
The following deflniüons h:i e been establish for the tokens:

LITERAL any group olcharacters surrounded by matching quotes.

IDENTIFIER /etter(leIierI digit)t

“: s’ c 0-eferred to as the derivation symbol)

\\fl S\fl

LHS IDENTIFIER (context sensitive)
A LHS must be the first token on a inc and be immediately
followed by a derivation symbol.

separators as defined in the character class table.

Once all comments, blanks, and line terminators hae been eliminated, the class s

obtained for the next available character in the source stream. A lexical error may

occur in some of the following modules. When an error occurs, no token can be

returned. Therefore, an internal error routine is called which logs the error with the

cowpt1er_state and calls get_nexctoken to get the next valid token to return. A

different routine is called for each class. Since all blanks, comments, and line

terminators have been eliminated, the only classes which are possible are error,

separator, slash, colon, quote, digit, and letter.

error. If the character is an error class character, then the internal error procedure

previously described is invoked.

separator. A separator class character calls tolcen$make_separator with the

character and the current line number.

slash This calls the got_slash_slash routine, and its purpose is to recognize a W\\W

delimiter. It checks if the next character is a “\, if it is, it returns slashslash

token, otherwise the internal error handling procedure is called for with the error

being the first back-slash character.

colon. This calls the got_derlvatlon_synibol routine, and its purpose is to recognize

15

a derivation ssmbol. This procedure works un&ogously to gat_slash_slash,

except that it must go a liltIe further. First. ii checks if the next character is a , if

it is, then this colon is read from the source stream, other% se the internal error

handling procedure is called For with the error being the first colon character. At

this point”: : has been recognized. \ext. it checks ilthe neKt character is an ‘s”,

if it is, it returns derlvat1on_s’mbo1 token. otherwise get._.derivatlonzsymbol is

called. It is called again because the wanner has detected a colon.

quote. This calls get_Il teral routine, and its purpose is to recognize literals. This

procedure simply reads the source stream until it reads a matching quote or an end-

of-line. If an end-of-line character is read, then an error message is logged stating

that the literal was improperly terminated. In either case, a lIteral token is

returned, and the literal will have a trailing quote that matches its leading quote.

digit. This calls got_number routine, and its purpose is to recognize numbers, ibis

procedure simply reads digits from the source stream and appends them to a string

until it reads a non-digit character. Once it reads a non-digit character, a number is

recognized and tokon$naIc&._nunber is called with the number string and the line

num her.

leiter. This calls the get_elthar_.syrnbol routine, and its purpose is to recognize

symbols. This procedure simply reads characters from the source stream and

appends them to a string while it reads a letter or digit class character. Once it has

read a symbol, it must be determined whether this symbol is an LHS or just a name

symbol. In order to determine this, it is necessary to establish the context of this

symbol. Remember a symbol is an LHS if it is followed by a derivation symbol. This

is accomplished by getting the next token, inserting it into the lookahead buffer, and

checking if if it is a derivation symbol. I F it is a derivation symbol then this symbol

is a nonterminal symbol, otherwise this symbol is a name symbol. This new token is

16

placed in the front of the loukahead buffer because of the recursive nature of this

operation.

If the end-ofJFk’ is reached. then an end-of-rile token is returned,

II.! Interlacing to the Parser

The basic purpose of the token cluster is to assign numbers to each of the tokens so

that the parser and error recovery phases can recognize them. Token numbers must

conform to the numbers associated with each terminal by CLUCC. The number of

a token is in the range [1, ... n], where n is the total number of tokens. A token is a

structure consisting of three elements, a token number that is used by the parser, a

line number for this token, and an attribute, which contains the semantic

information about a token. The attribute for a token is simply the string that the

scanner has read in. There are several make_ operations which construct particular

tokens, and three get_ operations each of which return one of the elements in the

structure, Along with these operations is an operation that will return true if a token

is a derivation symbol, and false otherwise; an operation that will make dummy

tokens given the token number and the line number; this is used in the error

recovery section; and an operation, converts a token value to its string value. This

last operation actually returns the string value of the token which is contained in the

attribute.

3.2 Parsing

CLUCCs parsing phase was actually implemented twice. The first time the parser

was written using CLU-YACC, and when CLUCC was finished it as used to help

bootsirap CLUCC. Even though CLU-YACC has some bugs it did generate correct

parsing tables for CLUCC. These parsing tables successFully parsed CLUCC’s

17

syntax. This parser only needed to correctly parse CLUCCS syntax because the

pursing tables that CLLJCC would produce for itself wou’d be substitLited for the

pursing tables that CLU-YACC produced. This was not, however, the offly test case

that this parser was given, it was also successfully tested with a gramniar for a subset

of NloduJa2. This extra test was not necessary at this point, but it proved to be

useful input when testing later phases.

CLIJ-YACC and CLUCC use essenliaIl\ the same parser, Vhen CLLJ-YACC

outputs the tables it outputs them lexicall’ contained within the parser. The CLU

YACC parser references the tables through two internal fUnctions lractlon and

irgoto. The CLUCC parser is effectively the same parser except that the tables,

and the action and goto functions exist in the lrtables cluster, and the parser is a

stand aione cluster that is independent of any particular grammar. The parser is

independent of the parsing tables for modularity. The impkmentation also adds

flexibility and time savings to the compiler being built. The user is not forced to use

a specific parser with his tables, and is free to use another LR Parser. Since the

parser is independent of the tables, there is no need to keep recompi[ing the tables

or the parser while developing the other.

The parser, in both cases, is implemented as a deterministic push-down automaton

(DPDA). Each frame on the stack contains three values: a grammar symbol, a state,

and the attribute associated with the state. The state on top of the parse stack is

related to preceding states by the action tables and goto tables constructed for the

grammar. Several of the parsing operations support syntax error recovery.

18

3.3 Error Recovery

A very crude error recovery could have been accomplished by reading tokens until

an LHS or end-of-file token is read. If an end-of-file token is read, then the error

cannot be recovered from, and parsing halts. Otherwise, this token is an LKS and

states are popped from the stack until an LHS token can be legally read. This

recovery scheme, while crude, would work very well with the syntax for BNF.

However, the syntax of CLUCC is much more complicated than a BNF syntax

because of the syntax of an action. Because of this added complexity, an error

recovery scheme like this would prove to be inadequate, and a more general error

recovery scheme is necessary. Even though the syntax of an action makes the

CLUCC syntax more complicated, the syntax is still rather simple and the error

recovery schemes necessary for each possible error are similar.

The error recovery scheme that CLLJCC uses is a simple bounded range error

recovery scheme. The basic strategy is to make a patch, and then try to parse ahead

a fixed number of tokens, n, called the bound, to see if the patch is correct

When CLUCC first encounters a syntax error, the error recovery scheme is invoked,

and an error message is written stating which line number the error occurred on,

what the contents of the token were, and what types of tokens it was expecting.

CLUCC then tries to patch the error. Patches fall into four different categories:

insert a token, replace the current token with another token, push a nonterminal

onto the parse stack, and pop the top state off the stack. Deleting a token is

considered a last ditch effort, and is only used when the other four types of patches

fail. It is considered a last ditch effort because discarding input should be avoided

unless absolutely necessary.

A patch is considered to be successful if the parser can parse ahead n tokens without

a syntax crc-or, otherwise a patch is not, successFul and another one must be tried. If

19

all the patches are tried and none are successful, then the current token is deleted

from the token stream. This deletion, however, cannot occur if the current token is

an end-of-file token, if this occurs then, the error recovery has failed and a fatal

error is generated.

The minimum distance the error recovery scheme must parse ahead is seven tokens.

A smaller bound would not adequately test the patch to see if it were good and a

larger bound, along with being more expensive, may encounter another error and

therefore not allow recovery from the current error. If another error is encountered

within ii tokens then the original token will automatically be deleted because no

other patch will work. This has dramatic effects because the recovery scheme may

delete all the tokens between the two tokens.

The order in which patches are tried is as follows: insert a token into the token

stream before the current token, replace the current token in the token stream, push

a nonterminal onto the parse stack, and pop the top state from the parse stack. Once

again, deleting the current token is the last operation performed. This is the order

because it the order of these patches minimizes the loss of infomiation. Replacing a

token does discard some input, but there is no net loss of input since the token is

replaced with another token. Any state can be popped off the stack, because the

parser must parse ahead ii tokens and this should prevent trouble from occurring. If

this patch does not work, the only alternative is to delete the current input token.

There is a fist of terminals which is used to sort and eliminate tokens from the

parsers’ expected token list. This terminal list determines which terminals will be

inserted or replaced. The sort is performed by intersecting this terminal list with the

expected token list. The order of the resulting Jist is consistent with the order in the

terminal list. There is a corresponding nonterminal list that determines which

nonterminals will be pushed onto the parse stack. These lists are ordered in

20

preference of a patch, in other words, for example, there may exists two or more

terminals in the terminal list which will successfully parse ahead n tokens, The error

recovery scheme will take its first successful patch; therefore, the terminal list and

the nonterminal list should be ordered according to their preference for a successful

patch. Terminals and nonterminals that are undesirable at any cost must be left out

of tiieir respective lists.

3.4 Gramniar Building

The next phase of the project builds a representaflon of the input grammar and

associates an action with each production rule.

The grammar and actions are built by executing the translation rules that are

associated with the syntax reduction being performed. The grammar is initialized

with the list of tokens that precedes the rules, The semantic rules build the

production rules one at a time. Internally a rule is a record that consists of two parts,

a left hand side and a right hand side list. The left hand side is a string, and the right

hand side list is an array of right hand sides, A right hand side is a record that

consists of a symbol list and an action. The symbol list, is just a list of strings, and

the action is also just a string that represents a procedure call or is empty in the case

where no action is given. As each nile is synthesized it is inserted into the grammar.

If the left hand side has already been inserted into the grammar then the right hand

side list of this new rule is appended to the right hand side list of the existing rule.

The tokens which constitute an invocation are simply concatenated together to

generate a procedure call. The only exception is: “0K NUMBER, which is replaced by

pv[NUMBER], where pv is the name of the array containing the attributes. pv

stands for production variables. The grammar rules are represented by an AVL tree.

An additional list is also maintained to hold the order in which the nornerminals and

appear on the left hand side of the CLUCC input The left hand side of the first

production symbol entered into the grammar is the start symbol.

21

Chapter Four

Processing Subsystem

41 Grammar Noriiialization

Once the grammar specification has been parsed, another pass is made over the

grammar. This pass assigns a distinct integer to each grammar symbol. 11w set of

integers associated with the nonterminals ranges from one to the total number of

nonterminals. Each nonterminal is assigned a number based on its first occurrence

on the left hand side of a production rule. The terminal numbers range from the

number of nonterminals plus one to the number of nonterminals plus the number of

terminals. The first terminal is assigned the value of the number of nonterminals

plus one. Each terminal is assigned a number based on its first appearance in the

grammar. Usually the order of the terminals is defined in the prefix section, but if a

symbol appears in the right hand side of some production and does not appear on

the left hand side of any production then it is assumed to be a terminal. Mapping all

the grammar symbols into a continuous set of integers allows for compact and

efficient representation of the structures that depend on the grammar. Since

terminals and nonterminals have a numeric representation, information about sets

of them is stored in bit vectors. Bit vectors provide an efficient way to store sets of

terminals and nonterminals. By using the bit vectors as sets, elements can easily be

added, and deleted. Bit vectors also merge two sets together very efficiently.

Merging quick1 will be very useful in later parts of the project

22

4.2 Function Descriptions

After the gramniur has been normalized, there are a five sets of computations that

are usefut to perform before computing the tables. They are:

ENIPIY The set oral! nonterminals A such that A

For each nonterminal A in the grammar, the set of all terminals a
such that and A : ay.

TIYINONIERM For each nonterminal A in the grammar, the set of all
nonterminals B such that A Bz and the last step does not
use an s-production.

LEETTERM For each nonterminal A in the grammar, the set of all terminals a
such that A az and the last step does not use an
c-production.

IEFTEMPTY For each nonterminal A in the grammar, the set of all
nonterminals B such that B is a member of LEFINONTERM(A)

andandB -‘ c

These functions help generate the parsing tables for a grammar. The mi of

means that the derivation is a rightmost derivation. These functions can be

calculated quite easily and quickly using bit vectors as previously discussed. The

computation of the LEFFLERM, LEFTNONTERM and LEFTEMPTY functions can be

carried out simultaneously, because of the recursive depth-first nature of the

production rules.

4.3 Constructing LALR(1) Sets-of-Items

The parser is a one operation cluster rather than a procedure. This was done to

isolate the internal operations that are used only to generate the parsing tables.

23

4,3.1 Items, Lookalicads. and Sets-of-Reins

An iteni is a dotted production rule. The dot indicates how much of the right-hand-

side has been seen h the parser “lien the parser is in that state. An item also

contains a lookahead set. to assist the parser in making action decisions. A

lookahead set is a bit vector. This greatly helps the calculating speed of the

lookaheads.

A sd-of-items is an ordered set of items. The s mbol to the immediate dght of the

dot is a transition symbol for the state identified by this set-of-items. The items are

sorted based on the production number and the position of the dot. Each state is

identified by its set-of-items and completely specified when all the GOTO transition

information has been generated.

The act of closing a set-of-items consists of adding certain new dotted productions to

the existing set-of-items. For each symbol immediately to the right of a dot, the set

of productions with this non-terminal symbol as a left hand side is added, with the

dot appearing in the leftmost position of the right hand side. In the case of a

canonical LR(1) closure, lookaheads are propagated from one item the the next

A kernel is a set of items. It is the collection of those items not added in the closure.

4.3.2 LR(O) Sets-of- Items Construction

The GOTO automaton consists of parsing states and the transitions between them.

In order to keep track of the construction of the GOTO automaton, an exploration

list” will be kept. The exploration list contains those states that have not had their

GOTO states generated. Each element of this list is a state from which exploration

is still needed, together with those grammar symbols for which shifts are defined

from that state, and for which exploration from that state still needs io be carried

out. This exploration list is a queue and the automaton is generated in breadth-first

order.
24

