
I nitiall\ this list consists oF only a standard initial state, and that state is the only

state in the initial autoni aton. \ow. vcpeawdI) slates are remo’ ed From the

exploration list until it is empty. When stows is removed From the exploration fist.

the goto states arc generated for state s. All the gob slates for a state are generated

at the same time. The goto states are compLited b3 going through each item in the

kernel and generating all its goto items. For each item. [A — a.Xfl]. the goto items

are all the items such that [B — Y.yj. where B is in LEVINONrERM(X).

[A — aKflj is also a goto item of this item. The goto items are grouped into states

according to the grammar symbol to the left of the dot This symbol is the transition

symbol. Next, the automaton is checked to see if any of the goto states already exist.

If a goto state already exists, then a new edge from state sto this goto state is added

the automaton. If a goto state is new, then the automaton is augmented with a new

state and an edge, and the new state is placed in the exploration list. The goto states

are entered into the exploration list so that their goto states can be found.

4.3.3 rKernels

An E-kernel of a set-of-items is defined to be the kernel and those items [C —‘

such that there exists an item [4 —. 13.CSJ in the kernel and B Cx and C —‘ a

Empty productions are added to the kernels because computing reductions becomes

quite complicated without them. A reduction of the form C —‘ c is called for on

inpul a if and only if there is a kernel item [A —‘ .By. bJ such that B CS for

some c, and a is in FIRST(Syb). This definition is quite complicated, but by adding

all empty productions to the kernel a reduction of the form C - is called for on

input a if and only if there is a kernel item [C — al. A The kernels already exist

from the LR(O) construction, and all that needs to be added are the rules that derive

an empty string. This is done by going through each state and examining each item

in the kernel, if [A —, j3.C8] is in the kernel and B Cx and C—’ €, then item

[C — .J is added to the kernel. LEF]EMVFY contains the set of nonterminals C such

thatBCxandC—..

25

4.4 Lookahcad Generation

Lookaheads are generuted for each set of items much in the same way Lo gob slates

For the LR(O) automaton are generated. The initial item has the endof-fi/c terminal

for a lookahead. and is placed in a new exploration list. This exploration list

contains items that hae to propagate lookaheads to their goto states. Again, states

arc rcmoed from the list and processed until the list is empty. The Canonical

LR(1) Closure [AL 77) is computed for each set of items, s. as it is removed from the

closure. For each item, [A — a.Xfl], in this closure, the lookaheads are propagated

to [A —‘ aX./3] in the goto state of under the transition symbol X. If any of the

lookaheads were not in [A — aX./3] then this goto state is placed in the exploration

list.

4.5 Action Table

The actions for each state are computed as follows: an item that calls for a reduction

will be in the kernel and a shift will occur for all terminals a such that K ax

such that [A —. a.Xfl, b] is in the kernel. First all the shift actions are computed.

and then the reduce actions are computed. The shift actions are simply entered into

the table. The reduce actions must be check for shift-reduce and reduce-reduce

conflicts, and if a conflict arises, it must be resolved. Ln addition to this, each reduce

action must be counted, so that the most frequent reduce action will be the default

action for that state. An accept occurs when the first production is reduced, this is

checked before the reduction is entered into the table.

A conflict indicates that the grammar is not LALR(1). These conflicts, however,

may be intentional, and so a crude mechanism for handling conflicts exists for

resolving them. Shift/reduce conflicts are resolved in favor of shifting.

Reduce/reduce conflicts are resolved in favor of the prcduction appearing earlier in

the input file.

26

In order to represent the parsing tnblcs compactly, there are several space

optirnizations that can be perIbrnied. Mans states have the same actions, and a

great amount of space can be ed if a pointer is created for each state to a list of

actions for that state. Pointers for states with the same actions point to the same list

of actions. Further space efficiency can he achieved by creating a default action.

iThe default action would be the most frequent reduce action in the state. States

with a reduce action can be considerably compacted by the addition of a default’

condition for the most popular reduction. The only apparent difficLilty with the

above optimization is that delayed error detection might allow certain very obscure

errors to pass undetected, but this in fact is not true. If the lookahead symbol were

not in the original complete lookahead set, then the “default’ action would be

taken. However, a subsequent state would eventually be forced to shift the next

token. This token in fact would not be legal in any subsequent state since it was not

included in the lookahead state (the state is created by looking at the surrounding

states). Therefore, the error will still have been detected. Since the ACflON

function determines its results by searching through linear lists, then any reduction

in the size of these lists will obviously increase the parsing speed. iTherefore, any

compaction of this sort is of great value.

Using the compaction techniques described above, it is very easy to generate the

action table. The process simply examines each state and makes the actions for that

state. Once the actions for that state have been determined, the list of actions is

entered into the action table and an offset is returned. The table will only contain

distinct action lists, and therefore states with identical actions have the same offset

value.

27

Chapter Five

Output Subsystem

Once CLUCC has finished computing all the actions. it will create two output flies.

The first file is a documentation tile that describes the LALR(I) parsing tables, and

the second file contains the CLU code for the LALR(I} parsing tables. The

documentation file can be used to understand the parsing states. The CLU code

contains the tables needed by the parser.

5.1 The Docurnentatiou

This file contains description of the grammar, the goto and action tables. In

addition to these descriptions, this file will contain information about conflicts that

may have arisen in the process of constructing the tables for the grammar. The

modules that write out these descriptions are quite straightforward.

The description of the grammar consists of three parts: terminals, nonterminals,

and production rules. Each of these three grammar parts is numbered from one to

the number of elements in each part. The terminal and nonterrninal numbers

correspond to the same numbers that are used by scanning, parsing, and error

recovery phases of a compiler. The production rules are numbered so that it is

easier to describe reductions in the action table section.

The goto table description is organized by nonterminals. This is also how it is

organized in the CLU tables file. The description is a list of al] the nonterminals

with their lists of corresponding state transitions paks, (current, next),

28

Che action table description is a description of each slate in the LR(O) automaton.

11w description of a suite consists of two pans, the c-kernel and the actions. The

c-kernel is a set of [ems, and each item is prnted out us a production ft1C with its

dot (.‘) in the correct position. The actions are printed out according to the

terminal symbol. The shift and educe actions have the form:

shift S there is the next stale.

reduce p here p is the production nile number.

Since an accept action signals that parsing has been completed successfully, and an

error action only occurs as a default action, no arguments accompany these actions.

The default action is the last action printed for a state and is preceded by a dot “.‘.

If conflicts exist in the grammar, they are written out first. A conflict is described by

its state, the two actions which are in conflict, and the terminal that caused it. The

description file may be used to determine the cause of these conflicts by examining

the description of the particular states where the conflicts occurred.

5.2 The Parsing Tables

The parsing tables produced by CLUCC are in the form of a CLU cluster called

1 rtabl as. The parsing tables are embedded lexically in the the cluster. The cluster

consists of three parts, a head, the parsing tables, and a tail. The head of the cluster

has the names of the operations that may be performed on the tables, and the tail of

the cluster contains the code for the operations. The head and tail of the cluster are

always the same, independent of the CLUCC input. rtab1es provides six external

operations to use with a shift-reduce parser:

action lockup the action given a state and mid a terminal.

gota lockup the next state given a state and a nonterminal.

terrnl nal fetch the string associated with a given terminal number.

29

nonterminal lech string associated with a gien nonterminal number.

tercoun t return the number of terminals in the input grummar.

nantermcount return We number of nonerminals in the input grammar.

The tables are output in the middle or the cluster, and turned into sequences of

integers, and strings. Integers are unparsed into strings, and strings ha’e double

quotes appended to the beginning and end. There is one other type of sequence in

the CLU file, the sequence of procedure calls to be associated with each reduction.

These are referenced b name only. iThe procedures themselves are also output into

the middle of the cluster. The procedures have the form:

ruleN
proc(cstate: compiler_state, pv: attributes

returns(attribs)
return(PROC_CALL
end ruleN

where N is the production rule number, and PROC_CALL is the procedure call

associated with this production rule in the cluce input If a procedure call was not

associated with a production rule, then the default procedure rule is empty_rule.

empty_rule wilt return the first attribute on the right side of the production; if the

right side is empty, an empty attribute is returned.

The contents of the parsing tables fall into three categories: the grammar sequences.

the goto sequences, and the action sequences.

The grammar sequences consist of five sequences. The first two sequences are

sequences of strings. One contains the string names of each of the terminals, and

the other one contains the string names of each of the non-terminals. The next three

sequences contain information about the grammar rules. The index of the

sequences corresponds to the production rule number. One contains the sizes of the

right hand side of each production. One contains the number of the nonterminal

for that production. The East sequence contains the procedure names that will be

called upon the reduction ala production rule.

Jo

The primary function of the goto table is to choose the next state after a reduction.

Thus there is no need to keep inlormation about terminals and their nansitions in

the goto table. The goto table is a list of nonterminals followed by a list of pairs of

states (current, next). The goto table is organized by nonterminals for space

eFficiency. All the transitions in this list are valid Linder that nonterminal. There are

three integer sequences which comprise the goto table. The first two sequences

contain all the valid (current. next) transilions, one sequence contains the current

states, and the other conmins the next states. The last sequence contains the offsets

into these sequences for each nonterminal. The index of the offset sequence is the

nontermnaI number, and its content is the offset into the transition sequences. The

offset sequence has one more element than the total number of nontenninals. The

offset sequence is an ordered sequence, element i element i-i-!. ibis means

that transitions for nonterminal i are located in positions element i through

(element 1* 1)-! of the transition sequences.

The action tables is made up of four integer sequences. There are two offset

sequences. These two offset sequences are used because of the table compaction

algorithm for states with identical actions presented earlier. The first ofet

sequence contains the offsets for each state into the second offset sequence. The

second offset sequence contains offsets into the action sequence. The action

sequence is organized in groups of three elements starting from the first position,

The first element in the group is the terminal number for the lookahead, the second

number is that action number, and the third number is the argument for the action.

Since error and accept actions have no arguments, the element is not consulted for

this argument. For a shift action this argument is the next state number, and for a

reduce action this argument is the production number. The list of actions valid for a

particular state is terminated by a -1 in the first position. The last sequence contains

the defaults actions. The default action for a particular state is located at element s

31

here s is the sUite number. iThe definilt action will he the production number in

the case of a reduction, or zero in the case of an error.

32

Chapter Six

Experiences with the Development of CLUCC

CLUCC has been designed and implemented o efflciently produce a purser in time

and space. The one shortcoming CLUCC has with respect to YACC is that there is

no mechanism for controlling the use of ambiguous grammars. YACC controls the

use of ambiguous grammars, by specifying precedence and associativity,

CLUCC took about 25 40-hour weeks to write and debug. In that time many

different versions evolved in an attempt to gain time and space efficiency wherever

possible. For example, the normalization of the grammar, and the subsequent use

of bit vectors lead to an improvement of almost an order of magnitude for the time

necessary to generate the lookaheads.

In order to gather timing statistics CLUCC was made to display the cpu time at

similar points to YACC-20 during the parsing table generation. The total Cpu time

used by CLUCC to produce parsing tabies in CLU is about five times greater than

the Cpu time used by YACC-20 to produce parsing tables in C for the same input

This time factor is relatively the same for different sized grammars. This factor

drops a little with very large grammars. This time factor can largely be attributed to

the use of CLU instead of C. YACC-20 displayed the cpu time as it generated to

parsing tables. The timing statistics are not exactly comparable because the CLU

cpu time includes the time used for paging and C does not include this time.

When CLUCC is compared with CLU-YACC, it is found that CLUCC is about

four times faster than CLU-YACC. This statistic is purely speculative because the

cpu time for CLU-YACC to process the YACC-20 parsing tables is not displayed.

33

The time it takes to convert the tables from C to CLLI can only be estimated.

However rough an estimate, this is the important time statistic, since we are

concerned with the performance of conipilër’conipilers which generate CLU code,

not C code. CLUCC is also more practical than CLU-YACC because the parsing

tables are independent of the parser. This is advantageous because there is no need

to recompile the parser and the tables when changes are made to only one of them.

Displaying the cpu time at intervals in the generation, process, proved to be very

useful. The breakdown of the total cpu time showed where the bottlenecks were in

CLUCC. The time used by YACC-20 and CLUCC for 1/0 is essentially the same.

The time to generate the tables using CLUCC is much greater than the time it takes

in C. The time used to compute the lookaheads using CLLJCC is about ten times

slower than using YACC-20. Fortunately, the lookahead computation occupies the

least amount of time relative to the other sections.

Virtually no bugs have been discovered in CLLrCC. This is a result of the way the

project was divided so that it could be incrementally tested. Testing was performed

bottom up; as something was added, it was tested. The testing was greatly

simplified because CLI) codes algorithms so well, and it is easy to see which tt

cases are necessary. This eliminates a great deal of testing redundancy, and results

in a great time savings. Much of the testing was also simplified because CLU

supports modular programming so well,

CLUCC was used in an introductory course in compiler design at MIT this past

spring. This proved to be the best testing ground of all. Students are notoriously

good at finding bugs that exist in a program and MIT students are among the best.

There were one or two bugs discovered in the parser provided to work with the

tables that CLIJCC generated, but aside from these bugs CIWCC has worked

marvelously.

34

References

[AU 771
Aho, A. V. and Climan, J. D.
Principles ofCompiler Design.
Addison-Wesley, 1977.

[CLU 79]
B. Liskov et aL
CLU Reference ManuaL
Technical Report TR-225, Laboratory for Computer Science, Massachusetts

Institute of Technology, 1979.

35

