Initiaﬂly. this list consists of only a standard initial state, and that state is the only
state in the initial automaton. Now, repeatedly states are removed from the
exploration list until it is empty. When state s is removed from the exploration list,
the goto states are generated for state s. All the goto states for a state are generated
at the same time. The goto states are computed by going through each item in the
kernel and generating all its goto items. For each item, [4A — a.X], the goto items
are all the items such that [B — VY.y], where B is in LEFINONTERM(X).
[4 = aX.B] is also a goto item of this item. The goto items are grouped into states
according to the grammar symbol to the left of the dot. This symbol is the transition
symbol. Next, the automaton is checked to see if any of the goto states already exist.
If a goto state already exists, then a new edge from state s to this goto state is added
the automaton. If a goto state is new, then the automaton is augmented with a new
state and an edge, and the new state is placed in the exploration list. The goto states

are entered into the exploration list so that their goto states can be found.

4.3.3 e-Kernels

An e-kernel of a set-of-items is defined to be the kernel and those items [C = .]
such that there exists an item [4 = 8.C8] in the kernel and B =>:m Cxand C = &.
Empty productions are added to the kernels because computing reductions becomes
quite complicated without them. A reduction of the form C — ¢ is called for on
input a if and only if there is a kernel item [4 — B.By, b] such that B =>;" Cé for
some &, and a is in FIRST(8yb). This definition is quite complicated, but by adding
all empty productions to the kernel a reduction of the form C — ¢ is called for on
input a if and only if there is a kernel item [C = ., @]. A The kernels already exist
from the LR(0) construction, and all that needs to be added are the rules that derive
an empty string. This is done by going through each state and examining each item
in the kernel. 1f[4 — B.C8] is in the kernel and B=>" Cxand C = &, then item
[C —] is added to the kernel. LEFTEMPTY contains the set of nonterminals C such

that B=> Cxand C ..
25

4.4 L.ookahead Generation

Lookaheads are generated for each set of items much in the same way to goto states
for the LR(0) automaton are gencrated. The initial item has the end-of-file terminal
for a lookahead, and is placed in a new exploration list. This exploration list
contains items that have to propagate lookaheads to their goto states. Again, states
are removed from the list and processed until the list is empty. The Canonical
LR(1) Closure [AU 77] is computed for each set of items, s, as it is removed from the
closure. For each item, [4 = a.X[), in this closure, the lookaheads are propagated
to [4 = aX.B] in the goto state of under the transition symbol X. If any of the
lookaheads were not in [4 = aX.B] then this goto state is placed in the exploration

list.

4.5 Action Table

The actions for each state are computed as follows: an item that calls for a reduction
will be in the kernel and a shift will occur for all terminals a such that X =>;n ax |
such that [4 = a.X], b] is in the kernel. First all the shift actions are computed,
and then the reduce actions are computed. The shift actions are simply entered into
the table. The reduce actions must be check for shift-reduce and reduce-reduce
conflicts, and if a conflict arises, it must be resolved. I[n addition to this, each reduce
action must be counted, so that the most frequent reduce action will be the default
action for that state. An accept occurs when the first production is reduced, this is

checked before the reduction is entered into the table.

A conflict indicates that the grammar is not LALR(1). These conflicts, however,
may be intentional, and so a crude mechanism for handling conflicts exists for
resolving them. Shift/reduce conflicts are resolved in favor of shifting.
Reduce/reduce conflicts are resolved in favor of the production appearing earlier in

the input file,

26

In gr_der to represent the parsing tables compactly, there are several space
optimizations that can be performed. Many states have the same actions, and a
great amount of space can be saved if a pointer is created for each state to a list of
actions for that state. Pointers for states with the same actions point to the same list
of actions. Further space efficiency can be-achieved by creating a default action.
The default action would be the most frequent reduce action in the state. States
with a reduce action can be considerably compacted by the addition of a "default™
condition for the most popular reduction. The only apparent difficulty with the
above optimization is that delayed error detection might allow certain very obscure
errors to pass undetected, but this in fact is not true. If the lookahead symbol were
not in the original complete lookahead set, then the "default” action would be
taken. However, a subsequent state would eventually be forced to shift the next
token. This token in fact would not be legal in any subscquent state since it was not
included in the lookahead state (the state is created by looking at the surrounding
states). Therefore, the error will still have been detected. Since the ACTION
function determines its results by searching through linear lists, then any reduction
in the size of these lists will obviously increase the parsing speed. Therefore, any

compaction of this sort is of great value.

Using the compaction techniques described above, it is very easy to generate the
action table. The process simply examines each state and makes the actions for that
state. Once the actions for that state have been determined, the list of actions is
entered into the action table and an offset is returned. The table will only contain
distinct action lists, and therefore states with identical actions have the same offset

value.

27

Chapter Five

Output Subsystem

Once CLUCC has finished computing all the actions, it will create two output files.
The first file is a documentation file that describes the LALR(1) parsing tables, and
the second file contains the CLU code for the LALR(1) parsing tables. The
documentation file can be used to understand the parsing states. The CLU code

contains the tables needed by the parser.

5.1 The Documentation

This file contains description of the grammar, the goto and action tables. In
addition to these descriptions, this file will contain information about conflicts that
may have arisen in the process of constructing the tables for the grammar. The

modules that write out these descriptions are quite straightforward.

The description of the grammar consists of three parts: terminals, nonterminals,
and production rules. Each of these three grammar parts is numbered from one to
the number of elements in each part. The terminal and nonterminal numbers
correspond to the same numbers that are used by scanning, parsing, and error
recovery phases of a compiler. The production rules are numbered so that it is

easier to describe reductions in the action table section.

The goto table description is organized by nonterminals. This is also how it is
organized in the CLU tables file. The description is a list of all the nonterminals

with their lists of corresponding state transitions pairs, (current, next).

28

The action table description is a description of each state in the LR(0) automaton.
The description of a state consists of two parts, the e-kernel and the actions. The
e-kernel is a set of items, and each item is printed out as a production rule with its
dot (*.") in the correct position. The actions are printed out according to the
terminal symbol. The shift and reduce actions have the form;

shift s where s is the next state.

reduce p where p is the production rule number.

Since an accept action signals that parsing has been completed successfully, and an
error action only occurs as a default action, no arguments accompany these actions.

The default action is the last action printed for a state and is preceded by a dot ".".

If conflicts exist in the grammar, they are written out first. A conflict is described by
its state, the two actions which are in conflict, and the terminal that caused it. The
description file may be used to determine the cause of these conflicts by examining

the description of the particular states where the conflicts occurred.

5.2 The Parsing Tables

The parsing tables produced by CLUCC are in the form of a CLU cluster called
1rtables. The parsing tables are embedded lexically in the the cluster. The cluster
consists of three parts, a head, the parsing tables, and a tail. The head of the cluster
has the names of the operations that may be performed on the tables, and the tail of
the cluster contains the code for the operations. The head and tail of the cluster are
always the same, independent of the CLUCC input. 1rtables provides six external

operations to use with a shift-reduce parser:

action lookup the action given a state and and a terminal.
goto lookup the next state given a state and a nonterminal.
terminal fetch the string associated with a given terminal number.

29

nonterminal fetch string associated with a given nonterminal number.
termcount return the number of terminals in the input grammar.
nontermcount return the number of nonterminals in the input grammar.

The tables are output in the middle of the cluster, and turned into sequences of
integers, and strings. Integers are unparsed into strings, and strings have double
quotes appended to the beginning and end. There is one other type of sequence in
the CLU file, the sequence of procedure calls to be associated with each reduction.
These are referenced by name only. The procedures themselves are also output into

the middle of the cluster. The procedures have the form:

ruleN =
proc(cstate: compiler_state, pv: attributes)
returns(attribs)
return(PROC_CALL)
end ruleN

where N is the production rule number, and PROC_CALL is the procedure call
associated with this production rule in the clucc input. If a procedure call was not
associated with a production rule, then the default procedure rule is empty_rule.
empty_rule will return the first attribute on the right side of the production; if the

right side is empty, an empty attribute is returned.

The contents of the parsing tables fall into three categories: the grammar sequences,

the goto sequences, and the action sequences.

The grammar sequences consist of five sequences. The first two sequences are
sequences of strings. One contains the string names of each of the terminals, and
the other one contains the string names of each of the non-terminals. The next three
sequences contain information about the grammar rules. The index of the
sequences corresponds to the production rule number. One contains the sizes of the
right hand side of each production. One contains the number of the nonterminal
for that production. The last sequence contains the procedure names that will be

called upon the reduction of a production rule.

30

The primary function of the goto table is to choose the next state after a reduction.
Thus there is no need to keep information about terminals and their transitions in
the goto table. The goto table is a list of nonterminals followed by a list of pairs of
states (current, next). The goto table is organized by nonterminals for space
efficiency. All the transitions in this list are valid under that nonterminal. There are
three integer sequences which comprise the goto table. The first two sequences
contain all the valid (current, nexr) transitions, one sequence contains the current
states, and the other contains the next states. The last sequence contains the offsets
into these sequences for each nonterminal. The index of the offset sequence is the
nonterminal number, and its content is the offset into the transition sequences. The
offset sequence has one more element than the total number of nonterminals. The
offset sequence is an ordered sequence, element i < element i+ 1. This means
that transitions for nonterminal i are located in positions element i through

(element i+ 1)-1 of the transition sequences.

The action tables is made up of four integer sequences. There are two offset
sequences. These two offset sequences are used because of the table compaction
algorithm for states with identical actions presented earlier. The first offset
sequence contains the offsets for each state into the second offset sequence. The
second offset sequence contains offsets into the action sequence. The action
sequence is organized in groups of three elements starting from the first position.
The first element in the group is the terminal number for the lookahead, the second
number is that action number, and the third number is the argument for the action.
Since error and accept actions have no arguments, the element is not consulted for
this argument. For a shift action this argument is the next state number, and for a
reduce action this argument is the production number. The list of actions valid for a
particular state is terminated by a -1 in the first position. The last sequence contains

the defaults actions. The default action for a particular state is located at element s

31

where s is the state number. The default action will be the production number in

the case of a reduction, or zero in the case of an error.

32

Chapter Six

Experiences with the Development of CLUCC

CLUCC has been designed and implemented to efficiently produce a parser in time
and space. The one shortcoming CLUCC has with respect to YACC is that there is
no mechanism for controlling the use of ambiguous grammars. YACC controls the

use of ambiguous grammars, by specifying precedence and associativity.

CLUCC took about 25 40-hour weeks to write and debug. I[n that time many
different versions evolved in an attempt to gain time and space efficiency wherever
possible. For example, the normalization of the grammar, and the subsequent use
of bit vectors lead to an improvement of almost an order of magnitude for the time

necessary to generate the lookaheads.

In order to gather timing statistics CLUCC was made to display the cpu time at
similar points to YACC-20 during the parsing table generation. The total cpu time
used by CLUCC to produce parsing tables in CLU is about five times greater than
the cpu time used by YACC-20 to produce parsing tables in C for the same input.
This time factor is relatively the same for different sized grammars. This factor
drops a little with very large grammars. This time factor can largely be attributed to
the use of CLU instead of C. YACC-20 displayed the cpu time as it generated to
parsing tables. The timing statistics are not exactly comparable because the CLU

cpu time includes the time used for paging and C does not include this time.

When CLUCC is compared with CLU-YACC, it is found that CLUCC is about
four times faster than CLU-YACC. This statistic is purely speculative because the
cpu time for CLU-YACC to process the YACC-20 parsing tables is not displayed.

33

The time it takes to convert the tables from C to CLU can only be estimated.
However rough an estimate, this is the important time :statistic, since we are
concerned with the performance of compilér-compilers which generate CLU code,
not C code. CLUCC is also more practical than CLU-YACC because the parsing
tables are independent of the parser. This is advantageous because there is no need

to recompile the parser and the tables when changes are made to only one of them.

Displaying the cpu time at intervals in the generation. process, proved to be very
useful. The breakdown of the total cpu time showed where the bottlenecks were in
CLUCC. The time used by YACC-20 and CLUCC for 1/0 is essentially the same.
The time to generate the tables using CLUCC is much greater than the time it takes
in C. The time used to compute the lookaheads using CLUCC is about ten times
slower than using YACC-20. Fortunately, the lookahead computation occupies the

least amount of time relative to the other sections.

Virtually no bugs have been discovered in CLUCC. This is a result of the way the
project was divided so that it could be incrementally tested. Testing was performed
bottom up; as something was added, it was tested. The testing was greatly
simplified because CLU codes algorithms so well, and it is easy to see which test
cases are necessary. This eliminates a great deal of testing redundancy, and results
in a great time savings. Much of the testing was also simplified because CLU

supports modular programming so well.

CLUCC was used in an introductory course in compiler design at MIT this past
spring. This proved to be the best testing ground of all. Students are notoriously
good at finding bugs that exist in a program and MIT students are among the best.
There were one or two bugs discovered in the parser provided to work with the
tables that CLUCC generated, but aside from these bugs CLUCC has worked

marvelously.

References

[AU 77] :
Aho, A. V. and Uliman, J. D.
Principles of Compiler Design.
Addison-Wesley, 1977.

[CLU 79]
B. Liskov et al.
CLU Reference Manual.
Technical Report TR-225, Laboratory for Computer Science, Massachusetts
Institute of Technology, 1979.

35

