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Abstract

Randomization is an exceptional tool for the design of distributed algorithms, sometimes yield-
ing efficient solutions to problems that are inherently complex, or even unsolvable, in the setting
of deterministic algorithms. However, this tool has a price: even simple randomized algorithms
can be extremely hard to verify and analyze.

This thesis addresses the problem of verification of randomized distributed algorithms. We
consider the problem both from the theoretical and the practical perspective. Qur theoretical
work builds a new mathematical model of randomized distributed computation; our practical
work develops techniques to be used for the actual verification of randomized systems. Our
analysis involves both untimed and timed systems, so that real-time properties can be investi-
gated.

Our model for randomized distributed computation is an extension of labeled transition
systems. A probabilistic automaton is a state machine with transitions, where, unlike for labeled
transition systems, a transition from a state leads to a discrete probability distribution over pairs
consisting of a label and a state, rather than to a single label and a single state. A probabilistic
automaton contains pure nondeterministic behavior since from each state there can be several
transitions, and probabilistic behavior since once a transition is chosen the label that occurs and
the state that is reached are determined by a probability distribution. The resolution of pure
nondeterminism leads to probabilistic executions, which are Markov chain like structures. Once
the pure nondeterminism is resolved, the probabilistic behavior of a probabilistic automaton
can be studied.

The properties of a randomized algorithm are stated in terms of satisfying some other prop-
erty with a minimal or maximal probability no matter how the nondeterminism is resolved.
In stating the properties of an algorithm we also account for the possibility of imposing re-
strictions on the ways in which the nondeterminism is resolved (e.g., fair scheduling, oblivious
scheduling,. ..). We develop techniques to prove the correctness of some property by reducing
the problem to the verification of properties of non-randomized systems. One technique is
based on coin lemmas, which state lower bounds on the probability that some chosen random
draws give some chosen outcomes no matter how the nondeterminism is resolved. We identify
a collection of progress statements which can be used to prove upper bounds to the expected
running time of an algorithm. The methods are applied to prove that the randomized dining
philosophers algorithm of Lehmann and Rabin guarantees progress in expected constant time
and that the randomized algorithm for agreement of Ben-Or guarantees agreement in expected
exponential time.

To ensure that our new model has strong mathematical foundations, we extend some of the



common semantics for labeled transition systems to the probabilistic framework. We define a
compositional trace semantics where a trace is replaced by a probability distribution over traces,
called a trace distribution, and we extend the classical bisimulation and simulation relations in
both their strong and weak version. Furthermore, we define probabilistic forward simulations,
where a state is related to a probability distribution over states. All the simulation relations
are shown to be sound for the trace distribution semantics.

In summary, we obtain a framework that accounts for the classical theoretical results of
concurrent systems and that at the same time proves to be suitable for the actual verification
of randomized distributed real-time systems. This double feature should lead eventually to the
easy extension of several verification techniques that are currently available for non-randomized
distributed systems, thus rendering the analysis of randomized systems easier and more reliable.

Thesis Supervisor: Nancy A. Lynch

Title: Professor of Computer Science

Keywords: Automata, Distributed Algorithms, Formal Methods, Labeled Transition Systems,
Randomized Systems, Real-Time Systems, Verification
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Chapter 1

Introduction

1.1 The Challenge of Randomization

In 1976 Rabin published a paper titled Probabilistic Algorithms [Rab76] where he presented
efficient algorithms for two well-known problems: Nearest Neighbors, a problem in computa-
tional geometry, and Primality Testing, the problem of determining whether a number is prime.
The surprising aspect of Rabin’s paper was that the algorithms for Nearest Neighbors and for
Primality Testing were efficient, and the key insight was the use of randomized algorithms,
i.e., algorithms that can flip fair coins. Rabin’s paper was the beginning of a new trend of
research aimed at using randomization to improve the complexity of existing algorithms. It is
currently conjectured that there are no efficient deterministic algorithms for Nearest Neighbors
and Primality Testing.

Another considerable achievement came in 1982, when Rabin [Rab82] proposed a solution
to a problem in distributed computing which was known to be unsolvable without random-
ization. Specifically, Rabin proposed a randomized distributed algorithm for mutual exclusion
between n processes that guarantees no-lockout (some process eventually gets to the critical
region whenever some process tries to get to the critical region) and uses a test-and-set shared
variable with O(logn) values. On the other hand, Burns, Fisher, Jackson, Lynch and Patter-
son [BFJ*82] showed that Q(n) values are necessary for a deterministic distributed algorithm.
Since then, several other randomized distributed algorithms were proposed in the literature,
each one breaking impossibility results proved for deterministic distributed algorithms. Several
surveys of randomized algorithms are currently available; among those we cite [Kar90, GSB94].

The bottom line is that randomization has proved to be exceptionally useful for problems in
distributed computation, and it is slowly making its way into practical applications. However,
randomization in distributed computation leaves us with a challenge whose importance increases
as the complexity of algorithms increases:

“How can we analyze randomized distributed algorithms? In particular, how can we
convince ourselves that a randomized distributed algorithm works correctly?”

The analysis of non-randomized distributed systems is challenging already, due to a phenomenon
called nondeterminism. Specifically, whenever two systems run concurrently, the relative speeds
of the two systems are not known in general, and thus it is not possible to establish a priori
the order in which the systems complete their tasks. On the other hand, the ordering of the

13



completion of different tasks may be fundamental for the global correctness of a system, since,
for example, a process that completes a task may prevent another process from completing
its task. The structure of the possible evolutions of a system can become intricate quickly,
justifying the statement “there is rather a large body of sad experience to indicate that a
concurrent program can withstand very careful scrutiny without revealing its errors” [OL82].

The introduction of randomization makes the problem even more challenging since two
kinds of nondeterminism arise. We call them pure nondeterminism and probabilistic nondeter-
minism. Pure nondeterminism is the nondeterminism due to the relative speeds of different
processes; probabilistic nondeterminism is the nondeterminism due to the result of some ran-
dom draw. Alternatively, we refer to pure nondeterminism as the nondeterministic behavior of
a system and to probabilistic nondeterminism as the probabilistic behavior of a system. The
main difficulty with randomized distributed algorithms is that the interplay between probabil-
ity and nondeterminism can create subtle and unexpected dependencies between probabilistic
events; the experience with randomized distributed algorithms shows that “intuition often fails
to grasp the full intricacy of the algorithm” [PZ86], and “proofs of correctness for probabilistic
distributed systems are extremely slippery” [LR81].

In order to meet the challenge it is necessary to address two main problems.

¢ Modeling: How do we represent a randomized distributed system?
e Verification: Given the model, how do we verify the properties of a system?

The main objective of this thesis is to make progress towards answering these two questions.

1.1.1 Modeling

First of all we need a collection of mathematical objects that describe a randomized algorithm
and its behavior, i.e., we need a formal model for randomized distributed computation. The
model needs to be sufficiently expressive to be able to describe the crucial aspects of randomized
distributed computation. Since the interplay between probability and nondeterminism is one
of the main sources of problems for the analysis of an algorithm, a first principle guiding our
theory is the following:

1. The model should distinguish clearly between probability and nondeterminism.

That is, if either Alice or Bob is allowed to flip a coin, the choice of who is flipping a coin is
nondeterministic, while the outcome of the coin flip is probabilistic.

Since the model is to be used for the actual analysis of algorithms, the model should allow
the description of randomized systems in a natural way. Thus, our second guiding principle is
the following;:

2. The model should correspond to our natural intuition of a randomized system.

That is, mathematical elegance is undoubtedly important, but since part of the verification
process for an algorithm involves the representation of the algorithm itself within the formal
model, the chance of making errors is reduced if the model corresponds closely to our view of
a randomized algorithm. A reasonable tradeoff between theory and practice is necessary.

14



Our main intuition for a computer system, distributed or not, is as a state machine that
computes by moving from one state to another state. This intuition leads to the idea of Labeled
Transition Systems (LTS) [Kel76, Plo81]. A labeled transition system is a state machine with
labels associated with the transitions (the moves from one state to another state). Labeled
transition systems have been used successfully for the modeling of ordinary distributed systems
[Mil89, Jon91, LV91, LT87, GSSL94], and for their verification [WLL88, SLL93, SGGT93,
BPV94]; in this case the labels are used to model communication between several systems. Due
to the wide use of labeled transition systems, the extensive collection of verification techniques
available, and the way in which labeled transition systems correspond to our intuition of a
distributed system, two other guiding principles for the thesis are the following:

3. The new model should extend labeled transition systems.

4. The extension of labeled transition systems should be conservative, i.e., whenever a system
does not contain any random choices, our new system should reduce to an ordinary labeled
transition system.

In other words our model is an extension of the labeled transition system model so that ordinary
non-randomized systems turn out to be a special case of randomized systems. Similarly, all the
concepts that we define on randomized systems are generalizations of corresponding concepts
of ordinary non-randomized systems. In this way all the techniques available should generalize
easily without the need to develop completely new and independent techniques. Throughout
the thesis we refer to labeled transition systems as automata and to their probabilistic extension
as probabilistic automata.

1.1.2 Verification

Once the model is built, our primary goal is to use the model to describe the properties that
a generic randomized algorithm should satisfy. If the model is well designed, the properties
should be easy to state. Then, our second goal is to develop general techniques that can be
used for verification.

We investigate verification techniques from two perspectives. On one hand we formalize
some of the kinds of the informal arguments that usually appear in existing papers; on the
other hand we extend existing abstract verification techniques for labeled transition systems
to the probabilistic framework. Examples of abstract techniques include the analysis of traces
[Hoa85], which are ordered sequences of labels that can occur during the evolution of a system,
and of simulation relations [Mil89, Jon91, LV91], which are relations between the states of
two systems such that one system can simulate the transitions of the other via the simulation
relation. To provide some intuition for traces and simulations, Figure 1-1 represents three
labeled transition systems, denoted by Ay, A, and As. The empty sequence and the sequences
a and ab are the traces of Ay, Ag, and As. For example, a computation that leads to ab is the
one that starts from sg, moves to s1, and then to s3. The dotted lines from one state to another
state (the arrows identify the from-to property) are examples of simulation relations from one
automaton to the other. For example, consider the simulation relation from A3 to As. State sq
of Az is related to state sg of As; states s; and s, of A3 are related to state s; of Ay; state s3
of Az is related to state s3 of A3. The transition of A3 from sy to sy with action a is simulated
in Ay by the transition from sy to s; with label a. There is a strong simulation also from A,

15



! S
b\L & ib bi
%é>s44'\“§%4>.>%

Al A2 A3

Figure 1-1: Simulation relations for automata.

to As (each state s; of Ay is related to state s; of Asz), from Ay to Az, and from Ay to A;.
There is an even stronger relation between Ay and As, which is called a bisimulation and is
represented by the double-arrow dotted lines between the states of A7 and As. A bisimulation
is an equivalence relation between the states of two automata. In this case each automaton can
simulate the transitions of the other via the bisimulation relation.

Direct Verification

In the description of a randomized distributed algorithm pure nondeterminism represents the
undetermined part of its behavior, namely, in what order the processes are scheduled. Schedul-
ing processes is the activity of removing the nondeterminism, and the object that does the
scheduling is usually referred to as a scheduler or an adversary. The intuition behind the name
“adversary” is in proving the correctness of an algorithm a scheduler is viewed as a malicious
entity that degrades the performance of the system as much as possible.

Once the nondeterminism is removed, a system looks like a Markov chain, and thus it is
possible to reason about probabilities. A common argument is then

“no matter how the scheduler acts, the probability that some good property holds is
at least p.”

Actually, in most of the existing work pis 1, since the proofs are easier to carry out in this case.
In this thesis we are interested in every p since we are concerned also with the time complexity
of an algorithm. Throughout the thesis it will become clear why we need every p for the study
of time complexity.

One of our major goals is to remove from the informal arguments of correctness all “danger-
ous” statements, i.e., all statements that rely solely on intuition rather than on actual deduc-
tions, and yet keep the structure of a proof simple. In other words, we want to provide tools
that allow people to argue as before with a significantly higher confidence that what they say is
correct. Then, we want to develop techniques that allow us to decompose the verification task
of complex properties into simpler verification tasks. This feature is important for scalability.
Here we give examples of two issues that we believe to be important.

o Make sure that you know what probability space you are working in. Or, at least, make
sure that you are working in a probability space. This is a rule of thumb that is valid in
other fields like Information Theory and Detection Theory. Probability is very tricky. The
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fact that a specific probability space was not identified was the reason for a bug discovered
by Saias [Sai92] in the original algorithm of Rabin [Rab82], later fixed by Kushilevitz and
Rabin [KR92]. Of course, in order to make sure we know what probability spaces we are
working in, we need some easy mechanisms to identify those probability spaces. Such
mechanisms were not available in 1982.

o Avoid arguments of the kind “now the worst thing that can happen is the following.”
These arguments are usually based on the intuition that the designers have about their
own algorithm. Specifically, as has happened in the past, the designers argue based on
worst cases they can think of rather than the actual worst case. What is missing is a
proof showing that the worst case has been identified. A much better statement would
be “no matter what happens, something else will happen”, since it does not require us to
identify the worst scenario. Using our methodology, Aggarwal [Agg94] discovered a bug
in an algorithm designed by himself and Kutten [AK93] which was due to an argument of
the kind cited above. Similarly, we discovered a bug in the timing analysis of the mutual
exclusion algorithm of Pnueli and Zuck [PZ86]. This bug arose for the same reason.

The reader familiar with existing work, and in particular familiar with model checking, may
be a bit puzzled at this point. There is a considerable amount of work on model checking
of randomized distributed systems, and yet we are introducing new techniques. Furthermore,
although there is some ongoing work on automating part of the proof methods developed in this
thesis [PS95], we do not address any decidability issue here. Our favorite analogy to justify our
approach is that we view model checking as the program “Mathematica”, a popular program
for symbolic manipulation of analytic expressions. If we are given a simple analytical problem,
we can use Mathematica to get the solution from a computer. On the other hand, if we have
a complex analytical problem, say a complex function that we have defined, and we want to
verify that it respects some specific constraints, or maybe we want to find the constraints, then
things are very different, since the problem in general is undecidable, i.e., not solvable by a
computer. We can plot part of the given function using Mathematica and have a rough idea of
whether it satisfies the desired constraints. If the plot shows that the function violates some
of the constraints, then we have to change either the function or the constraints; if the plot
shows that the function does not violate the constraints, then we can start to use all the tools
of analysis to prove that the given function satisfies the constraints. In this way Mathematica
saves us a lot of time. In using the analytical tools we need to use our creativity and our
intuition about the problem so that we can solve its undecidable part. We view our research as
building the analytical tools.

Simulations

The study of traces and simulations carried out in the thesis contributes more directly to theory
than to practice. In particular, we do not give any examples of verification using simulations.
However, due to the success that simulation relations have had for the verification of ordinary
labeled transition systems, it is likely that the same methods will also work for randomized
systems.

A considerable amount of research has been carried out in extending trace semantics and
simulation relations to the probabilistic case, especially within process algebras [Hoa85, Mil89,
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BW90]; however, most of the existing literature does not address pure nondeterminism, and
thus it has limited practical applicability. We believe it is important to have a model that is
both useful for realistic problems and accounts for the existing theoretical work. In particu-
lar, based on some of the interpretations that are given to nondeterminism within ordinary
automata, we realize that, also in the probabilistic case, pure nondeterminism can be used to
express much more than just the relative speeds of processes running concurrently. Specifically,
nondeterminism can be used to model the following phenomena.

1. Scheduling freedom. This is the classical use of nondeterminism, where several processes
run in parallel and there is freedom in the choice of which process performs the next
transition.

2. Ezternal environment. Some of the labels can represent communication events due to the
action of some external user, or more generally, to the action of an external environment.
In this case nondeterminism models the arbitrary behavior of the external environment,
which is chosen by an adversary.

3. Implementation Freedom. A probabilistic automaton is viewed as a specification, and
nondeterminism represents implementation freedom. That is, if from some state there
are two transitions that can be chosen nondeterministically, then an implementation can
have just one of the two transitions. In this case an adversary chooses the implementation
that is used.

It is important to recognize that, in the labeled transition system model, the three uses of
nondeterminism described above can coexist within the same automaton. It is the specific
interpretation that is given to the labels that determines what is expressed by nondeterminism
at each point.

1.2 Organization of the Thesis

The thesis is divided in two main parts: the first part deals with the untimed model and the
second part deals with the timed model. The second part relies heavily on the first part and
adds a collection of results that are specific to the analysis of real-time properties. We describe
the technical contributions of the thesis chapter by chapter.

An Overview of Related Work. Chapter 2 gives an extensive overview of existing work
on modeling and verification of randomized distributed systems.

Preliminaries. Chapter 3 gives the basics of probability theory that are necessary to under-
stand the thesis and gives an overview of the labeled transition systems model. All the topics
covered are standard, but some of the notation is specific to this thesis.

Probabilistic Automata. Chapter 4 presents the basic probabilistic model. A probabilistic
automaton is a state machine whose transitions lead to a probability distribution over the labels
that can occur and the new state that is reached. Thus, a transition describes the probabilistic
behavior of a probabilistic automaton, while the choice of which transition to perform describes
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the nondeterministic behavior of a probabilistic automaton. A computation of a probabilistic
automaton, called a probabilistic execution, is the result of resolving the nondeterminism in a
probabilistic automaton, i.e., the result of choosing a transition, possibly using randomization,
from every point. A probabilistic execution is described essentially by an infinite tree with
probabilities associated with its edges. On such a tree it is possible to define a probability
space, which is the object through which the probabilistic properties of the computation can
be studied. We extend the notions of finiteness, prefix and suffix of ordinary executions to
the probabilistic framework and we extend the parallel composition operator. Finally, we show
how to project a probabilistic execution of a compound probabilistic automaton onto one of
its components and we show that the result is a probabilistic execution of the component.
Essentially, we show that the properties of ordinary automata are preserved in the probabilistic
framework. The probabilistic model is an extension of ordinary automata since an ordinary
automaton can be viewed as a probabilistic automaton where each transition leads just to one
action and one state.

Direct Verification: Stating a Property. Chapter 5 shows how to formalize commonly
used statements about randomized algorithms and shows how such formal statements can be
manipulated. We start by formalizing the idea of an adversary, i.e., the entity that resolves
the nondeterminism of a system in a malicious way. An adversary is a function that, given
the past history of a system, chooses the next transition to be scheduled, possibly using ran-
domization. The result of the interaction between an adversary and a probabilistic automaton
is a probabilistic execution, on which it is possible to study probabilistic properties. Thus,
given a collection of adversaries and a specific property, it is possible to establish a bound on
the probability that the given property is satisfied under any of the given adversaries. We call
such bound statements probabilistic statements. We show how probabilistic statements can be
combined together to yield more complex statements, thus allowing for some form of compo-
sitional verification. We introduce a special kind of probabilistic statement, called a progress
statement, which is a probabilistic extension of the leads-to operator of UNITY [CMS88]. Infor-
mally, a progress statement says that if a system is started from some state in a set of states
U, then, no matter what adversary is used, a state in some other set of states U’ is reached
with some minimum probability p. Progress statements can be combined together under some
general conditions on the class of adversaries that can be used.

Finally, we investigate the relationship between deterministic adversaries (i.e., adversaries
that cannot use randomness in their choices) and general adversaries. We show that for a large
class of collections of adversaries and for a large class of properties it is suflicient to analyze
only deterministic adversaries in order to derive statements that concern general adversaries.
This result is useful in simplifying the analysis of a randomized algorithm.

Direct Verification: Proving a Property. Chapter 6 shows how to prove the validity
of a probabilistic statement from scratch. We introduce a collection of coin lemmas, which
capture a common informal argument on probabilistic algorithms. Specifically, for many proofs
in the literature the intuition behind the correctness of an algorithm is based on the following
fact: if some specific random draws give some specific results, then the algorithm guarantees
success. Then, the problem is reduced to showing that, no matter what the adversary does,
the specific random draws give the specific results with some minimum probability. The coin
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lemmas can be used to show that the specific random draws satisfy the minimum probability
requirement; then, the problem is reduced to verifying properties of a system that does not
contain probability at all. Factoring out the probability from a problem helps considerably in
removing errors due to unexpected dependencies.

We illustrate the method by verifying the correctness of the randomized dining philosophers
algorithm of Lehmann and Rabin [LR81] and the algorithm for randomized agreement with
stopping faults of Ben-Or [BO83]. In both cases the correctness proof is carried out by proving
a collection of progress statements using some coin lemmas.

Finally, we suggest another technique, called the partition technigue, that departs consid-
erably from the coin lemmas and that appears to be useful in some cases. We illustrate the
partition technique on a toy resource allocation protocol, which is one of the guiding examples
throughout Chapters 5 and 6.

Hierarchical Verification: Trace Distributions. Chapter 7 extends the trace-based se-
mantics of ordinary automata [Hoa85] to the probabilistic framework. A trace is a ordered
sequence of labels that occur in an execution; a trace distribution is the probability distribu-
tion on traces induced by a probabilistic execution. We extend the trace preorder of ordinary
automata (inclusion of traces) to the probabilistic framework by defining the trace distribution
preorder. However, the trace distribution preorder is not preserved by the parallel composition
operator, i.e., it is not a precongruence. Thus, we define the trace distribution precongruence
as the coarsest precongruence that is contained in the trace distribution preorder. Finally, we
show that there is an elementary probabilistic automaton called the principal context that dis-
tinguishes all the probabilistic automata that are not in the trace distribution precongruence
relation. This leads us to an alternative characterization of the trace distribution precongruence
as inclusion of principal trace distributions.

Hierarchical Verification: Simulations. Chapter 8 extends the verification method based
on simulation relations to the probabilistic framework. Informally, a simulation relation from
one automaton to another automaton is a relation between the states of the two automata that
allows us to embed the transition relation of one automaton in the other automaton. In the
probabilistic framework a simulation relation is still a relation between states; however, since
a transition leads to a probability distribution over states, in order to say that a simulation
relation embeds the transition relation of a probabilistic automaton into another probabilistic
automaton we need to extend a relation defined over states to a relation defined over probabil-
ity distributions over states. We generalize the strong and weak bisimulation and simulation
relations of Milner, Jonsson, Lynch and Vaandrager [Mil89, Jon91, LV91] to the probabilistic
framework. Then, we introduce a coarser simulation relation, called a probabilistic forward
stmulation, where a state is related to a probability distribution over states rather than to a
single state. We prove an execution correspondence theorem which, given a simulation relation
from one probabilistic automaton to another probabilistic automaton, establishes a strong cor-
respondence between each probabilistic execution of the first probabilistic automaton and one
of the probabilistic executions of the second automaton. Based on the execution correspon-
dence theorem, we show that each of the relations presented in the chapter is sound for the
trace distribution precongruence. Thus, simulation relations can be used as a sound technique
to prove principal trace distribution inclusion.
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Probabilistic Timed Automata. Chapter 9 starts the second part of the thesis. We extend
probabilistic automata with time following the approach of Lynch and Vaandrager [LV95], where
passage of time is modeled by means of transitions labeled with positive real numbers. In order
to use most of the untimed theory, we force time-passage transition not to be probabilistic.
We extend probabilistic executions to the timed framework, leading to probabilistic timed
executions, and we show the relationship between probabilistic executions and probabilistic
timed executions. The main idea is that in several circumstances it is sufficient to analyze the
probabilistic executions of a system in order to study its real-time behavior.

Direct Verification: Time Complexity. Chapter 10 introduces new techniques for the
verification of real-time properties of a randomized algorithm. The techniques of Chapter 5
still apply; however, due to the presence of time, it is possible to study the time complexity
of an algorithm. We augment the progress statements of Chapter 5 with an upper bound ¢ to
state the following: if a system is started from some state in a set of states U, then, no matter
what adversary is used, a state of some other set of states U’ is reached within time ¢ with
some minimum probability p. Based on these timed progress statements, we show how to derive
upper bounds on the expected time to reach some set of states. We illustrate the technique
by showing that the randomized dining philosophers algorithm of Lehmann and Rabin [LR81]
guarantees progress within expected constant time.

By extending the technique for the analysis of expected time, we show how to derive bounds
on more abstract notions of complexity. In particular, we consider the algorithm for randomized
agreement of Ben-Or as an example. The algorithm of Ben-Or runs in stages. From the way
the algorithm is structured, it is not possible to give meaningful bounds on the time it takes
to make progress from any reachable state. However, using abstract complexities, it is easy
to prove an upper bound on the expected number of stages that are necessary before reaching
agreement. Once an upper bound on the expected number of stages is derived, it is easy to
derive an upper bound on the expected time to reach agreement.

Hierarchical Verification: Timed Trace Distributions and Timed Simulations. Chap-
ters 11 and 12 extend the trace distribution precongruence and the simulation relations of the

untimed framework to the timed framework. A trace is replaced by a timed trace, where a

timed trace is a sequence of labels paired with their time of occurrence plus a limit time. The

timed trace distribution precongruence is characterized by a timed principal context, which is

the principal context augmented with arbitrary time-passage transitions. All the timed simu-

lation relations are shown to be sound for the timed trace distribution precongruence. All the

results are proved by reducing the problem to the untimed framework.

Conclusion. Chapter 13 gives some concluding remarks and several suggestions for further
work. Although this thesis builds a model for randomized computation and shows that it is
sufficiently powerful for the analysis of randomized distributed real-time algorithms, it just
discovers the tip of the iceberg. We propose a methodology for the analysis of randomization,
and we give several examples of the application of such methodology; however, there are several
other ways to apply our methodology. It is very likely that new probabilistic statements, new
results to combine probabilistic statements, and new coin lemmas can be developed based on the
study of other algorithms; similarly, the fundamental idea behind the trace semantics that we

21



present can be used also for other kinds of observational semantics like failures [Hoa85, DH84].
We give hints on how it is possible to handle liveness within our model and state what we know
already. Furthermore, we give ideas of what is possible within restricted models where some
form of I/O distinction like in the work of Lynch and Tuttle [LT87] or some timing restriction
like in the work of Merritt, Modugno and Tuttle [MMT91] is imposed. Finally, we address the
issue of relaxing some of the restrictions that we impose on the timed model.

1.3 Reading the Thesis

The two parts of the thesis, the untimed and the timed part, proceed in parallel: each chapter of
the untimed part is a prerequisite for the corresponding chapter in the timed part. Each part is
subdivided further into two parts: the direct verification and the hierarchical verification. The
two parts can be read almost independently, although some knowledge of the direct verification
method can be of help in reading the hierarchical method. The direct method is focused mainly
on verification of algorithms, while the hierarchical method is focused mainly on the theoretical
aspects of the problem. Further research should show how the hierarchical method can be of
significant help for the analysis of randomized algorithms.

Each chapter starts with an introductory section that gives the main motivations and an
overview of the content of the chapter. Usually, the more technical discussion is concentrated
at the end. The same structure is used for each section: the main result and short proofs are
at the beginning of each section, while the long proofs and the more technical details are given
at the end. A reader can skip the proofs and the most technical details on a first reading in
order to have a better global picture. It is also possible to read just Chapter 3 and the first
section (including subsections) of Chapters 4 to 12, and have a global view of the results of
the thesis. In a second reading, the interested reader can concentrate on the proofs and on the
technical definitions that are necessary for the proofs. The reader should keep in mind that
several proofs in the thesis are based on similar techniques. Such techniques are explained in
full detail only the first time they are used.

A reader interested only in the techniques for the direct verification of algorithms and not
interested in the arguments that show the foundations of the model can avoid reading the proofs.
Moreover, such a reader can just glance over Section 4.2.6, and skip Sections 4.2.7, 4.3, and 4.4.
In the timed framework the reader interested just in the techniques for the direct verification
of algorithms can skip all the comparison between the different types of probabilistic timed
executions and concentrate more on the intuition behind the definition of a probabilistic timed
execution.
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Chapter 2

An Overview of Related Work

In this chapter we give an extensive overview of existing work on modeling and verification of
randomized distributed systems. We defer the comparison of our work with the existing work
to the end of each chapter. Some of the descriptions include technical terminology which may
be difficult to understand for a reader not familiar with concurrency theory. Such a reader
should focus mainly on the high level ideas and not worry about the technical details. The rest
of the thesis presents our research without assuming any knowledge of concurrency theory. We
advise the reader not familiar with concurrency theory to read this chapter again after reading
the thesis.

There have been two main research directions in the field of randomized distributed real-time
systems: one focused mainly on modeling issues using process algebras [Hoa85, Mil89, BW90]
and labeled transition systems [Kel76, Plo81] as the basic mathematical objects; the other
focused mainly on verification using Markov chains as the basic model and temporal logic
arguments [Pnu82] and model checking [EC82, CES83] as the basic verification technique. Most
of the results of the first of the research directions fail to model pure nondeterminism, while
the results of the second of the research directions model pure nondeterminism successfully, but
not in its full generality. As expressed at the end of Section 1.1.2, pure nondeterminism arises
only in the choice of what process is performing the next instruction at each moment. Below
we summarize the results achieved in both of the research directions. Furthermore, at the end
of each chapter we add a section where we explain how the results described in this section are
related to our research.

2.1 Reactive, Generative and Stratified Models

We present some of the existing work on modeling which is based on a classification due to van
Glabbeek, Smolka, Steffen and Tofts [GSST90]. They define three types of processes: reactive,
generative, and stratified.

o Reactive model: Reactive processes consist of states and labeled transitions associated
with probabilities. The restriction imposed on a reactive process is that for each state the
sum of the probabilities of the transitions with the same label is 1.

o (lenerative model: Generative processes consist of states and labeled transitions associated
with probabilities. The restriction imposed on a generative process is that for each state
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Figure 2-1: Reactive, generative and stratified processes, from left to right.

either there are no outgoing transitions, or the sum of the probabilities of all the outgoing
transitions is 1.

o Stratified model: Stratified processes consist of states, unlabeled transitions associated
with probabilities, and labeled transitions. The restriction imposed on a stratified process
is that for each state either there is exactly one outgoing labeled transition, or all the
outgoing transitions are unlabeled and the sum of their probabilities is 1.

Figure 2-1 gives an example of a reactive, a generative, and a stratified process. Informally,
reactive processes specify for each label (also called action) the probability of reaching other
states; generative processes also give additional information concerning the relative probabili-
ties of the different actions; stratified processes add some probabilistic structure to generative
processes. Observe that among the three models above only the reactive model has a struc-
ture that can be used to express some form of pure nondeterminism (what action to perform),
although in van Glabbeek et al. [GSST90] this issue is not considered.

2.1.1 Reactive Model

Rabin [Rab63] studies the theory of probabilistic automata, which are an instance of the reactive
model. He defines a notion of a language accepted by a probabilistic automaton relative to a
cut point A and shows that there are finite state probabilistic automata that define non-regular
languages.

Larsen and Skou [L.S89, 1.S91] define a bisimulation type semantics, called probabilistic
bisimulation, and a logic, called probabilistic model logic (PML), for reactive processes, and
they introduce a notion of testing based on sequential tests and a copying facility. They show
that two processes that satisfy the minimal probability assumption are probabilistically bisim-
ilar if and only if they satisfy exactly the same PML formulas, and that two processes that
satisfy the minimal probability assumption and that are not probabilistically bisimilar can be
distinguished through testing with a probability arbitrarily close to 1. The minimum proba-
bility assumption states that for every state the probability of each transition is either 0 or is
above some minimal value. This condition corresponds to the image-finiteness condition for
non-probabilistic processes. Bloom and Meyer [BM&9] relate the notions of probabilistic and
non-probabilistic bisimilarity by showing that two non-probabilistic finitely branching processes
P and @ are bisimilar if and only if there exists an assignment of probabilities to the transi-
tions of P and @ such that the corresponding reactive processes P’ and Q' are probabilistically
bisimilar.

Larsen and Skou [LS92] introduce a synchronous calculus for reactive processes where the
probabilistic behavior is obtained through a binary choice operator parameterized by a prob-
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ability p. They define a bisimulation relation on the new calculus, and they introduce a new
extended probabilistic logic (EPL) which extends PML in order to support decomposition with
respect to parallel composition. Both the probabilistic bisimulation and the extended proba-
bilistic logic are axiomatized.

2.1.2 Generative and Stratified Models

Giacalone, Jou and Smolka [GJS90] define a process algebra for generative processes, called
PCCS, which can be seen as a probabilistic extension of Milner’s SCCS [Mil93]. In PCCS two
processes synchronize at every transition regardless of the action that they perform. That is, if
one process performs a transition labeled with action a with probability p, and another process
performs a transition labeled with b with probability ps, then the two processes together can
perform a transition labeled with ab with probability p,p,. The authors provide an equational
theory for PCCS based on the probabilistic bisimulation of Larsen and Skou [L.S89], and provide
an axiomatization for probabilistic bisimulation (the axiomatization is shown to be sound and
complete in [JS90]). Furthermore, the authors define a notion of e-bisimulation, where two
processes can simulate each other’s transition with a probability difference at most ¢. Based on
e-bisimulation, the authors define a metric on generative processes.

Jou and Smolka [JS90] define trace and failure equivalence for generative processes. They
show that, unlike for nondeterministic transition systems, maximality of traces and failures does
not increase the distinguishing power of trace and failure equivalence, where by maximality of
a trace we mean the probability to produce a specific trace and then terminate. More precisely,
knowing the probability of each finite trace of a generative process gives enough information to
determine the probability that a finite trace occurs leading to termination; similarly, knowing
the probability of every failure of a generative process gives enough information to determine
the probability of each maximal failure. Jou and Smolka show also that the trace and failure
equivalences are not congruences. Qur probabilistic executions are essentially generative pro-
ceses, and our trace distributions are essentially the trace semantics of Jou and Smolka. In our
case the properties shown by Jou and Smolka follow directly from measure theory.

Van Glabbeek et al. [GSST90] state that the generative model is more general than the
reactive model in the sense that generative processes, in addition to the relative probabilities
of transitions with the same label, contain information about the relative probabilities of tran-
sitions with different labels. They show also that the stratified model is a generalization of the
generative model in the sense that a probabilistic choice in the generative model is refined by
a structure of probabilistic choices in the stratified model. Formally, the authors give three
operational semantics to PCCS, one reactive, one generative, and one stratified, and show how
to project a stratified process into a generative process and how to project a generative process
into a reactive process, so that the operational semantics of PCCS commute with the projec-
tions. The reactive and generative processes of Figure 2-1 are the result of the projection of
the generative and stratified processes, respectively, of Figure 2-1. Finally, the authors define
probabilistic bisimulation for the generative and for the stratified models and show that bisim-
ulation is a congruence in all the models and that bisimulation is preserved under projection
from one model to the other. The results of van Glabbeek et al. [GSST90], however, are based
on the fact that parallel composition is synchronous.

Tofts [Tof90] introduces a weighted synchronous calculus whose operational semantics resem-
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bles the stratified model. The main difference is that the weights associated with the transitions
are not probabilities, but rather frequencies, and thus their sums are not required to be 1. Tofts
defines two bisimulation relations that are shown to be congruences. The first relation is sensi-
tive to the actual frequencies of the transitions leaving from a state, while the second relation
is sensitive only to the relative frequencies of the transitions leaving from a state. In particular,
the second relation coincides with the stratified bisimulation of van Glabbeek et al. [GSST90]
after normalizing to 1 the frequencies of the transitions that leave from every state. The ad-
vantage of Tofts’ calculus is that it is not necessary to restrict the syntax of the expressions so
that the weights of the choices at any point sum to 1 (such a restriction is imposed in PCCS).
Moreover, it is possible to define a special weight w that expresses infinite frequency and can
be used to express priorities. A similar idea to express priorities is used by Smolka and Steffen
in [SS90], where the stratified semantics of PCCS is extended with 0-probability transitions.

Baeten, Bergstra and Smolka [BBS92] define an algebra, prACP}, which is an extension
of ACP [BW90] with generative probabilities. The authors show that prACP; and a weaker
version of ACP (ACP7) are correlated in the sense that ACP} is the homomorphic image
of prACP7 in which the probabilities are forgotten. The authors also provide a sound and
complete axiomatization of probabilistic bisimulation.

Wu, Smolka and Stark [WSS94] augment the I/O automaton model of Lynch and Tuttle
[LT87] with probability and they study a compositional behavioral semantics which is also
shown to be fully abstract with respect to probabilistic testing. A test is a probabilistic 1/0
automaton with a success action w. The model is reactive for the input actions and generative
for the output actions. This allows the authors to define a meaningful parallel composition
operator, where two probabilistic I/O automata synchronize on their common actions and
evolve independently on the others. In order to deal with the nondeterminism that arises from
parallel composition, the authors attach a delay parameter to each state of a probabilistic 1/0
automaton, which can be seen as the parameter of an exponential probability distribution on
the time of occurrence of the next local (i.e., output or internal) action. Whenever there is a
conflict for the occurrence of two local actions of different probabilistic I/O automata, the delay
parameters associated with the states are used to determine the probability with which each
action occurs. The behavior of a probabilistic I/O automaton A is a function £4 that associates
a functional 5@4 with each finite trace 3 . If the length of 3 is n, then 5@4 takes a function f
that given n + 1 delay parameters computes an actual delay, and returns the expected value of
f applied to the delay parameters of the computations of A that lead to 3.

2.2 Models based on Testing

Research on modeling has also focused on extending the testing preorders of De Nicola and
Hennessy [DH84] to probabilistic processes. To define a testing preorder it is necessary to
define a notion of a test and of how a test interacts with a process. The interaction between
a test and a process may lead to success or failure. Then, based on the success or failure of
the interactions between a process and a test, a preorder relation between processes is defined.
Informally, a test checks whether a process has some specific features: if the interaction between
a test and a process is successful, then the process has the desired feature.

Ivan Christoff [Chr90b, Chr90a] analyzes generative processes by means of testing. A test
is a nondeterministic finite-state process, and the interaction between a process and a test is
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obtained by performing only those actions that both the processes offer and by keeping the
relative probability of each transition unchanged. Four testing preorders are defined, each one
based on the probability of the traces of the interaction between a process and a test. Christoff
also provides a fully abstract denotational semantics for each one of the testing preorders: each
process is denoted by a mapping that given an offering and a trace returns a probability. An
offering is a finite sequence of non-empty sets of actions, and, informally, describes the actions
that the environment offers to a process during the interaction between the process and a test.

Linda Christoff [Chr93] builds on the work of Ivan Christoff and defines three linear se-
mantics for generative processes: the trace semantics, the broom semantics, and the barbed
semantics. The relations are defined in a style similar to the denotational models of Ivan
Christoff, and, in particular, the trace and barbed semantics coincide with two of the semantics
of [Chr90b]. Linda Christoff also defines three linear-time temporal logics that characterize her
three semantics and provides efficient model checking algorithms for the recursion-free version
of the logics.

Testing preorders that are more in the style of De Nicola and Hennessy [DH84] are presented
by Yi and Larsen in [YL92], where they define a process algebra with all the operators of CCS
plus a binary probabilistic choice operator parameterized by a probability p. Thus, the calculus
of Yi and Larsen allows for nondeterminism. A test is a process of their calculus with an
additional label w. Depending on how the nondeterminism is resolved, w occurs with different
probabilities in the interaction between a process and a test. Then, Yi and Larsen define a may
preorder, which is based on the highest probability of occurrence of w, and a must preorder,
which is based on the lowest probability of occurrence of w. The two preorders are shown to
coincide with the testing preorders of De Nicola and Hennessy [DH84] when no probability is
present. In more recent work Jonsson, Ho-Stuart and Yi [JHY94] give a characterization of
the may preorder based on tests that are not probabilistic, while Jonsson and Yi [JY95] give a
characterization of the may and must preorders based on general tests.

Cleaveland, Smolka and Zwarico [CSZ92] introduce a testing preorder on reactive processes.
A test is a reactive process with a collection of successful states and a non-observable action.
The interaction between a test and a process allows an observable action to occur only if
the two processes allow it to occur, and allows the non-observable action to occur if the test
allows it to occur. The result is a generative process, where each of the actions that occur is
chosen according to a uniform distribution (thus the formalism works only for finitely many
actions). Two processes are compared based on the probability of reaching a successful state in
the interaction between a process and a test. The authors show that their testing preorder is
closely connected to the testing preorders of De Nicola and Hennessy [DH84] in the sense that
if a process passes a test with some non-zero probability, then the non-probabilistic version
of the process (the result of removing the probabilities from the transition relation of the
process) may pass the non-probabilistic version of the test, and if a process passes a test with
probability 1, then the non-probabilistic version of the process must pass the non-probabilistic
version of the test. An alternative characterization of the testing preorder of Cleaveland et al.
[CSZ92] is provided by Yuen, Cleaveland, Dayar and Smolka [YCDS94]. A process is represented
as a mapping from probabilistic traces to [0, 1], where a probabilistic trace is an alternating
sequence of actions and probability distributions over actions. Yuen et al. use the alternative
characterization to show that the testing preorder of Cleaveland et al. [CSZ92] is an equivalence
relation.
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2.3 Models with Nondeterminism and Denotational Models

2.3.1 Transitions with Sets of Probabilities

Jonsson and Larsen [JLI1] introduce a new kind of probabilistic transition system where the
transitions are labeled by sets of allowed probabilities. The idea is to model specifications where
the probabilities associated with the transitions are not completely specified. They extend the
bisimulation of Larsen and Skou [L.S89] to the new framework and they propose two criteria for
refinement between specifications. One criterion is analogous to the definition of simulations
between non-probabilistic processes; the other criterion is weaker and regards a specification
as a set of probabilistic processes. Refinement is then defined as inclusion of probabilistic
processes. Finally, Jonsson and Larsen present a complete method for verifying containment
between specifications.

2.3.2 Alternating Models

Hansson and Jonsson [HJ89, HJ90] develop a probabilistic process algebra based on an alternat-
ing model. The model of Hansson and Jonsson, which is derived from the Concurrent Markov
Chains of Vardi [Var85], is a model in which there are two kinds of states: probabilistic states,
whose outgoing transitions are unlabeled and lead to nondeterministic states, and nondetermin-
istic states, whose outgoing transitions are labeled and lead to probabilistic states. Only the
transitions leaving from probabilistic states are probabilistic, and for each probabilistic state
the probabilities of the outgoing transitions add to 1. The authors define a strong bisimulation
semantics in the style of Larsen and Skou [L.S89] for which they provide a sound and complete
axiomatization. The model of Hansson and Jonsson [HJ90] differs substantially from the models
of van Glabbeek et al. [GSST90] in that there is a clear distinction between pure nondeterminism
and probability. The model could be viewed as an instance of the reactive model; however, the
parallel composition operation defined by Hansson and Jonsson [HJ90] is asynchronous, while
the classification of van Glabbeek et al. [GSST90] works only for synchronous composition. A
complete presentation of the work of Hansson and Jonsson [HJ89, HJ90] appears in Hansson’s
PhD thesis [Han91], later published as a book [Han94]. Our simple probabilistic automata are
very similar in style to the objects of Hansson’s book.

2.3.3 Denotational Semantics

Seidel [Sei92] extends CSP [Hoa85] with probability. The extension is carried out in two steps.
In the first step a process is a probability distribution over traces; in the second step, in order
to account for the nondeterministic behavior of the environment, a process is a conditional
probability measure, i.e., an object that given a trace, which is meant to be produced by the
external environment, returns a probability distribution over traces.

Jones and Plotkin [JP89] use a category theoretic approach to define a probabilistic pow-
erdomain, and they use it to give a semantics to a language with probabilistic concurrency.
It is not known yet how the semantics of Jones and Plotkin compares to existing operational
semantics.
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2.4 Models with Real Time

There are basically two models that address real time issues. One model is the model of Hansson
and Jonsson [Han94], where special y actions can appear in the transitions. The occurrence of
an action y means that time has elapsed, and the amount of time that elapses in a computation
is given by the number of occurrences of action y. Thus, the time domain of Hansson and
Jonsson’s model is discrete.

The other model is based on stochastic process algebras and is used in the field of performance
analysis. In particular, actions are associated with durations, and the durations are expressed
by random variables. In order to simplify the analysis, the random variables are assumed to have
an exponential probability distribution, which is memoryless. Research in this area includes
work from Gétz, Herzog and Rettelbach [GHR93], from Hillston [Hil94], and from Bernardo,
Donatiello and Gorrieri [BDG94].

2.5 Verification: Qualitative and Quantitative Methods

Most of the research on the verification of randomized distributed systems is concerned with
properties that hold with probability 1. The advantage of such properties is that for finite
state processes they do not depend on the actual probabilities of the transitions, but rather on
whether those transitions have probability 0 or probability different from 0. Thus, the problem
of checking whether a system satisfies a property with probability 1 is reduced to the problem
of checking whether a non-randomized system satisfies some other property. This method is
called qualitative, as opposed to the quantitative method, where probabilities different from 1
also matter.

The rationale behind the qualitative method is that a randomized process, rather than
always guaranteeing success, usually guarantees success with probability 1, which is practically
the same as guaranteeing success always. The quantitative method becomes relevant whenever
a system has infinitely many states or the complexity of an algorithm needs to be studied.

Almost all the papers that we describe in this section are based on a model where n Markov
chains evolve concurrently. Each Markov chain represents a process, and the pure nondeter-
minism arises from the choice of what Markov chain performs the next transition (what process
is scheduled next). The object that resolves the nondeterminism is called a scheduler or adver-
sary, and the result of a scheduler on a collection of concurrent Markov chains is a new Markov
chain that describes one of the possible evolutions of the global system. Usually a scheduler is
required to be fair in the sense that each process should be scheduled infinitely many times.

2.5.1 Qualitative Method: Proof Techniques

Huart, Sharir and Pnueli [HSP83] consider n finite state asynchronous randomized processes
that run in parallel, and provide two necessary and sufficient conditions to guarantee that a
given set of goal states is reached with probability 1 under any fair scheduler. A scheduler is
the entity that at any point chooses the next process that performs a transition. The result
of the action of a scheduler on n processes is a Markov chain, on which it is possible to study
probabilities. A scheduler is fair if and only if, for each path in the corresponding Markov
chain, each process is scheduled infinitely many times. The authors show that in their model
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each property described by reaching a collection of states has either probability 0 or probability
1. Then, they describe a decision procedure for the almost sure reachability of a set of goal
states. The procedure either constructs a decomposition of the state space into a sequence of
components with the property that any fair execution of the program must move down the
sequence with probability 1 until it reaches the goal states (goal states reached with probability
1), or finds an ergodic set of states through which the program can loop forever with probability
1 (goal states reached with probability 0). Finally the authors give some examples of problems
where the use of randomization does not provide any extra power over pure nondeterminism.
The proof principle of [HSP83] is generalized to the infinite state case by Hart and Sharir
[HS85].

Lehmann and Shelah [LS82] extend the temporal logic of linear time of Pnueli [Pnu82] to
account for properties that hold with probability 1, and they provide three complete axioma-
tizations of the logic: one axiomatization is for general models, one is for finite models, and
one is for models with bounded transition probabilities (same as the minimum probability re-
quirement of Larsen and Skou [LS91]). A model of the logic is essentially a Markov chain,
or alternatively an unlabeled generative process. The logic of Lehmann and Shelah [1.S82] is
obtained from the logic of Pnueli [Pnu82] by adding a new modal operator V whose meaning
is that the argument formula is satisfied with probability 1.

Pnueli [Pnu83] introduces the notion of extreme fairness and shows that a property that
holds for all extreme fair executions holds with probability 1. Furthermore, Pnueli presents a
sound proof rule based on extreme fairness and linear temporal logic. The model consists of n
randomized processes in parallel. Each process is a state machine where each state enables a
probabilistic transition, which lead to several modes. Resolving the nondeterminism leads to a
Markov chain. However, only those Markov chains that originate from fair scheduling policies
are considered. Then, an execution (a path in the Markov chain) is extremely fair relative
to a property ¢ (¢ is a property that is satisfied by states) if and only if for each transition
that occurs infinitely many times from states that satisfy ¢, each mode of the transition occurs
infinitely many times. An execution is extremely fair if and only if it is extremely fair relative
to any formula ¢ expressed in the logic used in [Pnu83]. The proof rule of Pnueli [Pnu83],
along with some other new rules, is used by Pnueli and Zuck [PZ86] to verify two non-trivial
randomized algorithms, including the Randomized Dining Philosophers algorithm of Lehmann
and Rabin [LR81]. Zuck [Zuc86] introduces the notion of a-fairness and shows that a-fairness
is complete for temporal logic properties that hold with probability 1.

Rao [Rao90] extends UNITY [CMS88] to account for randomized systems and properties
that hold with probability 1. The main emphasis is on properties rather than states. A new
notion of weak probabilistic precondition is introduced that, together with the extreme fairness
of Pnueli, generalizes weakest preconditions. Finally, based on the work of Huart et al. [HSP83],
Rao argues that his new logic is complete for finite state programs.

2.5.2 Qualitative Method: Model Checking

Vardi [Var85] presents a method for deciding whether a probabilistic concurrent finite state
program satisfies a linear temporal logic specification, where satisfaction means that a formula
is satisfied with probability 1 whenever the scheduler is fair. A program is given as a Concurrent
Markov Chain, which is a transition system with nondeterministic and probabilistic states. A
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subset I’ of the nondeterministic states is called the set of fair states. A scheduler is a function
that, based on the past history of a program, chooses the next transition to perform from
a nondeterministic state. The result of the action of a scheduler on a program is a Markov
chain on which it is possible to study the probability that some linear temporal logic formula
is satisfied. A path in the Markov chain is fair if for each fair state that occurs infinitely many
times each one of the possible nondeterministic choices from that state occurs infinitely many
times; a scheduler is fair if the fair paths have probability 1 in the corresponding Markov chain.
The model checking algorithm of Vardi works in time polynomial in the size of the program and
doubly exponential in the size of the specification. By considering a slightly restricted logic,
Vardi and Wolper [VW86] reduce the complexity of the model checking algorithm to only one
exponent in the size of the formula.

Courcoubetis and Yannakakis [CY88, CY90] investigate the complexity of model checking
linear time propositional temporal logic of sequential and concurrent probabilistic processes. A
sequential process is a Markov chain and a concurrent process is a Concurrent Markov Chain.
They give a model checking algorithm that runs in time linear in the size of the program and
exponential in the size of the formula, and they show that the problem is in PSPACE. Moreover,
they give an algorithm for computing the exact probability with which a sequential program
satisfies a formula.

Alur, Courcoubetis and Dill [ACD91a, ACD91b] develop a model checking algorithm for
probabilistic real-time systems. Processes are modeled as a generalized semi-Markov process,
which are studied in [Whi80, She87]. Essentially a process is a finite state transition system
with timing constraints expressed by probability distributions on the delays. They impose the
restriction that every distribution is either discrete, or exponential, or has a density function
which is different from 0 only on a finite collection of intervals (in [ACD91a] only this last case
is studied). The temporal logic, called TCTL, is an extension of the branching-time temporal
logic of Emerson and Clarke [EC82] where time delays are added to the modal operators. TCTL
can detect only whether a formula is satisfied with probability 0, or with a positive probability,
or with probability 1. The model checking algorithm transforms a process into a finite state
process without probabilities and real-time, thus allowing the use of other existing algorithms.

The problem of model-checking for TCTL is PSPACE-hard.

2.5.3 Quantitative Method: Model Checking

Hansson [Han91, Han94] defines a model checking algorithm for his Labeled Concurrent Markov
Chain model and his branching-time temporal logic TPCTL. Time is discrete in Hansson’s
model, but the logic improves on previous work because probabilities can be quantified (i.e.,
probabilities can be between 0 and 1). The previous model checking algorithms relied heavily
on the fact that probabilities were not quantified. The algorithm is based on the algorithm
for model checking of Clarke, Emerson and Sistla [CES83], and on previous work of Hansson
and Jonsson [HJ89] where a model checking algorithm for PCTL (TPCTL without time) is
presented. In order to deal with quantified probabilities, the algorithm reduces the computation
of the probability of an event to a collection of finitely many linear recursive equations. The
algorithm has an exponential complexity; however, Hansson shows that for a large class of
interesting problems the algorithm is polynomial.
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Chapter 3

Preliminaries

3.1 Probability Theory

The rigorous study of randomized algorithms requires the use of several probability measures.
This section introduces the basic concepts of measure theory that are necessary. Most of the
results are taken directly from Halmos [Hal50] and Rudin [Rud66], and the proofs can be found
in the same books or in any other good book on measure theory or probability theory.

3.1.1 Measurable Spaces

Consider a set Q. A field on ), denoted by F, is a family of subsets of {} that contains {2, and
that is closed under complementation and finite union. A o-field on ), denoted by F, is a field
on {2 that is closed under countable union. The elements of a o-field are called measurable sets.
The pair (2, F) is called a measurable space.

A field generated by a family of sets C, denoted by F(C), is the smallest field that contains
C. The o-field generated by a family of sets C, denoted by o(C), is the smallest o-field that
contains C. The family C is called a generator for o(C). A trivial property of a generator C is
o(C)=a(F(C)).

The field generated by a family of sets can be obtained following a simple procedure.
Proposition 3.1.1 Let C be a family of subsets of ).
1. Let Fi(C) be the family containing 0, 2, and all C' C Q such that C € C or (2 — C) €C.
2. Let I5(C) be the family containing all finite intersections of elements of F1(C).
3. Let I5(C) be the family containing all finite unions of disjoint elements of F»(C).
Then F(C) = F5(C). |

3.1.2 Probability Measures and Probability Spaces

Let C be a family of subsets of Q. A measure p on C is a function that assigns a non-negative
real value (possibly oo) to each element of C, such that

1. if @ is an element of C, then p(0) = 0.
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2. if (C})ien forms a sequence of pairwise disjoint elements of C, and U;C; is an element of
C, then pu(U;C5) = 32, p(Ci).
The last property is called o-additivity. If (2, F)is a measurable space, then a measure on F
as called a measure on (2, F).

A measure on a family of sets C is finite if the measure of each element of C is finite.

A measure space is a triple (Q, F, u), where (€2, F) is a measurable space, and p is a measure
on (2, F). A measure space (, F, pu)is complete iff for each element C' of F such that u(C') =0,
each subset of C' is measurable and has measure 0, i.e., for each ¢’ C €', ¢’ € F and pu(C’) = 0.
A measure space is discrete if F is the power set of ) and the measure of each measurable set
is the sum of the measures of its points. Discrete spaces will play a fundamental role in our
theory.

A probability space is a triple (Q,F, P), where (€2, F) is a measurable space, and P is a
measure on (£, F) such that P() = 1. The measure P is also referred to as a probability
measure or a probability distribution. The set € is called the sample space, and the elements
of F are called events. We denote a generic event by F, possibly decorated with primes and

indices. A standard convention with probability measures and event is that the measure of an
event is denoted by P[F] rather than by P(F).

3.1.3 Extensions of a Measure

The following two theorems shows methods to extend a measure defined on a collection of sets.
The first theorem says that it is possible to define a probability measure P on a measurable
space (Q,F) by specifying P only on a generator of F; the second theorem states that every
measure space can be extended to a complete measure space.

Thus, from the first theorem we derive that in order to check the equality of two probability
measures P; and P, on (2, F), it is enough to compare the two measures on a field that generates

F.

Theorem 3.1.2 (Extension theorem) A finite measure p on a field F' has a unique exten-
sion to the o-field generated by F'. That is, there exists a unique measure i on o(F) such that

for each element C' of F', p(C) = p(C'). |

Theorem 3.1.3 Let (Q,F, u) be a measure space. Let F' be the set of subsets of Q of the form
C UN such that C € F and N is a subset of a set of measure 0 in F. Then, F' is a o-field.
Furthermore, the function p' defined by p'(C'U N) = p(C') is a complete measure on F'. We
denote the measure space (2, F', ') by completion((Q, F, p)). [

3.1.4 Measurable Functions

Let (,F) and (€', F’) be two measurable spaces. A function f : @ — Q' is said to be a
measurable function from (Q,F) to (', F') if for each set C' of F’ the inverse image of C,
denoted by f=1(C'), is an element of F. The next proposition shows that the measurability of
f can be checked just by analyzing a generator of F’.

Proposition 3.1.4 Let (2, F) and (', F') be two measurable spaces, and let C be a generator
of F'. Let f be a function form Q to Q. Then [ is measurable iff for each element C of C, the
inverse image f~1(C') is an element of F. [
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Another property that we need is the closure of measurable functions under composition.

Proposition 3.1.5 Let f be a measurable function from (1, F1) to (Qq, F2), and let g be a
measurable function from (a3, F3) to (3, F3). Then fog is a measurable function from (4, Fy)
to (Qg, fg) |

3.1.5 Induced Measures and Induced Measure Spaces

Proposition 3.1.6 Let f be a measurable function from (Q,F) to (', F'), and let p be a
measure on (,F). Let ' be defined on F' as follows: for each element C of F', 1/(C) =
w(f7HC)). Then p' is a measure on (', F'). The measure p is called the measure induced by

f, and is denoted by f(u). [

Based on the result above, it is possible to transform a measure space using a function f.
Let (2, F, ) be a measure space, and let f be a function defined on . Let Q' be f(£), and
let 7' be the set of subsets C' of Q' such that f~1(C') € F. Then, 7' is a o-field, and f is a
measurable function from (0, F) to (Q', F'). Thus, the space (¥, F’, f(u)) is a measure space.
We call such a space the space induced by f, and we denote it by f((€2,F,u)). Observe that
if (Q,F,p) is a probability space, then f((2,F,u)) is a probability space as well, and that
induced measure spaces preserve discreteness and completeness.

3.1.6 Product of Measure Spaces

Let (24, F1) and (22, F3) be two measurable spaces. Denote by F; @ F; the o-field generated
by the set of rectangles {C71 x Cy | C1 € F1,Cy € Fz}. The product space of (4, F1) and
(Q2, F2), denoted by (1, F1) @ (2, F2), is the measurable space (21 X Q3, F1 @ F3).

Proposition 3.1.7 Let (1, F1,p1) and (2, Fa, puz) be two measure spaces where piy and py
are finite measures. Then there is a unique measure, denoted by 1 ® po, on Fy ® Fy such that

for each Cy € F1 and Cy € F3, JUR ,uz(Cl X Cz) = ,ul(Cl),uz(Cz). |

The product measure space of two measure spaces (€4, F1, 1) and (g, Fa, p2), denoted by
(1, F1,p1) ® (2, Fa, pi2), is the measure space (21 X Qo, F1 @ Fa, 1 @ pz). It is easy to check
that if (1, F1, 1) and (2, Fa, ug) are probability spaces, then their product is a probability
space as well.

The product of two measure spaces is invertible. Let (Q,F, p) = (@4, F1, p1) @ (Qa, F2, p2),
and let m;, i = 1,2, be a projection function from @y x ©; to Q;, that maps each pair (21, z2)
to x;. Let Q = m;(Q;), and let F! = {C | #71(C) € F;}. Then (Q}, F!) = (2, F:), and 7; is
a measurable function from (€2, F) to (Q}, F/). The measure m;(x) coincides with g, since for
each C € Fi, 77 1(C) = C x Qy, and for each C' € Fy, 75 1(C) = Q; x C. Thus, the projection
of (Q, F, i) onto its i component is (€, Fi, ;).

3.1.7 Combination of Discrete Probability Spaces

In our theory there are several situations in which a discrete probability space is chosen accord-
ing to some probability distribution, and then an element from the chosen probability space
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is chosen according to the corresponding probability distribution. The whole process can be
described by a unique probability space.

Let {(£;, Fi, P;)}i>o0 be a family of discrete probability spaces, and let {p;};>o be a family
of real numbers between 0 and 1 such that >";5qp; = 1. Define Y.< (82, Fi, P;) to be the triple
(Q,F,P), where Q = U;»Q;, F = 29 and, for each = € Q, P[z] :_Zi>0|xeﬂi pi Pi[z]. Tt is easy
to verify that (Q,F, P) is a probability space. -

The process described by (2, F, P) is the following: a probability space (£;, F;, P;) is drawn
from {(Q;, Fi, P;)}i>o with probability p;, and then an element z is drawn drom €2; with prob-
ability P;[z].

3.1.8 Conditional Probability

Let (2, F, P) be a probability space, and let £ be an element of F. Frequently, we need to
study the probability of an event E’ of F knowing that event F has occurred. For example, we
may want to study the probability that a dice rolled 6 knowing that it rolled a number greater
than 3. The probability of a conditional event is expressed by P[F'|E]. If P[F] = 0, then
P[E'|E] is undefined; if P[E] > 0, then P[E’|E] is defined to be P[E N E']/P[E].

Suppose that P[F] > 0, and consider the triple (Q|F, F|F, P|E) where Q|E = £, F|E =
{F'NE| E € F}, and for each event E' of F|E, P|E[E'] = P[E'|E]. Then it is easy to show
that (&, F|E, P|E)is a probability space. We call this space a conditional probability space.

Conditional measures give us an alternative way to express the probability of the intersection
of several events. That is,

PlEy 0N E,] = PLE{P[Ey|Er] - PlER|Ey O -0 En_q).

If P[E'] = P[E'|E], then P[E N E'] = P[E]P[E’]. In this case the events E and E’ are said
to be independent.

3.1.9 Expected Values

Let (9, F) be a measurable space, and let (%, R) be the measurable space where % is the set
of real numbers, and R is the o-field generated by the open sets of the real line. A random
variable on (2, F), denoted by X, is a measurable function from (2, F) to (R, R).

We use random variables to deal with timed systems. An example of a random variable is
the function that, given a computation of a system, returns the time it takes to the system to
achieve a goal in the given computation. In our case, the computations of a system are chosen
at random, and thus, a natural estimate of the performance of the system is the average time
it takes to the system to achieve the given goal.

The above idea is expressed formally by the expected value of a random variable, which is a
weighted average of X. Specifically, let (2, F, P) be a probability space, and let X be a random
variable on (Q,F). Then the expected value of X, denoted by E[X], is the weighted average
of X based on the probability distribution P. We do not show how to compute the expected
value of a random variable in general, and we refer the interested reader to [Hal50]. Here we
just mention that if Q can be partitioned in a countable collection of measurable sets (C)i>,
such that for each set C;, X(C;) is a singleton, then F[X]= Y".sy P[C:]X (¢;), where for each ¢
¢; is an element of F;. -
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3.1.10 Notation

Throughout the thesis we adopt some conventional notation concerning probability spaces. We
use the notation P, possibly decorated with indexes and primes, to denote a generic probability
space. Thus, the expression P/ stands for the probability space (2, F/, P!). Furthermore, if
a generic expression exp denotes a probability space (2, F, P), we use Q.pp, Fegp, and Py to
denote Q, F. and P, respectively.

If (2, F, P) is a probability space, and E is a generic set, we use P[F] to denote P[F N ].
If N is not an element of F, then P[E] is undefined.

A special kind of probability space is a probability space with a unique element in its sample
set. The corresponding measure is called a Dirac distribution. We use the notation D(z) to
denote a probability space (2, F, P) where Q = {z}.

Another important kind of probability space is a space with finitely many elements, each
one with the same probability. The corresponding measure is called a uniform distribution.
We use the notation U(z1,...,2,) to denote a discrete probability space (€2, F, P) where Q =
{x1,...,2,} and, for each element z; of Q, P[z;] = 1/n.

In the thesis we use heavily discrete probability spaces with no 0-probability elements. It
is easy to verify that the sample set of these probability spaces is at most countable. If C is
any set, then we denote by Probs(C') the set of discrete probability spaces (Q,F, P) with no
0-probability elements such that 2 C C'.

3.2 Labeled Transition Systems

A Labeled Transition System [Kel76, Plo81] is a state machine with labeled transitions. The
labels, also called actions, are used to model communication between a system and its external
environment. Labeled transition systems have been used successfully for the analysis of con-
current and distributed systems [DH84, Mil89, LT87, LV93a]; for this reason we choose them
as our basic model.

Currently there are several definitions of labeled transition systems, each one best suited
for the kind of application it is meant for. In this section we present a definition of labeled
transition systems in the style of [LV93a].

3.2.1 Automata
An automaton A consists of four components:
1. a set states(A) of states.
2. a nonempty set start(A) C states(A) of start states.

3. an action signature sig(A) = (ext(A), int(A)), where ext(A) and int(A) are disjoint sets
of external and internal actions, respectively. Denote by acts(A) the set ext(A)U int(A)
of actions.

4. atransition relation trans(A) C states(A)x acts(A)x states(A). The elements of trans(A)
are referred to as transitions or steps.
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insert(i) o extract(i)

Figure 3-1: The Buffer automaton.

Thus, an automaton is a labeled transition system, possibly with multiple start states, whose
actions are partitioned into external and internal actions. The external actions model com-
munication with the external environment; the internal actions model internal communication,
not visible from the external environment.

We use s to denote a generic state, and a and b to denote a generic action. We also use 7 to
denote a generic internal action. All our conventional symbols may be decorated with primes
and indexes. We say that an action a is enabled from a state s in A if there exists a state s’ of
A such that (s,a,s’) is a transition of A.

A standard alternative notation for transitions is s — s’. This notation can be extended to
finite sequences of actions as follows: s "22" & iff there exists a sequence of states s, ..., S,_1
such that s =% s =2 +-+s,_1 -2 s,.. To abstract from internal computation, there is another
standard notion of weak transition, denoted by s == s’. The action @ must be external, and
the meaning of s == s’ is that there are two finite sequences 31, 35 of internal actions such that
s P92 o A for ordinary transitions, weak transitions can be generalized to finite sequences
of external actions. A special case is given by the empty sequence: s = s’ iff either s’ = s or

there exists a finite sequence § of internal actions such that s by

Example 3.2.1 A classic example of an automaton is an unbounded ordered buffer that stores
natural numbers (see Figure 3-1). An external user sends natural numbers to the buffer, and
the buffer sends back to the external environment the ordered sequence of numbers it receives
from the user.

The automaton Buffer of Figure 3-1 can be described as follows. All the actions of Buffer
are external and are of the form insert(:) and extract(?), where ¢ is a natural number, i.e., the
actions of Buffer are given by the infinite set U;en{insert(i), extract(t)}. The states of Buffer
are the finite sequences of natural numbers, and the start state of Buffer is the empty sequence.
The actions of the form insert(:) are enabled from every state of Buffer, i.e., for each state
s and each natural number ¢ there is a transition (s, insert(i),is) in Buffer, where is denotes
the sequence obtained by appending ¢ to the left of s. The actions of the form extract(i) are
enabled only from those states where ¢ is the rightmost element in the corresponding sequence
of numbers, i.e., for each state s and each natural number ¢ there is a transition (si, extract(t), s)
of Buffer. No other transitions are defined for Buffer.

Observe that from every state of Buffer there are infinitely many actions enabled. The
way to choose among those actions is not specified in Buffer. In other words, the choice of the
transition to perform is nondeterministic. In this case the nondeterminism models the arbitrary
behavior of the environment.
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Figure 3-2: Concatenation of two buffers.

The role of internal actions becomes clear when we concatenate two buffers as in Figure 3-2.
The communication that occurs between the two buffers is internal in the sense that it does not
affect directly the external environment. Another useful observation about the concatenation
of the two buffers in Figure 3-2 is that nondeterminism expresses two different phenomena: the
arbitrary behavior of the environment, and the arbitrary scheduling policy that can be adopted
in choosing whether Buffer, or Buffer, performs the next transition. In general nondeterminism
can express even a third phenomenon, namely, the fact that an arbitrary state can be reached
after the occurrence of an action. Such a form of nondeterminism would arise if we assume that
a buffer may lose data by failing to modify its state during an insertion operation. [ |

3.2.2 Executions

The evolution of an automaton can be described by means of its executions. An execution
fragment o of an automaton A is a (finite or infinite) sequence of alternating states and actions
starting with a state and, if the execution fragment is finite, ending in a state

Q = Spa151A92859 -

where for each 4, (s;,a;41,8i41) is a transition of A. Thus, an execution fragment represents a
possible way to resolve the nondeterminism in an automaton.

Denote by fstate(a) the first state of @ and, if « is finite, denote by Istate(a) the last state of
a. Furthermore, denote by frag™(A) and frag(A) the sets of finite and all execution fragments
of A, respectively.

An ezecution is an execution fragment whose first state is a start state. Denote by exec*(A)
and exec(A) the sets of finite and all execution of A, respectively. A state s of A is reachable if
there exists a finite execution of A that ends in s.

The length of an execution fragment «, denoted by |a], is the number of actions that occur
in a. If « is infinite, then |a| = cc.

A finite execution fragment a; = spa181---a,5, of A and an execution fragment a; =
Splpt1Sn+1 - -+ of A can be concatenated. In this case the concatenation, written oy ™ ag, is
the execution fragment sga181 -« - @pSptpt1Snt1 - -+ If @ = a3 ™ agy, then we denote oy by aray

(read “a after ay”).

An execution fragment oy of A is a prefiz of an execution fragment ag of A, written oy < aq,
if either @y = a3 or a; is finite and there exists an execution fragment o} of A such that
ay = ay " of. The execution fragment o} is also called a suffiz of ay and is denoted by aspa;.
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3.2.3 Traces

The executions of an automaton contain a lot of information that is irrelevant to the environ-
ment, since the interaction between an automaton and its environment occurs through external
actions only. The trace of an execution is the object that represents the actual interaction that
occurs between an automaton and its environment during an execution.

The trace of an execution (fragment) o of an automaton A, written traces(a), or just
trace(a) when A is clear, is the list obtained by restricting o to the set of external actions of
A, ie., trace(a) = o | ext(A). We say that § is a trace of an automaton A if there exists an
execution a of A with trace(a) = 3. Denote by traces™(A) and traces(A) the sets of finite and
all traces of A, respectively. Note, that a finite trace can be the trace of an infinite execution.

3.2.4 Trace Semantics

In [LV93a] automata are compared based on traces. Specifically, a preorder relation is defined
between automata based on inclusion of their traces:

Ay Cp Ay iff traces(Ay) C traces(Asz).

The trace preorder can express a notion of implementation, usually referred to as a safe imple-
mentation. That is, Ay, the implementation, cannot do anything that is forbidden by A, the
specification. For example, no implementation of the buffer of Figure 3-1 can return natural
numbers that were never entered or natural numbers in the wrong order.

Although the trace preorder is weak as a notion of implementation, and so finer relations
could be more appropriate [DeN87, Gla90, Gla93], there are several situations where a trace
based semantics is sufficient [LT87, Dil88, AL93, GSSL94]. The advantage of a trace based
semantics is that it is easy to handle.

In this thesis we concentrate mainly on trace based semantics; however, the techniques that
we develop can be extended to other semantic notions as well.

3.2.5 Parallel Composition

Parallel composition is the operator on automata that identifies how automata communicate
and synchronize. There are two main synchronization mechanisms for labeled transition sys-
tems, better known as the CCS synchronization style [Mil89], and the CSP synchronization
style [Hoa85]. In the CCS synchronization style the external actions are grouped in pairs of
complementary actions; a synchronization occurs between two automata that perform comple-
mentary actions, and becomes invisible to the external environment, i.e., a synchronization is
an internal action. Unless specifically stated through an additional restriction operator, an
automaton is allowed not to synchronize with another automaton even though a synchroniza-
tion is possible. In the CSP synchronization style two automata must synchronize on their
common actions and evolve independently on the others. Both in the CCS and CSP styles,
communication is achieved through synchronization.

In this thesis we adopt the CSP synchronization style, which is essentially the style adopted
in [LT87, Dil88, LV93a]. A technical problem that arises in our framework is that automata
may communicate through their internal actions, while internal actions are not supposed to be
visible. To avoid these unwanted communications, we define a notion of compatibility between
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automata. Two automata Aj, Ay are compatible iff int(Ay) N acts(Az) = 0 and acts(A;) N
The parallel composition of two compatible automata Ay, Az, denoted by A;||Az, is the
automaton A such that

1. states(A) = states( A1) x states(As).

9. start(A) = start(A1) x start(As).

3. sig(A) = (ext(A1) U ext(Ay), int(Ay) U int(As)).
4. ((51.52) 0, (84, 5b)) € trans(A) iff

a) if a € acts(Ay), then (sq,a,s)) € trans(Ay), else s}, = s1, and
( ) ? s My 2] 9 1 9
(b) if a € acts(Az), then (sq,a,sh) € trans(Asz), else s = s,.

If two automata are incompatible and we want to compose them in parallel, the problem
can be solved easily by renaming the internal actions of one of the automata. The renaming
operation is simple: just rename each occurrence of each action in the action signature and the
transition relation of the given argument automaton. At this point it is possible to understand
how to build a system like the one described in Figure 3-2. Buffer, is obtained from Buffer by
renaming the actions extract(i) into 7(¢), and Buffer, is obtained from Buffer by renaming the
actions insert(¢) into 7(7). Then, Buffer; and Buffer, are composed in parallel, and finally the
actions 7(7) are made internal. This last step is achieved through a Hide operation, whose only
effect is to change the signature of an automaton.

We conclude by presenting two important properties of parallel composition. The first
property concerns projections of executions. Let A = Aq|| Az, and let (s1,s2) be a state of A.
Let ¢ be either 1 or 2. The projection of (s1,s2) onto A;, denoted by (s1,s2)[A4;, is s;. Let
a = spa1sy -+ be an execution of A. The projection of a onto A;, denoted by a[A; is the
sequence obtained from a by projecting all the states onto A;, and by removing all the actions
not in acts(A;) together with their subsequent states.

Proposition 3.2.1 Let A = Ay||Ay, and let a be an execution of A. Then a[A; is an execution
of A1 and a[Az is an execution of As. [ ]

The projection of an execution of A onto one of the components A; is essentially the view of

A; of the execution a. In other words the projection represents what A; does in order for A to

produce a. Proposition 3.2.1 states that the view of A; is indeed something that A; can do.
The second property concerns the trace preorder.

Proposition 3.2.2 Let Ay Cr A). Then, for each Ay compatible with both Ay and Aj,
A1HA2 Cr A/1HA2 |

The property expressed in Proposition 3.2.2is better known as substitutivity or compositionality.
In other words C is a precongruence with respect to parallel composition. Substitutivity is one
of the most important properties that an implementation relation should satisfy. Informally,
substitutivity says that an implementation A; of a system A} works correctly in any context
where A} works correctly. Substitutivity is also the key idea at the base of modular verification
techniques.
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Chapter 4

Probabilistic Automata

4.1 What we Need to Model

Our main goal is to analyze objects that at any point can evolve according to a probability
distribution. The simplest example of a random computation is the process of flipping a coin.
Thus, a program may contain an instruction like

x = flip

whose meaning is to assign to z the result of a coin flip. From the state-machine point of view,
the transition relation of the corresponding automaton should be specified by giving the states
reachable after the coin flip, together with their probability. Thus, the coin flipping process
can be represented by the labeled transition system of Figure 4-1. The edges joining two states
are associated with an action and a weight, where the weight of an edge is the probability of
choosing that specific edge. Thus, we require that for each state that has some outgoing edges,
the sum of the weights of the outgoing edges is 1.

However, we also need to deal with nondeterminism. Consider a more complicated process
where a coin is flipped, but where the coin can be either fair, i.e., it yields head with probability
1/2, or unfair by yielding head with probability 2/3. Furthermore, suppose that the process
emits a beep if the result of the coin flip is head. In this case, the choice of which coin to flip
is nondeterministic, while the outcome of the coin flip is probabilistic. The start state should
enable two separate transitions, each one corresponding to the flip of a specific coin. Figure 4-
2 represents the nondeterministic coin flipping process. The start state enables two separate
groups of weighted edges; each group is identified by an arc joining all of its edges, and the
edges of each group form a probability distribution.

At this point we may be tempted to ask the following question:

_ head
flip
1/2
SO ~ 12
flip i
tail

Figure 4-1: The coin flipping process.
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tail

flip

Figure 4-2: The nondeterministic coin flipping process.

“What is the probability that the nondeterministic coin flipper beeps?”
The correct answer is
“It depends on which coin is flipped.”

Although this observation may appear to be silly, the lesson that we learn is that it is not
possible to talk about the probability of some event until the nondeterminism is resolved.
Perhaps we could give a more accurate answer as follows:

“The probability that the nondeterministic coin flipper beeps is either 1/2 or 2/3,
depending on which coin is flipped.”

However, there are two possible objections. The first objection concerns the way a coin is
chosen. What happens if the coin to be flipped is chosen at random? After all, in the definition
of the nondeterministic coin flipper there are no limitations to the way a coin is chosen. In this
case, the correct answer would be

“The probability that the nondeterministic coin flipper beeps is between 1/2 and 2/3,
depending on how the coin to be flipped is chosen.”

The second objection concerns the possibility of scheduling a transition. What happens if the
scheduler does not schedule the beep transition even though it is enabled? In this case the
correct answer would be

“Under the hypothesis that some transition is scheduled whenever some transition is
enabled, the probability that the nondeterministic coin flipper beeps is between 1/2
and 2/3, depending on how the coin to be flipped is chosen.”

There is also another statement that can be formulated in relation to the question:

“The nondeterministic coin flipper does not beep with any probability greater than
2/3.7

This last property is better known as a safety property [AS85] for ordinary labeled transition
systems.

Let us go back to the scheduling problem. There are actual cases where it is natural to allow
a scheduler not to schedule any transition even though some transition is enabled. Consider a
new nondeterministic coin flipper with two buttons, marked fair and unfair, respectively. The
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head bep s

unfair
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flip

Figure 4-3: The triggered coin flipping process.
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Figure 4-4: A computation of the triggered coin flipping process.

buttons can be pressed by an external user. Suppose that pressing one button disables the
other button, and suppose that the fair coin is flipped if the button marked fair is pressed,
and that the unfair coin is flipped if the button marked unfair is pressed. The new process
is represented in Figure 4-3. In this case the scheduler models the external environment, and
a user may decide not to press any button, thus not scheduling any transition from sy even
though some transition is enabled. An external user may even decide to flip a coin and press
a button only if the coin gives head, or flip a coin and press fair if the coin gives head and
press unfair if the coin gives tail. That is, an external user acts like a scheduler that can use
randomization for its choices. If we ask again the question about the probability of beeping, a
correct answer would be

“Assuming that beep is scheduled whenever it is enabled, the probability that the
triggered coin flipper beeps, conditional to the occurrence of a coin flip, is between
1/2 and 2/3.”

Suppose now that we resolve all the nondeterminism in the triggered coin flipper of Figure 4-3,
and consider the case where the external user presses fair with probability 1/2 and unfair
with probability 1/2. In this case it is possible to study the exact probability that the process
beeps, which is 7/12. Figure 4-4 gives a representation of the outcome of the user we have just
described. Note that the result of resolving the nondeterminism is not a linear structure as is
the case for standard automata, but rather a tree-like structure. This structure is our notion
of a probabilistic execution and is studied in more detail in Section 4.2.
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4.2 The Basic Model

In this section we introduce the basic probabilistic model that is used in the thesis. We formalize
the informal ideas presented in Section 4.1, and we extend the parallel composition operator
of ordinary automata to the new framework. We also introduce several notational conventions
that are used throughout the thesis.

4.2.1 Probabilistic Automata

A probabilistic automaton M consists of four components:
1. A set states(M ) of states.
2. A nonempty set start(M) C states(M ) of start states.

3. An action signature sig(M) = (ext(M ), int(M)), where ext(M) and int(M) are disjoint
sets of external and internal actions, respectively. Denote by acts(M) the set ext(M) U
int(M) of actions.

4. A transition relation trans(M) C states(M ) x Probs((acts(M ) x states(M))U{é}). Recall
from Section 3.1.10 that for each set C', Probs(C') denotes the set of discrete probability
spaces (Q,F, P) with no 0-probability elements such that €@ C C. The elements of
trans(M ) are referred to as transitions or steps.

A probabilistic automaton differs from an ordinary automaton only in the transition relation.
Each transition represents what in the figures of Section 4.1 is represented by a group of edges
joined by an arc. From each state s, once a transition is chosen nondeterministically, the
action that is performed and the state that is reached are determined by a discrete probability
distribution. Fach transition (s,P) may contain a special symbol §, which represents the
possibility for the system not to complete the transition, i.e., to remain in s without being able
to engage in any other transition.

Example 4.2.1 (Meaning of §) To give an idea of the meaning of 8, suppose that M models
a person sitting on a chair that stands up with probability 1/2. That is, from the start state sg
there is a transition of M where one outcome describes the fact that the person stands up and
the other outcome describes the fact that the person does not stand up (this is 6). The point
is that there is no instant in time where the person decides not to stand up: there are only
instants where the person stands up. What the transition leaving sg represents is that overall
the probability that the person does the action of standing up is 1/2. The need for ¢ is clarified
further in Section 4.2.3, where we study probabilistic executions, and in Section 4.3, where we
study parallel composition. [ |

The requirement that the probability space associated with a transition be discrete is imposed
to simplify the measure theoretical analysis of probabilistic automata. In this thesis we work
with discrete probability spaces only, and we defer to further work the extension of the theory
to more general probability spaces. The requirement that each transition does not lead to any
place with probability 0 is imposed to simplify the analysis of probabilistic automata. All the
results of this thesis would be valid even without such a restriction, although the proofs would
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contain a lot of uninteresting details. The requirement becomes necessary for the study of live
probabilistic automata, which we do not study here.

There are two classes of probabilistic automata that are especially important for our analysis:
stmple probabilistic automata, and fully probabilistic automata.

A probabilistic automaton M is simple if for each transition (s, P) of trans(M) there is an
action a of M such that Q@ C {a} X states(M). In such a case, a transition can be represented
alternatively as (s,a, P’), where P’ € Probs(states(M)), and it is called a simple transition with
action a. The probabilistic automata of Figures 4-2 and 4-3 are simple. In a simple probabilistic
automaton each transition is associated with a single action and it always completes. The idea
is that once a transition is chosen, then only the next state is chosen probabilistically. In
this thesis we deal mainly with simple probabilistic automata for a reason that is made clear
in Section 4.3. We use general probabilistic automata to analyze the computations of simple
probabilistic automata.

A probabilistic automaton M is fully probabilistic if M has a unique start state, and from
each state of M there is at most one transition enabled. Thus, a fully probabilistic automaton
does not contain any nondeterminism. Fully probabilistic automata play a crucial role in the
definition of probabilistic executions.

Example 4.2.2 (Probabilistic automata) A probabilistic Turing Machine is a Turing ma-
chine with an additional random tape. The content of the random tape is instantiated by
assigning each cell the result of an independent fair coin flip (say 0 if the coin gives head and
1 if the coin gives tail). If we assume that each cell of the random tape is instantiated only
when it is reached by the head of the machine, then a probabilistic Turing machine can be
represented as a simple probabilistic automaton. The probabilistic automaton, denoted by M,
has a unique internal action 7, and its states are the instantaneous descriptions of the given
probabilistic Turing machine; each time the Turing machine moves the head of its random tape
on a cell for the first time, M has a probabilistic transition that represents the result of reaching
a cell whose content is 0 with probability 1/2 and 1 with probability 1/2.

An algorithm that at some point can flip a coin or roll a dice can be represented as a simple
probabilistic automaton where the flipping and rolling operations are simple transitions. If the
outcome of a coin flip or dice roll affects the external behavior of the automaton, then the
flip and roll actions can be followed by simple transitions whose actions represent the outcome
of the random choice. Another possibility is to represent the outcome of the random choice
directly in the transition where the random choice is made by performing different actions. In
this case the resulting probabilistic automaton would not be simple. Later in the chapter we
show why we prefer to represent systems as simple probabilistic automata when possible. =

4.2.2 Combined Transitions

In Section 4.1 we argued that a scheduler may resolve the nondeterminism using randomization,
i.e., a scheduler can generate a new transition by combining several transitions of a probabilistic
automaton M. We call the result of the combination of several transitions a combined transition.
Formally, let M be a probabilistic automaton, and let s be a state of M. Consider a finite or
countable set {(s,P;)}ier of transitions of M leaving from s, and a family of non-negative
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weights {p; }ier such that . p; < 1. Let

P = S opiPi| + (1 - sz) D(6), (4.1)

i€I|p;>0 el

i.e., P is a combination of discrete probability spaces as described in Section 3.1.7. The
pair (s,P) is called a combined transition of M and is denoted by 3 ;c;pi(s,P;). Denote
by ctrans(M) the set of combined transitions of M. Note that trans(M) C ctrans(M).

Thus, the combination of transitions can be viewed as a weighted sum of transitions where
the sum of the weights is at most 1. If the sum of the weights is not 1, then nothing is
scheduled by default. The reason for ¢ by default will become clear when we analyze parallel
composition in Section 4.3. Note that all the transitions (s, P;) where p; = 0 are discarded in
Expression (4.1), since otherwise P would contain elements whose probability is 0. We do not
impose the restriction that each p; is not 0 for notational convenience: in several parts of the
thesis the p;’s are given by complex expression that sometimes may evaluate to 0.

Proposition 4.2.1 The combination of combined transitions of a probabilistic automaton M
is a combined transition of M.

Proof. Follows trivially from the definition of a combined transition. [ |

4.2.3 Probabilistic Executions

If we resolve both the nondeterministic and probabilistic choices of a probabilistic automaton,
then we obtain an ordinary execution like those usually defined for ordinary automata. Thus, an
execution fragment of a probabilistic automaton M is a (finite or infinite) sequence of alternating
states and actions starting with a state and, if the execution fragment is finite, ending in a state,

Q= 5041514252 -,

where for each ¢ there is a transition (s;, P;41) of M such that (@11, s;41) € Qi41. Executions,
concatenations of executions, and prefixes can be defined as for ordinary automata.

In order to study the probabilistic behavior of a probabilistic automaton, we need a mech-
anism to resolve only the nondeterminism, and leave the rest unchanged. That is, we need a
structure that describes the result of choosing a transition, possibly using randomization, at
any point in history, i.e., at any point during a computation. In Figure 4-4 we have given an
example of such a structure, and we have claimed that it should look like a tree. Here we give
a more significant example to justify such a claim.

Example 4.2.3 (History in a probabilistic execution) Consider a new triggered coin flip-
per, described in Figure 4-5, that can decide nondeterministically to beep or boo if the coin flip
yields head, and consider a computation, described in Figure 4-6, that beeps if the user chooses
to flip the fair coin, and boos if the user chooses to flip the unfair coin. Then, it is evident that
we cannot identify the two states head of Figure 4-6 without reintroducing nondeterminism. In
other words, the transition that is scheduled at each point depends on the past history of the
system, which is represented by the position of a state in the tree. For a formal definition of a
structure like the one of Figure 4-6, however, we need to refer explicitly to the past history of
a system. ]
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Figure 4-5: The triggered coin flipper with a boo sound.
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Figure 4-6: A computation of the triggered coin flipper with a boo sound.

Let a be a finite execution fragment of a probabilistic automaton M. Define a function o™
that applied to a pair (a,s) returns the pair (a,aas), and applied to 6 returns . Recall from
Section 3.1.5 that the function o™ can be extended to probability spaces. Informally, if (s, P) is
a combined transition of M and « is a finite execution fragment of M such that Istate(a) = s,
then the pair (a,a ™ P) denotes a transition of a structure that in its states remembers part of
the past history. A probabilistic execution fragment of a probabilistic automaton M, is a fully
probabilistic automaton, denoted by H, such that

1. states(H) C frag™(M). Let ¢ range over states of probabilistic execution fragments.

2. for each transition (¢, P) of H there is a combined transition (lstate(q),P’) of M, called
the corresponding combined transition, such that P = ¢~ P’.

3. each state g of H is reachable in H and enables one transition, possibly (¢, D(¢)).

A probabilistic execution is a probabilistic execution fragment whose start state is a start state of
M. Denote by prfrag( M) the set of probabilistic execution fragments of M, and by prezec(M)
the set of probabilistic executions of M. Also, denote by ¢} the start state of a generic
probabilistic execution fragment H.

Thus, by definition, a probabilistic execution fragment is a probabilistic automaton itself.
Condition 3 is technical: reachability is imposed to avoid useless states in a probabilistic exe-
cution fragment; the fact that each state enables one transition is imposed to treat uniformly
all the points where it is possible not to schedule anything. Figures 4-6 and 4-7 represent
two probabilistic executions of the triggered coin flipper of Figure 4-5. The occurrence of
is represented by a dashed line labeled with 6. The states of the probabilistic executions are
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Figure 4-7: A probabilistic execution of the triggered coin flipper.

not represented as finite execution fragments since their position in the diagrams gives enough
information. Similarly, we omit writing explicitly all the transitions that lead to D(§) (e.g.,
states s; and sy in Figure 4-7).

We now have enough structure to understand better the role of 6. In ordinary automata a
scheduler has the possibility not to schedule anything at any point, leading to a finite execution.
Such assumption is meaningful if the actions enabled from a given state model some input
that comes from the external environment. In the probabilistic framework it is also possible to
schedule no transition from some point. Since a scheduler may use randomization in its choices,
it is also possible that from some specific state nothing is scheduled only with some probability

p, say 1/2.

Example 4.2.4 (The role of §) In the triggered coin flipper of Figure 4-5 a user can flip
a fair coin to decide whether to push a button, and then, if the coin flip yields head, flip
another coin to decide which button to press. In the transition that leaves from sy we need
some structure that represents the fact that nothing is scheduled from sy with probability 1/2:
we use 6 for this purpose. Figure 4-7 represents the probabilistic execution that we have just
described. [

Since a probabilistic execution fragment is itself a probabilistic automaton, it is possible to
talk about the executions of a probabilistic execution fragment, that is, the ways in which the
probabilistic choices can be resolved in a probabilistic execution fragment. However, since at
any point ¢ it is possible not to schedule anything, if we want to be able to study the probabilistic
behavior of a probabilistic execution fragment then we need to distinguish between being in ¢
with the possibility to proceed and being in ¢ without any possibility to proceed. For example,
in the probabilistic execution of Figure 4-7 we need to distinguish between being in sy before
performing the transition enabled from sy and being in sy after performing the transition. We
represent this second condition by writing spé. In general, we introduce a notion of an extended
execution fragment, which is used in Section 4.2.5 to study the probability space associated with
a probabilistic execution.

An extended execution (fragment) of a probabilistic automaton M, denoted by «, is either
an execution (fragment) of M, or a sequence a’é, where o' is a finite execution (fragment) of
M. The sequences sgé and sq fair s16 are examples of extended executions of the probabilistic
execution of Figure 4-7.

There is a close relationship between the extended executions of a probabilistic automaton
and the extended executions of one of its probabilistic execution fragments. Here we define
two operators that make such a relationship explicit. Let M be a probabilistic automaton and
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let H be a probabilistic execution fragment of M. Let gg be the start state of H. For each
extended execution a = qpayqq - -- of H, let

ol N qo " Istate(qo)aq lstate(qr )az - - - if @ does not end in &, (4.2)
o qo " Istate(qop)arlstate(qr)az - - - aylstate(q,)d  if o = qoa1q1 -+ -anq,0. )
It is immediate to observe that o] is an extended execution fragment of M. For each extended
execution fragment o of M such that go < a, i.e., @ = go ™ s0a181 - -+, let
N goa1(qo ™ spa151)azx(qo ~ Spa151a252) - - if @ does not end in 4,
alg = - ~ e (4.3)
f]oa1(f]0 800181) e '(f]o Spa1S51 -+ - 'anSn)5 if @ =qo" spa1s1 - -aps,0.

It is immediate to observe that alqy is an extended execution of some probabilistic execution
fragment of M. Moreover, the following proposition holds.

Proposition 4.2.2 Let H be a probabilistic execution fragment of a probabilistic automaton
M, and let qu be the start state of H. Then, for each extended execution o of H,

(eD)lgo = a, (4.4)
and for each extended execution fragment a of M starting with qo,

(alq)] = . (4.5)
Proof. Simple analysis of the definitions. [ |

The bottom line is that it is possible to talk about extended executions of H by analyzing only
extended execution fragments of M.

4.2.4 Notational Conventions

For the analysis of probabilistic automata and of probabilistic executions we need to refer to
explicit objects like transitions or probability spaces associated with transitions. In this section
we give a collection of notational conventions that ease the identification of each object.

Transitions

We denote a generic transition of a probabilistic automaton by ¢r, possibly decorated with
primes and indices. For each transition ¢r = (s,P), we denote P alternatively by Py.. If tris a
simple transition, represented by (s, a,P), we abuse notation by denoting P by Py, as well. The
context will always clarify the probability space that we denote. If (s,P)is a transition, we use
any set of actions V' to denote the event {(a,s’) € Q| a € V} that expresses the occurrence of
an action from V' in P, and we use any set of states U to denote the event {(a,s’) € Q| s € U}
that expresses the occurrence of a state from U in . We drop the set notation for singletons.
Thus, P[a] is the probability that action a occurs in the transition (s, P).

If M is a fully probabilistic automaton and s is a state of M, then we denote the unique
transition enabled from s in M by #rM, and we denote the probability space that appears in

trM by PM. Thus, trM = (s, PM). We drop M from the notation whenever it is clear from
the context. This notation is important to handle probabilistic execution fragments.
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Transition Prefixing and Suffixing

Throughout the thesis we use transitions of probabilistic automata and transitions of proba-
bilistic execution fragments interchangeably. If H is a probabilistic execution fragment of a
probabilistic automaton M, then there is a strong relation between the transitions of H and
some of the combined transitions of M. We exploit such a correspondence through two oper-
ations on transitions. The first operation is called transition prefixing and adds some partial
history to the states of a transition; the second operation is called transition suffixing and re-
moves some partial history from the states of a transition. These operations are used mainly
in the proofs of the results of this thesis.

Let ¢tr = (s,P) be a combined transition of a probabilistic automaton M, and let a be a
finite execution fragment of M such that Istate(a) = s. Then the transition a~ tr is defined to
be (a,a ™ P). We call the operation o™ transition prefizing.

Let tr = (¢, P) be a transition of a probabilistic execution fragment H, and let ¢’ < ¢. Let
>¢q’ be a function that applied to a pair (a,¢”) of Q returns (a, ¢">¢"), and applied to 6 returns
6. Let Prq’ denote the result of applying »¢’ to P. Then the transition treq’ is defined to be
(¢>¢', Prq’). We call the operation ¢’ transition suffizing.

The following properties concern distributivity of transition prefixing and suflixing with
respect to combination of transitions.

Proposition 4.2.3 Let M be a probabilistic automaton, and let ¢ be a finite execution fragment

of M.
1.q7 Y pitri = 3, pilq ™ tr;), where each tr; is a transition of M.

2. 3 pitrivq = Y pi(tri>q), where each tr; is a transition of some probabilistic execution
fragment of M.

Proof. Simple manipulation of the definitions. [ |

4.2.5 Events

At this point we need to define formally how to compute the probability of some event in
a probabilistic execution. Although it is intuitively simple to understand the probability of
a finite execution to occur, it is not as intuitive to understand how to deal with arbitrary
properties. A probabilistic execution can be countably branching, and can have uncountably
many executions. As an example, consider a probabilistic execution that at any point draws a
natural number n > 0 with probability 1/2". What is measurable? What is the probability of
a generic event?

In this section we define a suitable probability space for a generic probabilistic execution
fragment H of a probabilistic automaton M. Specifically, given a probabilistic execution frag-
ment H we define a probability space Py as the completion of another probability space Py
which is defined as follows. Define an extended execution a of H to be complete iff either «
is infinite or a = a6 and § € Qf Then, the sample space Q% is the set of extended

Istate(a’)”
executions of M that originate from complete extended executions of H, i.e.,

Q% = {a] | ais a complete extended execution of H}. (4.6)
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The occurrence of a finite extended execution a of M can be expressed by the set
Cf 2 {a/ € Qy|a<a}, (4.7)

called a cone. We drop H from C'H whenever it is clear from the context. Let Cy be the set of
cones of H. Then define F}; to be the o-field generated by Cy, i.e.,

To define a probability measure on F};, we start by defining a measure g on Cpg such that
pr () = 1. Then we show that puy can be extended uniquely to a measure jig on F(Cp),
where F(Cpr) is built according to Proposition 3.1.1. Finally we use the extension theorem
(Theorem 3.1.2) to show that py can be extended uniquely to a probability measure Pj; on
o(F(Ch))=0(Ch).

The measure g (CH) of a cone CX is the product of the probabilities associated with each
edge that generates a in H. Formally, let gy be the start state of H. If a < gg, then

p(CHy 2 1 (4.9)

if @ =qg ™ sgay8y - 8,_1a,8,, then

pr(CHY 2 Pll(ar,q0)] - Pl [(an, ¢.)]; (4.10)

where for each 7, 1 <1< n, ¢; = qo ™ Spa181 - - S;_1a;8;; if @ = qo ™ sga181 + - 8,_1a,8,0, then

pa(CH) 2 Pl )] Pl [(an, 4,)1Py, (8], (4.11)

where for each 7, 1 <1< n, ¢; = qo ™ Sga181 * - - S_1a;S;.

Example 4.2.5 (Some commonly used events) Before proving that the construction of
Pi; is correct, we give some examples of events. The set describing the occurrence of an action
a (eventually a occurs) can be expressed as a union of cones of the form C,, such that ¢ appears
in a. Moreover, any union of cones can be described as a union of disjoint cones (follows from
Lemma 4.2.4 below). Since a probabilistic execution fragment is at most countably branching,
the number of distinct cones in Cp is at most countable, and thus the occurrence of ¢ can be
expressed as a countable union of disjoint cones, i.e., it is an event of F7;. More generally, any
arbitrary union of cones is an event. We call such events finitely satisfiable. The reason for the
word “satisfiable” is that it is possible to determine whether an execution a of Q% is within a
finitely satisfiable event by observing just a finite prefix of a. That finite prefix is sufficient to
determine that the property represented by the given event is satisfied.

The set describing the non-occurrence of an action « is also an event, since it is the comple-
ment of a finitely satisfiable event. Similarly, the occurrence, or non-occurrence, of any finite
sequence of actions is an event. For each natural number n, the occurrence of exactly n a’s is
an event: it is the intersection of the event expressing the occurrence of at least n a’s and the
event expressing the non-occurrence of n + 1 ¢’s. Finally, the occurrence of infinitely many a’s
is an event: it is the countable intersection of the events expressing the occurrence of at least ¢
a’s, 1> 0. [ |
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We now move to the proof that Pj; is well defined. First we use ordinal induction to show that
the function py defined on Cpy is o-additive, and thus that py is a measure on Cyy (Lemma 4.2.6);
then we show that there is a unique extension of pg to F(Cp) (Lemmas 4.2.7,4.2.8, and 4.2.9).
Finally, we use the extension theorem to conclude that Py is well defined.

Lemma 4.2.4 Let Cy,,,Co, € Qu. If oy < ay then C,, C Cy,. If oy f_ ay and ag f_ oy then
CoyNCy, =0.

Proof. Simple analysis of the definitions. [ |

Lemma 4.2.5 Let H be a probabilistic execution of a probabilistic automaton M, and let g be
a state of H. Suppose that there is a transition enabled from ¢ in H. Then

Yo (angryeai i (Cyr) if6 ¢ Qf
HH(Cq) = (@a)&, Cq C if 6 Q%I (4'12)
Y (agneny ha(Cy) + n(Cos) if 8 € Q.
Proof. Simple analysis of the definitions. [ |

Lemma 4.2.6 The function up is o-additive on Cy, and pg(Qpm) = 1.

Proof. By definition ppg () = 1, hence it is sufficient to show o-additivity. Let ¢ be an
extended execution of M, and let © be a set of incomparable extended executions of M such
that ¢y = UgpeeCy. If ¢ ends in 0, then © contains only one element and c-additivity is
trivially satisfied. Thus, assume that ¢ does not end in 6, and hence ¢ is a state of H, and that
O contains at least two elements. From Lemma 4.2.4, g is a prefix of each extended execution
of ©. For each state ¢’ of H, let Oy be the set {¢” € © | ¢ < ¢"}. We show c-additivity
in two steps: first we assign an ordinal depth to some of the states of H and we show that ¢
is assigned a depth; then we show that up(Cy) = 3" ,cq u(Cy) by ordinal induction on the
depth assigned to ¢.

The depth of each state ¢’ within some cone Cyn (¢ < ¢'), where ¢” € ©,is 0, and the depth
of each state ¢’ with no successors is 0. For each other state ¢’ such that each of its successors
has a depth, if {depth(q"”) | Ju(a,q”) € Qg{} has a maximum, then

depth(q') = maz({depth(q") | Ju(a,q") € QL}) + 1, (4.13)
otherwise, if {depth(q") | 3.(a,q"”) € Q,} does not have a maximum, then

depth(q') = sup({depth(q") | 3u(a.¢") € QIY). (4.14)

Consider a maximal assignment to the states of I7,i.e., an assignment that cannot be extended
using the rules above, and suppose by contradiction that ¢ is not assigned a depth. Then
consider the following sequence of states of H. Let gy = ¢, and, for each 2 > 0, let ¢; be a state
of H such that (a;,q;) € Q,,_,, and ¢; is not assigned a depth. For each i, the state ¢; exists
since otherwise, if there exists an ¢ such that for each (a;,¢;) € Qq_,, ¢; is assigned a depth,
then ¢;_1 would be assigned a depth. Note that the ¢;’s form a chain under prefix ordering, i.e.,
for each 4, 7,if + < j then ¢; < ¢;. Consider the execution a., = lim; ¢;. From its definition, a
is an execution of C';. Then, from hypothesis, a, is an execution of UyeeCy, and therefore
Qoo is an execution of some Cy such that ¢’ € ©. By definition of a cone, ¢ is a prefix of a.
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Thus, ¢’ = ¢ for some k > 0. But then ¢ is within the cone Cy, and thus it is assigned depth
0. This contradicts the fact that ¢ is not assigned any depth.

Let v be the ordinal depth assigned to q. We show that ug(Cy) = >, copn(Cy) by
ordinal induction on . If v = 0, then O is either {¢} or {¢é}, and the result is trivial. Let
7 be a successor ordinal or a limit ordinal. From Lemma 4.2.5, up(Cy) = 3, yeq, 1H(Cy)

if 6 ¢ Qg and pp(Cy) = 2 (a,0)EQy pa(Cy) + pr(Cys) if 6 € Qp. For each (a,q') € Q,
Cy = Uquegq/cq//. Moreover, for each (a,q’) € ,, the depth of ¢’ is less than 4. By induction,

pi(Cyr) = Fgneo,, i (Cyr). Thus, py(Co) = 34 gnen, greo,, #a(Cqr) = Lyeo tta(Cyr) if
8 &y, and pp(Cy) = o gen, greo, Hu(Cor) + 1a(Cos) = Lypeo nu(Cy) if 6 €2y =

Lemma 4.2.7 There exists a unique extension 'y of pm to Fi(Cr).

Proof. There is a unique way to extend the measure of the cones to their complements since
for each a, ug(Co) + (g — Cy) = 1. Therefore pf; coincides with py on the cones and
is defined to be 1 — py(C,) for the complement of any cone C,. Since, by the countably
branching structure of H, the complement of a cone is a countable union of cones, s-additivity
is preserved. [ |

Lemma 4.2.8 There exists a unique extension pY; of py to Fo(Crr).

Proof. The intersection of finitely many sets of F1(Cpr) is a countable union of cones. Therefore
o-additivity enforces a unique measure on the new sets of F1(Cp). [

Lemma 4.2.9 There exists a unique extension pf; of p'f; to F5(Crr).

Proof. There is a unique way of assigning a measure to the finite union of disjoint sets whose
measure is known, i.e., adding up their measures. Since all the sets of F3(Cy) are countable
unions of cones, o-additivity is preserved. [ |

Theorem 4.2.10 There exists a unique extension Py of up to the o-algebra Fi;.

Proof. By Theorem 3.1.2, define Pj; to be the unique extension of uf; to Fp;. [ ]

4.2.6 Finite Probabilistic Executions, Prefixes, Conditionals, and Suffixes

We extend the notions of finiteness, prefix and suffix to the probabilistic framework. Here we
add also a notion of conditional probabilistic execution which is not meaningful in the non-
probabilistic case and which plays a crucial role in some of the proofs of Chapter 5.

Finite Probabilistic Executions

Informally, finiteness means that the tree representation of a probabilistic execution fragment
has a finite depth. Thus, a probabilistic execution fragment H is finite iff there exists a natural
number n such that the length of each state of H is at most n.
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Figure 4-8: Examples of the prefix relation.

Prefixes

The idea of a prefix of a probabilistic execution fragment is more complicated than the definition
of prefix for ordinary automata. To get a better understanding of the problem, consider the
definition of prefix for ordinary execution fragments: a < o iff either a = ', or « is finite and
there is an execution fragment o’ such that o/ = a™a”. Another way to interpret this definition
is to observe that if « is finite, then there is exactly one point in «, which we call a point of
extension, from which nothing is scheduled, and in that case o’ is obtained by extending « from
its unique point of extension. With the word “extending” we mean “adding transitions”. In
other words, an execution fragment « is a prefix of an execution fragment o’ iff @’ is obtained
from o by adding transitions, possibly none, from all the points of extension of «a, i.e., from
all the points of o where nothing is scheduled. We apply the same observation to probabilistic
execution fragments, where a point of extension is any point where é occurs.

Example 4.2.6 (Prefixes) Consider the probabilistic execution fragment H of Figure 4-8.
It is easy to see that sy and s, are points of extension in H. However, also sy is a point
of extension since in H nothing is scheduled from sy with probability 1/2. The probabilistic
execution fragment H' of Figure 4-8 is an extension of H. States s; and sy are extended with
transitions labeled with ¢, and half of the extendible part of sq is extended with the transition
89 — 81, i.e., we have added the transition (so,4((a,s1),6)) to the extendible part of sg. Since
the extension from sgp overlaps with one of the edges leaving sg in H, the effect that we observe
in H' is that sy is reached with a higher probability.

Consider now the probabilistic execution fragment H” of Figure 4-8. H” is an extension
of H’, but this time something counterintuitive has happened; namely, the edge labeled with
action ¢ that leaves from state sy has a lower probability in H” than in H'. The reason for this

difference is that the extendible part of sp is extended with a transition sg LN so followed by
sy — s'. Thus, half of the transition leaving from sy in H" is due to the previous behavior of
H', and half of the transition leaving from sy in H” is due to the extension from sy. However,
the probability of the cone Uy ps,cs is the same in H' and in H”. [ |

A formal definition of a prefix works as follows. A probabilistic execution fragment H is a prefix
of a probabilistic execution fragment H’, denoted by H < H’, iff

1. H and H' have the same start state, and

2. for each state g of H, Py[C,] < Pri[Cy].

Observe that the definition of a prefix for ordinary executions is a special case of the definition
we have just given.
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Figure 4-9: Conditionals and suffixes.

Conditionals

Let H be a probabilistic execution fragment of a probabilistic automaton M, and let ¢ be either
a state of H or a prefix of the start state of H. We want to identify the part of H that describes
what happens conditional to the occurrence of ¢q. The new structure, which we denote by Hl|q,
is a new probabilistic execution fragment defined as follows:

1. states(H|q) = {¢ € states(H)| ¢ < ¢'};

2. start(H |q) = min(states(H|q)), where the minimum is taken under prefix ordering,

3. for each state ¢’ of H|q, tr?'q = trg.

H|q is called a conditional probabilistic execution fragment.

Example 4.2.7 (Conditionals) The probabilistic execution fragment H; of Figure 4-9 is an
example of a conditional probabilistic execution fragment. Specifically, H1 = H"|(spasz), where
H" is represented in Figure 4-8. In Figure 4-9 we represent explicitly the states of Hy for clarity.
The conditional operation essentially extracts the subtree of H” that starts with sgas,. [ |

It is easy to check that (Qp,, Frrigs Prrjg) and (Qu|Cy, Fu|Cy, Pu|Cy) are the same probability
space (cf. Section 3.1.8). Indeed, the sample sets are the same, the generators are the same, and
the probability measures coincide on the generators. Thus, the following proposition, which is
used in Chapter 5, is true.

Proposition 4.2.11 Let H be a probabilistic execution fragment of a probabilistic automaton
M, and let ¢ be either a state of H, or a prefix of the start state of H. Then, for each subset
E Of Q]’ﬂq;

1. E€ Fyy, iff E € F.

2. If E is an event, then Py[l] = Py[C,| Py, [F]. ]

Suffixes

The definition of a suffix is similar to the definition of a conditional; the difference is that in
the definition of Hrq we drop ¢ from each state of H, i.e., we forget part of the past history.
Formally, let H be a probabilistic execution fragment of a probabilistic automaton M, and let
q be either a state of H or a prefix of the start state of H. Then Hwq is a new probabilistic
execution fragment defined as follows:

1. states(H>q) = {¢'>q | ¢’ € states(H),q < ¢'},
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2. start(H>q) = min(states(Heq)), where the minimum is taken under prefix ordering,

3. for each state ¢’ of H’, trﬁ{bq = trg{\q,bq.
Hvyq is called a suffiz of H. It is a simple inductive argument to show that Heg is indeed
a probabilistic execution fragment of M. Observe that the definition of a suffix for ordinary

executions is a special case of the definition we have just given.

Example 4.2.8 (Suffixes) The probabilistic execution fragment Hy of Figure 4-9 is an ex-
ample of a suffix. Specifically, Hy = H"'>(spasz), where H" is represented in Figure 4-8. The
suffixing operation essentially extracts the subtree of H” that starts with spas, and removes
from each state the prefix sgass. [ ]

It is easy to check that the probability spaces Ppwy and Ppy, are in a one-to-one correspondence
through the measurable function f : Qpu, — Qp), such that for each a € Qpyy, fla) = ¢~ a.
The inverse of f is also measurable and associates arq with each execution a of Q.. Thus,
directly from Proposition 4.2.11, we get the following proposition.

Proposition 4.2.12 Let H be a probabilistic execution fragment of a probabilistic automaton
M, and let ¢ be either a state of H, or a prefix of the start state of H. Then, for each subset
E Of QHDq;

1. B € Frug iff (g F) € Fy.
2. If E is an event, then Prlq~ ] = Py[Cy] P E]. ]

4.2.7 Notation for Transitions

In this section we extend the arrow notation for transitions that is used for ordinary automata.
The extension that we present is meaningful for simple transitions only.

An alternative representation for a simple transition (s, a,P) of a probabilistic automaton M
is s — P. Thus, differently from the non-probabilistic case, a transition leads to a distribution
over states. If P is a Dirac distribution, say D(s’), then we can represent the corresponding
transition by s — s’. Thus, the notation for ordinary automata becomes a special case of the
notation for probabilistic automata. If (s,a,P) is a simple combined transition of M, then we
represent the transition alternatively by s ——¢ P, where the letter C' stands for “combined”.

The extension of weak transitions is more complicated. The expression s == P means
that P is reached from s through a sequence of transitions of M, some of which are internal.
The main difference from the non-probabilistic case is that in the probabilistic framework the
transitions involved form a tree rather than a linear chain. Formally, s == P, where a is either
an external action or the empty sequence and P is a probability distribution over states, iff
there is a probabilistic execution fragment H such that

1. the start state of H is s;
2. Py[{ad | ad € Qu}] =1, i.e., the probability of termination in H is 1;

3. for each ad € Qy, trace(a) = a;
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Figure 4-10: A representation of a weak transition with action a.
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Figure 4-11: A weak transition of a probabilistic automaton with cycles.

4. P = lIstate(8-strip(Pu)), where é-strip(Pr) is the probability space P’ such that Q' =
{a]ad € Qp}, and for each a € ', P'[a] = Py[Cas];

5. for each state g of H, either tr! is the pair (Istate(q), P(8)), or the transition that corre-
sponds to tr? is a transition of M.

A weak combined transition, s ==¢ P, is defined as a weak transition by dropping Condition 5.
Throughout the thesis we also the extend the function é-strip to extended execution fragment;
its action is to remove the symbol é at the end of each extended execution fragment.

Example 4.2.9 (Weak transitions) Figure 4-10 represents a weak transition with action
a that leads to state s; with probability 5/12 and to state s, with probability 7/12. The
action 7 represents any internal action. From the formal definition of a weak transition, a tree
that represents a weak transition may have an infinite branching structure, i.e., it may have
transitions that lead to countably many states, and may have some infinite paths; however, the
set of infinite paths has probability 0.

Figure 4-11 represents a weak transition of a probabilistic automaton with cycles in its
transition relation. Specifically, H represents the weak transition sy == P, where P[so] = 1/8
and P[s1] = 7/8. If we extend H indefinitely on its right, then we obtain a new probabilistic
execution fragment that represents the weak transition so = D(s1). Observe that the new
probabilistic execution fragment has an infinite path that occurs with probability 0. Further-
more, observe that there is no other way to reach state sy with probability 1. [ |

Remark 4.2.10 According to our definition, a weak transition can be obtained by concatenat-
ing together infinitely many transitions of a probabilistic automaton. A reasonable objection
to this definition is that sometimes scheduling infinitely many transitions is unfeasible. In the
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timed framework this problem is even more important since it is feasible to assume that there
is some limit to the number of transitions that can be scheduled in a finite time. Thus, a more
reasonable and intuitive definition of a weak transition would require the probabilistic execution
fragment H that represent a weak transition not to have any infinite path. All the results that
we prove in this thesis are valid for the more general definition where H can have infinite paths
as well as for the stricter definition where H does not have any infinite path. Therefore, we use
the more general definition throughout. The reader is free to think of the simpler definition to
get a better intuition of what happens. [ |

An alternative way to represent a weak transition, which is used to prove the theorems of
Chapter 8, is by means of a generator. If H represents a weak combined transition, then a
generator can be seen as an object that chooses the combined transitions of M that lead to H
(in Chapter 5 this object is also called an adversary). More precisely, a generator is a function
O that associates a weak combined transition of M with each finite execution fragment of
M. Before stating the formal properties that a generator satisfies, we give an example of the
generator for the weak transition of Figure 4-10.

Example 4.2.11 (Generators) Recall from Section 3.1.10 that ¢(z, y) denotes the probabil-
ity space that assigns @ and y probability 1/2 each. Then, the generator for the weak transition
of Figure 4-10 is the function O where

O(stsiash) = (sh,7,U(s1,52))
O(stsy) = (s1,a,U(sy,54)) O(stsyasy) = (s, 7,D
O(s) = (s,7,U(s1, 83)) O(s78y) = (85,7, D(s5)) O(sTsyTsy) = (85, a,U(sy,82))

and O(a) = (Istate(a),D(6)) for each a that is not considered above. The layout of the
definition above reflects the shape of the probabilistic execution fragment of Figure 4-10.
Thus, if we denote the probabilistic execution fragment of Figure 4-10 by H, O is the function
that for each state g of H gives the combined transition of M that corresponds to trf. Function
O is also minimal in the sense that it returns a transition different from (Istate(q),D(6)) only
from those states ¢ that are relevant for the construction of H. We call active all the states of
H that enable some transition; we call reachable all the reachable states of H; we call terminal
all the states ¢ of H such that ¢ € le [

Let M be a probabilistic automaton and let s be a state of M. A generator for a weak

(combined) transition s “TZUM) D of M is a function O that associates a (combined) transition

of M with each finite execution fragment of M such that the following conditions are satisfied.
1. If O(a) = (¢, P), then s’ = Istate(a). Call « active if P # D(6).
2. If abs’ is active, then fstate(a) = s and (b,s") € Qoyq)-

3. Call a reachable iff either & = s or a = a'bs" and (b, s') € Qo (ory. Call a terminal iff o is
reachable and Pp(qqs)[¢] > 0. Then, for each terminal a, the trace of o is a [ ext(M).

4. For each reachable execution fragment a = saysiaqss - - - agsg, let

PO(? = H PO(sa151~~~aisi)[(ai+18i+1)]7
0<i<k
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Then,
Q = {Istate(a) | terminal(a)},

and for each s’ € Q,

P[s'] = > PS Poayld]-

allstate(o)=s',terminal(a)

Condition 1 says that the transition that O(«) returns is a legal transition of M from Istate(a);
Condition 2 guarantees that the active execution fragments are exactly those that are relevant
for the weak transition denoted by O; Condition 3 ensures that the weak transition represented
by O has action a | ext(M); Condition 4 computes the probability space reached in the tran-
sition represented by O, which must coincide with . The term P9 represents the probability
of performing « if O resolves the nondeterminism in M. Observe that terminal execution frag-
ments must be reachable with probability 1 if we want the structure computed in Condition 4
to be a probability space.

Proposition 4.2.13 There is a weak combined transition s = P of M iff there is a function
O that satisfies the five conditions of the definition of a generator.

Proof. Simple analysis of the definitions. [ |

4.3 Parallel Composition

In this section we extend to the probabilistic framework the parallel composition operator and
the notion of a projection of ordinary automata. The parallel composition of simple probabilistic
automata can be defined easily by enforcing synchronization on the common actions as in the
non-probabilistic case; for general probabilistic automata, however, it is not clear how to give
a synchronization rule. We discuss the problems involved at the end of the section.

4.3.1 Parallel Composition of Simple Probabilistic Automata

Two probabilistic automata My and My are compatible iff
int(My) N acts(Mz) = 0 and acts(My) N int(My) = 0.

The parallel composition of two compatible simple probabilistic automata M7 and M, denoted
by M || M3, is the simple probabilistic automaton M such that

1. states(M) = states(M;) X states(M,).
2. start(M) = start(My) X start(My).
3. sig(M) = (ext(My) U ext(My), int(My) U int(My)).

4. ((s1,82),a,P) € trans(M) ifft P = Py @ Py where
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Figure 4-12: A probabilistic execution fragment of M;||M;.
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Figure 4-13: The projection onto M; of the probabilistic execution fragment of Figure 4-10.

(a) if a € acts(M;) then (s1,a,Py) € trans(My), else Py = D(sy), and
(b) if a € acts(M;) then (s9,a,P2) € trans(My), else Py = D(s2).

Similar to the non-probabilistic case, two simple probabilistic automata synchronize on their
common actions and evolve independently on the others. Whenever a synchronization occurs,
the state that is reached is obtained by choosing a state independently for each of the proba-
bilistic automata involved.

4.3.2 Projection of Probabilistic Executions
The Structure of the Problem

Let M = M;||M;, and let H be a probabilistic execution fragment of M. We want to determine
the view that My has of H, or, in other words, what probabilistic execution M7 performs in
order for My||M; to produce H. To understand the complexity of the problem, consider the
probabilistic execution fragment of Figure 4-12, and consider its projection onto My, represented
in Figure 4-13. Actions a,b and ¢ are actions of My, while action d is an action of M,. Thus,
there is no communication between My and M,. Denote the probabilistic execution fragment
of Figure 4-12 by H, and denote the probabilistic execution fragment of Figure 4-13 by Hj.
The projections of the states are ordinary projections of pairs onto their first component. The
transitions, however, are harder to understand. We analyze them one by one.

8, o The transition leaving s; o is obtained directly from the transition leaving (sq9,52,0) in
H by projecting onto My the target states.

8, » The transition leaving sq o is obtained by combining the transitions leaving states (1,2, $2,0)
and (s1,2,52,1), each one with probability 1/2. The two transitions leaving (s1,2, S2,0) and
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(51,2, 82,1) have the same projection onto My, and thus the transition leaving sy 5 in Hy
is 812 BN 51,4. From the point of view of M, there is just a transition s o LN 51,45
nothing is visible about the behavior of Mj.

To give a better idea of what we mean by “visible”, suppose that M; is a student who
has to write a report and suppose that the report can be written using a pen (action
¢) or using a pencil (action b). Suppose that the teacher may be able to get a pencil
eraser (action d) and possibly erase the report written by the student once it is ready for
grading. Then the scheduler is an arbiter who gives the student a pen if the teacher gets
an eraser. If the student starts in state sq 9, then from the point of view of the student
the material for the report is prepared (action a), and then the arbiter gives the student
a pen with probability 1/2 and a pencil with probability 1/2; nothing is known about the
time the the arbiter made the choice and the reason for which the choice was made. We
can also think of the student as being alone in a room and the arbiter as being a person
who brings to the student either a pen or a pencil once the material for the report is
ready.

The detailed computation of the transition leaving from s; 5 in H; works as follows: we
start from state (sq,9,52,0), which is the first state reached in H where M; is in sq 9, and
we analyze its outgoing edges. We include directly all the edges labeled with actions of
M, in the transition leaving s;2; for the other edges, we move to the states that they
lead to, in our case (s1,2,521), and we repeat the same procedure keeping in mind that
the probability of the new edges must be multiplied by the probability of reaching the
state under consideration. Thus, the edge labeled with a that leaves (sq.2,520) is given
probability 1/2 since its probability is 1/2, and the edge that leaves (s12,52,1) is given
probability 1/2 since the probability of reaching (s 2,521) from (s1.2,520) is 1/2.

s, 4 For the transition leaving s; 4, we observe that in H there are two states, namely (sq 4, 52,0)
and (s1.4,5271), that can be reached separately and whose first component is sy 4. Each
one of the two states is reached in H with probability 1/4. The difference between the
case for state s; o and this case is that in the case for s1 5 state (s1,2,52,0) occurs before
(51,2, 82,1), while in this case there is no relationship between the occurrences of (1.4, 520),
and (s1,4,52,1). The transition leaving sy 4 depends on the state of My which, conditional
on M, being in s; 4, is 1/2 for sy ¢ and 1/2 for sy 1. Thus, from the point of view of M,
since the state of My is unknown, there is a transition from s; 4 that with probability 1/2
leads to the occurrence of action b and with probability 1/2 leads to the occurrence of
action ¢. Essentially we have normalized to 1 the probabilities of states (s14,$20) and
(51,4,52,1) before considering their effect on M.

s,,, The transition leaving s; ; shows why we need the symbol ¢ in the transitions of a proba-
bilistic automaton. From state (s11,52,0) there is a transition where action b occurs with
probability 1/2 and action 7 occurs with probability 1/2. After 7 is performed, nothing
is scheduled. Thus, from the point of view of M;, nothing is scheduled from s;; with
probability 1/2; the transition of My is not visible by Mj.
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Action Restricted Transitions

The formal definition of a projection relies on a new operation on transitions, called action
restriction, which is used also in several other parts of the thesis. The action restriction op-
eration allows us to consider only those edges of a transition that are labeled with actions
from a designated set V. For example, V' could be the set of actions of a specific probabilistic
automaton.

Formally, let M be a probabilistic automaton, V' be a set of actions of M, and tr = (s,P)
be a transition of M. The transition ir restricted to actions from V', denoted by tr [ V, is
the pair (s, P") where P’ is obtained from P by considering only the edges labeled with actions
from V' and by normalizing their probability to 1, i.e.,

. Q- {(a,s") € Q|aecV} if PV]>0
] {é} otherwise

o if P[V] > 0, then for each (a,s’) € &', P'[(a,s)] = Pl(a,s)]/P[V].

Two properties of action restriction concern commutativity with transition prefixing, and dis-
tributivity with respect to combination of transitions. These properties are used in the proofs
of other important results of this thesis. The reader may skip the formal statements for the
moment and refer back to them when they are used.

Proposition 4.3.1 For each ¢ and tr such that one of the expressions below is defined,
g~ (tr 1V)y=(qg"tr) V.
Proof. Simple manipulation of the definitions. [ |

Proposition 4.3.2 Let {t;};c; be a collection of transitions leaving from a given state s, and
let {p;}ier be a collection of real numbers between 0 and 1 such that 3 ;c;p; < 1. Let V be a
set of actions. Then

A pZPtm )
(Cptr) 1V =35 pmm(“” V).

where we use the convention that 0/0 = 0.
Proof. Let
(s,P) = D pilri, (4.15)

(s,P) (Zpitn) IV, (4.16)

>

(s, 73//) 2 Z sz]])jt]gzm 7 (tri [ V). (4.17)

We need to show that P’ and P are the same probability space.
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If P[V] = 0, then both P’ and P” are D(6) and we are done. Otherwise, observe that
neither Q' nor Q" contain ¢. Consider any pair (a,s’). Then,

(a,s") e ¥
iff (a,s')eQandacV from (4.16) and (4.15)
iff Ji(a,s') € Qyyyps >0, and e € V' from (4.15)
ifft Ji(a,s’) € Qv and p; > 0 from the definition of tr; [ 'V
iff (a,s’) € Q” from (4.17).

Consider now a pair (a,s’) of . From the definition of action restriction and (4.16),

P'(a,s")] = Pl(a, s}/ PIV]. (4.18)
From the definition of P (Equation (4.15)), the right side of Equation 4.18 can be rewritten

into

Z mpw [(a. s)], (4.19)

where 3, p; Py, [V] is an alternative expression of P[V] that follows directly from (4.16). By
multiplying and dividing each i*" summand of Expression 4.19 by Py,.[V], we obtain

piPtTi [V]
> pily [V]
Since Py [(a,s")]/ Py, [V] = Py vi(a,s")], from the definition of P” (Equation (4.17)), Expres-

sion 4.20 can be rewritten into P"[(a,s’)]. Thus, P'[(a,s")] = P"[(a,s’)]. This is enough to
show that P/ = P". n

(Pur,[(a, )]/ Prr,[V]). (4.20)

Definition of Projection

We give first the formal definition of a projection, and then we illustrate its critical parts by
analyzing the example of Figures 4-12 and 4-13. It is very important to understand Expres-
sions (4.21) and (4.22) since similar expressions will be used in several other parts of the thesis
without any further explanation except for formal proofs.

Let M = M;||M;, and let H be a probabilistic execution fragment of M.

Let tr = (¢,P) be an action restricted transition of H such that only actions of M;, 7 = 1,2,
appear in tr. Define the projection operator on the elements of Q as follows: (a,¢')[M; =
(a,q'[M;), and 6[M; = é. Recall from Section 3.1.5 that the projection can be extended
to discrete probability spaces. The projection of tr onto M;, denoted by tr[M;, is the pair
(q[M;, P[M;).

The projection of H onto M;, denoted by H[M;, is the fully probabilistic automaton H’
such that

1. states(H') = {q[M; | q € states(H)};
2. start(H') = {q[M; | q € start(H)};

3. sig(H') = sig(M;);

65



4. for each state ¢ of H' let ] H be the set of states of H that projected onto M; give g,
and let min(q]H) be the set of minimal states of ¢|H under prefix ordering. For each
q € (qH), let

q|H 2 PH[CQ]
Py = : (4.21)
q Zq”Emin(q]H) PH[Cq//]
The transition enabled from ¢ in H' is
w2 ST I pH lacts(M))(trf 1 acts(M;))[ M. (4.22)

q'€q|H

Each summand of Expression 4.22 corresponds to the analysis of one of the states of H that can
influence the transition enabled from ¢ in H'. The subexpression (tré{ I acts(M;))[M; selects
the part of the transition leaving from ¢’ where M, is active, and projects onto M; the target

states of the selected part; the subexpression ﬁZ}HPq},I[acts(Mi)] expresses the probability with

which ¢’ influences the transition enabled from q. Pf,l[acts(Mi)] is the probability that trg does

something visible by M;, and ﬁZ}H is the probability of being in ¢’ conditional on M; being in ¢.

Its value is given by Expression 4.21 and can be understood as follows. The state ¢ is either a
minimal state of ¢| H or is reached from a minimal state through a sequence of edges with actions
not in acts(M;). The probability of being in ¢, conditional on M; being in ¢, is the normalized
probability of being in the minimal state of ¢] H that precedes ¢’ multiplied by the probability
of reaching ¢’ from that minimal state. We encourage the reader to apply Expression (4.22) to
the states 510, 51,1, 51,2, and s; 4 of Figure 4-13 to familiarize with the definition. As examples,
observe that min((s1,0bs12)|H) = {(s1,0,52,0)b(51,2,520)} and that min((sy 0bsy 2as1,4)|H) =
{(81,0,82,0)5(81,2,82,0)0(81,4,82,0), (81,0,82,0)5(81,2,82,0)61(81,2,82,1)0(81,4,82,1)}-

If we analyze the state s; 3 of Figure 4-13 and we use Expression 4.22 to compute the
transition leaving s; 3, then we discover that the sum of the probabilities involved is not 1.
This is because there is a part of the transition leaving (s1 3, $20) where no action of M ever
occurs. From the point of view of M nothing is scheduled; this is the reason of our choice of
deadlock by default in the definition of the combination of transitions (cf. Section 4.2.2).

We now move to Proposition 4.3.4, which is the equivalent of Proposition 3.2.1 for the
probabilistic framework. Specifically, we show that the projection of a probabilistic execution
fragment H of M;p||Mz onto one of its components M; is a probabilistic execution fragment
of M;. Proposition 3.2.1 is important because it shows that every computation of a parallel
composition is the result of some computation of each of the components. One of the reasons
for our use of randomized schedulers in the model is to make sure that Proposition 3.2.1 is
valid. Before proving this result, we show that its converse does not hold, i.e., that there are
structures that look like a probabilistic execution, that projected onto each component give a
probabilistic execution of a component, but that are not probabilistic executions themselves.

Example 4.3.1 (Failure of the converse of Proposition 4.3.4) Consider the probabilis-
tic automata of Figure 4-14.a, and consider a potential probabilistic execution of the composi-
tion as represented in Figure 4-14.b. Denote the two probabilistic automata of Figure 4-14.a by
My and M5, and denote the structure of Figure 4-14.b by H. The projections of H onto My and
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a) Two compatible simple probabilistic automata.
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b) A potentia probabilistic execution of the composition.

Figure 4-14: A counterexample to the converse of the projection proposition.

M, give a probabilistic execution of My and My, respectively. The diagrams of Figure 4-14.a
can be viewed as the projections of H as well. However, H is not a probabilistic execution of
M || Mz since in no place of Mj it is possible to have a Dirac transition to s; or s;. [ ]

The rest of this section is dedicated to the proof of the proposition that corresponds to Propo-
sition 3.2.1 and to the proof of an additional result (Proposition 4.3.5) that gives a meaning to
the denominator of Expression (4.21). We first state two preliminary properties of projection
of transitions (Proposition 4.3.3).

Proposition 4.3.3 Let M = M||My. Then, fori=1,2,
Lo (3 pitry) [Mi = 32 pi(tr; [ M;).
2. (¢~ tr)[M; = (¢[M;) ™ tr[ M.
Proof. Simple manipulation of the definitions. [ |

Proposition 4.3.4 Let M = M;||Mz, and let H be a probabilistic execution fragment of M.
Then H[M, € prexec(My) and H[M; € prexec(Ms).

Proof. We show that H[M; € prexzec(M;); the other statement follows from a symmetric
argument. Let Hy denote H[M;. From Proposition 3.2.1, the states of H; are execution
fragments of M.

Consider now a state ¢ of Hi. We need to show that there is a combined transition ¢r of
M, that corresponds to trfl, i.e., such that trfl = ¢~ tr. From Propositions 4.2.1 and 4.2.3,
it is sufficient to show that for each state ¢’ of ¢| H, there is a combined transition tr(q¢") of M,
such that

(trg Facts(My))[My = q~ tr(q). (4.23)
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Then, the transition ¢r would be

= > M PHacts(M)]tr(d). (4.24)
q'€q|H

Proposition 4.2.1 is used to show that ¢r is a combined transition of My; Proposition 4.2.3 is
used to show that ¢ ™ tr = trfl. Since H is a probabilistic execution fragment of M, for each
state ¢' of ¢| H there exists a combined transition ¢r'(¢") of M such that

trg =4 " tr'(q). (4.25)

From the definition of a combined transition, there is a collection of transitions {tr'(¢’,7)}ier
of M, and a collection of probabilities {p;}ics, such that

=2 pitr'(d0). (4.26)

Note that each transition ¢r'(¢’, ) is a simple transition. From the definition of action restriction
and (4.26), there is a subset J of I, and a collection of non-zero probabilities {p/};c, such that

tr'(q") | acts(My) Zp]tr q,7)- (4.27)

If we apply transition prefix with ¢’ to both sides of Equation 4.27, we use commutativity
of action restriction with respect to transition prefixing (Proposition 4.3.1) and (4.25) on the
left expression, and we use distributivity of transition prefixing with respect to combination of
transitions (Proposition 4.2.3) on the right expression, then we obtain

trg I acts(My) Zp] ( "¢, ])) (4.28)

By projecting buth sides of (4.28) onto M7, and using distributivity of projection with respect to
combination of transitions (Proposition 4.3.3) and commutativity of projection and transition
prefixing (Proposition 4.3.3) on the right expression, we obtain

(trl] 1 acts(My)) Z P (a7 (q,5)[M1)) (4.29)

From the distributivity of transition prefixing with respect to combination of transitions (Propo-
sition 4.2.3), Equation 4.29 becomes

(trl] 1 acts(My)[My = q~ > pl(tr'(q, ) [ My). (4.30)
j

From standard properties of the projection of product probability distributions (cf. Sec-
tion 3.1.6) and the definition of parallel composition, each tr'(¢’, j)[ My is a transition of M;.

Thus, 3=, pjtr'(q’,7)[ M is the combined transition of M, that satisfies Equation 4.23.
Finally, we need to show that each state ¢ of Hy is reachable. This is shown by induction
on the length of ¢, where the base case is the start state of Hy. The start state of Hy is
trivially reachable. Consider a state gas of Hy. By induction, ¢ is reachable. Let ¢’ be a
minimal state of (qas)|H. Then, ¢ = ¢"a(s, s3), where ¢” is a state of ¢| H and s; is a state
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of M;. Moreover, (a,q¢') € Q,,# , and thus, (a,qas) € Qi yacts(My))[M; - Since no edges with
q// q//

probability 0 are allowed in a probabilistic automaton, the term ﬁngPﬁ[acts(Mi)] is not 0,

and thus (a, qas) € lel. This means that gas is reachable. [

We conclude this section with another property of projections that gives a meaning to the
denominator of Expression (4.21). Specifically, the proposition below allows us to compute the
probability of a finitely satisfiable event of the projection of a probabilistic execution fragment
H by computing the probability of a finitely satisfiable event of H. Observe that the right
expression of (4.31) is indeed the denominator of (4.21).

Proposition 4.3.5 Let M = M;||Mz, and let H be a probabilistic execution fragment of M.
Let H; be H[M;, i = 1,2. Let q be a state of H;. Then,

PplCl= > PulCyl (4.31)
q'€émin(q]H)

Proof. The proof is by induction on the length of ¢, where the base case is for the start state
of H;. If q is the start state of H;, then the start state of H is the only minimal state of ¢| H.
Both the cones denoted by the two states have probability 1.

Consider now the case for gas. From the definition of the probability of a cone,

PH1 [ans] = PH1 [Cq]Pqu [(avqa‘s)]' (4'32)

By using Expression 4.22 and the definitions of action restriction and projection, the term
PHi[(a,qas)] can be rewritten into

> ﬁZ]HPf[actS(Mi)] > Pl {(a,q"]/ P} lacts(M)] | (4.33)
J'€qH q”e(qas)]H|(a,q”)€Qg

which becomes

> o > PH(a,q"] | . (4.34)

qg'eq|H q”e(qas)]H|(a,q”)€Qg

after simplifying the term Pf,l[acts(Mi)]. The case when Pf,l[acts(Mi)] = 0 is not a problem
since the innermost sum of Expression 4.33 would be empty. By expanding ﬁZ}H in Expres-
sion 4.34 with its definition (Equation 4.21), applying induction to Pg, [C] in Expression 4.32,

and simplifying algebraically, Equation 4.32 can be rewritten into

Prr, [ans] = Z Z PH[Cq']Pq}’I[(av (]”)]- (4'35)
7'€q1H /'€ (qas)|H|(a.a")€Q
Indeed, the denominator of the expansion of ﬁZ}H coincides with the expansion of Py, [C}].

From the definition of the probability of a cone, the terms PH[Cq/]Pq},I[(a, q"")] that appear
in Equation 4.35 can be rewritten into Pr[Cyn].
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Consider now one of the states ¢” of the right side of Equation 4.35. Then ¢"[M; = gas, and
there exists a state ¢’ of ¢|H such that (a,q”) € Q. This means that ¢’ can be expressed as
q'as’ for some state s’ of M. Since ¢'[M; = ¢, then ¢ is a minimal state of (gas)] H. Conversely,
let ¢” be a minimal state of (qas)] H. Then ¢’ can be expressed as ¢’as’ for some state ¢’ of H
and some state s’ of M (otherwise ¢” would not be minimal). Moreover, ¢’ is a state of ¢| H
and (a,q") € Qg{ Thus, ¢” is considered in Equation 4.35. Finally, each minimal state ¢” of
(qas)| H is considered at most once in Equation 4.35, since there is at most one state ¢’ in H
such that (a,q”) € Qg{ Thus, Equation 4.35 can be rewritten into

P, [Cyas] = > PulCyl, (4.36)
q""€min((qas)|H)

which is what we needed to show. []

4.3.3 Parallel Composition for General Probabilistic Automata

In this section we give an idea of the problems that arise in defining parallel composition for
general probabilistic automata. The discussion is rather informal: we want to give just an idea
of why our intuition does not work in this case.

The main problem that needs to be addressed is to choose when two transitions should
synchronize and how the synchronization would occur. We analyze the problem through some
toy examples. Consider two probabilistic automata My, My with no internal actions and such
that ext(M;y) = {a,b, c,d} and ext(M3) = {a,b,c,e}. Let (51, s2) be areachable state of M;||Ma,
and consider the following cases.

1. Suppose that from state s; of My there is a transition try giving actions a, b probability
1/2 to occur, and suppose that from state s, of My there is a transition ¢ry giving actions
a,b probability 1/2 to occur.

(@] O

b b
(0] (¢]

If we choose not to synchronize ¢ry and t¢ry, then the only transitions that can be syn-
chronized are the simple transitions, leading to a trivial parallel composition operator
that does not handle any kind of transition with probabilistic choices over actions. The
transitions {ry and tro cannot be scheduled even independently, since otherwise the CSP
synchronization style would be violated.

If we choose to synchronize ¢rq and tro, then both My and M5 choose an action between
a and b. If the actions coincide, then there is a synchronization, otherwise we have two
possible choices in our definition: either the system deadlocks, or the random draws are
repeated. The first approach coincides with viewing each probabilistic automaton as de-
ciding its next action probabilistically independently of the other interacting automaton;
the second approach is the one outlined in [GSST90], where essentially deadlock is not
allowed, and assumes some dependence between the involved probabilistic automata.

For the rest of the discussion we assume that the transitions try and ¢ry do synchronize;
however, we leave unspecified the way in which ¢ry and try synchronize.
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2. Suppose that from state s; of My there is a transition try giving actions a,b probability
1/2 to occur, and suppose that from state s, of My there is a transition ¢ry giving actions
a, ¢ probability 1/2 to occur.

(@] O

O (@]

Note that actions a,b and ¢ are all in common between M; and Ms. If we choose not
to synchronize try and try, then only transitions involving the same sets of actions can
synchronize. However, we have the same problem outlined in Case 1, where neither ¢rq,
nor trg can be scheduled independently.

If we choose to synchronize trq and tro, then, since a is the only action that is in common
between try and try, the only action that can occur is a. Its probability is either 1 or 1/4
depending on how the synchronization in Case 1 is resolved. However, in both cases the
only action that appears in the sample space of the composite transition is a.

For the rest of the discussion we assume that the transitions try and ¢ry do synchronize.
Once again, we leave unspecified the way in which tr; and try synchronize.

3. Suppose that from state s; of My there is a transition try giving actions a, b, d probability
1/3 to occur, and suppose that from state s, of M; there is a transition ¢ry giving actions
a,b, e probability 1/3 to occur.

(@] (o]
a7 83
b b
(o]
S v ° S 13
13 1/3
d e
(@] (o]

In this case each transition has some actions that are in common between M; and Ms,
and some actions that are not in common.

If we choose not to synchronize try and try, then, beside the fact that try and try could not
be scheduled independently, the parallel composition operator would not be associative.
Consider two new probabilistic automata M{, M} with the same actions as M; and Mo,
respectively. Suppose that from state s| of M{ there is a transition ¢r) giving actions a,b
probability 1/2 to occur, and suppose that from state s}, of M) there is a transition tr}
giving actions a, b probability 1/2 to occur.

o o

a a
12 172

tr: s tr: s,
b b
(0] o

If we consider (M| M7)||(Mz||M}), then in state ((s],s1),(s2,55)) tr1 would synchronize
with tr] leading to a transition that involves actions a and b only, try would synchronize

172

with ¢rf, leading to a transition that involves actions a and b only, and the two new
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transitions would synchronize because of Case 1, leading to a transition that involves
actions a and b. If we consider (M{||(M1]|M2))||M}, then in state ((s,(s1,52)),55) trq
and tro would not synchronize, and thus associativity is broken.

If we choose to synchronize trq and tro, then problems arise due to the presence of actions
that are not in common between M; and M,. In particular we do not know what to do if
My draws action d and My draws action e, or if M; draws action d and M, draws action
a. Since we do not want to assume anything about the respective probabilistic behaviors
of My and Ms, at least the first case is an evident case of nondeterminism.

However, even by dealing with the first case above by means of nondeterminism, only
one of actions d, e can be performed. Suppose that d is chosen, and thus M; performs a
transition while My does not. What happens to M57 Is action e supposed to be chosen
already after d is performed? Otherwise, what is the probability for e to occur? At this
point we do not see any choice that would coincide with any reasonable intuition about
the involved systems.

In the second case we are sure that action ¢ cannot occur. Does this mean that action d
occurs for sure? Or does this mean that a deadlock can occur? With what probabilities?
Once again, intuition does not help in this case.

The main problem, which is evident especially from Case 3, is that we do not know who is in
control of a system, and thus, whenever there is a conflict that is not solved by nondeterminism
alone, we do not know what probability distribution to use to resolve the conflict. However,
if we decorate probabilistic automata with some additional structure that clarifies who is in
control of what actions [LT87], then parallel composition can be extended safely to some forms
of general probabilistic automata, where the external actions are partitioned into input and
output actions, the transitions that contain some input action are simple transitions, and input
actions are enabled from every state (cf. Section 13.2.2). An observation along this line appears

in [WSS94].

4.4 Other Useful Operators

There are two other operators on probabilistic automata that should be mentioned, since they
are used in general on ordinary automata. In this section we provide a short description of
those operators. Since the relative theory is simple, this is the only point where we mention
these operators during the development of the probabilistic model.

4.4.1 Action Renaming

Let p be a one-to-one function whose domain is acts(M). Define Rename,(M) to be the
probabilistic automaton M’ such that

1. states(M') = states(M).
2. start(M') = start(M).

3. sig(M") = (p(cxt(M)), p(int(M))).
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4. (s,P) € trans(M’) iff there exists a transition (s, P’) of M such that P = p’(P’), where
p'((a,s") = (pla),s) for each (a,s") € &, and p/'(6) = 6.

Thus, the effect of Rename, is to change the action names of M. The restriction on p to be
one-to-one can be relaxed as long as internal and external actions are not mixed, i.e., there is
no pair of actions a,b where a is an external action, b is an internal action, and p(a) = p(b).

4.4.2 Action Hiding

Let M be a probabilistic automaton, and let I be a set of actions. Then Hide;(M) is defined
to be a probabilistic automaton M’ that is the same as M, except that

sig(M") = (ext(M) — I, int(M)UT).

That is, the actions in the set I are hidden from the external environment.

4.5 Discussion

The generative model of probabilistic processes of van Glabbeek et al. [GSST90] is a special
case of a fully probabilistic automaton; simple probabilistic automata are partially captured
by the reactive model of [GSST90] in the sense that the reactive model assumes some form
of nondeterminism between different actions. However, the reactive model does not allow
nondeterministic choices between transitions involving the same action. By restricting simple
probabilistic automata to have finitely many states, we obtain objects with a structure similar to
that of the Concurrent Labeled Markov Chains of [Han91]; however, in our model we do not need
to distinguish between nondeterministic and probabilistic states. In our model nondeterminism
is obtained by means of the structure of the transition relation. This allows us to retain most
of the traditional notation that is used for automata.

Our parallel composition operator is defined only for simple probabilistic automata, and thus
a natural objection is that after all we are dealing just with the reactive model. Furthermore,
the reactive model is the least general according to [GSST90]. Although we recognize that our
simple probabilistic automata constitute a restricted model and that it would be desirable to
extend the parallel composition operator to general probabilistic automata, we do not think that
it is possible to use the classification of [GSST90] to judge the expressivity of simple probabilistic
automata. The classification of [GSST90] is based on a synchronous parallel composition, while
our parallel composition is based on a conservative extension of the parallel composition of CSP
[Hoa85]. Furthermore, in the classification of [GSST90] a model is more general if it contains
less nondeterminism, while in our model nondeterminism is one of the key features.
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Chapter 5

Direct Verification: Stating a
Property

This chapter presents a method to study the properties that a probabilistic automaton satisfies.
We describe how an informally stated property can be made rigorous, and we show how simple
statements can be combined together to give more complex statements. In Chapter 6 we develop
techniques to prove from scratch that a probabilistic automaton satisfies a given property.

Part of this chapter is based on discussion with Isaac Saias who provided us with the
motivations for the definition of progress statements (Section 5.5) and for the statement of the
concatenation theorem (Theorem 5.5.2).

5.1 The Method of Analysis

If we read through the papers on randomized algorithms and we look at the statements of
correctness, we see claims like

“Whenever the algorithm X starts in a condition Y, no matter what the adversary
does, the algorithm X achieves the goal Z with probability at least p.”

For convenience, denote the statement above by 5. A possible concrete instantiation of 5 is
the following;:

“Consider a distributed system X, composed of n processors, that provides services
under request and suppose that some request R comes. Then, independently of the
relative order in which the n processors complete their operations (no matter what
the adversary does), a response to R is given eventually (the goal 7 ) with probability
at least 2/3.

Let us try to understand the meaning of the statement 5. First of all, in 5 there is an entity,
called adversary, that affects the performance of algorithm X. The adversary is seen as a
malicious entity that degrades the performance of X as much as possible.

If X is a distributed algorithm that runs on n separate processes, then the adversary is the
entity that chooses what process performs the next transition, and possibly what the external
environment does. To account for all the possible ways to schedule processes, the adversary
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Figure 5-1: A toy resource allocation protocol.

R

bases its choices on a complete knowledge of the state of a system, including its past history. If
the algorithm is represented as a probabilistic automaton, then an adversary is the object that
resolves the nondeterminism. In other words, an adversary is a scheduler seen as a malicious
entity.

However, not all the schedulers guarantee in general that some specific property is satisfied.
For example, an adversary is usually required to be fair to all the processes of a system in
order to guarantee progress. In other cases, an adversary is not allowed to base its choices on a
complete knowledge of the history of a system: the correctness of an algorithm may rely on the
adversary not to use the results of previous random draws in choosing the next process to be
scheduled. Thus, in the statement S there is usually an implicit assumption that an adversary
has some limitations.

Example 5.1.1 (A toy resource allocation protocol) Figure 5-1 illustrates a toy scenario
where correctness is guaranteed only for adversaries that do not know the outcome of the random
draws of the processes. Two processes My and My compete for two resources By and Rs. FEach
process continuously runs through the following cycle:

1. flip a coin to choose a resource;
2. if the chosen resource is free, then get it;
3. if you hold the resource, then return it.

That is, each process continuously tries to get a randomly chosen resource and then returns it,
possibly after using the resource. Of course this is a stupid protocol, but it highlights several
aspects of randomized distributed algorithms. Suppose every adversary to be fair, meaning
that both processes perform infinitely many transitions. A malicious adversary can create a
situation where M7 never succeeds in obtaining a resource with an arbitrarily high probability.
The adversary works as follows. Fix an arbitrary probability p such that 0 < p < 1, and consider
a collection of probabilities {p;}ien such that [[; p; = p. We know that such a collection
of probabilities exists. Then the adversary works in rounds, where at round ¢ the following
happens:

a. M is scheduled until it flips its coin;

b. Ms is scheduled for sufficiently many times so that it gets the resource chosen by My
with probability at least p; (finitely many times are sufficient). As soon as M; gets the
resource chosen by M; the control goes to c;
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c. My is scheduled to check its resource and fails to get it.

In this case M; fails to obtain a resource with probability at least p. On the other hand, if
an adversary is not allowed to base its choices on the outcome of the coin flips, or better,
if an adversary chooses the next process that performs a transition based only on the order
in which processes were scheduled in the past, then each process eventually gets a resource
with probability 1 (this fact is proved in Section 6.6). Such an adversary is called an oblivious
adversary or an off-line scheduler. [ |

Let us move back to the problem of understanding the statement 5. Consider a valid adversary
A, i.e., an adversary that satisfies the limitations that are implicitly assumed for S. Let M
be a probabilistic automaton that describes algorithm X, and consider an arbitrary starting
point ¢ for M, i.e., ¢ is a finite execution fragment of M that describes a partial evolution of
M. If we let A resolve the nondeterminism in M starting from the knowledge that ¢ occurred,
then we obtain a probabilistic execution fragment of M, which we denote by prezec(M, A, q).
According to 9, if ¢ satisfies condition Y, then prezec(M, A, q) should satisfy property Z with
probability at least p. However, Z is a property of M, and not a property of prezec(M, A, q).
Thus, we need a way to associate with prezec(M, A, q) the event that expresses Z. The object
that does this operation is called an event schema. At this point it is possible to formalize §
by stating the following:

“For each valid adversary A and each valid starting condition ¢, the probability of
the event associated with prexec(M, A, q) is at least p.”

This is an example of what we call a probabilistic statement.
A probabilistic statement that plays an important role in our analysis is denoted by

U —Adus U, (5.1)

where U and U’ are sets of states, p is a probability, and Advs is a set of adversaries. We call
such a statement a progress statement. Its meaning is that if a protocol starts from a state of
U, then, no matter what adversary of Advs is used to resolve the nondeterminism, some state of
U’ is reached with probability at least p. A progress statement is a probabilistic generalization
of the leads-to operator of UNITY [CMSS].

Example 5.1.2 It is possible to show (cf. Section 6.6) that the toy resource allocation protocol
satisfles R T/—2>Advs My, where R is the set of reachable states of My||Mz, M; is the set of states

of My||M; where M; holds a resource, and Advs is the set of fair oblivious and adversaries for
M || Mz, i.e., the set of adversaries that are fair to each process and that do not base their
choices on the outcomes of the coin flips (c¢f. Example 5.6.2 for a formal definition of a fair
oblivious adversary). [ ]

Progress statements are important because, under some general conditions, they can be com-
bined together to obtain more complex progress statements, thus allowing the decomposition
of a complex problem into simpler problems.
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Example 5.1.3 Suppose that in some system M whenever a request is pending (M is in a
state of some set P, a token is given eventually with probability at least 1/2 (reaching a state
of some set 7'), and suppose that whenever a token is given a response is given eventually with
probability at least 1/3 (reaching a state of some set G). That is,

P —ados 7 and T —7Adwvs G. (52)
1/2 1/3

Then, it is reasonable to conclude that whenever a request is pending a response is given
eventually with probability at least 1/6, i.e.,

P 1—/254(11,5 g. (5.3)
This result is a consequence of the concatenation theorem (cf. Theorem 5.5.2). [

Example 5.1.4 Consider the toy resource allocation protocol again. We know from Exam-
ple 5.1.2 that

R T/_2>Advs M. (5.4)

It is also possible to show that
R = R Unless M, (5.5)

where R = R Unless My is a UNITY [CM88] expression stating that whenever a system is in a
state of R the system remains in a state of R unless a state of My is reached. This means that
(5.4) is applicable from any point in the evolution of the toy resource allocation protocol, and
this fact, together with the condition that every adversary is fair, is succicient to guarrantee
that

R _1_>Advs Ml (56)

(cf. Proposition 5.5.6). The reader familiar with UNITY may note that the combination of
(5.4) and (5.5) is a probabilistic generalization of the ensures operator of Chandy and Misra
[CM8S]. |

To see more significative applications of progress statements the reader is referred to Chapter 6,
where we prove the correctness of the randomized Dining Philosophers algorithm of Lehmann
and Rabin [LR81], and we prove the correctness of the randomized algorithm of Ben-Or for
agreement in asynchronous networks in the presence of stopping faults [BO83]. Instead, the final
part of this chapter concentrates on standard methods to specify event schemas and adversary
schemas, and on the relationship between deterministic and general (randomized) adversaries.
The main lesson that we learn is that for a large class of probabilistic statements it is possible
to prove their validity by considering only deterministic adversaries, i.e., adversaries that do
not use randomization in their choices. The reader who is reading only the first section of each
chapter should move to Chapter 6 at this point and skip the rest of this section.

We said already that an event schema is a rule to associate an event with each probabilistic
execution fragment. More formally, an event schema is a function that given a probabilistic
execution fragment H returns an event of Fr. However, we have not given any method to
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specify an event schema. Our definition of an event schema is very general since it allows for
any kind of rule to be used in determining the event associated with a probabilistic execution
fragment. On the other hand, there is a specific rule which is used in most of the existing
literature on randomized algorithms. Namely, given a probabilistic automaton M, a set @ of
execution fragments of M is fixed, and then, given a probabilistic execution fragment H of M,
the event associated with H is @ N Q. We call such an event schema an erecution-based event
schema. Since the start state of a probabilistic execution fragment contains part of the history of
M, and since in general we are interested in what happens only after the probabilistic execution
fragment starts, we refine the definition of an execution-based event schema by associating a
probabilistic execution fragment H with the event © N (ngqéq), where ¢f! is the start state of
H. In this way a progress statement can be stated in terms of execution-based event schemas,
where 0 is the set of execution fragments of M that contain at least one occurrence of a state
from U’.

To specify an adversary schema there are two main restrictions that are usually imposed.
One possibility is to restrict the kind of choices that an adversary can make, and the other
possibility is to restrict the on-line information that an adversary can use in making its choices.
The first kind of restriction is usually achieved by fixing a set ® of execution fragments before-
hand and requiring that all the probabilistic execution fragments H generated by an adversary
satisfy Qp C ©. We call the corresponding adversary schema an execution-based adversary
schema. The second kind of restriction is achieved by imposing a correlation on the choices of
an adversary on different inputs. We call the corresponding adversary schema an adversaries
schema with partial on-line information.

Example 5.1.5 An example of an execution-based adversary schema is the set of fair adver-
saries for n processes running in parallel. In this case @ is the set of execution fragments of
the composite system where each process performs infinitely many transitions. An example of
an adversary schema with partial on-line information is the set of oblivious adversaries for the
toy resource allocation protocol. Execution-based adversary schemas and adversary schemas
with partial on-line information can be combined together. An example of an execution-based
adversary schema with partial on-line information is the set of fair and oblivious adversaries
for the toy resource protocol (cf. Example 5.6.2). [

Exacution-based adversaries and event schemas give us a good basis to study the relationship
between deterministic and general adversaries. Roughly speaking, and adversary is determin-
istic if it does not use randomness in its choices. Then the question is the following: “does
randomness add power to an adversary?” The answer in general is “yes”; however, there are
several situations of practical relevance where randomness does not add any power to an ad-
versary. In particular, we show that randomization does not add any power when dealing with
finitely satisfiable execution-based event schemas in two scenarios: execution-based adversary
schemas and adversary schemas with partial on-line information.

5.2 Adversaries and Adversary Schemas

An adversary, also called a scheduler, for a probabilistic automaton M is a function A that
takes a finite execution fragment o of M and returns a combined transition of M that leaves
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from Istate(a). Formally,
A frag* (M) — Probs(ctrans(M))
such that if A(a) = (s,P), then s = Istate(a).

An adversary is deterministic if it returns either transitions of M or pairs of the form
(s,D(8)), i.e., the next transition is chosen deterministically. Denote the set of adversaries
and deterministic adversaries for a probabilistic automaton M by Advs(M) and DAdvs(M),
respectively. We introduce deterministic adversaries explicitly because most of the existing
randomized algorithms are analized against deterministic adversaries. In Section 5.7 we study
the connections between deterministic adversaries and general adversaries.

As we have noted already, the correctness of an algorithm may be based on some specific
assumptions on the scheduling policy that is used. Thus, in general, we are interested only in
some of the adversaries of Advs(M ). We call a subset of Advs(M) an adversary schema, and
we use Advs to denote a generic adversary schema. Section 5.6 describes in more detail possible
ways to specify an adversary schema.

5.2.1 Application of an Adversary to a Finite Execution Fragment

The interaction of an adversary A with a probabilistic automaton M leads to a probabilistic
execution fragment, where the transition enabled from each state is the transition chosen by
A. Given a finite execution fragment o of M, the probabilistic execution of M under A with
starting condition a, denoted by prezec(M, A, a), is the unique probabilistic execution fragment
H of M such that

1. start(H) = {a}, and
2. for each state ¢ of H, the transition tr? is ¢~ A(q).

Condition 2 ensures that the transition enabled from every state g of H is the transition chosen
by A. It is a simple inductive argument to show that H is well defined.

5.2.2 Application of an Adversary to a Finite Probabilistic Execution Frag-
ment

From the theoretical point of view, we can generalize the idea of the interaction between an
adversary and a probabilistic automaton by assuming that the start condition is a finite prob-
abilistic execution fragment of M. In this case the adversary works from all the points of
extension of the starting condition. The resulting probabilistic execution fragment should be
an extension of the starting condition. Formally, if H is a finite probabilistic execution fragment
of M, then the probabilistic execution of M under A with starting condition H, denoted by
prezec(M, A, H), is the unique probabilistic execution fragment H' of M such that

1. start(H') = start(H ), and

2. for each state g of H', if ¢ is a state of H, then tr?/ is
p(trfl 1 acts(H)) + (1= p) (47 Ag)) ,
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Figure 5-2: An example of the action of an adversary on a probabilistic execution fragment.

where

PH[Cq]

= — 2Ll pH acils
- PH/[Cq]Pq [ t(H)]v

p

and if ¢ is not a state of H, then tr?/ is ¢~ A(q).

Once again, it is a simple inductive argument to show that H' is well defined.

Example 5.2.1 (Extension of a finite probabilistic execution fragment) Before prov-
ing that H' is an extension of H, we describe in more detail how the definition above works.
The difficult case is for those states ¢ of H’ that are also states of H. Consider the example of

Figure 5-2. Let A choose gy —— ¢ on input ¢, choose ¢ b, g2 on input ¢, and choose ¢ on all
other inputs. The probabilistic execution fragment H' of Figure 5-2 is the result of the action
of A on the probabilistic execution fragment H of Figure 5-2. In H' there are two ways to reach
q: one way is by means of transitions of H, and the other way is by means of transitions due
to A that originate from go. Thus, a fraction of the probability of reaching ¢ in H' is due to
H, while another fraction is due to the effect of A on H. The weight with which the transition
trf is considered in H' is the first fraction of the probability of reaching ¢, which is expressed
by Pr[C,]/Pr[Cy]. In our example the fraction is 1/2. However, in our example the transition
tr? may also leads to § with probability 1/2, and the part of tr? that leads to & should be
handled by A. For this reason in the left term of the definition of tr?/ we discard ¢ from tr?
and we add a multiplicative factor PqH[acts(H)] to the weight. Thus, in our example, three
quarters of the transition leaving from ¢ in H’ are controlled by .A. Note that the probability
of reaching ¢ from ¢q is the same in H and H'. [ |

Proposition 5.2.1 Let M be a probabilistic automaton, and let A be an adversary for M.
Then, for each finite probabilistic execution fragment H of M, the probabilistic execution frag-
ment generated by A from H 1is an extension of H, i.e.,

H < prezec(M, A, H).
Proof. Denote prezec(M, A, H) by H'. We need to prove that for each state ¢ of H,
Py[C,] < Ppi[Cy). (5.7)

If g is the start state of H, then ¢ is also the start state of H', and (5.7) is satisfied trivially.
Consider now a state gas of H that is not the start state of H. Then ¢ is a state of H.
From the definition of the probability of a cone,

PiplCos) = Pl C P [(a gas)) (5.8)
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From the definition of tr? /,

P ((a,qas)]) = DO prgq gasy) + (1 -

Pr[Cy]
Pp[C] LPH[acts(H)]) PA(q)[(a,qas)]. (5.9)

PH’[Cq] !

Here we have also simplified the expression PqH[acts(H)] in the first term as we did in the proof
of Proposition 4.3.5 (Expressions (4.33) and (4.34)). We will not mention this simplification
any more in the thesis.
If we remove the second term from the right expression of Equation (5.9), turning Equa-
tion (5.9) into an inequality, we obtain
PH[Cq]

PH'[(a, qas)] > quH[(a,qas)]. (5.10)

By using (5.10) in (5.8), and simplifying the factor Pp/[C,], we obtain
Pri[Cuas) > PH[Cq]PqH[(a,qas)]. (5.11)
The right part of (5.11) is Py [Cyas]. Thus, we conclude

Prr[Clyas] = PrlClpas). (5.12)

5.3 Event Schemas

In the informal description of a probabilistic statement we said that we need a rule to associate
an event with each probabilistic execution fragment. This is the purpose of an event schema.
An event schema for a probabilistic automaton M, denoted by e, is a function that associates an
event of F with each probabilistic execution fragment H of M. An event schema e is finitely
satisfiable iff for each probabilistic execution fragment H the event e(H ) is finitely satisfiable.
Union, intersection and complementation of event schemas are defined pointwise. Similarly,
conditional event schemas are defined pointwise.

The best way to think of an event schema is just as a rule to associate an event with
each probabilistic execution fragment. Although in most of the practical cases the rule can be
specified by a set of executions (cf. Section 5.3.2), part of our results do not depend on the
actual rule, and thus they would hold even if for some reason in the future we need to study
different rules. Moreover, event schemas allow us to simplify the notation all over.

5.3.1 Concatenation of Event Schemas

If e is a finitely satisfiable event schema, i.e., for each probabilistic execution fragment H the
event e( H ) can be expressed as a union of cones, then it means that in every execution of e( H)
it is possible to identify a finite point where the property denoted by e is satisfied. Sometimes
we may be interested in checking whether a different property, expressed by another event
schema, is satisfied eventually once the property expressed by e is satisfied. That is, we want
to concatenate two event schemas.

82



Formally, let eq, es be two event schemas for a probabilistic automaton M where eq is finitely
satisfiable, and let Cones be a function that associates a set Cones(H ) with each probabilistic
execution fragment H of M such that Cones(H) is a characterization of e;(H ) as a union of
disjoint cones, i.e., e1(H) = Usecones(m)Cy, and for each g1, g2 € Cones(H), if 1 # qa, then
Cy, NCy, = 0. Informally, Cones(H ) identifies the points where the event denoted by ey (H) is
satisfied, also called points of satisfaction.

The concatenation €1 0cyyes €2 of e1 and ey via Cones is the function e such that, for each
probabilistic execution fragment H of M,

e(H) = U exHlg). (5.13)
g€ Cones(H)

Proposition 5.3.1 The concatenation of two event schemas is an event schema. That is, if
€ = €1 Oones €2, then e is an event schema.

Proof. Consider a probabilistic execution fragment H. From Proposition 4.2.11 each set
ea(H|q) is an event of Fp. From the closure of a o-field under countable union, e(H) is an
event of Fp. [ ]

Proposition 5.3.2 Pyle1 ocones €2(H )] = 3 ¢ cones(iry PrCo) Prjgle2(H )]
Proof. Since Cones(H ) represents a collection of disjoint cones, from (5.13) we obtain

Priler 0 cones €2(H)] = Z Prles(H|q)]. (5.14)
g€ Cones(H)

From Proposition 4.2.11, for each ¢ € Cones(H)

Prlea(Hlq)] = Pu[Cy] P lea(H]q)]. (5.15)

By substituting (5.15) in (5.14) we obtain the desired result. |

5.3.2 Execution-Based Event Schemas

Our definition of an event schema is very general; on the other hand, most of the existing
work on randomized algorithms is based on a very simple rule to associate an event with each
probabilistic execution. Namely, a set O of execution fragments of M is chosen beforehand, and
then, given a probabilistic execution fragment H, the event associated with H is the @ ™ Qp.
We call this class of event schemas ezecution-based. We have chosen to give a more general
definition of an event schema for two main reasons:

1. The concatenation Theorem of Section 5.4.1 (Theorem 5.4.2) does not rely on the fact that
an event schema is execution-based, but rather on the fact that it is finitely satisfiable.
Thus, if in the future some different kinds of event schemas will become relevant, here we
have already the machinery to deal with them.

2. The event schemas that we use later to define a progress statement (cf. Section 5.5) are
not execution-based according to the informal description given above. Specifically, the
start state of a probabilistic execution fragment of M is a finite execution fragment of
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M i.e., it contains some history of M, and such history is not considered in determining
whether there is some progress. On the other hand, it is plausible that sometimes we
want to consider also the history encoded in the start state of a probabilistic execution
fragment. Thus, the more general definition of an event schema still helps.

Nevertheless, execution-based adversary schemas are easier to understand and enjoy properties
that do not hold for general adversary schemas (cf. Section 5.7). For this reason we give
a formal definition of an execution-based adversary schema, where we also assume that the
history encoded in the start state of a probabilistic execution fragment is eliminated.

Let © be a set of extended execution fragments of M. An event schema e for a probabilistic
automaton M is ©-based iff for each probabilistic execution fragment # of M, e(H) = O N
(Qy>ql?). An event schema e for a probabilistic automaton M is execution-based iff there exists
a set O of extended execution fragments of M such that e is ©-based.

5.4 Probabilistic Statements

Given a probabilistic automaton M, an event schema e, an adversary A, and a finite execution
fragment «, it is possible to compute the probability Ppcpce(ar,4,0)[€(prezvec(M, A, a))] of the
event denoted by e when M starts from a and interacts with A. As a notational convention,
we abbreviate the expression above by Pys 4 o[€]. Moreover, when M is clear from the context
we write Py [e], and we write Pyle] if M has a unique start state and « is chosen to be the
start state of M.

We now have all the machincery necessary to define a probabilistic statement. A probabilistic
statement for a probabilistic automaton M is an expression of the form Pr 44,5 0(€) R p, where
Advs is an adversary schema of M, © is a set of starting conditions, i.e., a set of finite execution
fragments of M, e is an event schema for M, and R is a relation among =, <, and >. A
probabilistic statement Pr 44,5 0(€) R pis valid for M iff for each adversary A of Advs and each
starting condition o of ©, Py ,[e] R p, i.e.,

PrAdvs,@(e) R P iff v.AEAdUSVOzEG)PA,a[e] R p- (516)
Proposition 5.4.1 Some trivial properties of probabilistic statements are the following.
1. If ;1 R po then Prygys o(e) R p1 implies Pryq,s o(€) R po.

2. If Advsy C Advsy and ©1 C Og, then Pr4qys, 0,(€) R p implies Pr 44,5, 0,(¢) R p. [ |

5.4.1 The Concatenation Theorem

We now study an important property of probabilistic statements applied to the concatenation
of event schemas. Informally, we would like to derive properties of the concatenation of two
event schemas from properties of the event schemas themselves. The idea that we want to
capture is expressed by the sentence below and is formalized in Theorem 5.4.2.

“If e is satisfied with probability at least p1, and from every point of satisfaction of
€1, e is satisfied with probability at least py, then the concatenation of e1 and eqg is
satisfied with probability at least p1py.”
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Theorem 5.4.2 Consider a probabilistic automaton M. Let

1. Pragus.0(e1) R p1 and,

2. for each A € Advs, q € O, let PT 44y, Cones(prevec(M,Aq))(€2) R P2
Then, Pr 44,5 0(€1 0Cones €2) R p1p2-

Proof. Consider an adversary A € Advs and any finite execution fragment ¢ € ©. Let
H = prexzec(M, A, q). From Proposition 5.3.2,

PH[el OCones 62(H)] = Z PH[Cq’]PH|q'[€2(H|q/)]' (517)
q'€Cones(H)

Consider an element ¢’ of Cones(H ). It is a simple inductive argument to show that
Hl|q = prezec(M, A, q). (5.18)

Thus, from our second hypothesis,

Pryle2(H )] R pa. (5.19)
By substituting (5.19) in (5.17), we obtain
Prler 0cones e2(H)| R py > Py[Cy. (5.20)

q'€Cones(e1(H))

By using the fact that Cones(H ) is a characterization of e;(H ) as a disjoint union of cones,
Equation (5.20) can be rewritten into

Priler 0 cones €2(H)] R pa Prler(H)). (5.21)
From the first hypothesis, Pyle1(H )] R p1; therefore, from Proposition 5.4.1,

Prler ocones €2(H)] R p1pa. (5.22)
This completes the proof. [ |

5.5 Progress Statements

In this section we give examples of probabilistic statements, which we call progress statements,
that play an important role in the analysis of algorithms. Progress statements are formaliza-
tions of statements that are used generally for the informal analysis of randomized algorithms;
however, many other statements can be defined depending on specific applications. We show
also how to derive complex statements by concatenating several simple statements.
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5.5.1 Progress Statements with States

Let U and U’ be sets of states of a probabilistic automaton M. A common informal statement
is the following.

“Whenever the system is in a state of U, then, under any adversary A of Advs, the
probability that a state of U’ is reached is at least p.”

The probability p is usually 1. In this thesis we consider the more general statement where p
is required only to be greater than 0. We represent the statement concisely by writing

U —Adus U, (5.23)

where Advs is an adversary schema. We call (5.23) a progress statement since, if we view U’ as
a better condition than U, then (5.23) states that from U it is possible to have some progress
with probability at least p. The reader familiar with UNITY [CM88] may note that a progress
statement is a probabilistic generalization of the leads-to operator of UNITY.

Let us concentrate on the formal meaning of (5.23). Let eg be an event schema that given
a probabilistic execution fragment H returns the set of extended executions a of Qyr such that
a state of U’ is reached in avgl (recall that ¢l is the start state of H). Then (5.23) is the
probabilistic statement

PrAdvs,U(eU’) Z p. (524)

Note that the starting conditions of statement (5.24) are just states of M, i.e., they do not
contain any past history of M except for the current state. This is because when we reason
informally about algorithms we do not talk usually about the past history of a system. However,
if we want to concatenate two progress statements according to Theorem 5.4.2, then we need to
consider the past history explicitly, and thus a better probabilistic statement for (5.23) would
be

Prygus,0,(err) > p, (5.25)

where Qpr is the set of finite execution fragments of M whose last state is a state of U. So, why
can we, and indeed do people, avoid to deal with the past history explicitly? The point is that
(5.24) and (5.25) are equivalent for most of the adversary schemas that are normally used.

5.5.2 Finite History Insensitivity

An adversary schema Advs for a probabilistic automaton M is finite-history-insensitive iff
for each adversary A of Advs and each finite execution fragment a of M, there exists an
adversary A’ of Advs such that for each execution fragment o’ of M with fstate(a') = Istate(a),
A'(a') = A(a™d’). In other words, A’ does even though A" does not know the finite history a.

Lemma 5.5.1 Let Advs be a finite-history-insensitive adversary schema for a probabilistic au-
tomaton M. Then (5.24) and (5.25) are equivalent probabilistic statements.
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Proof. From Proposition 5.4.1, since U C O, Statement (5.25) implies Statement (5.24)
trivially. Conversely, suppose that Statement (5.24) is valid. Consider an adversary A of Advs,
and consider an element ¢ of Orr. Let A, be an adversary of Advs such that for each execution
fragment ¢’ of M with fstate(q') = Istate(q), Ay(¢') = A(q ™ ¢'). We know that A4, exists since
Advs is finite-history-insensitive. It is a simple inductive argument to show that

prexec(M, Ay, Istate(q)) = prexzec(M, A, q)>q. (5.26)
Moreover,
Ppreacec(MpA,q)[Cq] =L (527)

From the definition of ey, since the start state of prexzec(M, A, q) is ¢,
epr(prexec(M, Ay, Istate(q))) = ey (prezec(M, A, ¢))rq. (5.28)

Thus, from Proposition 4.2.12 and (5.27),

PA,q[eU'] = PAq,lstate(q)[eU’]- (529)
From hypothesis,

PAq,lstate(q)[eU’] > D, (530)
and thus, from (5.29), P4 ,[err] > p. This shows that Statement (5.25) is valid. |

5.5.3 The Concatenation Theorem

We now start to compose (simple) progress statements to derive other (more complex) progress
statements. This allows us to decompose a complex problems into simpler problems that can be
solved separately. The examples of Chapter 6 contain explicit use of the concatenation theorem
of this section.

Suppose that from U we can reach U’ with probability at least p, and that from U’ we
can reach U” with probability at least p’. Then, it is reasonable that from U we can reach U”
with probability at least pp’. This result is an instantiation of the concatenation theorem of
Section 5.4.1.

Theorem 5.5.2 Let Advs be a finite-history-insensitive adversary schema. Then,
U —Adus U and U' —pqus U imply U —>4405 U".
p pp

Proof. Consider the event schemas e;» and eyn. Let Cones be the function that associates
with each probabilistic execution fragment H the set

Cones(H) = {q| Istate(qoqo) € U', Bar<(avao) Istate(q') € U'}. (5.31)

It is easy to check that Cones(H ) is a characterization of ey as a disjoint union of cones. Then,
directly from the definitions, for each execution fragment H,

€U’ OCones 6U//(H) - €U//(H). (532)
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Informally, the left expression represents the property of reaching a state of U” passing through
a state of U/, while the right expression represents the property of reaching a state of U” without
passing necessarily through a state of U’.

From Lemma 5.5.1, for each probabilistic execution fragment H, each adversary A of Advs,
and each element ¢ of Cones(H ), since Istate(q) € U’,

Paglevr] > 7. (5.33)
From hypothesis, (5.33), and Theorem 5.4.2 (concatenation of two event schemas),

Pr4dus, v (€07 0 Cones €t) > pp'. (5.34)
From (5.32) and (5.34),

Prpgus v(evn) > pp'. (5.35)
This shows that U — 44,5 U". [ ]
PP

Proposition 5.5.3 Other trivial properties of progress statements are the following.

1. U —U.
1

2. IfUl —pl—> U{ and U2 —p2—> Ué, then U1UU2 — U{UUé |

min(p1,p2)

5.5.4 Progress Statements with Actions

Progress statements can be formulated also in terms of actions rather than states. Thus, if V
is a set of actions, we could write

U —Adus 1% (5.36)

meaning that starting from any state of U and under any adversary of Advs, with probability at
least p an action from V occurs. Formally, let ey be an event schema that given a probabilistic
execution fragment I returns the set of executions « of Q5 such that an action from V occurs
in avgll. Then (5.36) is the probabilistic statement

Praqus,uev) 2 p. (5.37)
Similarly, we can change the left side of a progress statement. Thus, we can write

V _p_>Advs U (538)

meaning that starting from any point where an action from V occurred and no state of U is
reached after the last occurrence of an action from V', a state of U is reached with probability
at least p. In other words, after an action from V occurs, no matter what the system has
done, a state of U is reached with probability at least p. Formally, let @y 7 be the set of finite
execution fragments of M where an action from V occurs and no state of U occurs after the
last occurrence of an action from V. Then (5.38) is the probabilistic statement

Praus. 0y (ev) > p. (5.39)
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Finally, we can consider statements involving only sets of actions. Thus, the meaning of
Vv —Adus V' would be the probabilistic statement

Pryavs,0.,.(ev) 2 p, (5.40)

where Oy v is the set of finite execution fragments of M where an action from V occurs and
no action from V' occurs after the last occurrence of an action from V.
The concatenation theorem extendeds easily to the new kinds of progress statements.

Theorem 5.5.4 Let Advs be a finite-history-insensitive adversary schema, and let X, X' and
X' be three sets, each one consisting either of actions of M only or states of M only. Then,

X —pgus X' and X' — 4405 X" tmply X —p40s X".
P1 P2 P1P2

Proof. This proof is similar to the proof of Theorem 5.5.2, and thus it is left to the reader.
Observe that finite-history-insensitivity is not necessary if X’ is a set of actions. [ |

5.5.5 Progress Statements with Probability 1

Usually we are interested in progress properties that hold with probability 1. A useful result is
that in most cases progress with probability 1 can be derived from progress with any probability
p such that 0 < p < 1. Specifically, under the condition that an adversary never chooses § when
the left side of a given progress statement is satisfied and the right side of the same progress
statement is not satisfied,

1. if the left element of the progress statement is a set of actions, then progress is achieved
with probability 1;

2. if the left element of the progress statement is a set of states U, the adversary schema is
finite-history-insensitive, and the system remains in a state of U unless the right side of
the statement is satisfied, then progress is achieved with probability 1.

Proposition 5.5.5 Suppose that V — " Ados X, and suppose that ¢ ¢ Q4(q) Jor each adversary
A of Advs and each element ¢ of Oy x. Then V —Adus X.

Proof. We give the proof for the case where X is a set of states. The other proof is similar.
Denote X by U.

Consider an element ¢y of Oy and an adversary A of Advs. Let H be prexec(M, A, q),
and let p’ = Pylep(H)]. We know from hypothesis that p’ > p. Suppose by contradiction that
p’ < 1. Let O be the set of finite execution fragments ¢ of M such that ¢y < ¢, Istate(q) € U,
and no state of U occurs in any proper prefix of ¢g>go. Then O is a characterization of ey (H)
as a union of disjoint cones. Thus,

Pyley(H)] = Z Pr[Cy]. (5.41)
q€e®
Let € be any real number such that 0 < e < p’. Then, from (5.41) and the definition of p/, it is

possible to find a natural number k. such that.

S PalC) = 0 - o (5.12)
9€0||q|<ke
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Let O, be the set of states ¢ of H such that |¢| = k. and no prefix of ¢ is in ©. That is, O, is
the set of states of I of length k. that are not within any cone C, of eyy(H) where |¢| < k..
Equation (5.41) can be rewritten as

Prlev(H)] = ( > PH[Cq]) + (Z PH[Cq]PH[eU(H)ICq]) : (5.43)

9€0lg|<ke 9€0

Observe that for each state g of O, since a state of U’ is not reached yet, ¢ is an element of Oy .
Moreover, prezec(M, A, q) = H|q (simple inductive argument). Thus, from Proposition 4.2.11
and hypothesis, Pyley(H)|C,] > p, and (5.43) can be rewritten into

Prlev(H)] > ( > PH[Cq]) + (Z PH[Cq]p) : (5.44)

9€0]lq|<ke gE€B.
Observe that 3, coq1<k. PHICq] + 2 4c0. Pr[Cy] = 1. This follows from the fact that if a state

q of H does not have any prefix in O, then ¢ € Oy x, which in turn means that § ¢ Qf In
other words, in H it is not possible to stop before reaching either a state of {g € © | |¢| < k.}
or a state of ©.. Thus, by using (5.42) in (5.44) we obtain

Puleo(H)] = (p' =€)+ (1= (¢ — €))p- (5.45)
After simple algebraic manipulations, Equation (5.45) can be rewritten into
Pulev(H)] Z p' + p(1 = p') — e(1 = p). (5.46)

If we choose € such that 0 < € < p(1—p')/(1—p), which exists since p’ < 1, then Equation (5.46)
shows that Pgler(H)] > p’. This contradicts the fact that p’ < 1. Thus, Pglep(H)] = 1.

For the next proposition we define the statement U Unless X, where U is a set of states and X
is either a set of states only or a set of actions only. The statement is true for a probabilistic
automaton M iff for each transition (s,P) of M, if s € U — X then for each (a,s’) € Q either
a € X,or s € UUX. That is, once in U, the probabilistic automaton M remains in U until
the condition expressed by X is satisfied.

Proposition 5.5.6 Suppose that U —Ados X, U Unless X, Advs is finite-history-insensitive,
and 6 ¢ Qu(s) for each adversary A of Advs and each state s of U. Then, U —Adus X.

Proof. This proof is similar to the proof of Proposition 5.5.5. The main difference is that the
passage from Equation (5.43) to Equation (5.44) is justified by using finite-history-insensitivity
as in the proof of Proposition 5.5.1. [ |

5.6 Adversaries with Restricted Power

In Section 5.2 we have defined adversary schemas to reduce the power of an adversary; however,
we have not described any method to specify how the power of an adversary is reduced. In
this section we show two methods to reduce the power of an adversary. The first method,
which is the most commonly used, reduces the kind of choices that an adversary can make;
the second method, which is used in informal arguments but is rarely formalized, reduces the
on-line information used by an adversary to make a choice. The two specification methods are
used in Section 5.7 to study the relationship between deterministic and randomized adversaries.
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5.6.1 Execution-Based Adversary Schemas

If n processes run in parallel, then a common requirement of a scheduler is to be fair to all the
processes. This means that whenever an adversary resolves the nondeterminism and leads to
a probabilistic execution fragment H, in all the executions of 2y each one of the n processes
performs infinitely many transitions. More generally, a set O of extended execution fragments
of M is set beforehand, and then an adversary is required to lead only to probabilistic execution
fragments whose corresponding sample space is a subset of 0.

Formally, let ©® be a set of extended execution fragments of M. Let Advsg be the set of
adversaries A such that for each finite execution fragment ¢ of M, Q) ccc(ar,4,9) © ©. Then
Advsg is called ©-based. An adversary schema Aduvs is execution-based iff there exists a set O
of extended execution fragments of M such that Advs is ©-based.

The notion of finite-history-insensitivity can be reformulated easily for execution-based ad-
versary schemas. Define ©® to be finite-history-insensitive iff for each extended execution frag-
ment « of M and each finite execution fragment o’ of M such that Istate(a’) = fstate(a), if
o'~ a €0 then a € 0. Tt is easy to verify that if © is finite-history-insensitive, then Advsg is
finite-history-insensitive.

5.6.2 Adversaries with Partial On-Line Information

Sometimes, like in the case of the toy resource allocation protocol, an adversary cannot base
its choices on the whole history of a system if we want to guarantee progress. In other words,
some part of the history is not visible to the adversary.

Example 5.6.1 (Off-line scheduler) The simplest kind of adversary for n processes that run
in parallel is an adversary that fixes in advance the order in which the processes are scheduled.
This is usually called an off-line scheduler or an oblivious adversary. Thus, at each point «
the next transition to be scheduled depends only on the ordered sequence of processes that are
scheduled in a.

To be more precise, the transition scheduled by the adversary depends also on the state that
is reached by a, i.e., lstate(a), since a specific process may enable different transitions from
different states. This means that if ay and ay are equivalent in terms of the ordered sequence
of processes that are scheduled, the oblivious constraint says only that the transitions chosen
by the adversary in a; and @ must be correlated, i.e., they must be transitions of the same
process. [

The formal definition of an adversary with partial on-line information for a probabilistic au-
tomaton M is given by specifying two objects:

1. an equivalence relation that specifies for what finite execution fragments of M the choices
of an adversary must be correlated;

2. a collection of correlation functions that specify how the transitions chosen by an adver-
sary must be correlated.

Let = be an equivalence relation between finite execution fragments of M, and let F be a
family of functions parameterized over pairs of equivalent execution fragments. Each function
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faar takes a combined transition of M leaving from Istate(«) and returns a combined transition
of M leaving from Istate(a’) such that

1. foz’oz(fozoz’(tr)) = tr;
2. foza'(ZiEIpitri) = Zie[pifoza’(tri)-

The pair (=, F) is called an oblivious relation. An adversary A is oblivious relative to (=, F') iff
for each pair of equivalent execution fragments of M, o = o/, A(a/) = foor(A(e)). An adversary
schema Advs is said to be with partial on-line information iff there exists an oblivious relation
(=, ') such that Advs is the set of adversaries for M that are oblivious relative to (=, ).

Condition 1 is used to guarantee that there are oblivious adversaries relative to (=, F');
Condition 2 is more technical and is used to guarantee that there are oblivious adversaries
relative to (=, F') that do not use randomization in their choices. Condition 2 is needed mainly
to prove some of the results of Section 5.7.

Adversaries with partial on-line information and execution-based adversaries can be com-
bined together easily. Thus, an adversary schema Advs is said to be execution-based and with
partial on-line information iff there exists an execution-based adversary schema Advs’ and a
pair (=, F') such that Advs is the set of adversaries of Advs’ that are oblivious relative to (=, F).

Example 5.6.2 (Adversaries for the toy-resource allocation protocol) The fair obliv-
ious adversaries for the toy resource allocation protocol are an example of an execution-based
adversary schema with partial on-line information. The set © is the set of executions of M || M,
where both My and M, perform infinitely many transitions. Two finite execution fragments
oy and as are equivalent iff the ordered sequences of the processes that perform a transition
in a; and ay are the same. Let ay = a9, and let, for ¢« = 1,2, ¢r;; and tr;2 be the tran-
sitions of My and My, respectively, enabled from Istate(a;). Then fq 0,(tr11) = troq and
Joras(tr12) = tra.

Another execution-based adversary schema with partial on-line information that works for
the toy resource allocation protocol is obtained by weakening the equivalence relation so that
an adversary cannot see only those coins that have not been used yet, i.e., those coins that have
been flipped but have not been used yet to check whether the chosen resource is free. [ |

5.7 Deterministic versus Randomized Adversaries

In our definition of an adversary we have allowed the use of randomness for the resolution of
the nondeterminism in a probabilistic automaton M. This power that we give to an adversary
corresponds to the possibility of combining transitions of M in the definition of a probabilistic
execution fragment. From the formal point of view, randomized adversaries allow us to model a
randomized environment and to state and prove the closure of probabilistic execution fragments
under projection (Proposition 4.3.4). However, one question is still open:

Are randomized adversaries more powerful than deterministic adversaries?

That is, if an algorithm performs well under any deterministic adversary, does it perform well
under any adversary as well, or are there any randomized adversaries that can degrade the
performance of the algorithm? In this section we want to show that in practice randomization
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does not add any power to an adversary. We say ”in practice” because it is easy to build
examples where randomized adversaries are more powerful than deterministic adversaries, but
those examples do not seem to be relevant in practice.

Example 5.7.1 (Randomization adds power) Consider an event schema e that applied to
a probabilistic execution fragment H returns p if H can be generated by a deterministic
adversary, and returns () otherwise. Clearly, if M is a nontrivial probabilistic automaton, the
probability of e is at least 1 under any deterministic adversary, while the probability of e can
be 0 under some randomized adversary; thus, randomization adds power to the adversaries.
However, it is unlikely that a realistic event schema has the structure of e. Another less
pathological example appears in Section 5.7.2 (cf. Example 5.7.2). [ |

We consider the class of execution-based event schemas, and we restrict our attention to the
subclass of finitely satisfiable, execution-based event schemas. We show that randomization does
not add any power for finitely satisfiable, execution-based event schemas under two scenarios:
execution-based adversary schemas, and execution-based adversary schemas with partial on-line
information. In the second case we need to be careful (cf. Example 5.7.2).

Informally, a randomized adversary can be seen as a convex combination of deterministic
adversaries, and thus a randomized adversary satisfies the same probability bounds of a deter-
ministic adversary. However, there are uncountably many deterministic adversaries, and thus
from the formal point of view some more careful analysis is necessary.

5.7.1 Execution-Based Adversary Schemas

Proposition 5.7.1 Let Advs be an execution-based adversary schema for M, and let Advsp
be the set of deterministic adversaries of Advs. Let e be a finitely-satisfiable, execution-based,
event schema for M. Then, for every set O of finite execution fragments of M, every probability
p, and every relation R among <, =, >, Pryg,s 0(e) R p iff Praqs,.0(e) R p. [ |

In the rest of this section we prove Proposition 5.7.1. Informally, we show that each probabilistic
execution fragment H generated by an adversary of Advs can be converted into two other
probabilistic execution fragments H' and H”, each one generated by some adversary of Advsp,
such that Prile(H')] < Prle(H)] < Pgole(H")]. Then, if R is < we use H”, and if R is > we
use H'.

An operation that is used heavily in the proof is called deterministic reduction. Let H be a
probabilistic execution fragment of a probabilistic automaton M, and let ¢ be a state of H. A
probabilistic execution fragment H' is said to be obtained from H by deterministic reduction
of the transition enabled from ¢ if H' is obtained from H through the following two operations:

1. Let trf = q "~ (Y ;er pitr;) where each p; is non-zero and each tr; is a transition of M.

Then replace tril either with (¢, D(é)) or with ¢ tr;, under the restriction that (¢, D(8))
can be chosen only if > ;c;p; < 1.

2. Remove all the states of H that become unreachable after trf is replaced.

Throughout the rest of this section we assume implicitly that whenever a probabilistic execution
fragment is transformed, all the states that become unreachable are removed.
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Lemma 5.7.2 Let Advs be an execution-based adversary schema for a probabilistic automaton
M, and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs. Let e be an execution-based event schema such that Pyle(H)] = p. Let ¢ be a state
of H. Then there exist two probabilistic execution fragments Hlowszighf each one generated
by an adversary of Advs, that are obtained from H by deterministic reduction of the transition
enabled from q, and such that Pquow[e(Hfow)] <p, and PHZigh le(H ;)] > -

Proof. Let trf be ¢~ (3 ;erpitri), where each tr; is either a transition of M or the pair
(Istate(q), D(8)), each p; is greater than 0, and > ";c;p; = 1. For each transition ¢r;, ¢ € I, let
H;, be obtained from H by replacing trf with ¢ ™ tr;. Observe that, since Advs is execution-
based and H is generated by an adversary of Advs, H,, is generated by an adversary of Advs.
The probability of e( H) can be written as

Pyle(H)] = Py[Cy]Pule(H)|Cl + (1 — PulCy]) Prle(H)|Cy]. (5.47)
Observe that for each ¢ € I, since H and Hy,, differ only in the states having ¢ as a prefix,
Py[Cy] = P, [Cg]. Since e is execution-based, e(H ) NC, = e(Hy, )NCy, and Pyle(H)NC,| =

Py, [e(Hyy ) N O] (use conditional probability spaces and Theorem 3.1.2). Moreover, as it is
shown below, Pyle(H)NCy] = 3 ;crpiPu,, [e(Hyy,) 0 Cy). In fact,

Pyle(H)NCy) = PylCy) | By [81Puale(H)|Cys) + 3 P, ) Pule(H)|Cy] | (5.48)
(ag") €y
where we assume that Pgle(H)|Cys] is 0 whenever it is undefined. For each (a,q’) of QF,

PH[(q,d)] = ZielpquHt” [(a,q")], and for each i such that (a,q") € €y ey Prle(H)|Cy] =
Pr,, [e(Hy,)|Cy] (simply observe that Heq = HW Dq’). Similarly, if § € Qf?, then PqH[é] =

ZielpquHt” [6], and for each ¢ such that é € Q Prle(H)[Cys] = Pp,, [e(Hip,)|Cqe). Thus,
from (5.48),
Ple(H)n Cy] = ZPiPH”i [Cql
€]
Hiyr, Her, /
Py )Py Je(Hu)|Cosl + D2 Py " l(a, ) Py, [e(Hu)ICy] [, (5.49)

Hiy
(a,9')€Qq "
which gives the desired equality
Pyle(H = piPu,, [e(Hy) N Cy). (5.50)
€]
Thus, (5.47) can be rewritten into
= 3 i (Pt [C)Prty Tl I + (1= i [C1) Pay [l i )IT,) - (5.51)
€]

which becomes

= piPu, [e(Hu,)l: (5.52)
i€l
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If there exists an element ¢ of I such that PHtm le(Hy,)] = p, then fix H] and sz'gh to be Hy,,.
If there is no element ¢ of I such that Pp,, [e(Hy,)] = p, then it is enough to show that there
are two elements iy, i3 of I such that PHtml [e(Hm1 )] < pand PHtm2 [e(Hm2 )] > p, respectively.
Assume by contradiction that for each element ¢ of I, Py, [e(Hy,)] < p. Then, from (5.52),
Yier PiPry, [e(Hy,)] < p, which contradicts Prle(H )] = p. Similarly, assume by contradiction
that for each element ¢ of I, Py, [e(Hyy,)] > p. Then, from (5.52), 37 piPr,, [e(He,)] > p,
which contradicts Pyle( H)] = p again. |

Lemma 5.7.83 Let Advs be an execution-based adversary schema for a probabilistic automaton
M, and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs. Let e be an execution-based event schema such that Pyle(H)] = p. Let d be a natural
number, and let Uy be the set of states q of H such that |q| = d. Then there exist two probabilistic
execution fragments Hi,y, Hyigh, each one generated by an adversary of Advs, that are obtained
from H by deterministic reduction of the transitions enabled from the states of Uy, and such

that Py, [e(How)] < p, and PHhigh (e( Hpign)] > p.

Proof. From Lemma 5.7.2 we know that for each state ¢ of U there are two probabilistic exe-
cution fragments H| and sz'ghv obtained from H by deterministic reduction of the transition
enabled from ¢, such that PH;zow[e(Hfow)] < p, and PHZigh le(H};,,)] > p. Let Hyyy, be obtained

from H by replacing the transition enabled from each state ¢ of Uy with the transition enabled
from ¢ in H} ,and let Hy;, be obtained from H by replacing the transition enabled from each
state ¢ of Uy with the transition enabled from ¢ in H}, b Since Aduvs is execution-based and
all the involved probabilistic execution fragments are generated by an adversary of Advs, then
Hyiyp and Hyp,, are generated by an adversary of Advs. Since e is execution-based, for each
state ¢ of Uy, Pr,,, [e(Hipw) NCy] = PH;zow[ e(H} )N Cyl. Thus,

PHlow Hlow Z PHlow PHq [ ( low)|C] (553)
qeUy
Observe that, for each state ¢ of Uy, the difference between the probability of e(H) and the
probability of e(H} ) is determined by the subcones of C;. Thus,

Py, [e(Hiw) < PylC H)|C,). (5.54)
q€lyq

The right side of (5.54) is Pg[e(H )], which is p. In a similar way it is possible to show that
Py, le(Hnign)] = p- L

Now we use the fact that e is finitely satisfiable. For each probabilistic execution fragment H
of M, let Can(e(H)) the set of minimal elements of {q € states(H) | C, Ce(H)} U{qd | q €
states(H),Cys C e(H)}. Then, Can(e(H)) is a characterization of e(H ) as a union of disjoint
cones. For each natural number d, let efd be the function that given a probabilistic execution

fragment H returns the set U,¢ Can(e(H))||q|§dCf

Lemma 5.7.4 Let e be an execution-based, finitely satisfiable, event schema for a probabilistic

automaton M, and let d,d’" be two natural numbers such that d < d'. Then, for each probabilistic
execution fragment H, Pyleld(H)] < Pyleld'(H)] < Pyle(H)].
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Proof. Follows trivially from the definitions. [ |

Lemma 5.7.5 Let e be an execution-based, finitely satisfiable, event schema for a probabilistic
automaton M, and let d be a natural number. Let H be a probabilistic execution fragment H
of M, and let H' be obtained from H by reducing deterministically any collection of states of
length greater than d. Then, Pyleld(H)] < Pgileld(H')].

Proof. Just observe that for each ¢ € Can(e(H)) such that |¢| < d there is a ¢’ € Can(e(H'))
such that ¢’ < ¢, and that for each state ¢ of H such that |¢| < d, Py[C,] = P [Cy]. ]

Lemma 5.7.6 Let Advs be an execution-based adversary schema for a probabilistic automaton
M, and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs. Let e be an execution-based, finitely satisfiable event schema such that Pyle( H)] = p.
Then there exists a probabilistic execution fragment H', generated by a deterministic adversary
of Advs, such that Prple(H')] < p.

Proof. From Lemma 5.7.3 it is possible to find a sequence of probabilistic execution fragments
(Hi)zzo, where Hy = H, each H;yq is obtained from H; by deterministically reducing all its
transitions leaving from states of length 4, and for each i, Pp,, [e(H11)] < Pr,[e(H;)]. Let H'
be obtained from H by replacing the transition enabled from each state ¢ with the transition
enabled from ¢ in any H; such that |¢| < ¢. It is immediate to check that H’ is generated by
some deterministic adversary of Advs (every extended execution of Qs is an extended execution
of Qp).
Suppose by contradiction that Pr[e(H')] > p. Then there exists a level d such that

For each d' > d, let Ey be
Ey 2 U ', (5.56)

g€ Canleld' (Hy))3yrc cangeracmry?'<a
Then, the following properties are valid.

1. for each d’' > d, E/ is an element of Fpy.

F i is a union of cones of Fgr.

2. if d/ S d”, then Ed’ g Ed”

Consider an element ¢ € Can(eld'(Hy)) such that there exists a ¢’ € Can(eld(H')) such
that ¢’ < ¢. Observe that, since Hyu is obtained from Hg by deterministic reduction of
states of length greater than d’, there exists a ¢” € Can(eld”"(Hy»)) such that ¢ < g.
Moreover, from the construction of H', ¢’ < ¢". Thus, from (5.56), CH' C Ez. Since

q
q" <gq, Cf/ C Egn, and therefore, Fy C Egn.
3. €rd(H/) Q Ud’ZdEd"

Consider an element «a of e[d(H’). Then, for each d’, a € e(Hy). Let ¢ € Can(e(Hy))
such that ¢’ < «a, and let d' be |¢'|. Then, there exists a ¢ € Can(eld'(Hy)) such that
¢" < ¢ < a,and thus a € Ey.
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4. for each d' > d, Py, leld' (Hqy)] > Pr[Ey].

From the construction of H', for each ¢ such that |¢| < d', Py, [Cfd'] = PH/[Cf/].
Moreover, if Cf/ is used in the definition of Ey, then ¢ € Can(e[d'(Hy)).

From 2 and 3, and from (5.55), there exists a value d’ such that Pg/[FEg] > p. From 4,
Py, leld'(Hy)] > p. From Lemma 5.7.4, Py, [e(Hy)] > p. This contradicts the fact that
PHd/ [6 fd/(Hd/)] <p. |

To build a probabilistic execution fragment H’, generated by an adversary of Advsp, such that
Prple(H")] > p, we need to extend part of Lemmas 5.7.2 and 5.7.3.

Lemma 5.7.7 Let Advs be an execution-based adversary schema for a probabilistic automaton
M, and let H be a probabilistic execution fragment of M that is generated by some adversary of
Advs. Let e be an execution-based, finitely-satisfiable, event schema. Let g be a state of H, and
let d be a natural number such that Pyleld(H )] = p. Then there exist a probabilistic execution
fragment Hzigh’ generated by an adversary of Advs, that is obtained from H by deterministic
reduction of the transition enabled from g, such that PHZigh [e fd(HzZ.gh)] > p.

Proof. This proof is similar to the proof of Lemma 5.7.2, with the difference that the = sign
of Equations (5.49), (5.50), (5.51), and (5.52), is changed into a <. In fact, in each one of the
H,, some new cone of length at most d may appear. [ |

Lemma 5.7.8 Let Advs be an execution-based adversary schema for a probabilistic automaton
M, and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs. Let e be an execution-based, finitely-satisfiable, event schema, and let d be a natural
number such that Pgleld(H)] = p. Let d' be a natural number, and let Uy be the set of states q
of I such that |q| = d’'. Then there exist a probabilistic execution fragment Hy;gz,, generated by
an adversary of Advs, that differs from H only in that the transitions enabled from the states
of Uy are deterministically reduced, such that PHhigh leld(Hpign)) > p.

Proof. This proof is similar to the proof of Lemma 5.7.3. In this case the arguments for the
equation corresponding to Equation (5.54) is justified from the additional fact that Hy;y, may
have more cone of depth at most d than H. [ |

Lemma 5.7.9 Let Advs be an execution-based adversary schema for a probabilistic automaton
M, and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs. Let e be an execution-based, finitely-satisfiable, event schema such that Pyle( H)] > p.
Then, there exists a probabilistic execution fragment H' of M, generated by a deterministic
adversary of Advs, such that Pgle(H')] > p.

Proof. Since Pyle(H)] > p and e(H) is a union of cones, there exists a natural number d such
that Pyleld(H)] > p. From repeated applications of Lemma 5.7.8, one for each level d’ < d,
there exists a probabilistic execution fragment H”, obtained from H by deterministic reduction
of the transitions enabled from every state ¢ with |¢| < d, such that Pyn[eld(H")] > p. From
Lemma 5.7.4, Pyule(H")] > p. Moreover, any probabilistic execution fragment H" obtained
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from H" by reducing deterministically transitions at depth greater than d (|g| > d) satisfies
Prwleld(H')] > p, and thus Pgmle(H")] > p. Hence, H' can be any probabilistic execution
fragment obtained from H" by reducing deterministically all the transitions at depth greater
than d in any arbitrary way. It is easy to check that H' is generated by a deterministic adversary

of Advs. []

Lemma 5.7.10 Let Advs be an execution-based adversary schema for a probabilistic automaton
M, and let H be a probabilistic execution fragment of M that is generated by some adversary
of Advs. Let e be an execution-based, finitely-satisfiable, event schema such that Pyle(H)] > p.
Then, there exists a probabilistic execution fragment H' of M, generated by a deterministic
adversary of Advs, such that Pyle(H')] > p.

Proof. If Pyle(H)] > p, then Lemma 5.7.9 suffices. If Pyle(H)] = p, then by Lemma 5.7.3
it is possible to find a sequence of probabilistic execution fragments (H;);>0, where Hq = H,
each ;41 is obtained from [; by deterministically reducing all its ¢-level transitions, and
for each @, Py, [e(H;11)] > Pyle(H;)]. If there exists a sequence (H;);>o such that for
some @, Py, [e(H;)] > p, then Lemma 5.7.9 suffices. Otherwise, consider the sequence of
probabilistic execution fragments defined as follows: Hy = H and, for each ¢, let d; be
the level of H; such that Pg,[eld;(H;)] > ijSi(l/Q)j‘H. Let H;1y be obtained from re-
peated applications of Lemma 5.7.8, till level d;, so that Py, [eld;(H;1)] > ijSi(l/Q)j‘H.
Note that Py, [e(H;41)] = p, otherwise we can find a sequence (H;);>o and an 7 such that
Py, [e(Hiy1)] > p (simple argument by contradiction). Let H' be obtained from H by replac-
ing the transition enabled from each state ¢ with the transition enabled from ¢ in any H; such
that |¢| < d;_y. It is easy to check that H’ is generated by an adversary of Advs. Suppose by
contradiction that Pg:[e(H')] = p’ < p. Then, from the construction of the H;’s, there exists an
i such that p Y. ;(1/2)"T > p/, and thus Py, [eldi(Hiy1)] > p'. However, from the definition
of H', Py, [eldi(H1)] = Prrleld;(H')], and thus p’ < Pys[e(H')], which contradicts the fact
that Pple(H")] = p'. |

Proof of Proposition 5.7.1. Since Advsp C Advs, Pryg.s,e(e) R pimplies Pryg,s, 0(e) R p
trivially. Conversely, suppose that Pr4g4,s,.0(€¢) R p, and let H be a probabilistic execution
fragment, generated by an adversary of Advs, whose start state is in ©. We distinguish the
following cases.

1. Ris >.

From Lemma 5.7.6, there is a probabilistic execution fragment H’, generated by an ad-
versary of Advsp, whose start state is in O, and such that Py/le(H')] < Pyle(H)]. From
hypothesis, Pyi[e(H")] > p. Thus, Pyle(H)] > p.

2. Ris <.

From Lemma 5.7.10, there is a probabilistic execution fragment H’, generated by an
adversary of Advsp, whose start state is in ©, and such that Pgs[e(H')] > Pgle(H)].
From hypothesis, Pr/e(H')] < p. Thus, Pyle(H)] < p.

3. Ris =.
This follows by combining Items 1 and 2. [
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5.7.2 Execution-Based Adversary Schemas with Partial On-Line Informa-
tion

Proposition 5.7.1 can be extended to adversary schemas that do not know all the past history
of a system, i.e., to execution-based adversary schemas with partial on-line information. We
need to impose a technical restriction, though, which is that an adversary should always be
able to distinguish two execution fragments with a different length (cf. Example 5.7.2). The
proof of the new result is a simple modification of the proof of Proposition 5.7.1.

Proposition 5.7.11 Let (=, }') be an oblivious relation such that for each pair oq = ay of
equivalent execution fragment, oy and oy have the same length. Let Advs be an execution-
based adversary schema with partial on-line information such that each adversary of Advs is
oblivious relative to (=, 1), and let Advsp be the set of deterministic adversaries of Advs.
Let e be a finitely-satisfiable, execution-based, event schema for M. Then, for every set © of
finite execution fragments of M, every probability p, and every relation R among <, =, >,

Pragus,0(€) R p iff Prages, 0(e) R p.

Proof. The proof is similar to the proof of Proposition 5.7.1. The main difference is in the
proofs of Lemmas 5.7.2, 5.7.3 and 5.7.8, where equivalence classes of states rather than single
states only must be considered. In these two proofs we use also the fact that equivalent execution
fragments have the same length. The details of the proof are left to the reader. [

Example 5.7.2 (Why length sensitivity) The requirement that an adversary should al-
ways see the length of a probabilistic execution fragment seems to be artificial; however, ran-
domized adversaries have more power in general if they cannot see the length of a probabilistic
execution. Consider the probabilistic automaton M of Figure 5-3, and suppose that all the
executions of M that end in states sy, s9, 83, and sg are equivalent. Since for each state s; there
is exactly one execution of M that ends in s;, we denote such an execution by ¢;. Let © be the
set of extended executions aé of M such that [state(a) does not enable any transition in M.
For each state s; that enables some transition, let tr;, be the transition that leaves from s; and
goes upward, and let ¢r; 4 be the transition that leaves from s; and goes downward. Then, for
each pair 4,7 € {1,2,3,6},1 # j, let f.,.(tr;y) = trj., and let fo, (tr;q) = tr;4.

Let Advs be the set of ©-based adversaries for M that are oblivious relative to (=, F'), and
let Advsp be the set of deterministic adversaries of Advs. Then, the statement {sg} T/—2>AdvsD

{7,810} is valid, whereas the statement {s¢} 1—/254(17,5 {7,810} is not valid, i.e., an adversary can

use randomization to reduce the probability to reach states {s7, s10}. In fact, the probabilistic
executions Hy and Hy of Figure 5-3 are the only probabilistic executions of M that can be
generated by the adversaries of Advsp, while Hy is generated by an adversary of Advs. The
probability of reaching {s7,s10} in Hy and H, is 1/2, whereas the probability of reaching
{87,810} in Hgis 1/4. ]

5.8 Probabilistic Statements without Adversaries

The current literature on randomized distributed algorithms relies on the notion of an adversary,
and for this reason all the definitions given in this chapter are based on adversaries. However,
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Figure 5-3: Randomization adds power for some adversaries with partial on-line information.

the key objects of the theory that we have presented are the probabilistic execution fragments of
a probabilistic automaton, and not its adversaries. An adversary schema can be replaced by an
arbitrary set of probabilistic execution fragments in the definition of a probabilistic statement,
namely, the set of probabilistic execution fragments that the adversary schema can generate. In
other words, an adversary schema can be seen as a useful tool to express a set of probabilistic
execution fragments.

5.9 Discussion

Two objects that we have defined in this chapter and that do not appear anywhere in the
literature are adversary schemas and event schemas. Both the objects are needed because,
differently from existing work, in this thesis we identify several different rules to limit the
power of an adversary and several different rules to associate an event with a probabilistic
execution fragment, and thus we need some way to identify each rule. The best way to think
of an adversary schema and of an event schema is as a way to denote the rule that is used to
limit the power of an adversary and denote the rule that is used to associate an event with each
probabilistic execution fragment.

We have defined the classes of execution-based adversary schemas and execution-based
event schemas, and we have proved that for finitely satisfiable execution-based event schemas
randomization does not increase the power of an execution-based adversary schema, or of a
class of execution-based adversary schemas with partial on-line information. These results are
of practical importance because most of the known event schemas and adversary schemas of
practical interest are execution-based. As a result, it is possible to verify the correctness of
a randomized distributed algorithm by analyzing only the effect of deterministic adversaries,
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which is easier than analyzing every adversary. A similar result is shown by Hart, Sharir and
Pnueli [HSP83] for fair adversaries and almost-sure termination properties, i.e., properties that
express the fact that under all fair adversaries the system reaches some fixed set of states
with probability 1. Fair adversaries and termination events are expressible as execution-based
adversary schemas and finitely satisfiable execution-based event schemas, respectively; thus,
the result of Hart, Sharir and Pnueli is implied by our result. Hart, Sharir and Pnueli prove
also that another class of adversaries is equivalent to the class of fair adversaries, namely, those
adversaries that lead to fair executions with probability 1. The same result holds here as well;
however, it is not clear under what conditions a similar result holds in general.
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