The following definitions have been establish for the tokens:

LITERAL ~any group of characters surrounded by matching quotes.
IDENTIFIER letter (letter | digit)

wgrms " s =" (referred to as the derivation symbol)

"\\" BN

LHS IDENTIFIER (contex! sensitive)

A LHS must be the first token on a line and be immediately
followed by a derivation symbol.

separators as defined in the character class table.

Once all comments, blanks, and line terminators have been eliminated, the class is
obtained for the next available character in the source stream. A lexical error may
occur in some of the following modules. When an error occurs, no token can be
returned. Therefore, an internal error routine is called which logs the error with the
compiler_state and calls get_next_token to get the next valid token to return. A
different routine is called for each class. Since all blanks, comments, and line
terminators have been eliminated, the only classes which are possible are error,

separator, slash, colon, quote, digit, and letter.

error. If the character is an error class character, then the internal error procedure

previously described is invoked.

separator. A separator class character calls token$make__separator with the

character and the current line number.

slash. This calls the get_s1ash_s1ash routine, and its purpose is to recognize a "\\"
delimiter. It checks if the next character is a "\", if it is, it returns slashslash
token, otherwise the internal error handling procedure is called for with the error

being the first back-slash character.

colon. This calls the get_derivation_symbol routine, and its purpose is to recognize

15

a derivation symbol. This procedure works analogously to get_slash_slash,
except that it must go a little further. First, it checks if the next characterisa ": ", if
it is, then this colon is read from the source stream, otherwise the internal error
handling procedure is called for with the error being the first colon character. At
this point ": : " has been recognized. Next, it checks if the next character is an "=",
if it is, it returns derivation_symbo1 token, otherwise get_derivation _symbo1l is

called. Itis called again because the scanner has detected a colon.

quote. This calls get_1iteral routine, and its purpose is to recognize literals, This
procedure simply reads the source stream until it reads a matching quote or an end-
of-line. If an end-of-line character is read, then an error message is logged stating
that the literal was improperly terminated. In either case, a 1iteral token is

returned, and the literal will have a trailing quote that matches its leading quote.

digit. This calls get_number routine, and its purpose is to recognize numbers. This
procedure simply reads digits from the source stream and appends them to a string
until it reads a non-digit character. Once it reads a non-digit character, a number is
recognized and token$make_number is called with the number string and the line

number.

letter. This calls the get_either_symbol routine, and its purpose is to recognize
symbols. This procedure simply reads characters from the source stream and
appends them to a string while it reads a letter or digit class character. Once it has
read a symbol, it must be determined whether this symbol is an LHS or just a name
symbol. In order to determine this, it is necessary to establish the context of this
symbol. Remember a symbol is an LKS if it is followed by a derivation symbol. This
is accomplished by getting the next token, inserting it into the lookahead buffer, and
checking if if it is a derivation symbol. If it is a derivation symbol then this symbol

is a nonterminal symbol, otherwise this symbol is a name symbol. This new token is

16

placed in the front of the lookahead buffer because of the recursive nature of this

operation.

If the end-of-file is reached, then an end-of-file token is returned.

3.1.2 Interfacing to the Parser

The basic purpose of the token cluster is to assign numbers to each of the tokens so
that the parser and error recovery phases can recognize them. Token numbers must
conform to the numbers associated with each terminal by CLUCC. The number of
a token is in the range [1, ... n], where n is the total number of tokens. A tokenis a
structure consisting of three elements, a token number that is used by the parser, a
line number for this token, and an attribute, which contains the semantic
information about a token. The attribute for a token is simply the string that the
scanner has read in. There are several make_ operations which construct particular
tokens, and three get_ operations each of which return one of the elements in the
structure. Along with these operations is an operation that will rétum true if a token
is a derivation symbol, and false otherwise; an operation that will make dummy
tokens given the token number and the line number; this is used in the error
. recovery section; and an operation, converts a token value to its string value. This
last operation actually returns the string value of the token which is contained in the

attribute.

3.2 Parsing

CLUCC's parsing phase was actually implemented twice. The first time the parser
was written using CLU-YACC, and when CLUCC was finished it was used to help
bootstrap CLUCC. Even though CLU-YACC has some bugs it did generate correct
parsing tables for CLUCC. These parsing tables successfully parsed CLUCC's

17

syntax. This parser only needed to correctly parse CLUCC's syntax because the
parsing tables that CLUCC would produce for itself would be substituted for the
parsing tables that CLU-YACC produced. This was not, however, the only test case
that this parser was given, it was also successfully tested with a grammar for a subset
of Modula2. This extra test was not necessary at this point, but it proved to be

useful input when testing later phases.

CLU-YACC and CLUCC use essentially the same parser. When CLU-YACC
outputs the tables it outputs them lexically contained within the parser. The CLU-
YACC parser references the tables through two internal functions 1raction and
1rgoto. The CLUCC parser is effectively the same parser except that the tables,
and the action and goto functions exist in the 1rtables cluster, and the parser is a
stand alone cluster that is independent of any particular grammar. The parser is
independent of the parsing tables for modularity. The implementation also adds
flexibility and time savings to the compiler being built. The user is not forced to use
a specific parser with his tables, and is free to use another LR Parser. Since the
parser is independent of the tables, there is no need to keep recompiling the tables

or the parser while developing the other.

The parser, in both cases, is implemented as a deterministic push-down automaton
(DPDA). Each frame on the stack contains three values: a grammar symbol, a state,
and the attribute associated with the state. The state on top of the parse stack is
related to preceding states by the action tables and goto tables constructed for the

grammar. Several of the parsing operations support syntax error recovery.

18

3.3 Error Recovery

A very crude error recovery could have been accomplished by reading tokens until
an LHS or end-of-file token is read. If an end-of-file token is read, then the error
cannot be recovered from, and parsing halts. Otherwise, this token is an LHS and
states are popped ﬁ'om the stack until an LHS token can be legzilly read. This
recovery scheme, while crude, would work very well with the syntax for BNF.
However, the syntax of CLUCC is much more complicated than a BNF syntax
because of the syntax of an action. Because of this added complexity, an error
recovery scheme like this would prove to be inadequate, and a more general error
recovery scheme is necessary. Even though the syntax of an action makes the
CLUCC syntax more complicated, the syntax is still rather simple and the error

recovery schemes necessary for each possible error are similar.

The error recovery scheme that CLUCC uses is a simple bounded range error
recovery scheme. The basic strategy is to make a patch, and then try to parse ahead

a fixed number of tokens, , called the bound, to see if the patch is correct.

When CLUCKC first encounters a syntax error, the error recovery scheme is invoked,
and an error message is written stating which line number the error occurred on,
what the contents of the token were, and what types of tokens it was expecting.
CLUCC then tries to patch the error. Patches fall into four different categories:
insert a token, replace the current token with another token, push a nonterminal
onto the parse stack, and pop the top state off the stack. Deleting a token is
considered a last ditch effort, and is only used when the other four types of patches
fail. It is considered a last ditch effort because discarding input should be avoided

unless absolutely necessary.

A patch is considered to be successful if the parser can parse ahead n tokens without

a syntax error, otherwise a patch is not successful and another one must be tried. If

- 19

all the patches are tried and none are successful, then the current token is deleted
from the token stream. This deletion, however, cannot occur if the current token is
an end-of-file token, if this occurs then, the error recovery has failed and a fatal

error is generated.

The minimum distance the error recovery scheme must parse ahead is seven tokens.
A smaller bound would not adequate]y test the patch to see if it were good and a
larger bound, along with being more expensive, may encounter another error and
therefore not allow recovery from the current error. If another error is encountered
within n tokens then the original token will automatically be deleted because no
other patch will work. This has dramatic effects because the recovery scheme may

delete all the tokens between the two tokens.

The order in which patches are tried is as follows: insert a token into the token
stream before the current token, replace the current token in the token stream, push
a nonterminal onto the parse stack, and pop the top state from the parse stack. Once
again, deleting the current token is the last operation performed. This is the order
because it the order of these patches minimizes the loss of information. Replacing a
token does discard some input, but there is no net loss of input since the token is
replaced with another token. Any state can be popped off the stack, because the
parser must parse ahead n tokens and this should prevent trouble from occurring. If

this patch does not work, the only alternative is to delete the current input token.

There is a list of terminals which is used to sort and eliminate tokens from the
parsers’ expected token list. This terminal list determines which terminals will be
inserted or replaced. The sort is performed by intersecting this terminal list with the
expected token list. The order of the resulting list is consistent with the order in the
terminal list. There is a corresponding nonterminal list that determines which

nonterminals will be pushed onto the parse stack. These lists are ordered in

20

preference of a patch, in other words, for example, there may exists two or more
terminals in the terminal list which will successfully parse ahead n tokens. The error
recovery scheme will take its first successful patch; therefore, the terminal list and
the nonterminal list should be ordered according to their preference for a successful
patch. Terminals and nonterminals that are undesirable at any cost must be left out

of their respective lists.

3.4 Grammar Building

The next phase of the project builds a representation of the input grammar and

associates an action with each production rule.

The grammar and actions are built by executing the translation rules that are
associated with the syntax reduction being performed. The grammar is initialized
with the list of tokens that precedes the rules. The semantic rules build the
production rules one at a time. Internally a rule is a record that consists of two parts,
a left hand side and a right hand side list. The left hand side is a string, and the right
hand side list is an array of right hand sides. A right hand side is a record that
consists of a symbol list and an action. The symbol list, is just a list of strings, and
the action is also just a string that represents a procedure call or is empty in the case
where no action is given. As each rule is synthesized it is inserted into the grammar.
If the left hand side has already been inserted into the grammar then the right hand
side list of this new rule is appended to the right hand side list of the existing rule.
The tokens which constitute an invocation are simply concatenated together to
generate a procedure call. The only exception is: "#" NUMBER, which is replaced by
pv[NUMBER], where pv is the name of the array containing the attributes. pv
stands for production variables. The grammar rules are represented by an AVL tree.
An additional list is also maintained to hold the order in which the nonterminals and
appear on the left hand side of the CLUCC input. The left hand side of the first

production symbol entered into the grammar is the start symbol.
' 21

Chapter Four

Processing Subsystem

4.1 Grammar Normalization

Once the grammar specification has been parsed, another pass is made over the
grammar. This pass assigns a distinct integer to each grammar symbol. The set of
integers associated with the nonterminals ranges from one to the total number of
nonterminals. Each nonterminal is assigned a number based on its first occurrence
on the left hand side of a production rule. The terminal numbers range from the
number of nonterminals plus one to the number of nonterminals plus the number of
terminals. The first terminal is assigned the value of the number of nonterminals
plus one. Each terminal is assigned a number based on its first appearance in the
grammar. Usually the order of the terminals is defined in the prefix section, but if a
symbol appears in the right hand side of some production and does not appear on
the left hand side of any production then it is assumed to be a terminal. Mapping all
the grammar symbols into a continuous set of integers allows for compact and
efficient representation of the structures that depend on the grammar. Since
terminals and nonterminals have a numeric representation, information about sets
of them is stored in bit vectors. Bit vectors provide an efficient way to store sets of
terminals and nonterminals. By using the bit vectors as sets, elements can easily be
added, and deleted. Bit vectors also merge two sets together very efficiently.
Merging quickly will be very useful in later parts of the project.

22

4.2 Function Descriptions

After the grammar has been normalized, there are a five sets of computations that

are useful to perform before computing the tables. They are:

EMPTY The set of all nonterminals 4 such that 4 =" g,

FIRST For each nomermin*al A in the grammar, the set of all terminals a
such thatand 4 = ay.

LEFTNONTERM For each nonterminal A in ‘Lhe grammar, the set of all
nonterminals B such that 4 = Bz and the last step does not
use an e-production.

LEFTTERM For each nontermipal A in the grammar, the set of all terminals a
such that 4 = az and the last step does not use an
g-production,

LEFTEMPTY For each nonterminal 4 in the grammar, the set of all
nonterminals B such that B is a member of LEFTNONTERM(A4)
andand B = ¢

These functions help generate the parsing tables for a grammar. The rm of =~;m
means that the derivation is a rightmost derivation. These functions can be
calculated quite easily and quickly using bit vectors as previously discussed. The
computation of the LEFTTERM, LEFTNONTERM and LEFTEMPTY functions can be
carried out simultaneously, because of the recursive depth-first nature of the

production rules.

4.3 Constructing LALR(1) Sets-of-Items

The parser is a one operation cluster rather than a procedure. This was done to

isolate the internal operations that are used only to generate the parsing tables.

23

4.3.1 ltems, Lookaheads, and Sets-of-ltems

An item is a dotted production rule. The dot indicates how much of the right-hand-
side has been seen by the parser when the parser is in that state. An item also
contains a lookahead set, to assist the parser in making action decisions. A
lookahead set is a bit vector. This greatly helps the calculating speed of the

lookaheads.

A set-of-items is an ordered set of items. The symbol to the immediate right of the
dot is a transition symbol for the state identified by this set-of-items. The items are
sorted based on the production number and the position of the dot. Each state is
identified by its set-of-items and completely specified when all the GOTO transition

information has been generated.

The act of closing a set-of-items consists of adding certain new dotted productions to
the existing set-of-items. For each symbol immediately to the right of a dot, the set
of productions with this non-terminal symbol as a left hand side is added, with the
dot appearing in the leftmost position of the right hand side. In the case of a

canonical LR(1) closure, lookaheads are propagated from one item the the next.

A kernel is a set of items. It is the collection of those items not added in the closure.

4.3.2 LR(0) Sets-of-Items Construction

The GOTO automaton consists of parsing states and the transitions between them.
In order to keep track of the construction of the GOTO automaton, an "exploration
list" will be kept. The exploration list contains those states that have not had their
GOTO states generated. Each element of this list is a state from which exploration
is still needed, together with those grammar symbols for which shifts are defined
from that state, and for which exploration from that state still needs to be carried
out. This exploration list is a queue and the automaton is generated in breadth-first

order.
24

