead to a probability distribution over the labelsthat can occur and the new state that is reached. Thus, a transition describes the probabilisticbehavior of a probabilistic automaton, while the choice of which transition to perform describes18



the nondeterministic behavior of a probabilistic automaton. A computation of a probabilisticautomaton, called a probabilistic execution, is the result of resolving the nondeterminism in aprobabilistic automaton, i.e., the result of choosing a transition, possibly using randomization,from every point. A probabilistic execution is described essentially by an in�nite tree withprobabilities associated with its edges. On such a tree it is possible to de�ne a probabilityspace, which is the object through which the probabilistic properties of the computation canbe studied. We extend the notions of �niteness, pre�x and su�x of ordinary executions tothe probabilistic framework and we extend the parallel composition operator. Finally, we showhow to project a probabilistic execution of a compound probabilistic automaton onto one ofits components and we show that the result is a probabilistic execution of the component.Essentially, we show that the properties of ordinary automata are preserved in the probabilisticframework. The probabilistic model is an extension of ordinary automata since an ordinaryautomaton can be viewed as a probabilistic automaton where each transition leads just to oneaction and one state.Direct Veri�cation: Stating a Property. Chapter 5 shows how to formalize commonlyused statements about randomized algorithms and shows how such formal statements can bemanipulated. We start by formalizing the idea of an adversary , i.e., the entity that resolvesthe nondeterminism of a system in a malicious way. An adversary is a function that, giventhe past history of a system, chooses the next transition to be scheduled, possibly using ran-domization. The result of the interaction between an adversary and a probabilistic automatonis a probabilistic execution, on which it is possible to study probabilistic properties. Thus,given a collection of adversaries and a speci�c property, it is possible to establish a bound onthe probability that the given property is satis�ed under any of the given adversaries. We callsuch bound statements probabilistic statements . We show how probabilistic statements can becombined together to yield more complex statements, thus allowing for some form of compo-sitional veri�cation. We introduce a special kind of probabilistic statement, called a progressstatement , which is a probabilistic extension of the leads-to operator of UNITY [CM88]. Infor-mally, a progress statement says that if a system is started from some state in a set of statesU , then, no matter what adversary is used, a state in some other set of states U 0 is reachedwith some minimum probability p. Progress statements can be combined together under somegeneral conditions on the class of adversaries that can be used.Finally, we investigate the relationship between deterministic adversaries (i.e., adversariesthat cannot use randomness in their choices) and general adversaries. We show that for a largeclass of collections of adversaries and for a large class of properties it is su�cient to analyzeonly deterministic adversaries in order to derive statements that concern general adversaries.This result is useful in simplifying the analysis of a randomized algorithm.Direct Veri�cation: Proving a Property. Chapter 6 shows how to prove the validityof a probabilistic statement from scratch. We introduce a collection of coin lemmas , whichcapture a common informal argument on probabilistic algorithms. Speci�cally, for many proofsin the literature the intuition behind the correctness of an algorithm is based on the followingfact: if some speci�c random draws give some speci�c results, then the algorithm guaranteessuccess. Then, the problem is reduced to showing that, no matter what the adversary does,the speci�c random draws give the speci�c results with some minimum probability. The coin19



lemmas can be used to show that the speci�c random draws satisfy the minimum probabilityrequirement; then, the problem is reduced to verifying properties of a system that does notcontain probability at all. Factoring out the probability from a problem helps considerably inremoving errors due to unexpected dependencies.We illustrate the method by verifying the correctness of the randomized dining philosophersalgorithm of Lehmann and Rabin [LR81] and the algorithm for randomized agreement withstopping faults of Ben-Or [BO83]. In both cases the correctness proof is carried out by provinga collection of progress statements using some coin lemmas.Finally, we suggest another technique, called the partition technique, that departs consid-erably from the coin lemmas and that appears to be useful in some cases. We illustrate thepartition technique on a toy resource allocation protocol, which is one of the guiding examplesthroughout Chapters 5 and 6.Hierarchical Veri�cation: Trace Distributions. Chapter 7 extends the trace-based se-mantics of ordinary automata [Hoa85] to the probabilistic framework. A trace is a orderedsequence of labels that occur in an execution; a trace distribution is the probability distribu-tion on traces induced by a probabilistic execution. We extend the trace preorder of ordinaryautomata (inclusion of traces) to the probabilistic framework by de�ning the trace distributionpreorder . However, the trace distribution preorder is not preserved by the parallel compositionoperator, i.e., it is not a precongruence. Thus, we de�ne the trace distribution precongruenceas the coarsest precongruence that is contained in the trace distribution preorder. Finally, weshow that there is an elementary probabilistic automaton called the principal context that dis-tinguishes all the probabilistic automata that are not in the trace distribution precongruencerelation. This leads us to an alternative characterization of the trace distribution precongruenceas inclusion of principal trace distributions .Hierarchical Veri�cation: Simulations. Chapter 8 extends the veri�cation method basedon simulation relations to the probabilistic framework. Informally, a simulation relation fromone automaton to another automaton is a relation between the states of the two automata thatallows us to embed the transition relation of one automaton in the other automaton. In theprobabilistic framework a simulation relation is still a relation between states; however, sincea transition leads to a probability distribution over states, in order to say that a simulationrelation embeds the transition relation of a probabilistic automaton into another probabilisticautomaton we need to extend a relation de�ned over states to a relation de�ned over probabil-ity distributions over states. We generalize the strong and weak bisimulation and simulationrelations of Milner, Jonsson, Lynch and Vaandrager [Mil89, Jon91, LV91] to the probabilisticframework. Then, we introduce a coarser simulation relation, called a probabilistic forwardsimulation, where a state is related to a probability distribution over states rather than to asingle state. We prove an execution correspondence theorem which, given a simulation relationfrom one probabilistic automaton to another probabilistic automaton, establishes a strong cor-respondence between each probabilistic execution of the �rst probabilistic automaton and oneof the probabilistic executions of the second automaton. Based on the execution correspon-dence theorem, we show that each of the relations presented in the chapter is sound for thetrace distribution precongruence. Thus, simulation relations can be used as a sound techniqueto prove principal trace distribution inclusion.20



Probabilistic Timed Automata. Chapter 9 starts the second part of the thesis. We extendprobabilistic automata with time following the approach of Lynch and Vaandrager [LV95], wherepassage of time is modeled by means of transitions labeled with positive real numbers. In orderto use most of the untimed theory, we force time-passage transition not to be probabilistic.We extend probabilistic executions to the timed framework, leading to probabilistic timedexecutions, and we show the relationship between probabilistic executions and probabilistictimed executions. The main idea is that in several circumstances it is su�cient to analyze theprobabilistic executions of a system in order to study its real-time behavior.Direct Veri�cation: Time Complexity. Chapter 10 introduces new techniques for theveri�cation of real-time properties of a randomized algorithm. The techniques of Chapter 5still apply; however, due to the presence of time, it is possible to study the time complexityof an algorithm. We augment the progress statements of Chapter 5 with an upper bound t tostate the following: if a system is started from some state in a set of states U , then, no matterwhat adversary is used, a state of some other set of states U 0 is reached within time t withsome minimum probability p. Based on these timed progress statements , we show how to deriveupper bounds on the expected time to reach some set of states. We illustrate the techniqueby showing that the randomized dining philosophers algorithm of Lehmann and Rabin [LR81]guarantees progress within expected constant time.By extending the technique for the analysis of expected time, we show how to derive boundson more abstract notions of complexity. In particular, we consider the algorithm for randomizedagreement of Ben-Or as an example. The algorithm of Ben-Or runs in stages. From the waythe algorithm is structured, it is not possible to give meaningful bounds on the time it takesto make progress from any reachable state. However, using abstract complexities, it is easyto prove an upper bound on the expected number of stages that are necessary before reachingagreement. Once an upper bound on the expected number of stages is derived, it is easy toderive an upper bound on the expected time to reach agreement.Hierarchical Veri�cation: Timed Trace Distributions and Timed Simulations. Chap-ters 11 and 12 extend the trace distribution precongruence and the simulation relations of theuntimed framework to the timed framework. A trace is replaced by a timed trace, where atimed trace is a sequence of labels paired with their time of occurrence plus a limit time. Thetimed trace distribution precongruence is characterized by a timed principal context , which isthe principal context augmented with arbitrary time-passage transitions. All the timed simu-lation relations are shown to be sound for the timed trace distribution precongruence. All theresults are proved by reducing the problem to the untimed framework.Conclusion. Chapter 13 gives some concluding remarks and several suggestions for furtherwork. Although this thesis builds a model for randomized computation and shows that it issu�ciently powerful for the analysis of randomized distributed real-time algorithms, it justdiscovers the tip of the iceberg. We propose a methodology for the analysis of randomization,and we give several examples of the application of such methodology; however, there are severalother ways to apply our methodology. It is very likely that new probabilistic statements, newresults to combine probabilistic statements, and new coin lemmas can be developed based on thestudy of other algorithms; similarly, the fundamental idea behind the trace semantics that we21



present can be used also for other kinds of observational semantics like failures [Hoa85, DH84].We give hints on how it is possible to handle liveness within our model and state what we knowalready. Furthermore, we give ideas of what is possible within restricted models where someform of I/O distinction like in the work of Lynch and Tuttle [LT87] or some timing restrictionlike in the work of Merritt, Modugno and Tuttle [MMT91] is imposed. Finally, we address theissue of relaxing some of the restrictions that we impose on the timed model.1.3 Reading the ThesisThe two parts of the thesis, the untimed and the timed part, proceed in parallel: each chapter ofthe untimed part is a prerequisite for the corresponding chapter in the timed part. Each part issubdivided further into two parts: the direct veri�cation and the hierarchical veri�cation. Thetwo parts can be read almost independently, although some knowledge of the direct veri�cationmethod can be of help in reading the hierarchical method. The direct method is focused mainlyon veri�cation of algorithms, while the hierarchical method is focused mainly on the theoreticalaspects of the problem. Further research should show how the hierarchical method can be ofsigni�cant help for the analysis of randomized algorithms.Each chapter starts with an introductory section that gives the main motivations and anoverview of the content of the chapter. Usually, the more technical discussion is concentratedat the end. The same structure is used for each section: the main result and short proofs areat the beginning of each section, while the long proofs and the more technical details are givenat the end. A reader can skip the proofs and the most technical details on a �rst reading inorder to have a better global picture. It is also possible to read just Chapter 3 and the �rstsection (including subsections) of Chapters 4 to 12, and have a global view of the results ofthe thesis. In a second reading, the interested reader can concentrate on the proofs and on thetechnical de�nitions that are necessary for the proofs. The reader should keep in mind thatseveral proofs in the thesis are based on similar techniques. Such techniques are explained infull detail only the �rst time they are used.A reader interested only in the techniques for the direct veri�cation of algorithms and notinterested in the arguments that show the foundations of the model can avoid reading the proofs.Moreover, such a reader can just glance over Section 4.2.6, and skip Sections 4.2.7, 4.3, and 4.4.In the timed framework the reader interested just in the techniques for the direct veri�cationof algorithms can skip all the comparison between the di�erent types of probabilistic timedexecutions and concentrate more on the intuition behind the de�nition of a probabilistic timedexecution.
22



Chapter 2An Overview of Related WorkIn this chapter we give an extensive overview of existing work on modeling and veri�cation ofrandomized distributed systems. We defer the comparison of our work with the existing workto the end of each chapter. Some of the descriptions include technical terminology which maybe di�cult to understand for a reader not familiar with concurrency theory. Such a readershould focus mainly on the high level ideas and not worry about the technical details. The restof the thesis presents our research without assuming any knowledge of concurrency theory. Weadvise the reader not familiar with concurrency theory to read this chapter again after readingthe thesis.There have been twomain research directions in the �eld of randomized distributed real-timesystems: one focused mainly on modeling issues using process algebras [Hoa85, Mil89, BW90]and labeled transition systems [Kel76, Plo81] as the basic mathematical objects; the otherfocused mainly on veri�cation using Markov chains as the basic model and temporal logicarguments [Pnu82] and model checking [EC82, CES83] as the basic veri�cation technique. Mostof the results of the �rst of the research directions fail to model pure nondeterminism, whilethe results of the second of the research directions model pure nondeterminism successfully, butnot in its full generality. As expressed at the end of Section 1.1.2, pure nondeterminism arisesonly in the choice of what process is performing the next instruction at each moment. Belowwe summarize the results achieved in both of the research directions. Furthermore, at the endof each chapter we add a section where we explain how the results described in this section arerelated to our research.2.1 Reactive, Generative and Strati�ed ModelsWe present some of the existing work on modeling which is based on a classi�cation due to vanGlabbeek, Smolka, Ste�en and Tofts [GSST90]. They de�ne three types of processes: reactive,generative, and strati�ed .� Reactive model: Reactive processes consist of states and labeled transitions associatedwith probabilities. The restriction imposed on a reactive process is that for each state thesum of the probabilities of the transitions with the same label is 1.� Generative model: Generative processes consist of states and labeled transitions associatedwith probabilities. The restriction imposed on a generative process is that for each state23



a ba b

1/81/89/163/161/4 3/4 1/2 1/2

a ba b

1/2

a a b b

1/23/41/4

3/4 1/4Figure 2-1: Reactive, generative and strati�ed processes, from left to right.either there are no outgoing transitions, or the sum of the probabilities of all the outgoingtransitions is 1.� Strati�ed model: Strati�ed processes consist of states, unlabeled transitions associatedwith probabilities, and labeled transitions. The restriction imposed on a strati�ed processis that for each state either there is exactly one outgoing labeled transition, or all theoutgoing transitions are unlabeled and the sum of their probabilities is 1.Figure 2-1 gives an example of a reactive, a generative, and a strati�ed process. Informally,reactive processes specify for each label (also called action) the probability of reaching otherstates; generative processes also give additional information concerning the relative probabili-ties of the di�erent actions; strati�ed processes add some probabilistic structure to generativeprocesses. Observe that among the three models above only the reactive model has a struc-ture that can be used to express some form of pure nondeterminism (what action to perform),although in van Glabbeek et al. [GSST90] this issue is not considered.2.1.1 Reactive ModelRabin [Rab63] studies the theory of probabilistic automata, which are an instance of the reactivemodel. He de�nes a notion of a language accepted by a probabilistic automaton relative to acut point � and shows that there are �nite state probabilistic automata that de�ne non-regularlanguages.Larsen and Skou [LS89, LS91] de�ne a bisimulation type semantics, called probabilisticbisimulation, and a logic, called probabilistic model logic (PML), for reactive processes, andthey introduce a notion of testing based on sequential tests and a copying facility. They showthat two processes that satisfy the minimal probability assumption are probabilistically bisim-ilar if and only if they satisfy exactly the same PML formulas, and that two processes thatsatisfy the minimal probability assumption and that are not probabilistically bisimilar can bedistinguished through testing with a probability arbitrarily close to 1. The minimum proba-bility assumption states that for every state the probability of each transition is either 0 or isabove some minimal value. This condition corresponds to the image-�niteness condition fornon-probabilistic processes. Bloom and Meyer [BM89] relate the notions of probabilistic andnon-probabilistic bisimilarity by showing that two non-probabilistic �nitely branching processesP and Q are bisimilar if and only if there exists an assignment of probabilities to the transi-tions of P and Q such that the corresponding reactive processes P 0 and Q0 are probabilisticallybisimilar.Larsen and Skou [LS92] introduce a synchronous calculus for reactive processes where theprobabilistic behavior is obtained through a binary choice operator parameterized by a prob-24



ability p. They de�ne a bisimulation relation on the new calculus, and they introduce a newextended probabilistic logic (EPL) which extends PML in order to support decomposition withrespect to parallel composition. Both the probabilistic bisimulation and the extended proba-bilistic logic are axiomatized.2.1.2 Generative and Strati�ed ModelsGiacalone, Jou and Smolka [GJS90] de�ne a process algebra for generative processes, calledPCCS, which can be seen as a probabilistic extension of Milner's SCCS [Mil93]. In PCCS twoprocesses synchronize at every transition regardless of the action that they perform. That is, ifone process performs a transition labeled with action a with probability pa and another processperforms a transition labeled with b with probability pb, then the two processes together canperform a transition labeled with ab with probability papb. The authors provide an equationaltheory for PCCS based on the probabilistic bisimulation of Larsen and Skou [LS89], and providean axiomatization for probabilistic bisimulation (the axiomatization is shown to be sound andcomplete in [JS90]). Furthermore, the authors de�ne a notion of �-bisimulation, where twoprocesses can simulate each other's transition with a probability di�erence at most �. Based on�-bisimulation, the authors de�ne a metric on generative processes.Jou and Smolka [JS90] de�ne trace and failure equivalence for generative processes. Theyshow that, unlike for nondeterministic transition systems, maximality of traces and failures doesnot increase the distinguishing power of trace and failure equivalence, where by maximality ofa trace we mean the probability to produce a speci�c trace and then terminate. More precisely,knowing the probability of each �nite trace of a generative process gives enough information todetermine the probability that a �nite trace occurs leading to termination; similarly, knowingthe probability of every failure of a generative process gives enough information to determinethe probability of each maximal failure. Jou and Smolka show also that the trace and failureequivalences are not congruences. Our probabilistic executions are essentially generative pro-ceses, and our trace distributions are essentially the trace semantics of Jou and Smolka. In ourcase the properties shown by Jou and Smolka follow directly from measure theory.Van Glabbeek et al. [GSST90] state that the generative model is more general than thereactive model in the sense that generative processes, in addition to the relative probabilitiesof transitions with the same label, contain information about the relative probabilities of tran-sitions with di�erent labels. They show also that the strati�ed model is a generalization of thegenerative model in the sense that a probabilistic choice in the generative model is re�ned bya structure of probabilistic choices in the strati�ed model. Formally, the authors give threeoperational semantics to PCCS, one reactive, one generative, and one strati�ed, and show howto project a strati�ed process into a generative process and how to project a generative processinto a reactive process, so that the operational semantics of PCCS commute with the projec-tions. The reactive and generative processes of Figure 2-1 are the result of the projection ofthe generative and strati�ed processes, respectively, of Figure 2-1. Finally, the authors de�neprobabilistic bisimulation for the generative and for the strati�ed models and show that bisim-ulation is a congruence in all the models and that bisimulation is preserved under projectionfrom one model to the other. The results of van Glabbeek et al. [GSST90], however, are basedon the fact that parallel composition is synchronous.Tofts [Tof90] introduces a weighted synchronous calculus whose operational semantics resem-25



bles the strati�ed model. The main di�erence is that the weights associated with the transitionsare not probabilities, but rather frequencies , and thus their sums are not required to be 1. Toftsde�nes two bisimulation relations that are shown to be congruences. The �rst relation is sensi-tive to the actual frequencies of the transitions leaving from a state, while the second relationis sensitive only to the relative frequencies of the transitions leaving from a state. In particular,the second relation coincides with the strati�ed bisimulation of van Glabbeek et al. [GSST90]after normalizing to 1 the frequencies of the transitions that leave from every state. The ad-vantage of Tofts' calculus is that it is not necessary to restrict the syntax of the expressions sothat the weights of the choices at any point sum to 1 (such a restriction is imposed in PCCS).Moreover, it is possible to de�ne a special weight ! that expresses in�nite frequency and canbe used to express priorities. A similar idea to express priorities is used by Smolka and Ste�enin [SS90], where the strati�ed semantics of PCCS is extended with 0-probability transitions.Baeten, Bergstra and Smolka [BBS92] de�ne an algebra, prACP�I , which is an extensionof ACP [BW90] with generative probabilities. The authors show that prACP�I and a weakerversion of ACP (ACP�I ) are correlated in the sense that ACP�I is the homomorphic imageof prACP�I in which the probabilities are forgotten. The authors also provide a sound andcomplete axiomatization of probabilistic bisimulation.Wu, Smolka and Stark [WSS94] augment the I/O automaton model of Lynch and Tuttle[LT87] with probability and they study a compositional behavioral semantics which is alsoshown to be fully abstract with respect to probabilistic testing. A test is a probabilistic I/Oautomaton with a success action w. The model is reactive for the input actions and generativefor the output actions. This allows the authors to de�ne a meaningful parallel compositionoperator, where two probabilistic I/O automata synchronize on their common actions andevolve independently on the others. In order to deal with the nondeterminism that arises fromparallel composition, the authors attach a delay parameter to each state of a probabilistic I/Oautomaton, which can be seen as the parameter of an exponential probability distribution onthe time of occurrence of the next local (i.e., output or internal) action. Whenever there is acon
ict for the occurrence of two local actions of di�erent probabilistic I/O automata, the delayparameters associated with the states are used to determine the probability with which eachaction occurs. The behavior of a probabilistic I/O automaton A is a function EA that associatesa functional EA� with each �nite trace � . If the length of � is n, then EA� takes a function fthat given n+1 delay parameters computes an actual delay, and returns the expected value off applied to the delay parameters of the computations of A that lead to �.2.2 Models based on TestingResearch on modeling has also focused on extending the testing preorders of De Nicola andHennessy [DH84] to probabilistic processes. To de�ne a testing preorder it is necessary tode�ne a notion of a test and of how a test interacts with a process. The interaction betweena test and a process may lead to success or failure. Then, based on the success or failure ofthe interactions between a process and a test, a preorder relation between processes is de�ned.Informally, a test checks whether a process has some speci�c features: if the interaction betweena test and a process is successful, then the process has the desired feature.Ivan Christo� [Chr90b, Chr90a] analyzes generative processes by means of testing. A testis a nondeterministic �nite-state process, and the interaction between a process and a test is26



obtained by performing only those actions that both the processes o�er and by keeping therelative probability of each transition unchanged. Four testing preorders are de�ned, each onebased on the probability of the traces of the interaction between a process and a test. Christo�also provides a fully abstract denotational semantics for each one of the testing preorders: eachprocess is denoted by a mapping that given an o�ering and a trace returns a probability. Ano�ering is a �nite sequence of non-empty sets of actions, and, informally, describes the actionsthat the environment o�ers to a process during the interaction between the process and a test.Linda Christo� [Chr93] builds on the work of Ivan Christo� and de�nes three linear se-mantics for generative processes: the trace semantics, the broom semantics, and the barbedsemantics. The relations are de�ned in a style similar to the denotational models of IvanChristo�, and, in particular, the trace and barbed semantics coincide with two of the semanticsof [Chr90b]. Linda Christo� also de�nes three linear-time temporal logics that characterize herthree semantics and provides e�cient model checking algorithms for the recursion-free versionof the logics.Testing preorders that are more in the style of De Nicola and Hennessy [DH84] are presentedby Yi and Larsen in [YL92], where they de�ne a process algebra with all the operators of CCSplus a binary probabilistic choice operator parameterized by a probability p. Thus, the calculusof Yi and Larsen allows for nondeterminism. A test is a process of their calculus with anadditional label w. Depending on how the nondeterminism is resolved, w occurs with di�erentprobabilities in the interaction between a process and a test. Then, Yi and Larsen de�ne a maypreorder, which is based on the highest probability of occurrence of w, and a must preorder,which is based on the lowest probability of occurrence of w. The two preorders are shown tocoincide with the testing preorders of De Nicola and Hennessy [DH84] when no probability ispresent. In more recent work Jonsson, Ho-Stuart and Yi [JHY94] give a characterization ofthe may preorder based on tests that are not probabilistic, while Jonsson and Yi [JY95] give acharacterization of the may and must preorders based on general tests.Cleaveland, Smolka and Zwarico [CSZ92] introduce a testing preorder on reactive processes.A test is a reactive process with a collection of successful states and a non-observable action.The interaction between a test and a process allows an observable action to occur only ifthe two processes allow it to occur, and allows the non-observable action to occur if the testallows it to occur. The result is a generative process, where each of the actions that occur ischosen according to a uniform distribution (thus the formalism works only for �nitely manyactions). Two processes are compared based on the probability of reaching a successful state inthe interaction between a process and a test. The authors show that their testing preorder isclosely connected to the testing preorders of De Nicola and Hennessy [DH84] in the sense thatif a process passes a test with some non-zero probability, then the non-probabilistic versionof the process (the result of removing the probabilities from the transition relation of theprocess) may pass the non-probabilistic version of the test, and if a process passes a test withprobability 1, then the non-probabilistic version of the process must pass the non-probabilisticversion of the test. An alternative characterization of the testing preorder of Cleaveland et al.[CSZ92] is provided by Yuen, Cleaveland, Dayar and Smolka [YCDS94]. A process is representedas a mapping from probabilistic traces to [0; 1], where a probabilistic trace is an alternatingsequence of actions and probability distributions over actions. Yuen et al. use the alternativecharacterization to show that the testing preorder of Cleaveland et al. [CSZ92] is an equivalencerelation. 27



2.3 Models with Nondeterminism and Denotational Models2.3.1 Transitions with Sets of ProbabilitiesJonsson and Larsen [JL91] introduce a new kind of probabilistic transition system where thetransitions are labeled by sets of allowed probabilities. The idea is to model speci�cations wherethe probabilities associated with the transitions are not completely speci�ed. They extend thebisimulation of Larsen and Skou [LS89] to the new framework and they propose two criteria forre�nement between speci�cations. One criterion is analogous to the de�nition of simulationsbetween non-probabilistic processes; the other criterion is weaker and regards a speci�cationas a set of probabilistic processes. Re�nement is then de�ned as inclusion of probabilisticprocesses. Finally, Jonsson and Larsen present a complete method for verifying containmentbetween speci�cations.2.3.2 Alternating ModelsHansson and Jonsson [HJ89, HJ90] develop a probabilistic process algebra based on an alternat-ing model . The model of Hansson and Jonsson, which is derived from the Concurrent MarkovChains of Vardi [Var85], is a model in which there are two kinds of states: probabilistic states ,whose outgoing transitions are unlabeled and lead to nondeterministic states, and nondetermin-istic states , whose outgoing transitions are labeled and lead to probabilistic states. Only thetransitions leaving from probabilistic states are probabilistic, and for each probabilistic statethe probabilities of the outgoing transitions add to 1. The authors de�ne a strong bisimulationsemantics in the style of Larsen and Skou [LS89] for which they provide a sound and completeaxiomatization. The model of Hansson and Jonsson [HJ90] di�ers substantially from the modelsof van Glabbeek et al. [GSST90] in that there is a clear distinction between pure nondeterminismand probability. The model could be viewed as an instance of the reactive model; however, theparallel composition operation de�ned by Hansson and Jonsson [HJ90] is asynchronous, whilethe classi�cation of van Glabbeek et al. [GSST90] works only for synchronous composition. Acomplete presentation of the work of Hansson and Jonsson [HJ89, HJ90] appears in Hansson'sPhD thesis [Han91], later published as a book [Han94]. Our simple probabilistic automata arevery similar in style to the objects of Hansson's book.2.3.3 Denotational SemanticsSeidel [Sei92] extends CSP [Hoa85] with probability. The extension is carried out in two steps.In the �rst step a process is a probability distribution over traces; in the second step, in orderto account for the nondeterministic behavior of the environment, a process is a conditionalprobability measure, i.e., an object that given a trace, which is meant to be produced by theexternal environment, returns a probability distribution over traces.Jones and Plotkin [JP89] use a category theoretic approach to de�ne a probabilistic pow-erdomain, and they use it to give a semantics to a language with probabilistic concurrency.It is not known yet how the semantics of Jones and Plotkin compares to existing operationalsemantics. 28



2.4 Models with Real TimeThere are basically two models that address real time issues. One model is the model of Hanssonand Jonsson [Han94], where special � actions can appear in the transitions. The occurrence ofan action � means that time has elapsed, and the amount of time that elapses in a computationis given by the number of occurrences of action �. Thus, the time domain of Hansson andJonsson's model is discrete.The other model is based on stochastic process algebras and is used in the �eld of performanceanalysis. In particular, actions are associated with durations, and the durations are expressedby random variables. In order to simplify the analysis, the random variables are assumed to havean exponential probability distribution, which is memoryless. Research in this area includeswork from G�otz, Herzog and Rettelbach [GHR93], from Hillston [Hil94], and from Bernardo,Donatiello and Gorrieri [BDG94].2.5 Veri�cation: Qualitative and Quantitative MethodsMost of the research on the veri�cation of randomized distributed systems is concerned withproperties that hold with probability 1. The advantage of such properties is that for �nitestate processes they do not depend on the actual probabilities of the transitions, but rather onwhether those transitions have probability 0 or probability di�erent from 0. Thus, the problemof checking whether a system satis�es a property with probability 1 is reduced to the problemof checking whether a non-randomized system satis�es some other property. This method iscalled qualitative, as opposed to the quantitative method, where probabilities di�erent from 1also matter.The rationale behind the qualitative method is that a randomized process, rather thanalways guaranteeing success, usually guarantees success with probability 1, which is practicallythe same as guaranteeing success always. The quantitative method becomes relevant whenevera system has in�nitely many states or the complexity of an algorithm needs to be studied.Almost all the papers that we describe in this section are based on a model where n Markovchains evolve concurrently. Each Markov chain represents a process, and the pure nondeter-minism arises from the choice of what Markov chain performs the next transition (what processis scheduled next). The object that resolves the nondeterminism is called a scheduler or adver-sary , and the result of a scheduler on a collection of concurrent Markov chains is a new Markovchain that describes one of the possible evolutions of the global system. Usually a scheduler isrequired to be fair in the sense that each process should be scheduled in�nitely many times.2.5.1 Qualitative Method: Proof TechniquesHuart, Sharir and Pnueli [HSP83] consider n �nite state asynchronous randomized processesthat run in parallel, and provide two necessary and su�cient conditions to guarantee that agiven set of goal states is reached with probability 1 under any fair scheduler. A scheduler isthe entity that at any point chooses the next process that performs a transition. The resultof the action of a scheduler on n processes is a Markov chain, on which it is possible to studyprobabilities. A scheduler is fair if and only if, for each path in the corresponding Markovchain, each process is scheduled in�nitely many times. The authors show that in their model29



each property described by reaching a collection of states has either probability 0 or probability1. Then, they describe a decision procedure for the almost sure reachability of a set of goalstates. The procedure either constructs a decomposition of the state space into a sequence ofcomponents with the property that any fair execution of the program must move down thesequence with probability 1 until it reaches the goal states (goal states reached with probability1), or �nds an ergodic set of states through which the program can loop forever with probability1 (goal states reached with probability 0). Finally the authors give some examples of problemswhere the use of randomization does not provide any extra power over pure nondeterminism.The proof principle of [HSP83] is generalized to the in�nite state case by Hart and Sharir[HS85].Lehmann and Shelah [LS82] extend the temporal logic of linear time of Pnueli [Pnu82] toaccount for properties that hold with probability 1, and they provide three complete axioma-tizations of the logic: one axiomatization is for general models, one is for �nite models, andone is for models with bounded transition probabilities (same as the minimum probability re-quirement of Larsen and Skou [LS91]). A model of the logic is essentially a Markov chain,or alternatively an unlabeled generative process. The logic of Lehmann and Shelah [LS82] isobtained from the logic of Pnueli [Pnu82] by adding a new modal operator O whose meaningis that the argument formula is satis�ed with probability 1.Pnueli [Pnu83] introduces the notion of extreme fairness and shows that a property thatholds for all extreme fair executions holds with probability 1. Furthermore, Pnueli presents asound proof rule based on extreme fairness and linear temporal logic. The model consists of nrandomized processes in parallel. Each process is a state machine where each state enables aprobabilistic transition, which lead to several modes . Resolving the nondeterminism leads to aMarkov chain. However, only those Markov chains that originate from fair scheduling policiesare considered. Then, an execution (a path in the Markov chain) is extremely fair relativeto a property � (� is a property that is satis�ed by states) if and only if for each transitionthat occurs in�nitely many times from states that satisfy �, each mode of the transition occursin�nitely many times. An execution is extremely fair if and only if it is extremely fair relativeto any formula � expressed in the logic used in [Pnu83]. The proof rule of Pnueli [Pnu83],along with some other new rules, is used by Pnueli and Zuck [PZ86] to verify two non-trivialrandomized algorithms, including the Randomized Dining Philosophers algorithm of Lehmannand Rabin [LR81]. Zuck [Zuc86] introduces the notion of �-fairness and shows that �-fairnessis complete for temporal logic properties that hold with probability 1.Rao [Rao90] extends UNITY [CM88] to account for randomized systems and propertiesthat hold with probability 1. The main emphasis is on properties rather than states. A newnotion of weak probabilistic precondition is introduced that, together with the extreme fairnessof Pnueli, generalizes weakest preconditions. Finally, based on the work of Huart et al. [HSP83],Rao argues that his new logic is complete for �nite state programs.2.5.2 Qualitative Method: Model CheckingVardi [Var85] presents a method for deciding whether a probabilistic concurrent �nite stateprogram satis�es a linear temporal logic speci�cation, where satisfaction means that a formulais satis�ed with probability 1 whenever the scheduler is fair. A program is given as a ConcurrentMarkov Chain, which is a transition system with nondeterministic and probabilistic states. A30



subset F of the nondeterministic states is called the set of fair states. A scheduler is a functionthat, based on the past history of a program, chooses the next transition to perform froma nondeterministic state. The result of the action of a scheduler on a program is a Markovchain on which it is possible to study the probability that some linear temporal logic formulais satis�ed. A path in the Markov chain is fair if for each fair state that occurs in�nitely manytimes each one of the possible nondeterministic choices from that state occurs in�nitely manytimes; a scheduler is fair if the fair paths have probability 1 in the corresponding Markov chain.The model checking algorithm of Vardi works in time polynomial in the size of the program anddoubly exponential in the size of the speci�cation. By considering a slightly restricted logic,Vardi and Wolper [VW86] reduce the complexity of the model checking algorithm to only oneexponent in the size of the formula.Courcoubetis and Yannakakis [CY88, CY90] investigate the complexity of model checkinglinear time propositional temporal logic of sequential and concurrent probabilistic processes. Asequential process is a Markov chain and a concurrent process is a Concurrent Markov Chain.They give a model checking algorithm that runs in time linear in the size of the program andexponential in the size of the formula, and they show that the problem is in PSPACE. Moreover,they give an algorithm for computing the exact probability with which a sequential programsatis�es a formula.Alur, Courcoubetis and Dill [ACD91a, ACD91b] develop a model checking algorithm forprobabilistic real-time systems. Processes are modeled as a generalized semi-Markov process ,which are studied in [Whi80, She87]. Essentially a process is a �nite state transition systemwith timing constraints expressed by probability distributions on the delays. They impose therestriction that every distribution is either discrete, or exponential, or has a density functionwhich is di�erent from 0 only on a �nite collection of intervals (in [ACD91a] only this last caseis studied). The temporal logic, called TCTL, is an extension of the branching-time temporallogic of Emerson and Clarke [EC82] where time delays are added to the modal operators. TCTLcan detect only whether a formula is satis�ed with probability 0, or with a positive probability,or with probability 1. The model checking algorithm transforms a process into a �nite stateprocess without probabilities and real-time, thus allowing the use of other existing algorithms.The problem of model-checking for TCTL is PSPACE-hard.2.5.3 Quantitative Method: Model CheckingHansson [Han91, Han94] de�nes a model checking algorithm for his Labeled Concurrent MarkovChain model and his branching-time temporal logic TPCTL. Time is discrete in Hansson'smodel, but the logic improves on previous work because probabilities can be quanti�ed (i.e.,probabilities can be between 0 and 1). The previous model checking algorithms relied heavilyon the fact that probabilities were not quanti�ed. The algorithm is based on the algorithmfor model checking of Clarke, Emerson and Sistla [CES83], and on previous work of Hanssonand Jonsson [HJ89] where a model checking algorithm for PCTL (TPCTL without time) ispresented. In order to deal with quanti�ed probabilities, the algorithm reduces the computationof the probability of an event to a collection of �nitely many linear recursive equations. Thealgorithm has an exponential complexity; however, Hansson shows that for a large class ofinteresting problems the algorithm is polynomial.31



32



Chapter 3Preliminaries3.1 Probability TheoryThe rigorous study of randomized algorithms requires the use of several probability measures.This section introduces the basic concepts of measure theory that are necessary. Most of theresults are taken directly from Halmos [Hal50] and Rudin [Rud66], and the proofs can be foundin the same books or in any other good book on measure theory or probability theory.3.1.1 Measurable SpacesConsider a set 
. A �eld on 
, denoted by F , is a family of subsets of 
 that contains 
, andthat is closed under complementation and �nite union. A �-�eld on 
, denoted by F , is a �eldon 
 that is closed under countable union. The elements of a �-�eld are called measurable sets .The pair (
;F) is called a measurable space.A �eld generated by a family of sets C, denoted by F (C), is the smallest �eld that containsC. The �-�eld generated by a family of sets C, denoted by �(C), is the smallest �-�eld thatcontains C. The family C is called a generator for �(C). A trivial property of a generator C is�(C) = �(F (C)).The �eld generated by a family of sets can be obtained following a simple procedure.Proposition 3.1.1 Let C be a family of subsets of 
.1. Let F1(C) be the family containing ;, 
, and all C � 
 such that C 2 C or (
� C) 2 C.2. Let F2(C) be the family containing all �nite intersections of elements of F1(C).3. Let F3(C) be the family containing all �nite unions of disjoint elements of F2(C).Then F (C) = F3(C).3.1.2 Probability Measures and Probability SpacesLet C be a family of subsets of 
. A measure � on C is a function that assigns a non-negativereal value (possibly 1) to each element of C, such that1. if ; is an element of C, then �(;) = 0. 33



2. if (Ci)i2N forms a sequence of pairwise disjoint elements of C, and [iCi is an element ofC, then �([iCi) =Pi �(Ci).The last property is called �-additivity . If (
;F) is a measurable space, then a measure on Fas called a measure on (
;F).A measure on a family of sets C is �nite if the measure of each element of C is �nite.A measure space is a triple (
;F ; �), where (
;F) is a measurable space, and � is a measureon (
;F). A measure space (
;F ; �) is complete i� for each element C of F such that �(C) = 0,each subset of C is measurable and has measure 0, i.e., for each C0 � C, C 0 2 F and �(C0) = 0.A measure space is discrete if F is the power set of 
 and the measure of each measurable setis the sum of the measures of its points. Discrete spaces will play a fundamental role in ourtheory.A probability space is a triple (
;F ; P ), where (
;F) is a measurable space, and P is ameasure on (
;F) such that P (
) = 1. The measure P is also referred to as a probabilitymeasure or a probability distribution. The set 
 is called the sample space, and the elementsof F are called events . We denote a generic event by E, possibly decorated with primes andindices. A standard convention with probability measures and event is that the measure of anevent is denoted by P [E] rather than by P (E).3.1.3 Extensions of a MeasureThe following two theorems shows methods to extend a measure de�ned on a collection of sets.The �rst theorem says that it is possible to de�ne a probability measure P on a measurablespace (
;F) by specifying P only on a generator of F ; the second theorem states that everymeasure space can be extended to a complete measure space.Thus, from the �rst theorem we derive that in order to check the equality of two probabilitymeasures P1 and P2 on (
;F), it is enough to compare the two measures on a �eld that generatesF .Theorem 3.1.2 (Extension theorem) A �nite measure � on a �eld F has a unique exten-sion to the �-�eld generated by F . That is, there exists a unique measure �� on �(F ) such thatfor each element C of F , ��(C) = �(C).Theorem 3.1.3 Let (
;F ; �) be a measure space. Let F 0 be the set of subsets of 
 of the formC [N such that C 2 F and N is a subset of a set of measure 0 in F . Then, F 0 is a �-�eld.Furthermore, the function �0 de�ned by �0(C [ N) = �(C) is a complete measure on F 0. Wedenote the measure space (
;F 0; �0) by completion((
;F ; �)).3.1.4 Measurable FunctionsLet (
;F) and (
0;F 0) be two measurable spaces. A function f : 
 ! 
0 is said to be ameasurable function from (
;F) to (
0;F 0) if for each set C of F 0 the inverse image of C,denoted by f�1(C), is an element of F . The next proposition shows that the measurability off can be checked just by analyzing a generator of F 0.Proposition 3.1.4 Let (
;F) and (
0;F 0) be two measurable spaces, and let C be a generatorof F 0. Let f be a function form 
 to 
0. Then f is measurable i� for each element C of C, theinverse image f�1(C) is an element of F . 34



Another property that we need is the closure of measurable functions under composition.Proposition 3.1.5 Let f be a measurable function from (
1;F1) to (
2;F2), and let g be ameasurable function from (
2;F2) to (
3;F3). Then f �g is a measurable function from (
1;F1)to (
3;F3).3.1.5 Induced Measures and Induced Measure SpacesProposition 3.1.6 Let f be a measurable function from (
;F) to (
0;F 0), and let � be ameasure on (
;F). Let �0 be de�ned on F 0 as follows: for each element C of F 0, �0(C) =�(f�1(C)). Then �0 is a measure on (
0;F 0). The measure �0 is called the measure induced byf , and is denoted by f(�).Based on the result above, it is possible to transform a measure space using a function f .Let (
;F ; �) be a measure space, and let f be a function de�ned on 
. Let 
0 be f(
), andlet F 0 be the set of subsets C of 
0 such that f�1(C) 2 F . Then, F 0 is a �-�eld, and f is ameasurable function from (
;F) to (
0;F 0). Thus, the space (
0;F 0; f(�)) is a measure space.We call such a space the space induced by f , and we denote it by f((
;F ; �)). Observe thatif (
;F ; �) is a probability space, then f((
;F ; �)) is a probability space as well, and thatinduced measure spaces preserve discreteness and completeness.3.1.6 Product of Measure SpacesLet (
1;F1) and (
2;F2) be two measurable spaces. Denote by F1 
 F2 the �-�eld generatedby the set of rectangles fC1 � C2 j C1 2 F1; C2 2 F2g. The product space of (
1;F1) and(
2;F2), denoted by (
1;F1)
 (
2;F2), is the measurable space (
1 � 
2;F1 
F2).Proposition 3.1.7 Let (
1;F1; �1) and (
2;F2; �2) be two measure spaces where �1 and �2are �nite measures. Then there is a unique measure, denoted by �1 
 �2, on F1
F2 such thatfor each C1 2 F1 and C2 2 F2, �1 
 �2(C1 � C2) = �1(C1)�2(C2).The product measure space of two measure spaces (
1;F1; �1) and (
2;F2; �2), denoted by(
1;F1; �1)
 (
2;F2; �2), is the measure space (
1�
2;F1
F2; �1
 �2). It is easy to checkthat if (
1;F1; �1) and (
2;F2; �2) are probability spaces, then their product is a probabilityspace as well.The product of two measure spaces is invertible. Let (
;F ; �) = (
1;F1; �1)
 (
2;F2; �2),and let �i, i = 1; 2, be a projection function from 
1 � 
2 to 
i, that maps each pair (x1; x2)to xi. Let 
0i = �i(
i), and let F 0i = fC j ��1i (C) 2 Fig. Then (
0i;F 0i) = (
i;Fi), and �i isa measurable function from (
;F) to (
0i;F 0i). The measure �i(�) coincides with �i, since foreach C 2 F1, ��11 (C) = C � 
2, and for each C 2 F2, ��12 (C) = 
1 � C. Thus, the projectionof (
;F ; �) onto its ith component is (
i;Fi; �i).3.1.7 Combination of Discrete Probability SpacesIn our theory there are several situations in which a discrete probability space is chosen accord-ing to some probability distribution, and then an element from the chosen probability space35



is chosen according to the corresponding probability distribution. The whole process can bedescribed by a unique probability space.Let f(
i;Fi; Pi)gi�0 be a family of discrete probability spaces, and let fpigi�0 be a familyof real numbers between 0 and 1 such thatPi�0 pi = 1. De�ne Pi�0(
i;Fi; Pi) to be the triple(
;F ; P ), where 
 = [i�0
i, F = 2
, and, for each x 2 
, P [x] =Pi�0jx2
i piPi[x]. It is easyto verify that (
;F ; P ) is a probability space.The process described by (
;F ; P ) is the following: a probability space (
i;Fi; Pi) is drawnfrom f(
i;Fi; Pi)gi�0 with probability pi, and then an element x is drawn drom 
i with prob-ability Pi[x].3.1.8 Conditional ProbabilityLet (
;F ; P ) be a probability space, and let E be an element of F . Frequently, we need tostudy the probability of an event E0 of F knowing that event E has occurred. For example, wemay want to study the probability that a dice rolled 6 knowing that it rolled a number greaterthan 3. The probability of a conditional event is expressed by P [E 0jE]. If P [E] = 0, thenP [E 0jE] is unde�ned; if P [E] > 0, then P [E 0jE] is de�ned to be P [E \E 0]=P [E].Suppose that P [E] > 0, and consider the triple (
jE;FjE;P jE) where 
jE = E, FjE =fE 0 \E j E 0 2 Fg, and for each event E0 of FjE, P jE[E 0] = P [E 0jE]. Then it is easy to showthat (
jE;FjE;P jE) is a probability space. We call this space a conditional probability space.Conditional measures give us an alternative way to express the probability of the intersectionof several events. That is,P [E1 \ � � � \En] = P [E1]P [E2jE1] � � �P [EnjE1 \ � � � \ En�1]:If P [E 0] = P [E 0jE], then P [E \E 0] = P [E]P [E 0]. In this case the events E and E 0 are saidto be independent .3.1.9 Expected ValuesLet (
;F) be a measurable space, and let (<;R) be the measurable space where < is the setof real numbers, and R is the �-�eld generated by the open sets of the real line. A randomvariable on (
;F), denoted by X , is a measurable function from (
;F) to (<;R).We use random variables to deal with timed systems. An example of a random variable isthe function that, given a computation of a system, returns the time it takes to the system toachieve a goal in the given computation. In our case, the computations of a system are chosenat random, and thus, a natural estimate of the performance of the system is the average timeit takes to the system to achieve the given goal.The above idea is expressed formally by the expected value of a random variable, which is aweighted average of X . Speci�cally, let (
;F ; P ) be a probability space, and let X be a randomvariable on (
;F). Then the expected value of X , denoted by E[X ], is the weighted averageof X based on the probability distribution P . We do not show how to compute the expectedvalue of a random variable in general, and we refer the interested reader to [Hal50]. Here wejust mention that if 
 can be partitioned in a countable collection of measurable sets (Ci)i�0such that for each set Ci, X(Ci) is a singleton, then E[X ] =Pi�0 P [Ci]X(ci), where for each ici is an element of Fi. 36



3.1.10 NotationThroughout the thesis we adopt some conventional notation concerning probability spaces. Weuse the notation P , possibly decorated with indexes and primes, to denote a generic probabilityspace. Thus, the expression P 0i stands for the probability space (
0i;F 0i; P 0i ). Furthermore, ifa generic expression exp denotes a probability space (
;F ; P ), we use 
exp ;Fexp , and Pexp todenote 
;F , and P , respectively.If (
;F ; P ) is a probability space, and E is a generic set, we use P [E] to denote P [E \ 
].If E \ 
 is not an element of F , then P [E] is unde�ned.A special kind of probability space is a probability space with a unique element in its sampleset. The corresponding measure is called a Dirac distribution. We use the notation D(x) todenote a probability space (
;F ; P ) where 
 = fxg.Another important kind of probability space is a space with �nitely many elements, eachone with the same probability. The corresponding measure is called a uniform distribution.We use the notation U(x1; : : : ; xn) to denote a discrete probability space (
;F ; P ) where 
 =fx1; : : : ; xng and, for each element xi of 
, P [xi] = 1=n.In the thesis we use heavily discrete probability spaces with no 0-probability elements. Itis easy to verify that the sample set of these probability spaces is at most countable. If C isany set, then we denote by Probs(C) the set of discrete probability spaces (
;F ; P ) with no0-probability elements such that 
 � C.3.2 Labeled Transition SystemsA Labeled Transition System [Kel76, Plo81] is a state machine with labeled transitions. Thelabels, also called actions , are used to model communication between a system and its externalenvironment. Labeled transition systems have been used successfully for the analysis of con-current and distributed systems [DH84, Mil89, LT87, LV93a]; for this reason we choose themas our basic model.Currently there are several de�nitions of labeled transition systems, each one best suitedfor the kind of application it is meant for. In this section we present a de�nition of labeledtransition systems in the style of [LV93a].3.2.1 AutomataAn automaton A consists of four components:1. a set states(A) of states.2. a nonempty set start(A) � states(A) of start states.3. an action signature sig(A) = (ext(A); int(A)), where ext(A) and int(A) are disjoint setsof external and internal actions, respectively. Denote by acts(A) the set ext(A) [ int(A)of actions.4. a transition relation trans(A) � states(A)�acts(A)�states(A). The elements of trans(A)are referred to as transitions or steps . 37



insert(i) extract(i)Figure 3-1: The Bu�er automaton.Thus, an automaton is a labeled transition system, possibly with multiple start states, whoseactions are partitioned into external and internal actions. The external actions model com-munication with the external environment; the internal actions model internal communication,not visible from the external environment.We use s to denote a generic state, and a and b to denote a generic action. We also use � todenote a generic internal action. All our conventional symbols may be decorated with primesand indexes. We say that an action a is enabled from a state s in A if there exists a state s0 ofA such that (s; a; s0) is a transition of A.A standard alternative notation for transitions is s a�! s0. This notation can be extended to�nite sequences of actions as follows: s a1���an�! s0 i� there exists a sequence of states s1; : : : ; sn�1such that s a1�! s1 a2�! � � �sn�1 an�! sn. To abstract from internal computation, there is anotherstandard notion of weak transition, denoted by s a=) s0. The action a must be external, andthe meaning of s a=) s0 is that there are two �nite sequences �1; �2 of internal actions such thats �1a�2�! s0. As for ordinary transitions, weak transitions can be generalized to �nite sequencesof external actions. A special case is given by the empty sequence: s =) s0 i� either s0 = s orthere exists a �nite sequence � of internal actions such that s ��! s0.Example 3.2.1 A classic example of an automaton is an unbounded ordered bu�er that storesnatural numbers (see Figure 3-1). An external user sends natural numbers to the bu�er, andthe bu�er sends back to the external environment the ordered sequence of numbers it receivesfrom the user.The automaton Bu�er of Figure 3-1 can be described as follows. All the actions of Bu�erare external and are of the form insert(i) and extract(i), where i is a natural number, i.e., theactions of Bu�er are given by the in�nite set [i2Nfinsert(i); extract(i)g. The states of Bu�erare the �nite sequences of natural numbers, and the start state of Bu�er is the empty sequence.The actions of the form insert(i) are enabled from every state of Bu�er , i.e., for each states and each natural number i there is a transition (s; insert(i); is) in Bu�er , where is denotesthe sequence obtained by appending i to the left of s. The actions of the form extract(i) areenabled only from those states where i is the rightmost element in the corresponding sequenceof numbers, i.e., for each state s and each natural number i there is a transition (si; extract(i); s)of Bu�er . No other transitions are de�ned for Bu�er .Observe that from every state of Bu�er there are in�nitely many actions enabled. Theway to choose among those actions is not speci�ed in Bu�er . In other words, the choice of thetransition to perform is nondeterministic. In this case the nondeterminism models the arbitrarybehavior of the environment. 38



Buffer Buffer1 2

extract(i)insert(i) (i)τFigure 3-2: Concatenation of two bu�ers.The role of internal actions becomes clear when we concatenate two bu�ers as in Figure 3-2.The communication that occurs between the two bu�ers is internal in the sense that it does nota�ect directly the external environment. Another useful observation about the concatenationof the two bu�ers in Figure 3-2 is that nondeterminism expresses two di�erent phenomena: thearbitrary behavior of the environment, and the arbitrary scheduling policy that can be adoptedin choosing whether Bu�er1 or Bu�er 2 performs the next transition. In general nondeterminismcan express even a third phenomenon, namely, the fact that an arbitrary state can be reachedafter the occurrence of an action. Such a form of nondeterminism would arise if we assume thata bu�er may lose data by failing to modify its state during an insertion operation.3.2.2 ExecutionsThe evolution of an automaton can be described by means of its executions. An executionfragment � of an automaton A is a (�nite or in�nite) sequence of alternating states and actionsstarting with a state and, if the execution fragment is �nite, ending in a state� = s0a1s1a2s2 � � �where for each i, (si; ai+1; si+1) is a transition of A. Thus, an execution fragment represents apossible way to resolve the nondeterminism in an automaton.Denote by fstate(�) the �rst state of � and, if � is �nite, denote by lstate(�) the last state of�. Furthermore, denote by frag�(A) and frag(A) the sets of �nite and all execution fragmentsof A, respectively.An execution is an execution fragment whose �rst state is a start state. Denote by exec�(A)and exec(A) the sets of �nite and all execution of A, respectively. A state s of A is reachable ifthere exists a �nite execution of A that ends in s.The length of an execution fragment �, denoted by j�j, is the number of actions that occurin �. If � is in�nite, then j�j =1.A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment �2 =snan+1sn+1 � � � of A can be concatenated . In this case the concatenation, written �1 a �2, isthe execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. If � = �1 a �2, then we denote �2 by �.�1(read \� after �1").An execution fragment �1 of A is a pre�x of an execution fragment �2 of A, written �1 � �2,if either �1 = �2 or �1 is �nite and there exists an execution fragment �01 of A such that�2 = �1 a �01. The execution fragment �01 is also called a su�x of �2 and is denoted by �2.�1.39



3.2.3 TracesThe executions of an automaton contain a lot of information that is irrelevant to the environ-ment, since the interaction between an automaton and its environment occurs through externalactions only. The trace of an execution is the object that represents the actual interaction thatoccurs between an automaton and its environment during an execution.The trace of an execution (fragment) � of an automaton A, written traceA(�), or justtrace(�) when A is clear, is the list obtained by restricting � to the set of external actions ofA, i.e., trace(�) = � � ext(A). We say that � is a trace of an automaton A if there exists anexecution � of A with trace(�) = �. Denote by traces�(A) and traces(A) the sets of �nite andall traces of A, respectively. Note, that a �nite trace can be the trace of an in�nite execution.3.2.4 Trace SemanticsIn [LV93a] automata are compared based on traces. Speci�cally, a preorder relation is de�nedbetween automata based on inclusion of their traces:A1 vT A2 i� traces(A1) � traces(A2):The trace preorder can express a notion of implementation, usually referred to as a safe imple-mentation. That is, A1, the implementation, cannot do anything that is forbidden by A2, thespeci�cation. For example, no implementation of the bu�er of Figure 3-1 can return naturalnumbers that were never entered or natural numbers in the wrong order.Although the trace preorder is weak as a notion of implementation, and so �ner relationscould be more appropriate [DeN87, Gla90, Gla93], there are several situations where a tracebased semantics is su�cient [LT87, Dil88, AL93, GSSL94]. The advantage of a trace basedsemantics is that it is easy to handle.In this thesis we concentrate mainly on trace based semantics; however, the techniques thatwe develop can be extended to other semantic notions as well.3.2.5 Parallel CompositionParallel composition is the operator on automata that identi�es how automata communicateand synchronize. There are two main synchronization mechanisms for labeled transition sys-tems, better known as the CCS synchronization style [Mil89], and the CSP synchronizationstyle [Hoa85]. In the CCS synchronization style the external actions are grouped in pairs ofcomplementary actions; a synchronization occurs between two automata that perform comple-mentary actions, and becomes invisible to the external environment, i.e., a synchronization isan internal action. Unless speci�cally stated through an additional restriction operator, anautomaton is allowed not to synchronize with another automaton even though a synchroniza-tion is possible. In the CSP synchronization style two automata must synchronize on theircommon actions and evolve independently on the others. Both in the CCS and CSP styles,communication is achieved through synchronization.In this thesis we adopt the CSP synchronization style, which is essentially the style adoptedin [LT87, Dil88, LV93a]. A technical problem that arises in our framework is that automatamay communicate through their internal actions, while internal actions are not supposed to bevisible. To avoid these unwanted communications, we de�ne a notion of compatibility between40



automata. Two automata A1; A2 are compatible i� int(A1) \ acts(A2) = ; and acts(A1) \int(A2) = ;.The parallel composition of two compatible automata A1; A2, denoted by A1kA2, is theautomaton A such that1. states(A) = states(A1)� states(A2).2. start(A) = start(A1)� start(A2).3. sig(A) = (ext(A1) [ ext(A2); int(A1) [ int(A2)).4. ((s1; s2); a; (s01; s02)) 2 trans(A) i�(a) if a 2 acts(A1), then (s1; a; s01) 2 trans(A1), else s01 = s1, and(b) if a 2 acts(A2), then (s2; a; s02) 2 trans(A2), else s02 = s2.If two automata are incompatible and we want to compose them in parallel, the problemcan be solved easily by renaming the internal actions of one of the automata. The renamingoperation is simple: just rename each occurrence of each action in the action signature and thetransition relation of the given argument automaton. At this point it is possible to understandhow to build a system like the one described in Figure 3-2. Bu�er 1 is obtained from Bu�er byrenaming the actions extract(i) into �(i), and Bu�er2 is obtained from Bu�er by renaming theactions insert(i) into �(i). Then, Bu�er1 and Bu�er2 are composed in parallel, and �nally theactions �(i) are made internal. This last step is achieved through a Hide operation, whose onlye�ect is to change the signature of an automaton.We conclude by presenting two important properties of parallel composition. The �rstproperty concerns projections of executions. Let A = A1kA2, and let (s1; s2) be a state of A.Let i be either 1 or 2. The projection of (s1; s2) onto Ai, denoted by (s1; s2)dAi, is si. Let� = s0a1s1 � � � be an execution of A. The projection of � onto Ai, denoted by �dAi is thesequence obtained from � by projecting all the states onto Ai, and by removing all the actionsnot in acts(Ai) together with their subsequent states.Proposition 3.2.1 Let A = A1kA2, and let � be an execution of A. Then �dA1 is an executionof A1 and �dA2 is an execution of A2.The projection of an execution of A onto one of the components Ai is essentially the view ofAi of the execution �. In other words the projection represents what Ai does in order for A toproduce �. Proposition 3.2.1 states that the view of Ai is indeed something that Ai can do.The second property concerns the trace preorder.Proposition 3.2.2 Let A1 vT A01. Then, for each A2 compatible with both A1 and A01,A1kA2 vT A01kA2.The property expressed in Proposition 3.2.2 is better known as substitutivity or compositionality .In other words vT is a precongruence with respect to parallel composition. Substitutivity is oneof the most important properties that an implementation relation should satisfy. Informally,substitutivity says that an implementation A1 of a system A01 works correctly in any contextwhere A01 works correctly. Substitutivity is also the key idea at the base of modular veri�cationtechniques. 41



42



Chapter 4Probabilistic Automata4.1 What we Need to ModelOur main goal is to analyze objects that at any point can evolve according to a probabilitydistribution. The simplest example of a random computation is the process of 
ipping a coin.Thus, a program may contain an instruction likex := 
ipwhose meaning is to assign to x the result of a coin 
ip. From the state-machine point of view,the transition relation of the corresponding automaton should be speci�ed by giving the statesreachable after the coin 
ip, together with their probability. Thus, the coin 
ipping processcan be represented by the labeled transition system of Figure 4-1. The edges joining two statesare associated with an action and a weight, where the weight of an edge is the probability ofchoosing that speci�c edge. Thus, we require that for each state that has some outgoing edges,the sum of the weights of the outgoing edges is 1.However, we also need to deal with nondeterminism. Consider a more complicated processwhere a coin is 
ipped, but where the coin can be either fair, i.e., it yields head with probability1=2, or unfair by yielding head with probability 2=3. Furthermore, suppose that the processemits a beep if the result of the coin 
ip is head . In this case, the choice of which coin to 
ipis nondeterministic, while the outcome of the coin 
ip is probabilistic. The start state shouldenable two separate transitions, each one corresponding to the 
ip of a speci�c coin. Figure 4-2 represents the nondeterministic coin 
ipping process. The start state enables two separategroups of weighted edges; each group is identi�ed by an arc joining all of its edges, and theedges of each group form a probability distribution.At this point we may be tempted to ask the following question:
s0

tail

head

1/2

1/2

flip

flipFigure 4-1: The coin 
ipping process.43



s0

flip

flip

1/2

1/2

flip

flip

tail

beep
head s

1/3

2/3Figure 4-2: The nondeterministic coin 
ipping process.\What is the probability that the nondeterministic coin 
ipper beeps?"The correct answer is\It depends on which coin is 
ipped ."Although this observation may appear to be silly, the lesson that we learn is that it is notpossible to talk about the probability of some event until the nondeterminism is resolved.Perhaps we could give a more accurate answer as follows:\The probability that the nondeterministic coin 
ipper beeps is either 1=2 or 2=3,depending on which coin is 
ipped ."However, there are two possible objections. The �rst objection concerns the way a coin ischosen. What happens if the coin to be 
ipped is chosen at random? After all, in the de�nitionof the nondeterministic coin 
ipper there are no limitations to the way a coin is chosen. In thiscase, the correct answer would be\The probability that the nondeterministic coin 
ipper beeps is between 1=2 and 2=3,depending on how the coin to be 
ipped is chosen."The second objection concerns the possibility of scheduling a transition. What happens if thescheduler does not schedule the beep transition even though it is enabled? In this case thecorrect answer would be\Under the hypothesis that some transition is scheduled whenever some transition isenabled, the probability that the nondeterministic coin 
ipper beeps is between 1=2and 2=3, depending on how the coin to be 
ipped is chosen."There is also another statement that can be formulated in relation to the question:\The nondeterministic coin 
ipper does not beep with any probability greater than2=3."This last property is better known as a safety property [AS85] for ordinary labeled transitionsystems.Let us go back to the scheduling problem. There are actual cases where it is natural to allowa scheduler not to schedule any transition even though some transition is enabled. Consider anew nondeterministic coin 
ipper with two buttons, marked fair and unfair , respectively. The44



s1

s2

s
beep

s0

head

tail

flip

flip

1/2

1/2

flip

flip

2/3

1/3
unfair

fairFigure 4-3: The triggered coin 
ipping process.
s0

1/2

1/2

unfair

fair

s1

s2

s
beep

s

flip

flip
1/2

1/2

tail

flip

flip

tail

head

head

2/3

1/3

beepFigure 4-4: A computation of the triggered coin 
ipping process.buttons can be pressed by an external user. Suppose that pressing one button disables theother button, and suppose that the fair coin is 
ipped if the button marked fair is pressed,and that the unfair coin is 
ipped if the button marked unfair is pressed. The new processis represented in Figure 4-3. In this case the scheduler models the external environment, anda user may decide not to press any button, thus not scheduling any transition from s0 eventhough some transition is enabled. An external user may even decide to 
ip a coin and pressa button only if the coin gives head , or 
ip a coin and press fair if the coin gives head andpress unfair if the coin gives tail . That is, an external user acts like a scheduler that can userandomization for its choices. If we ask again the question about the probability of beeping, acorrect answer would be\Assuming that beep is scheduled whenever it is enabled, the probability that thetriggered coin 
ipper beeps, conditional to the occurrence of a coin 
ip, is between1=2 and 2=3."Suppose now that we resolve all the nondeterminism in the triggered coin 
ipper of Figure 4-3,and consider the case where the external user presses fair with probability 1=2 and unfairwith probability 1=2. In this case it is possible to study the exact probability that the processbeeps, which is 7=12. Figure 4-4 gives a representation of the outcome of the user we have justdescribed. Note that the result of resolving the nondeterminism is not a linear structure as isthe case for standard automata, but rather a tree-like structure. This structure is our notionof a probabilistic execution and is studied in more detail in Section 4.2.45



4.2 The Basic ModelIn this section we introduce the basic probabilistic model that is used in the thesis. We formalizethe informal ideas presented in Section 4.1, and we extend the parallel composition operatorof ordinary automata to the new framework. We also introduce several notational conventionsthat are used throughout the thesis.4.2.1 Probabilistic AutomataA probabilistic automaton M consists of four components:1. A set states(M) of states.2. A nonempty set start(M) � states(M) of start states.3. An action signature sig(M) = (ext(M); int(M)), where ext(M) and int(M) are disjointsets of external and internal actions, respectively. Denote by acts(M) the set ext(M) [int(M) of actions.4. A transition relation trans(M) � states(M)�Probs((acts(M)�states(M))[f�g). Recallfrom Section 3.1.10 that for each set C, Probs(C) denotes the set of discrete probabilityspaces (
;F ; P ) with no 0-probability elements such that 
 � C. The elements oftrans(M) are referred to as transitions or steps .A probabilistic automaton di�ers from an ordinary automaton only in the transition relation.Each transition represents what in the �gures of Section 4.1 is represented by a group of edgesjoined by an arc. From each state s, once a transition is chosen nondeterministically, theaction that is performed and the state that is reached are determined by a discrete probabilitydistribution. Each transition (s;P) may contain a special symbol �, which represents thepossibility for the system not to complete the transition, i.e., to remain in s without being ableto engage in any other transition.Example 4.2.1 (Meaning of �) To give an idea of the meaning of �, suppose thatM modelsa person sitting on a chair that stands up with probability 1=2. That is, from the start state s0there is a transition of M where one outcome describes the fact that the person stands up andthe other outcome describes the fact that the person does not stand up (this is �). The pointis that there is no instant in time where the person decides not to stand up: there are onlyinstants where the person stands up. What the transition leaving s0 represents is that overallthe probability that the person does the action of standing up is 1=2. The need for � is clari�edfurther in Section 4.2.3, where we study probabilistic executions, and in Section 4.3, where westudy parallel composition.The requirement that the probability space associated with a transition be discrete is imposedto simplify the measure theoretical analysis of probabilistic automata. In this thesis we workwith discrete probability spaces only, and we defer to further work the extension of the theoryto more general probability spaces. The requirement that each transition does not lead to anyplace with probability 0 is imposed to simplify the analysis of probabilistic automata. All theresults of this thesis would be valid even without such a restriction, although the proofs would46



contain a lot of uninteresting details. The requirement becomes necessary for the study of liveprobabilistic automata, which we do not study here.There are two classes of probabilistic automata that are especially important for our analysis:simple probabilistic automata, and fully probabilistic automata.A probabilistic automaton M is simple if for each transition (s;P) of trans(M) there is anaction a of M such that 
 � fag � states(M). In such a case, a transition can be representedalternatively as (s; a;P 0), where P 0 2 Probs(states(M)), and it is called a simple transition withaction a. The probabilistic automata of Figures 4-2 and 4-3 are simple. In a simple probabilisticautomaton each transition is associated with a single action and it always completes. The ideais that once a transition is chosen, then only the next state is chosen probabilistically. Inthis thesis we deal mainly with simple probabilistic automata for a reason that is made clearin Section 4.3. We use general probabilistic automata to analyze the computations of simpleprobabilistic automata.A probabilistic automaton M is fully probabilistic if M has a unique start state, and fromeach state of M there is at most one transition enabled. Thus, a fully probabilistic automatondoes not contain any nondeterminism. Fully probabilistic automata play a crucial role in thede�nition of probabilistic executions.Example 4.2.2 (Probabilistic automata) A probabilistic Turing Machine is a Turing ma-chine with an additional random tape. The content of the random tape is instantiated byassigning each cell the result of an independent fair coin 
ip (say 0 if the coin gives head and1 if the coin gives tail). If we assume that each cell of the random tape is instantiated onlywhen it is reached by the head of the machine, then a probabilistic Turing machine can berepresented as a simple probabilistic automaton. The probabilistic automaton, denoted by M ,has a unique internal action � , and its states are the instantaneous descriptions of the givenprobabilistic Turing machine; each time the Turing machine moves the head of its random tapeon a cell for the �rst time, M has a probabilistic transition that represents the result of reachinga cell whose content is 0 with probability 1=2 and 1 with probability 1=2.An algorithm that at some point can 
ip a coin or roll a dice can be represented as a simpleprobabilistic automaton where the 
ipping and rolling operations are simple transitions. If theoutcome of a coin 
ip or dice roll a�ects the external behavior of the automaton, then the
ip and roll actions can be followed by simple transitions whose actions represent the outcomeof the random choice. Another possibility is to represent the outcome of the random choicedirectly in the transition where the random choice is made by performing di�erent actions. Inthis case the resulting probabilistic automaton would not be simple. Later in the chapter weshow why we prefer to represent systems as simple probabilistic automata when possible.4.2.2 Combined TransitionsIn Section 4.1 we argued that a scheduler may resolve the nondeterminism using randomization,i.e., a scheduler can generate a new transition by combining several transitions of a probabilisticautomatonM . We call the result of the combination of several transitions a combined transition.Formally, let M be a probabilistic automaton, and let s be a state of M . Consider a �nite orcountable set f(s;Pi)gi2I of transitions of M leaving from s, and a family of non-negative47



weights fpigi2I such that Pi pi � 1. LetP 4= 0@ Xi2Ijpi>0 piPi1A+  1�Xi2I pi!D(�); (4.1)i.e., P is a combination of discrete probability spaces as described in Section 3.1.7. Thepair (s;P) is called a combined transition of M and is denoted by Pi2I pi(s;Pi). Denoteby ctrans(M) the set of combined transitions of M . Note that trans(M) � ctrans(M).Thus, the combination of transitions can be viewed as a weighted sum of transitions wherethe sum of the weights is at most 1. If the sum of the weights is not 1, then nothing isscheduled by default. The reason for � by default will become clear when we analyze parallelcomposition in Section 4.3. Note that all the transitions (s;Pi) where pi = 0 are discarded inExpression (4.1), since otherwise P would contain elements whose probability is 0. We do notimpose the restriction that each pi is not 0 for notational convenience: in several parts of thethesis the pi's are given by complex expression that sometimes may evaluate to 0.Proposition 4.2.1 The combination of combined transitions of a probabilistic automaton Mis a combined transition of M .Proof. Follows trivially from the de�nition of a combined transition.4.2.3 Probabilistic ExecutionsIf we resolve both the nondeterministic and probabilistic choices of a probabilistic automaton,then we obtain an ordinary execution like those usually de�ned for ordinary automata. Thus, anexecution fragment of a probabilistic automatonM is a (�nite or in�nite) sequence of alternatingstates and actions starting with a state and, if the execution fragment is �nite, ending in a state,� = s0a1s1a2s2 � � � ;where for each i there is a transition (si;Pi+1) of M such that (ai+1; si+1) 2 
i+1. Executions,concatenations of executions, and pre�xes can be de�ned as for ordinary automata.In order to study the probabilistic behavior of a probabilistic automaton, we need a mech-anism to resolve only the nondeterminism, and leave the rest unchanged. That is, we need astructure that describes the result of choosing a transition, possibly using randomization, atany point in history, i.e., at any point during a computation. In Figure 4-4 we have given anexample of such a structure, and we have claimed that it should look like a tree. Here we givea more signi�cant example to justify such a claim.Example 4.2.3 (History in a probabilistic execution) Consider a new triggered coin 
ip-per, described in Figure 4-5, that can decide nondeterministically to beep or boo if the coin 
ipyields head , and consider a computation, described in Figure 4-6, that beeps if the user choosesto 
ip the fair coin, and boos if the user chooses to 
ip the unfair coin. Then, it is evident thatwe cannot identify the two states head of Figure 4-6 without reintroducing nondeterminism. Inother words, the transition that is scheduled at each point depends on the past history of thesystem, which is represented by the position of a state in the tree. For a formal de�nition of astructure like the one of Figure 4-6, however, we need to refer explicitly to the past history ofa system. 48



s1

s2

s0

head

tail

flip

flip

1/2

1/2

flip

flip

2/3

1/3

beep
s

boo

unfair

fair

s’Figure 4-5: The triggered coin 
ipper with a boo sound.
s0

1/2

1/2

unfair

fair

s1

s2

s
beep

flip

flip
1/2

1/2

tail

flip

flip

tail

head

head

2/3

1/3

boo
s’Figure 4-6: A computation of the triggered coin 
ipper with a boo sound.Let � be a �nite execution fragment of a probabilistic automaton M . De�ne a function �athat applied to a pair (a; s) returns the pair (a; �as), and applied to � returns �. Recall fromSection 3.1.5 that the function �a can be extended to probability spaces. Informally, if (s;P) isa combined transition of M and � is a �nite execution fragment of M such that lstate(�) = s,then the pair (�; � a P) denotes a transition of a structure that in its states remembers part ofthe past history. A probabilistic execution fragment of a probabilistic automaton M , is a fullyprobabilistic automaton, denoted by H , such that1. states(H) � frag�(M). Let q range over states of probabilistic execution fragments.2. for each transition (q;P) of H there is a combined transition (lstate(q);P 0) of M , calledthe corresponding combined transition, such that P = q a P 0.3. each state q of H is reachable in H and enables one transition, possibly (q;D(�)).A probabilistic execution is a probabilistic execution fragment whose start state is a start state ofM . Denote by prfrag(M) the set of probabilistic execution fragments of M , and by prexec(M)the set of probabilistic executions of M . Also, denote by qH0 the start state of a genericprobabilistic execution fragment H .Thus, by de�nition, a probabilistic execution fragment is a probabilistic automaton itself.Condition 3 is technical: reachability is imposed to avoid useless states in a probabilistic exe-cution fragment; the fact that each state enables one transition is imposed to treat uniformlyall the points where it is possible not to schedule anything. Figures 4-6 and 4-7 representtwo probabilistic executions of the triggered coin 
ipper of Figure 4-5. The occurrence of �is represented by a dashed line labeled with �. The states of the probabilistic executions are49



s1

s2

s0

unfair

fair
1/4

1/4

1/2

δFigure 4-7: A probabilistic execution of the triggered coin 
ipper.not represented as �nite execution fragments since their position in the diagrams gives enoughinformation. Similarly, we omit writing explicitly all the transitions that lead to D(�) (e.g.,states s1 and s2 in Figure 4-7).We now have enough structure to understand better the role of �. In ordinary automata ascheduler has the possibility not to schedule anything at any point, leading to a �nite execution.Such assumption is meaningful if the actions enabled from a given state model some inputthat comes from the external environment. In the probabilistic framework it is also possible toschedule no transition from some point. Since a scheduler may use randomization in its choices,it is also possible that from some speci�c state nothing is scheduled only with some probabilityp, say 1=2.Example 4.2.4 (The role of �) In the triggered coin 
ipper of Figure 4-5 a user can 
ipa fair coin to decide whether to push a button, and then, if the coin 
ip yields head, 
ipanother coin to decide which button to press. In the transition that leaves from s0 we needsome structure that represents the fact that nothing is scheduled from s0 with probability 1=2:we use � for this purpose. Figure 4-7 represents the probabilistic execution that we have justdescribed.Since a probabilistic execution fragment is itself a probabilistic automaton, it is possible totalk about the executions of a probabilistic execution fragment, that is, the ways in which theprobabilistic choices can be resolved in a probabilistic execution fragment. However, since atany point q it is possible not to schedule anything, if we want to be able to study the probabilisticbehavior of a probabilistic execution fragment then we need to distinguish between being in qwith the possibility to proceed and being in q without any possibility to proceed. For example,in the probabilistic execution of Figure 4-7 we need to distinguish between being in s0 beforeperforming the transition enabled from s0 and being in s0 after performing the transition. Werepresent this second condition by writing s0�. In general, we introduce a notion of an extendedexecution fragment, which is used in Section 4.2.5 to study the probability space associated witha probabilistic execution.An extended execution (fragment) of a probabilistic automaton M , denoted by �, is eitheran execution (fragment) of M , or a sequence �0�, where �0 is a �nite execution (fragment) ofM . The sequences s0� and s0 fair s1� are examples of extended executions of the probabilisticexecution of Figure 4-7.There is a close relationship between the extended executions of a probabilistic automatonand the extended executions of one of its probabilistic execution fragments. Here we de�netwo operators that make such a relationship explicit. Let M be a probabilistic automaton and50



let H be a probabilistic execution fragment of M . Let q0 be the start state of H . For eachextended execution � = q0a1q1 � � � of H , let�# 4= ( q0 a lstate(q0)a1lstate(q1)a2 � � � if � does not end in �,q0 a lstate(q0)a1lstate(q1)a2 � � �anlstate(qn)� if � = q0a1q1 � � �anqn�. (4.2)It is immediate to observe that �# is an extended execution fragment of M . For each extendedexecution fragment � of M such that q0 � �, i.e., � = q0 a s0a1s1 � � �, let�"q0 4= ( q0a1(q0 a s0a1s1)a2(q0 a s0a1s1a2s2) � � � if � does not end in �,q0a1(q0 a s0a1s1) � � �(q0 a s0a1s1 � � �ansn)� if � = q0 a s0a1s1 � � �ansn�. (4.3)It is immediate to observe that �"q0 is an extended execution of some probabilistic executionfragment of M . Moreover, the following proposition holds.Proposition 4.2.2 Let H be a probabilistic execution fragment of a probabilistic automatonM , and let q0 be the start state of H. Then, for each extended execution � of H,(�#)"q0 = �; (4.4)and for each extended execution fragment � of M starting with q0,(�"q0)# = �: (4.5)Proof. Simple analysis of the de�nitions.The bottom line is that it is possible to talk about extended executions of H by analyzing onlyextended execution fragments of M .4.2.4 Notational ConventionsFor the analysis of probabilistic automata and of probabilistic executions we need to refer toexplicit objects like transitions or probability spaces associated with transitions. In this sectionwe give a collection of notational conventions that ease the identi�cation of each object.TransitionsWe denote a generic transition of a probabilistic automaton by tr , possibly decorated withprimes and indices. For each transition tr = (s;P), we denote P alternatively by Ptr . If tr is asimple transition, represented by (s; a;P), we abuse notation by denoting P by Ptr as well. Thecontext will always clarify the probability space that we denote. If (s;P) is a transition, we useany set of actions V to denote the event f(a; s0) 2 
 j a 2 V g that expresses the occurrence ofan action from V in P , and we use any set of states U to denote the event f(a; s0) 2 
 j s0 2 Ugthat expresses the occurrence of a state from U in P . We drop the set notation for singletons.Thus, P [a] is the probability that action a occurs in the transition (s;P).If M is a fully probabilistic automaton and s is a state of M , then we denote the uniquetransition enabled from s in M by trMs , and we denote the probability space that appears intrMs by PMs . Thus, trMs = (s;PMs ). We drop M from the notation whenever it is clear fromthe context. This notation is important to handle probabilistic execution fragments.51



Transition Pre�xing and Su�xingThroughout the thesis we use transitions of probabilistic automata and transitions of proba-bilistic execution fragments interchangeably. If H is a probabilistic execution fragment of aprobabilistic automaton M , then there is a strong relation between the transitions of H andsome of the combined transitions of M . We exploit such a correspondence through two oper-ations on transitions. The �rst operation is called transition pre�xing and adds some partialhistory to the states of a transition; the second operation is called transition su�xing and re-moves some partial history from the states of a transition. These operations are used mainlyin the proofs of the results of this thesis.Let tr = (s;P) be a combined transition of a probabilistic automaton M , and let � be a�nite execution fragment of M such that lstate(�) = s. Then the transition � a tr is de�ned tobe (�; � a P). We call the operation �a transition pre�xing .Let tr = (q;P) be a transition of a probabilistic execution fragment H , and let q0 � q. Let.q0 be a function that applied to a pair (a; q00) of 
 returns (a; q00.q0), and applied to � returns�. Let P.q0 denote the result of applying .q0 to P . Then the transition tr.q0 is de�ned to be(q.q0;P.q0). We call the operation .q0 transition su�xing .The following properties concern distributivity of transition pre�xing and su�xing withrespect to combination of transitions.Proposition 4.2.3 LetM be a probabilistic automaton, and let q be a �nite execution fragmentof M .1. q aPi pitr i =Pi pi(q a tr i), where each tr i is a transition of M .2. Pi pitr i.q = Pi pi(tr i.q), where each tr i is a transition of some probabilistic executionfragment of M .Proof. Simple manipulation of the de�nitions.4.2.5 EventsAt this point we need to de�ne formally how to compute the probability of some event ina probabilistic execution. Although it is intuitively simple to understand the probability ofa �nite execution to occur, it is not as intuitive to understand how to deal with arbitraryproperties. A probabilistic execution can be countably branching, and can have uncountablymany executions. As an example, consider a probabilistic execution that at any point draws anatural number n > 0 with probability 1=2n. What is measurable? What is the probability ofa generic event?In this section we de�ne a suitable probability space for a generic probabilistic executionfragment H of a probabilistic automaton M . Speci�cally, given a probabilistic execution frag-ment H we de�ne a probability space PH as the completion of another probability space P 0Hwhich is de�ned as follows. De�ne an extended execution � of H to be complete i� either �is in�nite or � = �0� and � 2 
Hlstate(�0). Then, the sample space 
0H is the set of extendedexecutions of M that originate from complete extended executions of H , i.e.,
0H 4= f�# j � is a complete extended execution of Hg: (4.6)52



The occurrence of a �nite extended execution � of M can be expressed by the setCH� 4= f�0 2 
0H j � � �0g; (4.7)called a cone. We drop H from CH� whenever it is clear from the context. Let CH be the set ofcones of H . Then de�ne F 0H to be the �-�eld generated by CH , i.e.,F 0H 4= �(CH): (4.8)To de�ne a probability measure on F 0H , we start by de�ning a measure �H on CH such that�H(
H) = 1. Then we show that �H can be extended uniquely to a measure ��H on F (CH),where F (CH) is built according to Proposition 3.1.1. Finally we use the extension theorem(Theorem 3.1.2) to show that �H can be extended uniquely to a probability measure P 0H on�(F (CH)) = �(CH).The measure �H(CH� ) of a cone CH� is the product of the probabilities associated with eachedge that generates � in H . Formally, let q0 be the start state of H . If � � q0, then�H(CH� ) 4= 1; (4.9)if � = q0 a s0a1s1 � � �sn�1ansn, then�H(CH� ) 4= PHq0 [(a1; q1)] � � �PHqn�1 [(an; qn)]; (4.10)where for each i, 1 � i < n, qi = q0 a s0a1s1 � � �si�1aisi; if � = q0 a s0a1s1 � � �sn�1ansn�, then�H(CH� ) 4= PHq0 [(a1; q1)] � � �PHqn�1 [(an; qn)]Pqn [�]; (4.11)where for each i, 1 � i � n, qi = q0 a s0a1s1 � � �si�1aisi.Example 4.2.5 (Some commonly used events) Before proving that the construction ofP 0H is correct, we give some examples of events. The set describing the occurrence of an actiona (eventually a occurs) can be expressed as a union of cones of the form C� such that a appearsin �. Moreover, any union of cones can be described as a union of disjoint cones (follows fromLemma 4.2.4 below). Since a probabilistic execution fragment is at most countably branching,the number of distinct cones in CH is at most countable, and thus the occurrence of a can beexpressed as a countable union of disjoint cones, i.e., it is an event of F 0H . More generally, anyarbitrary union of cones is an event. We call such events �nitely satis�able. The reason for theword \satis�able" is that it is possible to determine whether an execution � of 
0H is within a�nitely satis�able event by observing just a �nite pre�x of �. That �nite pre�x is su�cient todetermine that the property represented by the given event is satis�ed.The set describing the non-occurrence of an action a is also an event, since it is the comple-ment of a �nitely satis�able event. Similarly, the occurrence, or non-occurrence, of any �nitesequence of actions is an event. For each natural number n, the occurrence of exactly n a's isan event: it is the intersection of the event expressing the occurrence of at least n a's and theevent expressing the non-occurrence of n+ 1 a's. Finally, the occurrence of in�nitely many a'sis an event: it is the countable intersection of the events expressing the occurrence of at least ia's, i � 0. 53



We now move to the proof that P 0H is well de�ned. First we use ordinal induction to show thatthe function �H de�ned on CH is �-additive, and thus that �H is a measure on CH (Lemma 4.2.6);then we show that there is a unique extension of �H to F (CH) (Lemmas 4.2.7, 4.2.8, and 4.2.9).Finally, we use the extension theorem to conclude that P 0H is well de�ned.Lemma 4.2.4 Let C�1; C�2 2 
H . If �1 � �2 then C�1 � C�2. If �1 � �2 and �2 � �1 thenC�1 \ C�2 = ;.Proof. Simple analysis of the de�nitions.Lemma 4.2.5 Let H be a probabilistic execution of a probabilistic automaton M , and let q bea state of H. Suppose that there is a transition enabled from q in H. Then�H(Cq) = ( P(a;q0)2
Hq �H(Cq0) if � =2 
HqP(a;q0)2
Hq �H(Cq0) + �H(Cq�) if � 2 
Hq : (4.12)Proof. Simple analysis of the de�nitions.Lemma 4.2.6 The function �H is �-additive on CH , and �H(
H) = 1.Proof. By de�nition �H(
0H) = 1, hence it is su�cient to show �-additivity. Let q be anextended execution of M , and let � be a set of incomparable extended executions of M suchthat Cq = [q02�Cq0 . If q ends in �, then � contains only one element and �-additivity istrivially satis�ed. Thus, assume that q does not end in �, and hence q is a state of H , and that� contains at least two elements. From Lemma 4.2.4, q is a pre�x of each extended executionof �. For each state q0 of H , let �q0 be the set fq00 2 � j q0 � q00g. We show �-additivityin two steps: �rst we assign an ordinal depth to some of the states of H and we show that qis assigned a depth; then we show that �H(Cq) = Pq02� �H(Cq0) by ordinal induction on thedepth assigned to q.The depth of each state q0 within some cone Cq00 (q00 � q0), where q00 2 �, is 0, and the depthof each state q0 with no successors is 0. For each other state q0 such that each of its successorshas a depth, if fdepth(q00) j 9a(a; q00) 2 
Hq0 g has a maximum, thendepth(q0) = max (fdepth(q00) j 9a(a; q00) 2 
Hq0 g) + 1; (4.13)otherwise, if fdepth(q00) j 9a(a; q00) 2 
q0g does not have a maximum, thendepth(q0) = sup(fdepth(q00) j 9a(a; q00) 2 
Hq0 g): (4.14)Consider a maximal assignment to the states of H , i.e., an assignment that cannot be extendedusing the rules above, and suppose by contradiction that q is not assigned a depth. Thenconsider the following sequence of states of H . Let q0 = q, and, for each i > 0, let qi be a stateof H such that (ai; qi) 2 
qi�1 , and qi is not assigned a depth. For each i, the state qi existssince otherwise, if there exists an i such that for each (ai; qi) 2 
qi�1 , qi is assigned a depth,then qi�1 would be assigned a depth. Note that the qi's form a chain under pre�x ordering, i.e.,for each i; j, if i � j then qi � qj . Consider the execution �1 = limi qi. From its de�nition, �1is an execution of Cq. Then, from hypothesis, �1 is an execution of [q02�Cq0 , and therefore�1 is an execution of some Cq0 such that q0 2 �. By de�nition of a cone, q0 is a pre�x of �1.54



Thus, q0 = qk for some k � 0. But then qk is within the cone Cq0 , and thus it is assigned depth0. This contradicts the fact that qk is not assigned any depth.Let 
 be the ordinal depth assigned to q. We show that �H(Cq) = Pq02� �H(Cq0) byordinal induction on 
. If 
 = 0, then � is either fqg or fq�g, and the result is trivial. Let
 be a successor ordinal or a limit ordinal. From Lemma 4.2.5, �H(Cq) = P(a;q0)2
q �H(Cq0)if � =2 
q, and �H (Cq) = P(a;q0)2
q �H(Cq0) + �H(Cq�) if � 2 
q. For each (a; q0) 2 
q,Cq0 = [q002�q0Cq00 . Moreover, for each (a; q0) 2 
q, the depth of q0 is less than 
. By induction,�H(Cq0) = Pq002�q0 �H(Cq00). Thus, �H(Cq) = P(a;q0)2
qPq002�q0 �H(Cq00) = Pq02� �H(Cq0) if� =2 
q, and �H(Cq) =P(a;q0)2
q Pq002�q0 �H(Cq00) + �H (Cq�) =Pq02� �H(Cq0) if � 2 
q.Lemma 4.2.7 There exists a unique extension �0H of �H to F1(CH).Proof. There is a unique way to extend the measure of the cones to their complements sincefor each �, �H(C�) + �H(
H � C�) = 1. Therefore �0H coincides with �H on the cones andis de�ned to be 1 � �H(C�) for the complement of any cone C�. Since, by the countablybranching structure of H , the complement of a cone is a countable union of cones, �-additivityis preserved.Lemma 4.2.8 There exists a unique extension �00H of �0H to F2(CH).Proof. The intersection of �nitely many sets of F1(CH) is a countable union of cones. Therefore�-additivity enforces a unique measure on the new sets of F1(CH).Lemma 4.2.9 There exists a unique extension �000H of �00H to F3(CH).Proof. There is a unique way of assigning a measure to the �nite union of disjoint sets whosemeasure is known, i.e., adding up their measures. Since all the sets of F3(CH) are countableunions of cones, �-additivity is preserved.Theorem 4.2.10 There exists a unique extension P 0H of �H to the �-algebra F 0H.Proof. By Theorem 3.1.2, de�ne P 0H to be the unique extension of �000H to F 0H .4.2.6 Finite Probabilistic Executions, Pre�xes, Conditionals, and Su�xesWe extend the notions of �niteness, pre�x and su�x to the probabilistic framework. Here weadd also a notion of conditional probabilistic execution which is not meaningful in the non-probabilistic case and which plays a crucial role in some of the proofs of Chapter 5.Finite Probabilistic ExecutionsInformally, �niteness means that the tree representation of a probabilistic execution fragmenthas a �nite depth. Thus, a probabilistic execution fragment H is �nite i� there exists a naturalnumber n such that the length of each state of H is at most n.55



s1

s2

s
0

1/4

1/4

1/2

δ

a

b

H:

s1

s2

s0

s1

s2

s0
’’

a

b

1/2

s

s

1/2

s
1/4

δ

a

b

1/4

1/2

H :

s

sc

c c

c

1/2

1/2d

H  : ’’Figure 4-8: Examples of the pre�x relation.Pre�xesThe idea of a pre�x of a probabilistic execution fragment is more complicated than the de�nitionof pre�x for ordinary automata. To get a better understanding of the problem, consider thede�nition of pre�x for ordinary execution fragments: � � �0 i� either � = �0, or � is �nite andthere is an execution fragment �00 such that �0 = �a�00. Another way to interpret this de�nitionis to observe that if � is �nite, then there is exactly one point in �, which we call a point ofextension, from which nothing is scheduled, and in that case �0 is obtained by extending � fromits unique point of extension. With the word \extending" we mean \adding transitions". Inother words, an execution fragment � is a pre�x of an execution fragment �0 i� �0 is obtainedfrom � by adding transitions, possibly none, from all the points of extension of �, i.e., fromall the points of � where nothing is scheduled. We apply the same observation to probabilisticexecution fragments, where a point of extension is any point where � occurs.Example 4.2.6 (Pre�xes) Consider the probabilistic execution fragment H of Figure 4-8.It is easy to see that s1 and s2 are points of extension in H . However, also s0 is a pointof extension since in H nothing is scheduled from s0 with probability 1=2. The probabilisticexecution fragment H 0 of Figure 4-8 is an extension of H . States s1 and s2 are extended withtransitions labeled with c, and half of the extendible part of s0 is extended with the transitions0 a�! s1, i.e., we have added the transition (s0;U((a; s1); �)) to the extendible part of s0. Sincethe extension from s0 overlaps with one of the edges leaving s0 in H , the e�ect that we observein H 0 is that s1 is reached with a higher probability.Consider now the probabilistic execution fragment H 00 of Figure 4-8. H 00 is an extensionof H 0, but this time something counterintuitive has happened; namely, the edge labeled withaction c that leaves from state s2 has a lower probability in H 00 than in H 0. The reason for thisdi�erence is that the extendible part of s0 is extended with a transition s0 b�! s2 followed bys2 c�! s0. Thus, half of the transition leaving from s2 in H 00 is due to the previous behavior ofH 0, and half of the transition leaving from s2 in H 00 is due to the extension from s0. However,the probability of the cone Cs0bs2cs is the same in H 0 and in H 00.A formal de�nition of a pre�x works as follows. A probabilistic execution fragmentH is a pre�xof a probabilistic execution fragment H 0, denoted by H � H 0, i�1. H and H 0 have the same start state, and2. for each state q of H , PH [Cq] � PH 0 [Cq].Observe that the de�nition of a pre�x for ordinary executions is a special case of the de�nitionwe have just given. 56



c

1/2

1/2d

c

1/2

1/2d

s bs

s bs ds

s bs cs s2

s ds

s cs0 2 0 2

0 2 ’

2

2 ’

H : H :1 2Figure 4-9: Conditionals and su�xes.ConditionalsLet H be a probabilistic execution fragment of a probabilistic automatonM , and let q be eithera state of H or a pre�x of the start state of H . We want to identify the part of H that describeswhat happens conditional to the occurrence of q. The new structure, which we denote by H jq,is a new probabilistic execution fragment de�ned as follows:1. states(H jq) = fq0 2 states(H) j q � q0g;2. start(H jq) = min(states(H jq)), where the minimum is taken under pre�x ordering,3. for each state q0 of H jq, trH jqq0 = trHq0 .H jq is called a conditional probabilistic execution fragment.Example 4.2.7 (Conditionals) The probabilistic execution fragment H1 of Figure 4-9 is anexample of a conditional probabilistic execution fragment. Speci�cally, H1 = H 00j(s0as2), whereH 00 is represented in Figure 4-8. In Figure 4-9 we represent explicitly the states ofH1 for clarity.The conditional operation essentially extracts the subtree of H 00 that starts with s0as2.It is easy to check that (
H jq;FH jq; PH jq) and (
H jCq;FH jCq; PH jCq) are the same probabilityspace (cf. Section 3.1.8). Indeed, the sample sets are the same, the generators are the same, andthe probability measures coincide on the generators. Thus, the following proposition, which isused in Chapter 5, is true.Proposition 4.2.11 Let H be a probabilistic execution fragment of a probabilistic automatonM , and let q be either a state of H, or a pre�x of the start state of H. Then, for each subsetE of 
H jq,1. E 2 FH jq i� E 2 FH .2. If E is an event, then PH [E] = PH [Cq]PH jq[E].Su�xesThe de�nition of a su�x is similar to the de�nition of a conditional; the di�erence is that inthe de�nition of H.q we drop q from each state of H , i.e., we forget part of the past history.Formally, let H be a probabilistic execution fragment of a probabilistic automaton M , and letq be either a state of H or a pre�x of the start state of H . Then H.q is a new probabilisticexecution fragment de�ned as follows:1. states(H.q) = fq0.q j q0 2 states(H); q � q0g,57



2. start(H.q) = min(states(H.q)), where the minimum is taken under pre�x ordering,3. for each state q0 of H 0, trH.qq0 = trHqaq0.q.H.q is called a su�x of H . It is a simple inductive argument to show that H.q is indeeda probabilistic execution fragment of M . Observe that the de�nition of a su�x for ordinaryexecutions is a special case of the de�nition we have just given.Example 4.2.8 (Su�xes) The probabilistic execution fragment H2 of Figure 4-9 is an ex-ample of a su�x. Speci�cally, H2 = H 00.(s0as2), where H 00 is represented in Figure 4-8. Thesu�xing operation essentially extracts the subtree of H 00 that starts with s0as2 and removesfrom each state the pre�x s0as2.It is easy to check that the probability spaces PH.q and PH jq are in a one-to-one correspondencethrough the measurable function f : 
H.q ! 
H jq such that for each � 2 
H.q, f(�) = q a �.The inverse of f is also measurable and associates �.q with each execution � of 
H jq. Thus,directly from Proposition 4.2.11, we get the following proposition.Proposition 4.2.12 Let H be a probabilistic execution fragment of a probabilistic automatonM , and let q be either a state of H, or a pre�x of the start state of H. Then, for each subsetE of 
H.q,1. E 2 FH.q i� (q a E) 2 FH .2. If E is an event, then PH [q a E] = PH [Cq]PH.q[E].4.2.7 Notation for TransitionsIn this section we extend the arrow notation for transitions that is used for ordinary automata.The extension that we present is meaningful for simple transitions only.An alternative representation for a simple transition (s; a;P) of a probabilistic automatonMis s a�! P . Thus, di�erently from the non-probabilistic case, a transition leads to a distributionover states. If P is a Dirac distribution, say D(s0), then we can represent the correspondingtransition by s a�! s0. Thus, the notation for ordinary automata becomes a special case of thenotation for probabilistic automata. If (s; a;P) is a simple combined transition of M , then werepresent the transition alternatively by s a�!C P , where the letter C stands for \combined".The extension of weak transitions is more complicated. The expression s a=) P meansthat P is reached from s through a sequence of transitions of M , some of which are internal.The main di�erence from the non-probabilistic case is that in the probabilistic framework thetransitions involved form a tree rather than a linear chain. Formally, s a=) P , where a is eitheran external action or the empty sequence and P is a probability distribution over states, i�there is a probabilistic execution fragment H such that1. the start state of H is s;2. PH [f�� j �� 2 
Hg] = 1, i.e., the probability of termination in H is 1;3. for each �� 2 
H , trace(�) = a; 58



s1

s1

s2

s2

s2

1/2

1/2

τ

τ

τ’

’ ’

’

’

ss τ

1/2

1/2

a

a
τ

τ
2/3

1/3

1

2 5

4

3

s

s

s

s

s
a

a
1/2

1/2Figure 4-10: A representation of a weak transition with action a.
1/2

1/2

s

s

τ

τ

1

0 1/2

1/2

s

s

τ

τ

1

00s
1/2

s
τ

0

1/2

s
τ

1

H:0sM:
1/2

s
τ

τ
1/2

1Figure 4-11: A weak transition of a probabilistic automaton with cycles.4. P = lstate(�-strip(PH)), where �-strip(PH) is the probability space P 0 such that 
0 =f� j �� 2 
Hg, and for each � 2 
0, P 0[�] = PH [C��];5. for each state q of H , either trHq is the pair (lstate(q);D(�)), or the transition that corre-sponds to trHq is a transition of M .A weak combined transition, s a=)C P , is de�ned as a weak transition by dropping Condition 5.Throughout the thesis we also the extend the function �-strip to extended execution fragment;its action is to remove the symbol � at the end of each extended execution fragment.Example 4.2.9 (Weak transitions) Figure 4-10 represents a weak transition with actiona that leads to state s1 with probability 5=12 and to state s2 with probability 7=12. Theaction � represents any internal action. From the formal de�nition of a weak transition, a treethat represents a weak transition may have an in�nite branching structure, i.e., it may havetransitions that lead to countably many states, and may have some in�nite paths; however, theset of in�nite paths has probability 0.Figure 4-11 represents a weak transition of a probabilistic automaton with cycles in itstransition relation. Speci�cally, H represents the weak transition s0 =) P , where P [s0] = 1=8and P [s1] = 7=8. If we extend H inde�nitely on its right, then we obtain a new probabilisticexecution fragment that represents the weak transition s0 =) D(s1). Observe that the newprobabilistic execution fragment has an in�nite path that occurs with probability 0. Further-more, observe that there is no other way to reach state s1 with probability 1.Remark 4.2.10 According to our de�nition, a weak transition can be obtained by concatenat-ing together in�nitely many transitions of a probabilistic automaton. A reasonable objectionto this de�nition is that sometimes scheduling in�nitely many transitions is unfeasible. In the59



timed framework this problem is even more important since it is feasible to assume that thereis some limit to the number of transitions that can be scheduled in a �nite time. Thus, a morereasonable and intuitive de�nition of a weak transition would require the probabilistic executionfragment H that represent a weak transition not to have any in�nite path. All the results thatwe prove in this thesis are valid for the more general de�nition where H can have in�nite pathsas well as for the stricter de�nition where H does not have any in�nite path. Therefore, we usethe more general de�nition throughout. The reader is free to think of the simpler de�nition toget a better intuition of what happens.An alternative way to represent a weak transition, which is used to prove the theorems ofChapter 8, is by means of a generator . If H represents a weak combined transition, then agenerator can be seen as an object that chooses the combined transitions of M that lead to H(in Chapter 5 this object is also called an adversary). More precisely, a generator is a functionO that associates a weak combined transition of M with each �nite execution fragment ofM . Before stating the formal properties that a generator satis�es, we give an example of thegenerator for the weak transition of Figure 4-10.Example 4.2.11 (Generators) Recall from Section 3.1.10 that U(x; y) denotes the probabil-ity space that assigns x and y probability 1=2 each. Then, the generator for the weak transitionof Figure 4-10 is the function O where O(s�s01as03) = (s03; �;U(s1; s2))O(s�s01) = (s01; a;U(s03; s04)) O(s�s01as04) = (s04; �;D(s2))O(s) = (s; �;U(s01; s02)) O(s�s02) = (s02; �;D(s05)) O(s�s02�s05) = (s05; a;U(s1; s2))and O(�) = (lstate(�);D(�)) for each � that is not considered above. The layout of thede�nition above re
ects the shape of the probabilistic execution fragment of Figure 4-10.Thus, if we denote the probabilistic execution fragment of Figure 4-10 byH , O is the functionthat for each state q ofH gives the combined transition ofM that corresponds to trHq . FunctionO is also minimal in the sense that it returns a transition di�erent from (lstate(q);D(�)) onlyfrom those states q that are relevant for the construction of H . We call active all the states ofH that enable some transition; we call reachable all the reachable states of H ; we call terminalall the states q of H such that � 2 
Hq .Let M be a probabilistic automaton and let s be a state of M . A generator for a weak(combined) transition s a�ext(M)=) P of M is a function O that associates a (combined) transitionof M with each �nite execution fragment of M such that the following conditions are satis�ed.1. If O(�) = (s0;P), then s0 = lstate(�). Call � active if P 6= D(�).2. If �bs0 is active, then fstate(�) = s and (b; s0) 2 
O(�).3. Call � reachable i� either � = s or � = �0bs0 and (b; s0) 2 
O(�0). Call � terminal i� � isreachable and PO(�as0)[�] > 0. Then, for each terminal �, the trace of � is a � ext(M).4. For each reachable execution fragment � = sa1s1a2s2 � � �aksk , letPO� 4= Y0�i<k PO(sa1s1 ���aisi)[(ai+1si+1)];60



Then,
 = flstate(�) j terminal(�)g;and for each s0 2 
,P [s0] = X�jlstate(�)=s0;terminal(�)PO� PO(�)[�]:Condition 1 says that the transition that O(�) returns is a legal transition ofM from lstate(�);Condition 2 guarantees that the active execution fragments are exactly those that are relevantfor the weak transition denoted by O; Condition 3 ensures that the weak transition representedby O has action a � ext(M); Condition 4 computes the probability space reached in the tran-sition represented by O, which must coincide with P . The term PO� represents the probabilityof performing � if O resolves the nondeterminism in M . Observe that terminal execution frag-ments must be reachable with probability 1 if we want the structure computed in Condition 4to be a probability space.Proposition 4.2.13 There is a weak combined transition s a=) P of M i� there is a functionO that satis�es the �ve conditions of the de�nition of a generator.Proof. Simple analysis of the de�nitions.4.3 Parallel CompositionIn this section we extend to the probabilistic framework the parallel composition operator andthe notion of a projection of ordinary automata. The parallel composition of simple probabilisticautomata can be de�ned easily by enforcing synchronization on the common actions as in thenon-probabilistic case; for general probabilistic automata, however, it is not clear how to givea synchronization rule. We discuss the problems involved at the end of the section.4.3.1 Parallel Composition of Simple Probabilistic AutomataTwo probabilistic automata M1 and M2 are compatible i�int(M1) \ acts(M2) = ; and acts(M1) \ int(M2) = ;.The parallel composition of two compatible simple probabilistic automataM1 and M2, denotedby M1kM2, is the simple probabilistic automaton M such that1. states(M) = states(M1)� states(M2).2. start(M) = start(M1)� start(M2).3. sig(M) = (ext(M1) [ ext(M2); int(M1) [ int(M2)).4. ((s1; s2); a;P) 2 trans(M) i� P = P1 
 P2 where61



s1,0 s,( )2,0

ss ,( )2,01,1

ss ,( )2,01,2

ss ,( )1,2 2,1

b

a

1/2

1/2
a

b

ss ,( )2,01,3

ss ,( )1,1 2,1

ss ,( )2,01,4

ss ,( )2,11,4

ss ,( )2,01,5

ss ,( )2,11,6

1/2

1/2

a

1/2

1/2
b

c
d

dFigure 4-12: A probabilistic execution fragment of M1kM2.
s1,0

s1,1

s1,2

s1,5

s1,3

1/2

1/2
b

δ

1,4 s1,6
s

b

c

1/2

1/21/2

1/2
a

b aFigure 4-13: The projection onto M1 of the probabilistic execution fragment of Figure 4-10.(a) if a 2 acts(M1) then (s1; a;P1) 2 trans(M1), else P1 = D(s1), and(b) if a 2 acts(M2) then (s2; a;P2) 2 trans(M2), else P2 = D(s2).Similar to the non-probabilistic case, two simple probabilistic automata synchronize on theircommon actions and evolve independently on the others. Whenever a synchronization occurs,the state that is reached is obtained by choosing a state independently for each of the proba-bilistic automata involved.4.3.2 Projection of Probabilistic ExecutionsThe Structure of the ProblemLet M = M1kM2, and let H be a probabilistic execution fragment of M . We want to determinethe view that M1 has of H , or, in other words, what probabilistic execution M1 performs inorder for M1kM2 to produce H . To understand the complexity of the problem, consider theprobabilistic execution fragment of Figure 4-12, and consider its projection ontoM1, representedin Figure 4-13. Actions a; b and c are actions of M1, while action d is an action of M2. Thus,there is no communication between M1 and M2. Denote the probabilistic execution fragmentof Figure 4-12 by H , and denote the probabilistic execution fragment of Figure 4-13 by H1.The projections of the states are ordinary projections of pairs onto their �rst component. Thetransitions, however, are harder to understand. We analyze them one by one.s1;0 The transition leaving s1;0 is obtained directly from the transition leaving (s1;0; s2;0) inH by projecting onto M1 the target states.s1;2 The transition leaving s1;2 is obtained by combining the transitions leaving states (s1;2; s2;0)and (s1;2; s2;1), each one with probability 1=2. The two transitions leaving (s1;2; s2;0) and62



(s1;2; s2;1) have the same projection onto M1, and thus the transition leaving s1;2 in H1is s1;2 a�! s1;4. From the point of view of M1, there is just a transition s1;2 a�! s1;4;nothing is visible about the behavior of M2.To give a better idea of what we mean by \visible", suppose that M1 is a student whohas to write a report and suppose that the report can be written using a pen (actionc) or using a pencil (action b). Suppose that the teacher may be able to get a pencileraser (action d) and possibly erase the report written by the student once it is ready forgrading. Then the scheduler is an arbiter who gives the student a pen if the teacher getsan eraser. If the student starts in state s1;2, then from the point of view of the studentthe material for the report is prepared (action a), and then the arbiter gives the studenta pen with probability 1=2 and a pencil with probability 1=2; nothing is known about thetime the the arbiter made the choice and the reason for which the choice was made. Wecan also think of the student as being alone in a room and the arbiter as being a personwho brings to the student either a pen or a pencil once the material for the report isready.The detailed computation of the transition leaving from s1;2 in H1 works as follows: westart from state (s1;2; s2;0), which is the �rst state reached in H where M1 is in s1;2, andwe analyze its outgoing edges. We include directly all the edges labeled with actions ofM1 in the transition leaving s1;2; for the other edges, we move to the states that theylead to, in our case (s1;2; s2;1), and we repeat the same procedure keeping in mind thatthe probability of the new edges must be multiplied by the probability of reaching thestate under consideration. Thus, the edge labeled with a that leaves (s1;2; s2;0) is givenprobability 1=2 since its probability is 1=2, and the edge that leaves (s1;2; s2;1) is givenprobability 1=2 since the probability of reaching (s1;2; s2;1) from (s1;2; s2;0) is 1=2.s1;4 For the transition leaving s1;4, we observe that inH there are two states, namely (s1;4; s2;0)and (s1;4; s2;1), that can be reached separately and whose �rst component is s1;4. Eachone of the two states is reached in H with probability 1=4. The di�erence between thecase for state s1;2 and this case is that in the case for s1;2 state (s1;2; s2;0) occurs before(s1;2; s2;1), while in this case there is no relationship between the occurrences of (s1;4; s2;0),and (s1;4; s2;1). The transition leaving s1;4 depends on the state of M2 which, conditionalon M1 being in s1;4, is 1=2 for s2;0 and 1=2 for s2;1. Thus, from the point of view of M1,since the state of M2 is unknown, there is a transition from s1;4 that with probability 1=2leads to the occurrence of action b and with probability 1=2 leads to the occurrence ofaction c. Essentially we have normalized to 1 the probabilities of states (s1;4; s2;0) and(s1;4; s2;1) before considering their e�ect on M1.s1;1 The transition leaving s1;1 shows why we need the symbol � in the transitions of a proba-bilistic automaton. From state (s1;1; s2;0) there is a transition where action b occurs withprobability 1=2 and action � occurs with probability 1=2. After � is performed, nothingis scheduled. Thus, from the point of view of M1, nothing is scheduled from s1;1 withprobability 1=2; the transition of M2 is not visible by M1.63



Action Restricted TransitionsThe formal de�nition of a projection relies on a new operation on transitions, called actionrestriction, which is used also in several other parts of the thesis. The action restriction op-eration allows us to consider only those edges of a transition that are labeled with actionsfrom a designated set V . For example, V could be the set of actions of a speci�c probabilisticautomaton.Formally, let M be a probabilistic automaton, V be a set of actions of M , and tr = (s;P)be a transition of M . The transition tr restricted to actions from V , denoted by tr � V , isthe pair (s;P 0) where P 0 is obtained from P by considering only the edges labeled with actionsfrom V and by normalizing their probability to 1, i.e.,� 
0 = ( f(a; s0) 2 
 j a 2 V g if P [V ] > 0f�g otherwise� if P [V ] > 0, then for each (a; s0) 2 
0, P 0[(a; s0)] = P [(a; s0)]=P [V ].Two properties of action restriction concern commutativity with transition pre�xing, and dis-tributivity with respect to combination of transitions. These properties are used in the proofsof other important results of this thesis. The reader may skip the formal statements for themoment and refer back to them when they are used.Proposition 4.3.1 For each q and tr such that one of the expressions below is de�ned,q a (tr � V ) = (q a tr ) � V:Proof. Simple manipulation of the de�nitions.Proposition 4.3.2 Let ftigi2I be a collection of transitions leaving from a given state s, andlet fpigi2I be a collection of real numbers between 0 and 1 such that Pi2I pi � 1. Let V be aset of actions. Then(Xi pitr i) � V =Xi piPtr i [V ]Pi piPtr i [V ] (tr i � V );where we use the convention that 0=0 = 0.Proof. Let(s;P) 4= Xi pitr i; (4.15)(s;P 0) 4= (Xi pitr i) � V; (4.16)(s;P 00) 4= Xi piPtr i [V ]Pi piPtri [V ](tr i � V ): (4.17)We need to show that P 0 and P 00 are the same probability space.64



If P [V ] = 0, then both P 0 and P 00 are D(�) and we are done. Otherwise, observe thatneither 
0 nor 
00 contain �. Consider any pair (a; s0). Then,(a; s0) 2 
0i� (a; s0) 2 
 and a 2 V from (4.16) and (4.15)i� 9i(a; s0) 2 
tr i ; pi > 0; and a 2 V from (4.15)i� 9i(a; s0) 2 
tr i�V and pi > 0 from the de�nition of tr i � Vi� (a; s0) 2 
00 from (4.17).Consider now a pair (a; s0) of 
0. From the de�nition of action restriction and (4.16),P 0[(a; s0)] = P [(a; s0)]=P [V ]: (4.18)From the de�nition of P (Equation (4.15)), the right side of Equation 4.18 can be rewritteninto Xi piPi piPtr i [V ]Ptr i [(a; s0)]; (4.19)where Pi piPtri [V ] is an alternative expression of P [V ] that follows directly from (4.16). Bymultiplying and dividing each ith summand of Expression 4.19 by Ptri [V ], we obtainXi piPtr i [V ]Pi piPtr i [V ] (Ptri [(a; s0)]=Ptri [V ]): (4.20)Since Ptri [(a; s0)]=Ptri [V ] = Ptr i�V [(a; s0)], from the de�nition of P 00 (Equation (4.17)), Expres-sion 4.20 can be rewritten into P 00[(a; s0)]. Thus, P 0[(a; s0)] = P 00[(a; s0)]. This is enough toshow that P 0 = P 00.De�nition of ProjectionWe give �rst the formal de�nition of a projection, and then we illustrate its critical parts byanalyzing the example of Figures 4-12 and 4-13. It is very important to understand Expres-sions (4.21) and (4.22) since similar expressions will be used in several other parts of the thesiswithout any further explanation except for formal proofs.Let M = M1kM2, and let H be a probabilistic execution fragment of M .Let tr = (q;P) be an action restricted transition of H such that only actions ofMi, i = 1; 2,appear in tr . De�ne the projection operator on the elements of 
 as follows: (a; q0)dMi =(a; q0dMi), and �dMi = �. Recall from Section 3.1.5 that the projection can be extendedto discrete probability spaces. The projection of tr onto Mi, denoted by trdMi, is the pair(qdMi;PdMi).The projection of H onto Mi, denoted by HdMi, is the fully probabilistic automaton H 0such that1. states(H 0) = fqdMi j q 2 states(H)g;2. start(H 0) = fqdMi j q 2 start(H)g;3. sig(H 0) = sig(Mi); 65



4. for each state q of H 0, let qeH be the set of states of H that projected onto Mi give q,and let min(qeH) be the set of minimal states of qeH under pre�x ordering. For eachq0 2 (qeH), let�pqeHq0 4= PH [C�q]Pq002min(qeH) PH [Cq00] : (4.21)The transition enabled from q in H 0 istrH 0q 4= Xq02qeH �pqeHq0 PHq0 [acts(Mi)](trHq0 � acts(Mi))dMi: (4.22)Each summand of Expression 4.22 corresponds to the analysis of one of the states of H that canin
uence the transition enabled from q in H 0. The subexpression (trHq0 � acts(Mi))dMi selectsthe part of the transition leaving from q0 where Mi is active, and projects onto Mi the targetstates of the selected part; the subexpression �pqeHq0 PHq0 [acts(Mi)] expresses the probability withwhich q0 in
uences the transition enabled from q. PHq0 [acts(Mi)] is the probability that trHq0 doessomething visible byMi, and �pqeHq0 is the probability of being in q0 conditional on Mi being in q.Its value is given by Expression 4.21 and can be understood as follows. The state q0 is either aminimal state of qeH or is reached from a minimal state through a sequence of edges with actionsnot in acts(Mi). The probability of being in q0, conditional on Mi being in q, is the normalizedprobability of being in the minimal state of qeH that precedes q0 multiplied by the probabilityof reaching q0 from that minimal state. We encourage the reader to apply Expression (4.22) tothe states s1;0; s1;1; s1;2, and s1;4 of Figure 4-13 to familiarize with the de�nition. As examples,observe that min((s1;0bs1;2)eH) = f(s1;0; s2;0)b(s1;2; s2;0)g and that min((s1;0bs1;2as1;4)eH) =f(s1;0; s2;0)b(s1;2; s2;0)a(s1;4; s2;0); (s1;0; s2;0)b(s1;2; s2;0)d(s1;2; s2;1)a(s1;4; s2;1)g.If we analyze the state s1;3 of Figure 4-13 and we use Expression 4.22 to compute thetransition leaving s1;3, then we discover that the sum of the probabilities involved is not 1.This is because there is a part of the transition leaving (s1;3; s2;0) where no action of M1 everoccurs. From the point of view of M1 nothing is scheduled; this is the reason of our choice ofdeadlock by default in the de�nition of the combination of transitions (cf. Section 4.2.2).We now move to Proposition 4.3.4, which is the equivalent of Proposition 3.2.1 for theprobabilistic framework. Speci�cally, we show that the projection of a probabilistic executionfragment H of M1kM2 onto one of its components Mi is a probabilistic execution fragmentof Mi. Proposition 3.2.1 is important because it shows that every computation of a parallelcomposition is the result of some computation of each of the components. One of the reasonsfor our use of randomized schedulers in the model is to make sure that Proposition 3.2.1 isvalid. Before proving this result, we show that its converse does not hold, i.e., that there arestructures that look like a probabilistic execution, that projected onto each component give aprobabilistic execution of a component, but that are not probabilistic executions themselves.Example 4.3.1 (Failure of the converse of Proposition 4.3.4) Consider the probabilis-tic automata of Figure 4-14.a, and consider a potential probabilistic execution of the composi-tion as represented in Figure 4-14.b. Denote the two probabilistic automata of Figure 4-14.a byM1 andM2, and denote the structure of Figure 4-14.b by H . The projections of H ontoM1 and66



s0

s1

s2

1/2

1/2

a

a

s0

s1

s2

1/2

1/2
b

b

s0 s0, )(
1/2

1/2
b

b

( , )s0 s1

, )( ss0 2

( , )s s11

, )( ss 22

a

a

a) Two compatible simple probabilistic automata.

b) A potential probabilistic execution of the composition.Figure 4-14: A counterexample to the converse of the projection proposition.M2 give a probabilistic execution of M1 and M2, respectively. The diagrams of Figure 4-14.acan be viewed as the projections of H as well. However, H is not a probabilistic execution ofM1kM2 since in no place of M1 it is possible to have a Dirac transition to s1 or s2.The rest of this section is dedicated to the proof of the proposition that corresponds to Propo-sition 3.2.1 and to the proof of an additional result (Proposition 4.3.5) that gives a meaning tothe denominator of Expression (4.21). We �rst state two preliminary properties of projectionof transitions (Proposition 4.3.3).Proposition 4.3.3 Let M = M1kM2. Then, for i = 1; 2,1. (Pj pjtr j)dMi =Pj pj(tr jdMi).2. (q a tr)dMi = (qdMi) a trdMi.Proof. Simple manipulation of the de�nitions.Proposition 4.3.4 Let M = M1kM2, and let H be a probabilistic execution fragment of M .Then HdM1 2 prexec(M1) and HdM2 2 prexec(M2).Proof. We show that HdM1 2 prexec(M1); the other statement follows from a symmetricargument. Let H1 denote HdM1. From Proposition 3.2.1, the states of H1 are executionfragments of M1.Consider now a state q of H1. We need to show that there is a combined transition tr ofM1 that corresponds to trH1q , i.e., such that trH1q = q a tr . From Propositions 4.2.1 and 4.2.3,it is su�cient to show that for each state q0 of qeH , there is a combined transition tr(q0) of M1such that(trHq0 � acts(M1))dM1 = q a tr(q0): (4.23)67



Then, the transition tr would betr = Xq02qeH �pqeHq0 PHq0 [acts(Mi)]tr(q0): (4.24)Proposition 4.2.1 is used to show that tr is a combined transition of M1; Proposition 4.2.3 isused to show that q a tr = trH1q . Since H is a probabilistic execution fragment of M , for eachstate q0 of qeH there exists a combined transition tr 0(q0) of M such thattrHq0 = q0 a tr 0(q0): (4.25)From the de�nition of a combined transition, there is a collection of transitions ftr 0(q0; i)gi2Iof M , and a collection of probabilities fpigi2I , such thattr 0(q0) =Xi pitr 0(q0; i): (4.26)Note that each transition tr 0(q0; i) is a simple transition. From the de�nition of action restrictionand (4.26), there is a subset J of I , and a collection of non-zero probabilities fp0jgj2J , such thattr 0(q0) � acts(M1) =Xj p0jtr 0(q0; j): (4.27)If we apply transition pre�x with q0 to both sides of Equation 4.27, we use commutativityof action restriction with respect to transition pre�xing (Proposition 4.3.1) and (4.25) on theleft expression, and we use distributivity of transition pre�xing with respect to combination oftransitions (Proposition 4.2.3) on the right expression, then we obtaintrHq0 � acts(M1) =Xj p0j �q0 a tr 0(q0; j)� : (4.28)By projecting buth sides of (4.28) ontoM1, and using distributivity of projection with respect tocombination of transitions (Proposition 4.3.3) and commutativity of projection and transitionpre�xing (Proposition 4.3.3) on the right expression, we obtain(trHq0 � acts(M1))dM1 =Xj p0j �q a (tr 0(q0; j)dM1)� : (4.29)From the distributivity of transition pre�xing with respect to combination of transitions (Propo-sition 4.2.3), Equation 4.29 becomes(trHq0 � acts(M1))dM1 = q aXj p0j(tr 0(q0; j)dM1): (4.30)From standard properties of the projection of product probability distributions (cf. Sec-tion 3.1.6) and the de�nition of parallel composition, each tr 0(q0; j)dM1 is a transition of M1.Thus, Pj p0j tr 0(q0; j)dM1 is the combined transition of M1 that satis�es Equation 4.23.Finally, we need to show that each state q of H1 is reachable. This is shown by inductionon the length of q, where the base case is the start state of H1. The start state of H1 istrivially reachable. Consider a state qas of H1. By induction, q is reachable. Let q0 be aminimal state of (qas)eH . Then, q0 = q00a(s; s2), where q00 is a state of qeH and s2 is a state68



of M2. Moreover, (a; q0) 2 
trHq00 , and thus, (a; qas) 2 
(trHq00�acts(M1))dM1. Since no edges withprobability 0 are allowed in a probabilistic automaton, the term �pqeHq00 PHq00 [acts(Mi)] is not 0,and thus (a; qas) 2 
H1q . This means that qas is reachable.We conclude this section with another property of projections that gives a meaning to thedenominator of Expression (4.21). Speci�cally, the proposition below allows us to compute theprobability of a �nitely satis�able event of the projection of a probabilistic execution fragmentH by computing the probability of a �nitely satis�able event of H . Observe that the rightexpression of (4.31) is indeed the denominator of (4.21).Proposition 4.3.5 Let M = M1kM2, and let H be a probabilistic execution fragment of M .Let Hi be HdMi, i = 1; 2. Let q be a state of Hi. Then,PHi [Cq] = Xq02min(qeH)PH [Cq0]: (4.31)Proof. The proof is by induction on the length of q, where the base case is for the start stateof Hi. If q is the start state of Hi, then the start state of H is the only minimal state of qeH .Both the cones denoted by the two states have probability 1.Consider now the case for qas. From the de�nition of the probability of a cone,PH1 [Cqas] = PH1 [Cq]PH1q [(a; qas)]: (4.32)By using Expression 4.22 and the de�nitions of action restriction and projection, the termPH1q [(a; qas)] can be rewritten intoXq02qeH �pqeHq0 PHq0 [acts(Mi)]0B@ Xq002(qas)eH j(a;q00)2
Hq0 PHq0 [(a; q00)]=PHq0 [acts(Mi)]1CA ; (4.33)which becomesXq02qeH �pqeHq0 0B@ Xq002(qas)eH j(a;q00)2
Hq0 PHq0 [(a; q00)]1CA ; (4.34)after simplifying the term PHq0 [acts(Mi)]. The case when PHq0 [acts(Mi)] = 0 is not a problemsince the innermost sum of Expression 4.33 would be empty. By expanding �pqeHq0 in Expres-sion 4.34 with its de�nition (Equation 4.21), applying induction to PH1 [Cq] in Expression 4.32,and simplifying algebraically, Equation 4.32 can be rewritten intoPH1 [Cqas] = Xq02qeH Xq002(qas)eH j(a;q00)2
Hq0 PH [Cq0]PHq0 [(a; q00)]: (4.35)Indeed, the denominator of the expansion of �pqeHq0 coincides with the expansion of PH1 [Cq].From the de�nition of the probability of a cone, the terms PH [Cq0]PHq0 [(a; q00)] that appearin Equation 4.35 can be rewritten into PH [Cq00].69



Consider now one of the states q00 of the right side of Equation 4.35. Then q00dMi = qas, andthere exists a state q0 of qeH such that (a; q00) 2 
q0 . This means that q00 can be expressed asq0as0 for some state s0 ofM . Since q0dMi = q, then q00 is a minimal state of (qas)eH . Conversely,let q00 be a minimal state of (qas)eH . Then q00 can be expressed as q0as0 for some state q0 of Hand some state s0 of M (otherwise q00 would not be minimal). Moreover, q0 is a state of qeHand (a; q00) 2 
Hq0 . Thus, q00 is considered in Equation 4.35. Finally, each minimal state q00 of(qas)eH is considered at most once in Equation 4.35, since there is at most one state q0 in Hsuch that (a; q00) 2 
Hq0 . Thus, Equation 4.35 can be rewritten intoPH1 [Cqas] = Xq002min((qas)eH)PH [Cq00]; (4.36)which is what we needed to show.4.3.3 Parallel Composition for General Probabilistic AutomataIn this section we give an idea of the problems that arise in de�ning parallel composition forgeneral probabilistic automata. The discussion is rather informal: we want to give just an ideaof why our intuition does not work in this case.The main problem that needs to be addressed is to choose when two transitions shouldsynchronize and how the synchronization would occur. We analyze the problem through sometoy examples. Consider two probabilistic automata M1;M2 with no internal actions and suchthat ext(M1) = fa; b; c; dg and ext(M2) = fa; b; c; eg. Let (s1; s2) be a reachable state ofM1kM2,and consider the following cases.1. Suppose that from state s1 of M1 there is a transition tr1 giving actions a; b probability1=2 to occur, and suppose that from state s2 of M2 there is a transition tr2 giving actionsa; b probability 1=2 to occur.
tr :

1 1/2

1/2

b

a

s1
1/2

1/2

b

a

str :
2 2If we choose not to synchronize tr1 and tr2, then the only transitions that can be syn-chronized are the simple transitions, leading to a trivial parallel composition operatorthat does not handle any kind of transition with probabilistic choices over actions. Thetransitions tr1 and tr2 cannot be scheduled even independently, since otherwise the CSPsynchronization style would be violated.If we choose to synchronize tr1 and tr2, then both M1 and M2 choose an action betweena and b. If the actions coincide, then there is a synchronization, otherwise we have twopossible choices in our de�nition: either the system deadlocks, or the random draws arerepeated. The �rst approach coincides with viewing each probabilistic automaton as de-ciding its next action probabilistically independently of the other interacting automaton;the second approach is the one outlined in [GSST90], where essentially deadlock is notallowed, and assumes some dependence between the involved probabilistic automata.For the rest of the discussion we assume that the transitions tr1 and tr2 do synchronize;however, we leave unspeci�ed the way in which tr1 and tr2 synchronize.70



2. Suppose that from state s1 of M1 there is a transition tr1 giving actions a; b probability1=2 to occur, and suppose that from state s2 of M2 there is a transition tr2 giving actionsa; c probability 1=2 to occur.
tr :

1 1/2

1/2

b

a

s1
1/2

1/2
a

str :
2 2

cNote that actions a; b and c are all in common between M1 and M2. If we choose notto synchronize tr1 and tr2, then only transitions involving the same sets of actions cansynchronize. However, we have the same problem outlined in Case 1, where neither tr 1,nor tr2 can be scheduled independently.If we choose to synchronize tr1 and tr2, then, since a is the only action that is in commonbetween tr1 and tr2, the only action that can occur is a. Its probability is either 1 or 1=4depending on how the synchronization in Case 1 is resolved. However, in both cases theonly action that appears in the sample space of the composite transition is a.For the rest of the discussion we assume that the transitions tr1 and tr2 do synchronize.Once again, we leave unspeci�ed the way in which tr1 and tr2 synchronize.3. Suppose that from state s1 ofM1 there is a transition tr1 giving actions a; b; d probability1=3 to occur, and suppose that from state s2 of M2 there is a transition tr2 giving actionsa; b; e probability 1=3 to occur.
a

1/3

1/3

1/3

d

b
s1

a
1/3

1/3

1/3

b
s2

eIn this case each transition has some actions that are in common between M1 and M2,and some actions that are not in common.If we choose not to synchronize tr1 and tr2, then, beside the fact that tr1 and tr2 could notbe scheduled independently, the parallel composition operator would not be associative.Consider two new probabilistic automata M 01;M 02 with the same actions as M1 and M2,respectively. Suppose that from state s01 of M 01 there is a transition tr 01 giving actions a; bprobability 1=2 to occur, and suppose that from state s02 of M 02 there is a transition tr 02giving actions a; b probability 1=2 to occur.
1/2

1/2

b

a

11
tr : s

1/2

1/2

b

a

2 2tr : s’ ’ ’ ’If we consider (M 01kM1)k(M2kM 02), then in state ((s01; s1); (s2; s02)) tr 1 would synchronizewith tr 01 leading to a transition that involves actions a and b only, tr2 would synchronizewith tr 02 leading to a transition that involves actions a and b only, and the two new71



transitions would synchronize because of Case 1, leading to a transition that involvesactions a and b. If we consider (M 01k(M1kM2))kM 02, then in state ((s01; (s1; s2)); s02) tr1and tr2 would not synchronize, and thus associativity is broken.If we choose to synchronize tr1 and tr2, then problems arise due to the presence of actionsthat are not in common between M1 and M2. In particular we do not know what to do ifM1 draws action d and M2 draws action e, or if M1 draws action d and M2 draws actiona. Since we do not want to assume anything about the respective probabilistic behaviorsof M1 and M2, at least the �rst case is an evident case of nondeterminism.However, even by dealing with the �rst case above by means of nondeterminism, onlyone of actions d; e can be performed. Suppose that d is chosen, and thus M1 performs atransition while M2 does not. What happens to M2? Is action e supposed to be chosenalready after d is performed? Otherwise, what is the probability for e to occur? At thispoint we do not see any choice that would coincide with any reasonable intuition aboutthe involved systems.In the second case we are sure that action a cannot occur. Does this mean that action doccurs for sure? Or does this mean that a deadlock can occur? With what probabilities?Once again, intuition does not help in this case.The main problem, which is evident especially from Case 3, is that we do not know who is incontrol of a system, and thus, whenever there is a con
ict that is not solved by nondeterminismalone, we do not know what probability distribution to use to resolve the con
ict. However,if we decorate probabilistic automata with some additional structure that clari�es who is incontrol of what actions [LT87], then parallel composition can be extended safely to some formsof general probabilistic automata, where the external actions are partitioned into input andoutput actions, the transitions that contain some input action are simple transitions, and inputactions are enabled from every state (cf. Section 13.2.2). An observation along this line appearsin [WSS94].4.4 Other Useful OperatorsThere are two other operators on probabilistic automata that should be mentioned, since theyare used in general on ordinary automata. In this section we provide a short description ofthose operators. Since the relative theory is simple, this is the only point where we mentionthese operators during the development of the probabilistic model.4.4.1 Action RenamingLet � be a one-to-one function whose domain is acts(M). De�ne Rename�(M) to be theprobabilistic automaton M 0 such that1. states(M 0) = states(M).2. start(M 0) = start(M).3. sig(M 0) = (�(ext(M)); �(int(M))). 72



4. (s;P) 2 trans(M 0) i� there exists a transition (s;P 0) of M such that P = �0(P 0), where�0((a; s0)) = (�(a); s0) for each (a; s0) 2 
0, and �0(�) = �.Thus, the e�ect of Rename� is to change the action names of M . The restriction on � to beone-to-one can be relaxed as long as internal and external actions are not mixed, i.e., there isno pair of actions a; b where a is an external action, b is an internal action, and �(a) = �(b).4.4.2 Action HidingLet M be a probabilistic automaton, and let I be a set of actions. Then HideI(M) is de�nedto be a probabilistic automaton M 0 that is the same as M , except thatsig(M 0) = (ext(M)� I; int(M) [ I):That is, the actions in the set I are hidden from the external environment.4.5 DiscussionThe generative model of probabilistic processes of van Glabbeek et al. [GSST90] is a specialcase of a fully probabilistic automaton; simple probabilistic automata are partially capturedby the reactive model of [GSST90] in the sense that the reactive model assumes some formof nondeterminism between di�erent actions. However, the reactive model does not allownondeterministic choices between transitions involving the same action. By restricting simpleprobabilistic automata to have �nitely many states, we obtain objects with a structure similar tothat of the Concurrent Labeled Markov Chains of [Han91]; however, in our model we do not needto distinguish between nondeterministic and probabilistic states. In our model nondeterminismis obtained by means of the structure of the transition relation. This allows us to retain mostof the traditional notation that is used for automata.Our parallel composition operator is de�ned only for simple probabilistic automata, and thusa natural objection is that after all we are dealing just with the reactive model. Furthermore,the reactive model is the least general according to [GSST90]. Although we recognize that oursimple probabilistic automata constitute a restricted model and that it would be desirable toextend the parallel composition operator to general probabilistic automata, we do not think thatit is possible to use the classi�cation of [GSST90] to judge the expressivity of simple probabilisticautomata. The classi�cation of [GSST90] is based on a synchronous parallel composition, whileour parallel composition is based on a conservative extension of the parallel composition of CSP[Hoa85]. Furthermore, in the classi�cation of [GSST90] a model is more general if it containsless nondeterminism, while in our model nondeterminism is one of the key features.
73



74



Chapter 5Direct Veri�cation: Stating aPropertyThis chapter presents a method to study the properties that a probabilistic automaton satis�es.We describe how an informally stated property can be made rigorous, and we show how simplestatements can be combined together to give more complex statements. In Chapter 6 we developtechniques to prove from scratch that a probabilistic automaton satis�es a given property.Part of this chapter is based on discussion with Isaac Saias who provided us with themotivations for the de�nition of progress statements (Section 5.5) and for the statement of theconcatenation theorem (Theorem 5.5.2).5.1 The Method of AnalysisIf we read through the papers on randomized algorithms and we look at the statements ofcorrectness, we see claims like\Whenever the algorithm X starts in a condition Y , no matter what the adversarydoes, the algorithm X achieves the goal Z with probability at least p."For convenience, denote the statement above by S. A possible concrete instantiation of S isthe following:\Consider a distributed system X, composed of n processors, that provides servicesunder request and suppose that some request R comes. Then, independently of therelative order in which the n processors complete their operations (no matter whatthe adversary does), a response to R is given eventually (the goal Z) with probabilityat least 2=3.Let us try to understand the meaning of the statement S. First of all, in S there is an entity,called adversary , that a�ects the performance of algorithm X . The adversary is seen as amalicious entity that degrades the performance of X as much as possible.If X is a distributed algorithm that runs on n separate processes, then the adversary is theentity that chooses what process performs the next transition, and possibly what the externalenvironment does. To account for all the possible ways to schedule processes, the adversary75



$ $

M 2M 1

R2

R 1Figure 5-1: A toy resource allocation protocol.bases its choices on a complete knowledge of the state of a system, including its past history. Ifthe algorithm is represented as a probabilistic automaton, then an adversary is the object thatresolves the nondeterminism. In other words, an adversary is a scheduler seen as a maliciousentity.However, not all the schedulers guarantee in general that some speci�c property is satis�ed.For example, an adversary is usually required to be fair to all the processes of a system inorder to guarantee progress. In other cases, an adversary is not allowed to base its choices on acomplete knowledge of the history of a system: the correctness of an algorithm may rely on theadversary not to use the results of previous random draws in choosing the next process to bescheduled. Thus, in the statement S there is usually an implicit assumption that an adversaryhas some limitations.Example 5.1.1 (A toy resource allocation protocol) Figure 5-1 illustrates a toy scenariowhere correctness is guaranteed only for adversaries that do not know the outcome of the randomdraws of the processes. Two processes M1 and M2 compete for two resources R1 and R2. Eachprocess continuously runs through the following cycle:1. 
ip a coin to choose a resource;2. if the chosen resource is free, then get it;3. if you hold the resource, then return it.That is, each process continuously tries to get a randomly chosen resource and then returns it,possibly after using the resource. Of course this is a stupid protocol, but it highlights severalaspects of randomized distributed algorithms. Suppose every adversary to be fair, meaningthat both processes perform in�nitely many transitions. A malicious adversary can create asituation where M1 never succeeds in obtaining a resource with an arbitrarily high probability.The adversary works as follows. Fix an arbitrary probability p such that 0 < p < 1, and considera collection of probabilities fpigi2N such that Qi pi = p. We know that such a collectionof probabilities exists. Then the adversary works in rounds, where at round i the followinghappens:a. M1 is scheduled until it 
ips its coin;b. M2 is scheduled for su�ciently many times so that it gets the resource chosen by M1with probability at least pi (�nitely many times are su�cient). As soon as M2 gets theresource chosen by M1 the control goes to c;76



c. M1 is scheduled to check its resource and fails to get it.In this case M1 fails to obtain a resource with probability at least p. On the other hand, ifan adversary is not allowed to base its choices on the outcome of the coin 
ips, or better,if an adversary chooses the next process that performs a transition based only on the orderin which processes were scheduled in the past, then each process eventually gets a resourcewith probability 1 (this fact is proved in Section 6.6). Such an adversary is called an obliviousadversary or an o�-line scheduler .Let us move back to the problem of understanding the statement S. Consider a valid adversaryA, i.e., an adversary that satis�es the limitations that are implicitly assumed for S. Let Mbe a probabilistic automaton that describes algorithm X , and consider an arbitrary startingpoint q for M , i.e., q is a �nite execution fragment of M that describes a partial evolution ofM . If we let A resolve the nondeterminism in M starting from the knowledge that q occurred,then we obtain a probabilistic execution fragment of M , which we denote by prexec(M;A; q).According to S, if q satis�es condition Y , then prexec(M;A; q) should satisfy property Z withprobability at least p. However, Z is a property of M , and not a property of prexec(M;A; q).Thus, we need a way to associate with prexec(M;A; q) the event that expresses Z. The objectthat does this operation is called an event schema. At this point it is possible to formalize Sby stating the following:\For each valid adversary A and each valid starting condition q, the probability ofthe event associated with prexec(M;A; q) is at least p."This is an example of what we call a probabilistic statement .A probabilistic statement that plays an important role in our analysis is denoted byU �!p Advs U 0; (5.1)where U and U 0 are sets of states, p is a probability, and Advs is a set of adversaries. We callsuch a statement a progress statement . Its meaning is that if a protocol starts from a state ofU , then, no matter what adversary of Advs is used to resolve the nondeterminism, some state ofU 0 is reached with probability at least p. A progress statement is a probabilistic generalizationof the leads-to operator of UNITY [CM88].Example 5.1.2 It is possible to show (cf. Section 6.6) that the toy resource allocation protocolsatis�es R �!1=2Advs M1, where R is the set of reachable states ofM1kM2,M1 is the set of statesof M1kM2 where M1 holds a resource, and Advs is the set of fair oblivious and adversaries forM1kM2, i.e., the set of adversaries that are fair to each process and that do not base theirchoices on the outcomes of the coin 
ips (cf. Example 5.6.2 for a formal de�nition of a fairoblivious adversary).Progress statements are important because, under some general conditions, they can be com-bined together to obtain more complex progress statements, thus allowing the decompositionof a complex problem into simpler problems. 77



Example 5.1.3 Suppose that in some system M whenever a request is pending (M is in astate of some set P , a token is given eventually with probability at least 1=2 (reaching a stateof some set T ), and suppose that whenever a token is given a response is given eventually withprobability at least 1=3 (reaching a state of some set G). That is,P �!1=2Advs T and T �!1=3Advs G: (5.2)Then, it is reasonable to conclude that whenever a request is pending a response is giveneventually with probability at least 1=6, i.e.,P �!1=2Advs G: (5.3)This result is a consequence of the concatenation theorem (cf. Theorem 5.5.2).Example 5.1.4 Consider the toy resource allocation protocol again. We know from Exam-ple 5.1.2 thatR �!1=2Advs M1: (5.4)It is also possible to show thatR) RUnlessM1; (5.5)where R ) RUnlessM1 is a UNITY [CM88] expression stating that whenever a system is in astate of R the system remains in a state of R unless a state of M1 is reached. This means that(5.4) is applicable from any point in the evolution of the toy resource allocation protocol, andthis fact, together with the condition that every adversary is fair, is succicient to guarranteethat R �!1 Advs M1 (5.6)(cf. Proposition 5.5.6). The reader familiar with UNITY may note that the combination of(5.4) and (5.5) is a probabilistic generalization of the ensures operator of Chandy and Misra[CM88].To see more signi�cative applications of progress statements the reader is referred to Chapter 6,where we prove the correctness of the randomized Dining Philosophers algorithm of Lehmannand Rabin [LR81], and we prove the correctness of the randomized algorithm of Ben-Or foragreement in asynchronous networks in the presence of stopping faults [BO83]. Instead, the �nalpart of this chapter concentrates on standard methods to specify event schemas and adversaryschemas, and on the relationship between deterministic and general (randomized) adversaries.The main lesson that we learn is that for a large class of probabilistic statements it is possibleto prove their validity by considering only deterministic adversaries, i.e., adversaries that donot use randomization in their choices. The reader who is reading only the �rst section of eachchapter should move to Chapter 6 at this point and skip the rest of this section.We said already that an event schema is a rule to associate an event with each probabilisticexecution fragment. More formally, an event schema is a function that given a probabilisticexecution fragment H returns an event of FH . However, we have not given any method to78



specify an event schema. Our de�nition of an event schema is very general since it allows forany kind of rule to be used in determining the event associated with a probabilistic executionfragment. On the other hand, there is a speci�c rule which is used in most of the existingliterature on randomized algorithms. Namely, given a probabilistic automaton M , a set � ofexecution fragments of M is �xed, and then, given a probabilistic execution fragment H of M ,the event associated with H is �\
H . We call such an event schema an execution-based eventschema. Since the start state of a probabilistic execution fragment contains part of the history ofM , and since in general we are interested in what happens only after the probabilistic executionfragment starts, we re�ne the de�nition of an execution-based event schema by associating aprobabilistic execution fragment H with the event � \ (
H.qH0 ), where qH0 is the start state ofH . In this way a progress statement can be stated in terms of execution-based event schemas,where � is the set of execution fragments of M that contain at least one occurrence of a statefrom U 0.To specify an adversary schema there are two main restrictions that are usually imposed.One possibility is to restrict the kind of choices that an adversary can make, and the otherpossibility is to restrict the on-line information that an adversary can use in making its choices.The �rst kind of restriction is usually achieved by �xing a set � of execution fragments before-hand and requiring that all the probabilistic execution fragments H generated by an adversarysatisfy 
H � �. We call the corresponding adversary schema an execution-based adversaryschema. The second kind of restriction is achieved by imposing a correlation on the choices ofan adversary on di�erent inputs. We call the corresponding adversary schema an adversariesschema with partial on-line information.Example 5.1.5 An example of an execution-based adversary schema is the set of fair adver-saries for n processes running in parallel. In this case � is the set of execution fragments ofthe composite system where each process performs in�nitely many transitions. An example ofan adversary schema with partial on-line information is the set of oblivious adversaries for thetoy resource allocation protocol. Execution-based adversary schemas and adversary schemaswith partial on-line information can be combined together. An example of an execution-basedadversary schema with partial on-line information is the set of fair and oblivious adversariesfor the toy resource protocol (cf. Example 5.6.2).Exacution-based adversaries and event schemas give us a good basis to study the relationshipbetween deterministic and general adversaries. Roughly speaking, and adversary is determin-istic if it does not use randomness in its choices. Then the question is the following: \doesrandomness add power to an adversary?" The answer in general is \yes"; however, there areseveral situations of practical relevance where randomness does not add any power to an ad-versary. In particular, we show that randomization does not add any power when dealing with�nitely satis�able execution-based event schemas in two scenarios: execution-based adversaryschemas and adversary schemas with partial on-line information.5.2 Adversaries and Adversary SchemasAn adversary , also called a scheduler , for a probabilistic automaton M is a function A thattakes a �nite execution fragment � of M and returns a combined transition of M that leaves79



from lstate(�). Formally,A : frag�(M)! Probs(ctrans(M))such that if A(�) = (s;P), then s = lstate(�).An adversary is deterministic if it returns either transitions of M or pairs of the form(s;D(�)), i.e., the next transition is chosen deterministically. Denote the set of adversariesand deterministic adversaries for a probabilistic automaton M by Advs(M) and DAdvs(M),respectively. We introduce deterministic adversaries explicitly because most of the existingrandomized algorithms are analized against deterministic adversaries. In Section 5.7 we studythe connections between deterministic adversaries and general adversaries.As we have noted already, the correctness of an algorithm may be based on some speci�cassumptions on the scheduling policy that is used. Thus, in general, we are interested only insome of the adversaries of Advs(M). We call a subset of Advs(M) an adversary schema, andwe use Advs to denote a generic adversary schema. Section 5.6 describes in more detail possibleways to specify an adversary schema.5.2.1 Application of an Adversary to a Finite Execution FragmentThe interaction of an adversary A with a probabilistic automaton M leads to a probabilisticexecution fragment, where the transition enabled from each state is the transition chosen byA. Given a �nite execution fragment � of M , the probabilistic execution of M under A withstarting condition �, denoted by prexec(M;A; �), is the unique probabilistic execution fragmentH of M such that1. start(H) = f�g, and2. for each state q of H , the transition trHq is q a A(q).Condition 2 ensures that the transition enabled from every state q of H is the transition chosenby A. It is a simple inductive argument to show that H is well de�ned.5.2.2 Application of an Adversary to a Finite Probabilistic Execution Frag-mentFrom the theoretical point of view, we can generalize the idea of the interaction between anadversary and a probabilistic automaton by assuming that the start condition is a �nite prob-abilistic execution fragment of M . In this case the adversary works from all the points ofextension of the starting condition. The resulting probabilistic execution fragment should bean extension of the starting condition. Formally, if H is a �nite probabilistic execution fragmentof M , then the probabilistic execution of M under A with starting condition H , denoted byprexec(M;A; H), is the unique probabilistic execution fragment H 0 of M such that1. start(H 0) = start(H), and2. for each state q of H 0, if q is a state of H , then trH 0q isp �trHq � acts(H)�+ (1� p) �q a A(q)� ;80



q qq
0 1

δ δ

aa

1/2

1/2

1/2

1/2H: q

q
2

q
1

b

aa

3/4

1/4q
0H :’Figure 5-2: An example of the action of an adversary on a probabilistic execution fragment.wherep = PH [Cq]PH 0 [Cq]PHq [acts(H)];and if q is not a state of H , then trH 0q is q a A(q).Once again, it is a simple inductive argument to show that H 0 is well de�ned.Example 5.2.1 (Extension of a �nite probabilistic execution fragment) Before prov-ing that H 0 is an extension of H , we describe in more detail how the de�nition above works.The di�cult case is for those states q of H 0 that are also states of H . Consider the example ofFigure 5-2. Let A choose q0 a�! q on input q0, choose q b�! q2 on input q, and choose � on allother inputs. The probabilistic execution fragment H 0 of Figure 5-2 is the result of the actionof A on the probabilistic execution fragment H of Figure 5-2. In H 0 there are two ways to reachq: one way is by means of transitions of H , and the other way is by means of transitions dueto A that originate from q0. Thus, a fraction of the probability of reaching q in H 0 is due toH , while another fraction is due to the e�ect of A on H . The weight with which the transitiontrHq is considered in H 0 is the �rst fraction of the probability of reaching q, which is expressedby PH [Cq]=PH 0 [Cq]. In our example the fraction is 1=2. However, in our example the transitiontrHq may also leads to � with probability 1=2, and the part of trHq that leads to � should behandled by A. For this reason in the left term of the de�nition of trH 0q we discard � from trHqand we add a multiplicative factor PHq [acts(H)] to the weight. Thus, in our example, threequarters of the transition leaving from q in H 0 are controlled by A. Note that the probabilityof reaching q1 from q0 is the same in H and H 0.Proposition 5.2.1 Let M be a probabilistic automaton, and let A be an adversary for M .Then, for each �nite probabilistic execution fragment H of M , the probabilistic execution frag-ment generated by A from H is an extension of H, i.e.,H � prexec(M;A; H):Proof. Denote prexec(M;A; H) by H 0. We need to prove that for each state q of H ,PH [Cq] � PH 0 [Cq]: (5.7)If q is the start state of H , then q is also the start state of H 0, and (5.7) is satis�ed trivially.Consider now a state qas of H that is not the start state of H . Then q is a state of H .From the de�nition of the probability of a cone,PH 0 [Cqas] = PH 0 [Cq]PH 0q [(a; qas)]: (5.8)81



From the de�nition of trH 0q ,PH 0q [(a; qas)] = PH [Cq]PH 0 [Cq]PHq [(a; qas)] +  1� PH [Cq]PH 0 [Cq]PHq [acts(H)]!PA(q)[(a; qas)]: (5.9)Here we have also simpli�ed the expression PHq [acts(H)] in the �rst term as we did in the proofof Proposition 4.3.5 (Expressions (4.33) and (4.34)). We will not mention this simpli�cationany more in the thesis.If we remove the second term from the right expression of Equation (5.9), turning Equa-tion (5.9) into an inequality, we obtainPH 0q [(a; qas)] � PH [Cq]PH 0 [Cq]PHq [(a; qas)]: (5.10)By using (5.10) in (5.8), and simplifying the factor PH 0 [Cq], we obtainPH 0 [Cqas] � PH [Cq]PHq [(a; qas)]: (5.11)The right part of (5.11) is PH [Cqas]. Thus, we concludePH 0 [Cqas] � PH [Cqas]: (5.12)5.3 Event SchemasIn the informal description of a probabilistic statement we said that we need a rule to associatean event with each probabilistic execution fragment. This is the purpose of an event schema.An event schema for a probabilistic automatonM , denoted by e, is a function that associates anevent of FH with each probabilistic execution fragment H of M . An event schema e is �nitelysatis�able i� for each probabilistic execution fragment H the event e(H) is �nitely satis�able.Union, intersection and complementation of event schemas are de�ned pointwise. Similarly,conditional event schemas are de�ned pointwise.The best way to think of an event schema is just as a rule to associate an event witheach probabilistic execution fragment. Although in most of the practical cases the rule can bespeci�ed by a set of executions (cf. Section 5.3.2), part of our results do not depend on theactual rule, and thus they would hold even if for some reason in the future we need to studydi�erent rules. Moreover, event schemas allow us to simplify the notation all over.5.3.1 Concatenation of Event SchemasIf e is a �nitely satis�able event schema, i.e., for each probabilistic execution fragment H theevent e(H) can be expressed as a union of cones, then it means that in every execution of e(H)it is possible to identify a �nite point where the property denoted by e is satis�ed. Sometimeswe may be interested in checking whether a di�erent property, expressed by another eventschema, is satis�ed eventually once the property expressed by e is satis�ed. That is, we wantto concatenate two event schemas. 82



Formally, let e1; e2 be two event schemas for a probabilistic automatonM where e1 is �nitelysatis�able, and let Cones be a function that associates a set Cones(H) with each probabilisticexecution fragment H of M such that Cones(H) is a characterization of e1(H) as a union ofdisjoint cones, i.e., e1(H) = [q2Cones(H)Cq, and for each q1; q2 2 Cones(H), if q1 6= q2, thenCq1 \Cq2 = ;. Informally, Cones(H) identi�es the points where the event denoted by e1(H) issatis�ed, also called points of satisfaction.The concatenation e1 �Cones e2 of e1 and e2 via Cones is the function e such that, for eachprobabilistic execution fragment H of M ,e(H) 4= [q2Cones(H) e2(H jq): (5.13)Proposition 5.3.1 The concatenation of two event schemas is an event schema. That is, ife = e1 �Cones e2, then e is an event schema.Proof. Consider a probabilistic execution fragment H . From Proposition 4.2.11 each sete2(H jq) is an event of FH . From the closure of a �-�eld under countable union, e(H) is anevent of FH .Proposition 5.3.2 PH [e1 �Cones e2(H)] =Pq2Cones(H) PH [Cq]PH jq[e2(H jq)].Proof. Since Cones(H) represents a collection of disjoint cones, from (5.13) we obtainPH [e1 �Cones e2(H)] = Xq2Cones(H)PH [e2(H jq)]: (5.14)From Proposition 4.2.11, for each q 2 Cones(H)PH [e2(H jq)] = PH [Cq]PH jq[e2(H jq)]: (5.15)By substituting (5.15) in (5.14) we obtain the desired result.5.3.2 Execution-Based Event SchemasOur de�nition of an event schema is very general; on the other hand, most of the existingwork on randomized algorithms is based on a very simple rule to associate an event with eachprobabilistic execution. Namely, a set � of execution fragments ofM is chosen beforehand, andthen, given a probabilistic execution fragment H , the event associated with H is the � a 
H .We call this class of event schemas execution-based . We have chosen to give a more generalde�nition of an event schema for two main reasons:1. The concatenation Theorem of Section 5.4.1 (Theorem 5.4.2) does not rely on the fact thatan event schema is execution-based, but rather on the fact that it is �nitely satis�able.Thus, if in the future some di�erent kinds of event schemas will become relevant, here wehave already the machinery to deal with them.2. The event schemas that we use later to de�ne a progress statement (cf. Section 5.5) arenot execution-based according to the informal description given above. Speci�cally, thestart state of a probabilistic execution fragment of M is a �nite execution fragment of83



M , i.e., it contains some history of M , and such history is not considered in determiningwhether there is some progress. On the other hand, it is plausible that sometimes wewant to consider also the history encoded in the start state of a probabilistic executionfragment. Thus, the more general de�nition of an event schema still helps.Nevertheless, execution-based adversary schemas are easier to understand and enjoy propertiesthat do not hold for general adversary schemas (cf. Section 5.7). For this reason we givea formal de�nition of an execution-based adversary schema, where we also assume that thehistory encoded in the start state of a probabilistic execution fragment is eliminated.Let � be a set of extended execution fragments of M . An event schema e for a probabilisticautomaton M is �-based i� for each probabilistic execution fragment H of M , e(H) = � \(
H.qH0 ). An event schema e for a probabilistic automatonM is execution-based i� there existsa set � of extended execution fragments of M such that e is �-based.5.4 Probabilistic StatementsGiven a probabilistic automatonM , an event schema e, an adversary A, and a �nite executionfragment �, it is possible to compute the probability Pprexec(M;A;�)[e(prexec(M;A; �))] of theevent denoted by e when M starts from � and interacts with A. As a notational convention,we abbreviate the expression above by PM;A;�[e]. Moreover, when M is clear from the contextwe write PA;�[e], and we write PA[e] if M has a unique start state and � is chosen to be thestart state of M .We now have all the machincery necessary to de�ne a probabilistic statement. A probabilisticstatement for a probabilistic automaton M is an expression of the form PrAdvs ;�(e) R p, whereAdvs is an adversary schema ofM , � is a set of starting conditions, i.e., a set of �nite executionfragments of M , e is an event schema for M , and R is a relation among =, �, and �. Aprobabilistic statement PrAdvs ;�(e) R p is valid forM i� for each adversary A of Advs and eachstarting condition � of �, PA;�[e] R p, i.e.,PrAdvs ;�(e) R p i� 8A2Advs8�2�PA;�[e] R p: (5.16)Proposition 5.4.1 Some trivial properties of probabilistic statements are the following.1. If p1 R p2 then PrAdvs ;�(e) R p1 implies PrAdvs ;�(e) R p2.2. If Advs1 � Advs2 and �1 � �2, then PrAdvs1;�1(e) R p implies PrAdvs2;�2(e) R p.5.4.1 The Concatenation TheoremWe now study an important property of probabilistic statements applied to the concatenationof event schemas. Informally, we would like to derive properties of the concatenation of twoevent schemas from properties of the event schemas themselves. The idea that we want tocapture is expressed by the sentence below and is formalized in Theorem 5.4.2.\If e1 is satis�ed with probability at least p1, and from every point of satisfaction ofe1, e2 is satis�ed with probability at least p2, then the concatenation of e1 and e2 issatis�ed with probability at least p1p2." 84



Theorem 5.4.2 Consider a probabilistic automaton M . Let1. PrAdvs ;�(e1) R p1 and,2. for each A 2 Advs, q 2 �, let PrAdvs ;Cones(prexec(M;A;q))(e2) R p2.Then, PrAdvs ;�(e1 �Cones e2) R p1p2.Proof. Consider an adversary A 2 Advs and any �nite execution fragment q 2 �. LetH = prexec(M;A; q). From Proposition 5.3.2,PH [e1 �Cones e2(H)] = Xq02Cones(H)PH [Cq0]PH jq0[e2(H jq0)]: (5.17)Consider an element q0 of Cones(H). It is a simple inductive argument to show thatH jq0 = prexec(M;A; q0): (5.18)Thus, from our second hypothesis,PH jq0[e2(H jq0)] R p2: (5.19)By substituting (5.19) in (5.17), we obtainPH [e1 �Cones e2(H)]R p2 Xq02Cones(e1(H))PH [Cq0]: (5.20)By using the fact that Cones(H) is a characterization of e1(H) as a disjoint union of cones,Equation (5.20) can be rewritten intoPH [e1 �Cones e2(H)]R p2PH [e1(H)]: (5.21)From the �rst hypothesis, PH [e1(H)] R p1; therefore, from Proposition 5.4.1,PH [e1 �Cones e2(H)]R p1p2: (5.22)This completes the proof.5.5 Progress StatementsIn this section we give examples of probabilistic statements, which we call progress statements,that play an important role in the analysis of algorithms. Progress statements are formaliza-tions of statements that are used generally for the informal analysis of randomized algorithms;however, many other statements can be de�ned depending on speci�c applications. We showalso how to derive complex statements by concatenating several simple statements.85



5.5.1 Progress Statements with StatesLet U and U 0 be sets of states of a probabilistic automaton M . A common informal statementis the following.\Whenever the system is in a state of U , then, under any adversary A of Advs, theprobability that a state of U 0 is reached is at least p."The probability p is usually 1. In this thesis we consider the more general statement where pis required only to be greater than 0. We represent the statement concisely by writingU �!p Advs U 0; (5.23)where Advs is an adversary schema. We call (5.23) a progress statement since, if we view U 0 asa better condition than U , then (5.23) states that from U it is possible to have some progresswith probability at least p. The reader familiar with UNITY [CM88] may note that a progressstatement is a probabilistic generalization of the leads-to operator of UNITY.Let us concentrate on the formal meaning of (5.23). Let eU 0 be an event schema that givena probabilistic execution fragment H returns the set of extended executions � of 
H such thata state of U 0 is reached in �.qH0 (recall that qH0 is the start state of H). Then (5.23) is theprobabilistic statementPrAdvs ;U(eU 0) � p: (5.24)Note that the starting conditions of statement (5.24) are just states of M , i.e., they do notcontain any past history of M except for the current state. This is because when we reasoninformally about algorithms we do not talk usually about the past history of a system. However,if we want to concatenate two progress statements according to Theorem 5.4.2, then we need toconsider the past history explicitly, and thus a better probabilistic statement for (5.23) wouldbe PrAdvs ;�U (eU 0) � p; (5.25)where �U is the set of �nite execution fragments of M whose last state is a state of U . So, whycan we, and indeed do people, avoid to deal with the past history explicitly? The point is that(5.24) and (5.25) are equivalent for most of the adversary schemas that are normally used.5.5.2 Finite History InsensitivityAn adversary schema Advs for a probabilistic automaton M is �nite-history-insensitive i�for each adversary A of Advs and each �nite execution fragment � of M , there exists anadversary A0 of Advs such that for each execution fragment �0 ofM with fstate(�0) = lstate(�),A0(�0) = A(�a �0). In other words, A0 does even though A0 does not know the �nite history �.Lemma 5.5.1 Let Advs be a �nite-history-insensitive adversary schema for a probabilistic au-tomaton M . Then (5.24) and (5.25) are equivalent probabilistic statements.86



Proof. From Proposition 5.4.1, since U � �U , Statement (5.25) implies Statement (5.24)trivially. Conversely, suppose that Statement (5.24) is valid. Consider an adversary A of Advs,and consider an element q of �U . Let Aq be an adversary of Advs such that for each executionfragment q0 of M with fstate(q0) = lstate(q), Aq(q0) = A(q a q0). We know that Aq exists sinceAdvs is �nite-history-insensitive. It is a simple inductive argument to show thatprexec(M;Aq; lstate(q)) = prexec(M;A; q).q: (5.26)Moreover,Pprexec(M;A;q)[Cq] = 1: (5.27)From the de�nition of eU 0, since the start state of prexec(M;A; q) is q,eU 0(prexec(M;Aq; lstate(q))) = eU 0(prexec(M;A; q)).q: (5.28)Thus, from Proposition 4.2.12 and (5.27),PA;q[eU 0] = PAq ;lstate(q)[eU 0]: (5.29)From hypothesis,PAq ;lstate(q)[eU 0] � p; (5.30)and thus, from (5.29), PA;q [eU 0] � p. This shows that Statement (5.25) is valid.5.5.3 The Concatenation TheoremWe now start to compose (simple) progress statements to derive other (more complex) progressstatements. This allows us to decompose a complex problems into simpler problems that can besolved separately. The examples of Chapter 6 contain explicit use of the concatenation theoremof this section.Suppose that from U we can reach U 0 with probability at least p, and that from U 0 wecan reach U 00 with probability at least p0. Then, it is reasonable that from U we can reach U 00with probability at least pp0. This result is an instantiation of the concatenation theorem ofSection 5.4.1.Theorem 5.5.2 Let Advs be a �nite-history-insensitive adversary schema. Then,U �!p Advs U 0 and U 0 �!p0 Advs U 00 imply U �!pp0 Advs U 00.Proof. Consider the event schemas eU 0 and eU 00 . Let Cones be the function that associateswith each probabilistic execution fragment H the setCones(H) 4= fq j lstate(q.q0) 2 U 0; 6 9q0<(q.q0) lstate(q0) 2 U 0g: (5.31)It is easy to check that Cones(H) is a characterization of eU 0 as a disjoint union of cones. Then,directly from the de�nitions, for each execution fragment H ,eU 0 �Cones eU 00(H) � eU 00(H): (5.32)87



Informally, the left expression represents the property of reaching a state of U 00 passing througha state of U 0, while the right expression represents the property of reaching a state of U 00 withoutpassing necessarily through a state of U 0.From Lemma 5.5.1, for each probabilistic execution fragment H , each adversary A of Advs,and each element q of Cones(H), since lstate(q) 2 U 0,PA;q[eU 00] � p0: (5.33)From hypothesis, (5.33), and Theorem 5.4.2 (concatenation of two event schemas),PrAdvs ;U(eU 0 �Cones eU 00) � pp0: (5.34)From (5.32) and (5.34),PrAdvs ;U(eU 00) � pp0: (5.35)This shows that U �!pp0Advs U 00.Proposition 5.5.3 Other trivial properties of progress statements are the following.1. U �!1 U .2. If U1 �!p1 U 01 and U2 �!p2 U 02, then U1 [ U2 �!min(p1;p2) U 01 [ U 02.5.5.4 Progress Statements with ActionsProgress statements can be formulated also in terms of actions rather than states. Thus, if Vis a set of actions, we could writeU �!p Advs V (5.36)meaning that starting from any state of U and under any adversary of Advs, with probability atleast p an action from V occurs. Formally, let eV be an event schema that given a probabilisticexecution fragment H returns the set of executions � of 
H such that an action from V occursin �.qH0 . Then (5.36) is the probabilistic statementPrAdvs ;U(eV ) � p: (5.37)Similarly, we can change the left side of a progress statement. Thus, we can writeV �!p Advs U (5.38)meaning that starting from any point where an action from V occurred and no state of U isreached after the last occurrence of an action from V , a state of U is reached with probabilityat least p. In other words, after an action from V occurs, no matter what the system hasdone, a state of U is reached with probability at least p. Formally, let �V;U be the set of �niteexecution fragments of M where an action from V occurs and no state of U occurs after thelast occurrence of an action from V . Then (5.38) is the probabilistic statementPrAdvs ;�V;U (eU) � p: (5.39)88



Finally, we can consider statements involving only sets of actions. Thus, the meaning ofV �!p Advs V 0 would be the probabilistic statementPrAdvs ;�V;V 0 (eV ) � p; (5.40)where �V;V 0 is the set of �nite execution fragments of M where an action from V occurs andno action from V 0 occurs after the last occurrence of an action from V .The concatenation theorem extendeds easily to the new kinds of progress statements.Theorem 5.5.4 Let Advs be a �nite-history-insensitive adversary schema, and let X;X 0 andX 00 be three sets, each one consisting either of actions of M only or states of M only. Then,X �!p1 Advs X 0 and X 0 �!p2 Advs X 00 imply X �!p1p2Advs X 00.Proof. This proof is similar to the proof of Theorem 5.5.2, and thus it is left to the reader.Observe that �nite-history-insensitivity is not necessary if X 0 is a set of actions.5.5.5 Progress Statements with Probability 1Usually we are interested in progress properties that hold with probability 1. A useful result isthat in most cases progress with probability 1 can be derived from progress with any probabilityp such that 0 < p < 1. Speci�cally, under the condition that an adversary never chooses � whenthe left side of a given progress statement is satis�ed and the right side of the same progressstatement is not satis�ed,1. if the left element of the progress statement is a set of actions, then progress is achievedwith probability 1;2. if the left element of the progress statement is a set of states U , the adversary schema is�nite-history-insensitive, and the system remains in a state of U unless the right side ofthe statement is satis�ed, then progress is achieved with probability 1.Proposition 5.5.5 Suppose that V �!p Advs X, and suppose that � =2 
A(q) for each adversaryA of Advs and each element q of �V;X. Then V �!1 Advs X.Proof. We give the proof for the case where X is a set of states. The other proof is similar.Denote X by U .Consider an element q0 of �V;U and an adversary A of Advs. Let H be prexec(M;A; q0),and let p0 = PH [eU(H)]. We know from hypothesis that p0 � p. Suppose by contradiction thatp0 < 1. Let � be the set of �nite execution fragments q of M such that q0 � q, lstate(q) 2 U ,and no state of U occurs in any proper pre�x of q.q0. Then � is a characterization of eU(H)as a union of disjoint cones. Thus,PH [eU (H)] = Xq2�PH [Cq]: (5.41)Let � be any real number such that 0 � � � p0. Then, from (5.41) and the de�nition of p0, it ispossible to �nd a natural number k� such that.Xq2�jjqj�k� PH [Cq] � (p0 � �): (5.42)89



Let �� be the set of states q of H such that jqj = k� and no pre�x of q is in �. That is, �� isthe set of states of H of length k� that are not within any cone Cq of eU (H) where jqj � k�.Equation (5.41) can be rewritten asPH [eU (H)] = 0@ Xq2�jjqj�k� PH [Cq]1A+0@Xq2�� PH [Cq]PH [eU(H)jCq]1A : (5.43)Observe that for each state q of ��, since a state of U 0 is not reached yet, q is an element of �V;U .Moreover, prexec(M;A; q) = H jq (simple inductive argument). Thus, from Proposition 4.2.11and hypothesis, PH [eU(H)jCq] � p, and (5.43) can be rewritten intoPH [eU (H)] � 0@ Xq2�jjqj�k� PH [Cq]1A+0@Xq2�� PH [Cq]p1A : (5.44)Observe that Pq2�jjqj�k� PH [Cq] +Pq2�� PH [Cq] = 1. This follows from the fact that if a stateq of H does not have any pre�x in �, then q 2 �V;X , which in turn means that � =2 
Hq . Inother words, in H it is not possible to stop before reaching either a state of fq 2 � j jqj � k�gor a state of ��. Thus, by using (5.42) in (5.44) we obtainPH [eU (H)] � (p0 � �) + (1� (p0 � �))p: (5.45)After simple algebraic manipulations, Equation (5.45) can be rewritten intoPH [eU (H)] � p0 + p(1� p0)� �(1� p): (5.46)If we choose � such that 0 < � < p(1�p0)=(1�p), which exists since p0 < 1, then Equation (5.46)shows that PH [eU(H)] > p0. This contradicts the fact that p0 < 1. Thus, PH [eU(H)] = 1.For the next proposition we de�ne the statement U UnlessX , where U is a set of states and Xis either a set of states only or a set of actions only. The statement is true for a probabilisticautomaton M i� for each transition (s;P) of M , if s 2 U �X then for each (a; s0) 2 
 eithera 2 X , or s0 2 U [X . That is, once in U , the probabilistic automaton M remains in U untilthe condition expressed by X is satis�ed.Proposition 5.5.6 Suppose that U �!p Advs X, U Unless X, Advs is �nite-history-insensitive,and � =2 
A(s) for each adversary A of Advs and each state s of U . Then, U �!1 Advs X.Proof. This proof is similar to the proof of Proposition 5.5.5. The main di�erence is that thepassage from Equation (5.43) to Equation (5.44) is justi�ed by using �nite-history-insensitivityas in the proof of Proposition 5.5.1.5.6 Adversaries with Restricted PowerIn Section 5.2 we have de�ned adversary schemas to reduce the power of an adversary; however,we have not described any method to specify how the power of an adversary is reduced. Inthis section we show two methods to reduce the power of an adversary. The �rst method,which is the most commonly used, reduces the kind of choices that an adversary can make;the second method, which is used in informal arguments but is rarely formalized, reduces theon-line information used by an adversary to make a choice. The two speci�cation methods areused in Section 5.7 to study the relationship between deterministic and randomized adversaries.90



5.6.1 Execution-Based Adversary SchemasIf n processes run in parallel, then a common requirement of a scheduler is to be fair to all theprocesses. This means that whenever an adversary resolves the nondeterminism and leads toa probabilistic execution fragment H , in all the executions of 
H each one of the n processesperforms in�nitely many transitions. More generally, a set � of extended execution fragmentsofM is set beforehand, and then an adversary is required to lead only to probabilistic executionfragments whose corresponding sample space is a subset of �.Formally, let � be a set of extended execution fragments of M . Let Advs� be the set ofadversaries A such that for each �nite execution fragment q of M , 
prexec(M;A;q) � �. ThenAdvs� is called �-based. An adversary schema Advs is execution-based i� there exists a set �of extended execution fragments of M such that Advs is �-based.The notion of �nite-history-insensitivity can be reformulated easily for execution-based ad-versary schemas. De�ne � to be �nite-history-insensitive i� for each extended execution frag-ment � of M and each �nite execution fragment �0 of M such that lstate(�0) = fstate(�), if�0 a � 2 � then � 2 �. It is easy to verify that if � is �nite-history-insensitive, then Advs� is�nite-history-insensitive.5.6.2 Adversaries with Partial On-Line InformationSometimes, like in the case of the toy resource allocation protocol, an adversary cannot baseits choices on the whole history of a system if we want to guarantee progress. In other words,some part of the history is not visible to the adversary.Example 5.6.1 (O�-line scheduler) The simplest kind of adversary for n processes that runin parallel is an adversary that �xes in advance the order in which the processes are scheduled.This is usually called an o�-line scheduler or an oblivious adversary . Thus, at each point �the next transition to be scheduled depends only on the ordered sequence of processes that arescheduled in �.To be more precise, the transition scheduled by the adversary depends also on the state thatis reached by �, i.e., lstate(�), since a speci�c process may enable di�erent transitions fromdi�erent states. This means that if �1 and �2 are equivalent in terms of the ordered sequenceof processes that are scheduled, the oblivious constraint says only that the transitions chosenby the adversary in �1 and �2 must be correlated, i.e., they must be transitions of the sameprocess.The formal de�nition of an adversary with partial on-line information for a probabilistic au-tomaton M is given by specifying two objects:1. an equivalence relation that speci�es for what �nite execution fragments of M the choicesof an adversary must be correlated;2. a collection of correlation functions that specify how the transitions chosen by an adver-sary must be correlated.Let � be an equivalence relation between �nite execution fragments of M , and let F be afamily of functions parameterized over pairs of equivalent execution fragments. Each function91



f��0 takes a combined transition of M leaving from lstate(�) and returns a combined transitionof M leaving from lstate(�0) such that1. f�0�(f��0(tr)) = tr ;2. f��0(Pi2I pitr i) =Pi2I pif��0(tr i).The pair (�; F ) is called an oblivious relation. An adversary A is oblivious relative to (�; F ) i�for each pair of equivalent execution fragments ofM , � � �0, A(�0) = f��0(A(�)). An adversaryschema Advs is said to be with partial on-line information i� there exists an oblivious relation(�; F ) such that Advs is the set of adversaries for M that are oblivious relative to (�; F ).Condition 1 is used to guarantee that there are oblivious adversaries relative to (�; F );Condition 2 is more technical and is used to guarantee that there are oblivious adversariesrelative to (�; F ) that do not use randomization in their choices. Condition 2 is needed mainlyto prove some of the results of Section 5.7.Adversaries with partial on-line information and execution-based adversaries can be com-bined together easily. Thus, an adversary schema Advs is said to be execution-based and withpartial on-line information i� there exists an execution-based adversary schema Advs0 and apair (�; F ) such that Advs is the set of adversaries of Advs 0 that are oblivious relative to (�; F ).Example 5.6.2 (Adversaries for the toy-resource allocation protocol) The fair obliv-ious adversaries for the toy resource allocation protocol are an example of an execution-basedadversary schema with partial on-line information. The set � is the set of executions of M1kM2where both M1 and M2 perform in�nitely many transitions. Two �nite execution fragments�1 and �2 are equivalent i� the ordered sequences of the processes that perform a transitionin �1 and �2 are the same. Let �1 � �2, and let, for i = 1; 2, tr i;1 and tr i;2 be the tran-sitions of M1 and M2, respectively, enabled from lstate(�i). Then f�1�2(tr1;1) = tr2;1 andf�1�2(tr1;2) = tr2;2.Another execution-based adversary schema with partial on-line information that works forthe toy resource allocation protocol is obtained by weakening the equivalence relation so thatan adversary cannot see only those coins that have not been used yet, i.e., those coins that havebeen 
ipped but have not been used yet to check whether the chosen resource is free.5.7 Deterministic versus Randomized AdversariesIn our de�nition of an adversary we have allowed the use of randomness for the resolution ofthe nondeterminism in a probabilistic automaton M . This power that we give to an adversarycorresponds to the possibility of combining transitions of M in the de�nition of a probabilisticexecution fragment. From the formal point of view, randomized adversaries allow us to model arandomized environment and to state and prove the closure of probabilistic execution fragmentsunder projection (Proposition 4.3.4). However, one question is still open:Are randomized adversaries more powerful than deterministic adversaries?That is, if an algorithm performs well under any deterministic adversary, does it perform wellunder any adversary as well, or are there any randomized adversaries that can degrade theperformance of the algorithm? In this section we want to show that in practice randomization92



does not add any power to an adversary. We say "in practice" because it is easy to buildexamples where randomized adversaries are more powerful than deterministic adversaries, butthose examples do not seem to be relevant in practice.Example 5.7.1 (Randomization adds power) Consider an event schema e that applied toa probabilistic execution fragment H returns 
H if H can be generated by a deterministicadversary, and returns ; otherwise. Clearly, if M is a nontrivial probabilistic automaton, theprobability of e is at least 1 under any deterministic adversary, while the probability of e canbe 0 under some randomized adversary; thus, randomization adds power to the adversaries.However, it is unlikely that a realistic event schema has the structure of e. Another lesspathological example appears in Section 5.7.2 (cf. Example 5.7.2).We consider the class of execution-based event schemas, and we restrict our attention to thesubclass of �nitely satis�able, execution-based event schemas. We show that randomization doesnot add any power for �nitely satis�able, execution-based event schemas under two scenarios:execution-based adversary schemas, and execution-based adversary schemas with partial on-lineinformation. In the second case we need to be careful (cf. Example 5.7.2).Informally, a randomized adversary can be seen as a convex combination of deterministicadversaries, and thus a randomized adversary satis�es the same probability bounds of a deter-ministic adversary. However, there are uncountably many deterministic adversaries, and thusfrom the formal point of view some more careful analysis is necessary.5.7.1 Execution-Based Adversary SchemasProposition 5.7.1 Let Advs be an execution-based adversary schema for M , and let AdvsDbe the set of deterministic adversaries of Advs. Let e be a �nitely-satis�able, execution-based,event schema for M . Then, for every set � of �nite execution fragments of M , every probabilityp, and every relation R among �, =, �, PrAdvs ;�(e) R p i� PrAdvsD;�(e) R p.In the rest of this section we prove Proposition 5.7.1. Informally, we show that each probabilisticexecution fragment H generated by an adversary of Advs can be converted into two otherprobabilistic execution fragments H 0 and H 00, each one generated by some adversary of AdvsD,such that PH 0 [e(H 0)] � PH [e(H)] � PH 00 [e(H 00)]. Then, if R is � we use H 00, and if R is � weuse H 0.An operation that is used heavily in the proof is called deterministic reduction. Let H be aprobabilistic execution fragment of a probabilistic automaton M , and let q be a state of H . Aprobabilistic execution fragment H 0 is said to be obtained from H by deterministic reductionof the transition enabled from q if H 0 is obtained from H through the following two operations:1. Let trHq = q a (Pi2I pitr i) where each pi is non-zero and each tr i is a transition of M .Then replace trHq either with (q;D(�)) or with q a tr j , under the restriction that (q;D(�))can be chosen only if Pi2I pi < 1.2. Remove all the states of H that become unreachable after trHq is replaced.Throughout the rest of this section we assume implicitly that whenever a probabilistic executionfragment is transformed, all the states that become unreachable are removed.93



Lemma 5.7.2 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based event schema such that PH [e(H)] = p. Let q be a stateof H. Then there exist two probabilistic execution fragments Hqlow ; Hqhigh, each one generatedby an adversary of Advs, that are obtained from H by deterministic reduction of the transitionenabled from q, and such that PHqlow [e(Hqlow)] � p, and PHqhigh [e(Hqhigh)] � p.Proof. Let trHq be q a (Pi2I pitr i), where each tr i is either a transition of M or the pair(lstate(q);D(�)), each pi is greater than 0, and Pi2I pi = 1. For each transition tr i, i 2 I , letHtri be obtained from H by replacing trHq with q a tr i. Observe that, since Advs is execution-based and H is generated by an adversary of Advs, Htri is generated by an adversary of Advs.The probability of e(H) can be written asPH [e(H)] = PH [Cq]PH [e(H)jCq] + (1� PH [Cq])PH [e(H)jCq]: (5.47)Observe that for each i 2 I , since H and Htri di�er only in the states having q as a pre�x,PH [Cq] = PHtri [Cq]. Since e is execution-based, e(H)\Cq = e(Htri)\Cq, and PH [e(H)\Cq] =PHtri [e(Htri) \ Cq] (use conditional probability spaces and Theorem 3.1.2). Moreover, as it isshown below, PH [e(H) \ Cq] =Pi2I piPHtri [e(Htri) \ Cq]. In fact,PH [e(H)\Cq] = PH [Cq]0B@PHq [�]PH [e(H)jCq�] + X(a;q0)2
Hq PHq [(a; q0)]PH [e(H)jCq0]1CA ;(5.48)where we assume that PH [e(H)jCq�] is 0 whenever it is unde�ned. For each (a; q0) of 
Hq ,PHq [(q; a0)] = Pi2I piPHtriq [(a; q0)], and for each i such that (a; q0) 2 
Htriq , PH [e(H)jCq0] =PHtri [e(Htri)jCq0] (simply observe that H.q0 = Htri.q0). Similarly, if � 2 
Hq , then PHq [�] =Pi2I piPHtriq [�], and for each i such that � 2 
Htriq , PH [e(H)jCq�] = PHtri [e(Htri)jCq�]. Thus,from (5.48),PH [e(H) \ Cq] =Xi2I piPHtri [Cq]0BB@PHtriq [�]PHtri [e(Htri)jCq�] + X(a;q0)2
Htriq PHtriq [(a; q0)]PHtri [e(Htri)jCq0]1CCA ; (5.49)which gives the desired equalityPH [e(H) \ Cq] =Xi2I piPHtri [e(Htri) \ Cq]: (5.50)Thus, (5.47) can be rewritten intoPH [e(H)] =Xi2I pi �PHtri [Cq]PHtri [e(Htri)jCq] + (1� PHtri [Cq])PHtri [e(Htri)jCq]� ; (5.51)which becomesPH [e(H)] =Xi2I piPHtri [e(Htri)]: (5.52)94



If there exists an element i of I such that PHtri [e(Htri)] = p, then �x Hqlow and Hqhigh to be Htri .If there is no element i of I such that PHtrq [e(Htri)] = p, then it is enough to show that thereare two elements i1; i2 of I such that PHtri1 [e(Htri1 )] < p and PHtri2 [e(Htri2 )] > p, respectively.Assume by contradiction that for each element i of I , PHtri [e(Htri)] < p. Then, from (5.52),Pi2I piPHtri [e(Htri)] < p, which contradicts PH [e(H)] = p. Similarly, assume by contradictionthat for each element i of I , PHtri [e(Htri)] > p. Then, from (5.52), Pi2I piPHtri [e(Htri)] > p,which contradicts PH [e(H)] = p again.Lemma 5.7.3 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based event schema such that PH [e(H)] = p. Let d be a naturalnumber, and let Ud be the set of states q of H such that jqj = d. Then there exist two probabilisticexecution fragments Hlow ; Hhigh, each one generated by an adversary of Advs, that are obtainedfrom H by deterministic reduction of the transitions enabled from the states of Ud, and suchthat PHlow [e(Hlow)] � p, and PHhigh [e(Hhigh)] � p.Proof. From Lemma 5.7.2 we know that for each state q of Ud there are two probabilistic exe-cution fragments Hqlow and Hqhigh , obtained from H by deterministic reduction of the transitionenabled from q, such that PHqlow [e(Hqlow)] � p, and PHqhigh [e(Hqhigh)] � p. Let Hlow be obtainedfrom H by replacing the transition enabled from each state q of Ud with the transition enabledfrom q in Hqlow , and let Hhigh be obtained from H by replacing the transition enabled from eachstate q of Ud with the transition enabled from q in Hqhigh . Since Advs is execution-based andall the involved probabilistic execution fragments are generated by an adversary of Advs, thenHhigh and Hlow are generated by an adversary of Advs. Since e is execution-based, for eachstate q of Ud, PHlow [e(Hlow) \ Cq] = PHqlow [e(Hqlow) \ Cq]. Thus,PHlow [e(Hlow)] = Xq2Ud PHlow [Cq]PHqlow [e(Hqlow)jCq]: (5.53)Observe that, for each state q of Ud, the di�erence between the probability of e(H) and theprobability of e(Hqlow ) is determined by the subcones of Cq. Thus,PHlow [e(Hlow)] � Xq2Ud PH [Cq]PH [e(H)jCq]: (5.54)The right side of (5.54) is PH [e(H)], which is p. In a similar way it is possible to show thatPHhigh [e(Hhigh)] � p.Now we use the fact that e is �nitely satis�able. For each probabilistic execution fragment Hof M , let Can(e(H)) the set of minimal elements of fq 2 states(H) j Cq � e(H)g [ fq� j q 2states(H); Cq� � e(H)g. Then, Can(e(H)) is a characterization of e(H) as a union of disjointcones. For each natural number d, let e�d be the function that given a probabilistic executionfragment H returns the set [q2Can(e(H))jjqj�dCHq .Lemma 5.7.4 Let e be an execution-based, �nitely satis�able, event schema for a probabilisticautomaton M , and let d; d0 be two natural numbers such that d � d0. Then, for each probabilisticexecution fragment H, PH [e�d(H)] � PH [e�d0(H)] � PH [e(H)].95



Proof. Follows trivially from the de�nitions.Lemma 5.7.5 Let e be an execution-based, �nitely satis�able, event schema for a probabilisticautomaton M , and let d be a natural number. Let H be a probabilistic execution fragment Hof M , and let H 0 be obtained from H by reducing deterministically any collection of states oflength greater than d. Then, PH [e�d(H)] � PH 0 [e�d(H 0)].Proof. Just observe that for each q 2 Can(e(H)) such that jqj � d there is a q0 2 Can(e(H 0))such that q0 � q, and that for each state q of H such that jqj � d, PH [Cq] = PH 0 [Cq].Lemma 5.7.6 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based, �nitely satis�able event schema such that PH [e(H)] = p.Then there exists a probabilistic execution fragment H 0, generated by a deterministic adversaryof Advs, such that PH 0 [e(H 0)] � p.Proof. From Lemma 5.7.3 it is possible to �nd a sequence of probabilistic execution fragments(Hi)i�0, where H0 = H , each Hi+1 is obtained from Hi by deterministically reducing all itstransitions leaving from states of length i, and for each i, PHi+1 [e(Hi+1)] � PHi [e(Hi)]. Let H 0be obtained from H by replacing the transition enabled from each state q with the transitionenabled from q in any Hi such that jqj � i. It is immediate to check that H 0 is generated bysome deterministic adversary of Advs (every extended execution of 
H 0 is an extended executionof 
H).Suppose by contradiction that PH 0 [e(H 0)] > p. Then there exists a level d such thatPH 0 [e�d(H 0)] > p: (5.55)For each d0 � d, let Ed0 beEd0 4= [q2Can(e�d0(Hd0))j9q02Can(e�d(H0))q0�qCH 0q : (5.56)Then, the following properties are valid.1. for each d0 � d, E 0d is an element of FH 0 .Ed0 is a union of cones of FH 0.2. if d0 � d00, then Ed0 � Ed00Consider an element q 2 Can(e�d0(Hd0)) such that there exists a q0 2 Can(e�d(H 0)) suchthat q0 � q. Observe that, since Hd00 is obtained from Hd0 by deterministic reduction ofstates of length greater than d0, there exists a q00 2 Can(e�d00(Hd00)) such that q00 � q.Moreover, from the construction of H 0, q0 � q00. Thus, from (5.56), CH 0q00 � Ed00 . Sinceq00 � q, CH 0q � Ed00 , and therefore, Ed0 � Ed00 .3. e�d(H 0) � [d0�dEd0 .Consider an element � of e�d(H 0). Then, for each d0, � 2 e(Hd0). Let q0 2 Can(e(Hd))such that q0 � �, and let d0 be jq0j. Then, there exists a q00 2 Can(e�d0(Hd0)) such thatq00 � q0 � �, and thus � 2 Ed0 . 96



4. for each d0 � d, PHd0 [e�d0(Hd0)] � PH 0 [Ed0 ].From the construction of H 0, for each q such that jqj � d0, PHd0 [CHd0q ] = PH 0 [CH 0q ].Moreover, if CH 0q is used in the de�nition of Ed0 , then q 2 Can(e�d0(Hd0)).From 2 and 3, and from (5.55), there exists a value d0 such that PH 0 [Ed0 ] > p. From 4,PHd0 [e�d0(Hd0)] > p. From Lemma 5.7.4, PHd0 [e(Hd0)] > p. This contradicts the fact thatPHd0 [e�d0(Hd0)] � p.To build a probabilistic execution fragment H 0, generated by an adversary of AdvsD, such thatPH 0 [e(H 0)] � p, we need to extend part of Lemmas 5.7.2 and 5.7.3.Lemma 5.7.7 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversary ofAdvs. Let e be an execution-based, �nitely-satis�able, event schema. Let q be a state of H, andlet d be a natural number such that PH [e�d(H)] = p. Then there exist a probabilistic executionfragment Hqhigh , generated by an adversary of Advs, that is obtained from H by deterministicreduction of the transition enabled from q, such that PHqhigh [e�d(Hqhigh)] � p.Proof. This proof is similar to the proof of Lemma 5.7.2, with the di�erence that the = signof Equations (5.49), (5.50), (5.51), and (5.52), is changed into a �. In fact, in each one of theHtri some new cone of length at most d may appear.Lemma 5.7.8 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based, �nitely-satis�able, event schema, and let d be a naturalnumber such that PH [e�d(H)] = p. Let d0 be a natural number, and let Ud0 be the set of states qof H such that jqj = d0. Then there exist a probabilistic execution fragment Hhigh , generated byan adversary of Advs, that di�ers from H only in that the transitions enabled from the statesof Ud are deterministically reduced, such that PHhigh [e�d(Hhigh)] � p.Proof. This proof is similar to the proof of Lemma 5.7.3. In this case the arguments for theequation corresponding to Equation (5.54) is justi�ed from the additional fact that Hhigh mayhave more cone of depth at most d than H .Lemma 5.7.9 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based, �nitely-satis�able, event schema such that PH [e(H)] > p.Then, there exists a probabilistic execution fragment H 0 of M , generated by a deterministicadversary of Advs, such that PH [e(H 0)] > p.Proof. Since PH [e(H)]> p and e(H) is a union of cones, there exists a natural number d suchthat PH [e�d(H)] > p. From repeated applications of Lemma 5.7.8, one for each level d0 � d,there exists a probabilistic execution fragment H 00, obtained from H by deterministic reductionof the transitions enabled from every state q with jqj � d, such that PH 00 [e�d(H 00)] > p. FromLemma 5.7.4, PH 00 [e(H 00)] > p. Moreover, any probabilistic execution fragment H 000 obtained97



from H 00 by reducing deterministically transitions at depth greater than d (jqj > d) satis�esPH 000 [e�d(H 000)] > p, and thus PH 000 [e(H 000)] > p. Hence, H 0 can be any probabilistic executionfragment obtained from H 00 by reducing deterministically all the transitions at depth greaterthan d in any arbitrary way. It is easy to check thatH 0 is generated by a deterministic adversaryof Advs.Lemma 5.7.10 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based, �nitely-satis�able, event schema such that PH [e(H)] � p.Then, there exists a probabilistic execution fragment H 0 of M , generated by a deterministicadversary of Advs, such that PH [e(H 0)] � p.Proof. If PH [e(H)] > p, then Lemma 5.7.9 su�ces. If PH [e(H)] = p, then by Lemma 5.7.3it is possible to �nd a sequence of probabilistic execution fragments (Hi)i�0, where H0 = H ,each Hi+1 is obtained from Hi by deterministically reducing all its i-level transitions, andfor each i, PHi+1 [e(Hi+1)] � PHi [e(Hi)]. If there exists a sequence (Hi)i�0 such that forsome i, PHi [e(Hi)] > p, then Lemma 5.7.9 su�ces. Otherwise, consider the sequence ofprobabilistic execution fragments de�ned as follows: H0 = H and, for each i, let di bethe level of Hi such that PHi [e�di(Hi)] � pPj�i(1=2)j+1. Let Hi+1 be obtained from re-peated applications of Lemma 5.7.8, till level di, so that PHi+1 [e�di(Hi+1)] � pPj�i(1=2)j+1.Note that PHi+1 [e(Hi+1)] = p, otherwise we can �nd a sequence (Hi)i�0 and an i such thatPHi+1 [e(Hi+1)] > p (simple argument by contradiction). Let H 0 be obtained from H by replac-ing the transition enabled from each state q with the transition enabled from q in any Hi suchthat jqj � di�1. It is easy to check that H 0 is generated by an adversary of Advs. Suppose bycontradiction that PH 0 [e(H 0)] = p0 < p. Then, from the construction of the Hi's, there exists ani such that pPj�i(1=2)j+1 > p0, and thus PHi+1 [e�di(Hi+1)] > p0. However, from the de�nitionof H 0, PHi+1 [e�di(Hi+1)] = PH 0 [e�di(H 0)], and thus p0 < PH 0 [e(H 0)], which contradicts the factthat PH 0 [e(H 0)] = p0.Proof of Proposition 5.7.1. Since AdvsD � Advs, PrAdvs ;�(e) R p implies PrAdvsD;�(e) R ptrivially. Conversely, suppose that PrAdvsD ;�(e) R p, and let H be a probabilistic executionfragment, generated by an adversary of Advs, whose start state is in �. We distinguish thefollowing cases.1. R is �.From Lemma 5.7.6, there is a probabilistic execution fragment H 0, generated by an ad-versary of AdvsD, whose start state is in �, and such that PH 0 [e(H 0)] � PH [e(H)]. Fromhypothesis, PH 0 [e(H 0)] � p. Thus, PH [e(H)] � p.2. R is �.From Lemma 5.7.10, there is a probabilistic execution fragment H 0, generated by anadversary of AdvsD, whose start state is in �, and such that PH 0 [e(H 0)] � PH [e(H)].From hypothesis, PH 0 [e(H 0)] � p. Thus, PH [e(H)] � p.3. R is =.This follows by combining Items 1 and 2.98



5.7.2 Execution-Based Adversary Schemas with Partial On-Line Informa-tionProposition 5.7.1 can be extended to adversary schemas that do not know all the past historyof a system, i.e., to execution-based adversary schemas with partial on-line information. Weneed to impose a technical restriction, though, which is that an adversary should always beable to distinguish two execution fragments with a di�erent length (cf. Example 5.7.2). Theproof of the new result is a simple modi�cation of the proof of Proposition 5.7.1.Proposition 5.7.11 Let (�; F ) be an oblivious relation such that for each pair �1 � �2 ofequivalent execution fragment, �1 and �2 have the same length. Let Advs be an execution-based adversary schema with partial on-line information such that each adversary of Advs isoblivious relative to (�; F ), and let AdvsD be the set of deterministic adversaries of Advs.Let e be a �nitely-satis�able, execution-based, event schema for M . Then, for every set � of�nite execution fragments of M , every probability p, and every relation R among �, =, �,PrAdvs ;�(e) R p i� PrAdvsD;�(e) R p.Proof. The proof is similar to the proof of Proposition 5.7.1. The main di�erence is in theproofs of Lemmas 5.7.2, 5.7.3 and 5.7.8, where equivalence classes of states rather than singlestates only must be considered. In these two proofs we use also the fact that equivalent executionfragments have the same length. The details of the proof are left to the reader.Example 5.7.2 (Why length sensitivity) The requirement that an adversary should al-ways see the length of a probabilistic execution fragment seems to be arti�cial; however, ran-domized adversaries have more power in general if they cannot see the length of a probabilisticexecution. Consider the probabilistic automaton M of Figure 5-3, and suppose that all theexecutions of M that end in states s1; s2; s3, and s6 are equivalent. Since for each state si thereis exactly one execution of M that ends in si, we denote such an execution by qi. Let � be theset of extended executions �� of M such that lstate(�) does not enable any transition in M .For each state si that enables some transition, let tr i;u be the transition that leaves from si andgoes upward, and let tr i;d be the transition that leaves from si and goes downward. Then, foreach pair i; j 2 f1; 2; 3; 6g, i 6= j, let fqiqj(tr i;u) = tr j;u, and let fqiqj(tr i;d) = tr j;d.Let Advs be the set of �-based adversaries for M that are oblivious relative to (�; F ), andlet AdvsD be the set of deterministic adversaries of Advs. Then, the statement fs0g �!1=2AdvsDfs7; s10g is valid, whereas the statement fs0g �!1=2Advs fs7; s10g is not valid, i.e., an adversary canuse randomization to reduce the probability to reach states fs7; s10g. In fact, the probabilisticexecutions H1 and H2 of Figure 5-3 are the only probabilistic executions of M that can begenerated by the adversaries of AdvsD, while H0 is generated by an adversary of Advs. Theprobability of reaching fs7; s10g in H1 and H2 is 1=2, whereas the probability of reachingfs7; s10g in H0 is 1=4.5.8 Probabilistic Statements without AdversariesThe current literature on randomized distributed algorithms relies on the notion of an adversary,and for this reason all the de�nitions given in this chapter are based on adversaries. However,99



s0

s2

s1

s4

s3

s5

s6

s8

s9

s7

10s

a

a
a

a

a

a

a

a

a

a

1/2

1/2

M:

a

a

1/2

1/2
0

1

4

10

6

2

q

q

q

q

q
q

a

a

a

H :1

a

a
a

a

a

a

a

a

a

a

1/2

1/2
0

1

3

7

8

4

5

9

10

6

2

q

q

q

q

q

q

q

q

q

q

q

H :0

a

a
a

a

a

1/2

1/2
0

1

3

7

5

2

q

q

q

q

q

q

H :2

1/2
1/2

1/2
1/2

1/2

1/2

1/2
1/2

Figure 5-3: Randomization adds power for some adversaries with partial on-line information.the key objects of the theory that we have presented are the probabilistic execution fragments ofa probabilistic automaton, and not its adversaries. An adversary schema can be replaced by anarbitrary set of probabilistic execution fragments in the de�nition of a probabilistic statement,namely, the set of probabilistic execution fragments that the adversary schema can generate. Inother words, an adversary schema can be seen as a useful tool to express a set of probabilisticexecution fragments.5.9 DiscussionTwo objects that we have de�ned in this chapter and that do not appear anywhere in theliterature are adversary schemas and event schemas. Both the objects are needed because,di�erently from existing work, in this thesis we identify several di�erent rules to limit thepower of an adversary and several di�erent rules to associate an event with a probabilisticexecution fragment, and thus we need some way to identify each rule. The best way to thinkof an adversary schema and of an event schema is as a way to denote the rule that is used tolimit the power of an adversary and denote the rule that is used to associate an event with eachprobabilistic execution fragment.We have de�ned the classes of execution-based adversary schemas and execution-basedevent schemas, and we have proved that for �nitely satis�able execution-based event schemasrandomization does not increase the power of an execution-based adversary schema, or of aclass of execution-based adversary schemas with partial on-line information. These results areof practical importance because most of the known event schemas and adversary schemas ofpractical interest are execution-based. As a result, it is possible to verify the correctness ofa randomized distributed algorithm by analyzing only the e�ect of deterministic adversaries,100



which is easier than analyzing every adversary. A similar result is shown by Hart, Sharir andPnueli [HSP83] for fair adversaries and almost-sure termination properties, i.e., properties thatexpress the fact that under all fair adversaries the system reaches some �xed set of stateswith probability 1. Fair adversaries and termination events are expressible as execution-basedadversary schemas and �nitely satis�able execution-based event schemas, respectively; thus,the result of Hart, Sharir and Pnueli is implied by our result. Hart, Sharir and Pnueli provealso that another class of adversaries is equivalent to the class of fair adversaries, namely, thoseadversaries that lead to fair executions with probability 1. The same result holds here as well;however, it is not clear under what conditions a similar result holds in general.

101



102


