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Abstract

In wireless networks, consisting of battery-powered devices, energy is a costly resource and most

of it is spent on transmitting and receiving messages. Broadcast is a problem where a message needs

to be transmitted from one node to all other nodes of the network. We study algorithms that can

work under limited energy measured as the maximum number of transmissions by a single station.

The goal of the paper is to study tradeoffs between time and energy complexity of broadcast problem

in multi-hop radio networks. We consider a model where the topology of the network is unknown

and if two neighbors of a station are transmitting in the same discrete time slot, then the signals

collide and the receiver cannot distinguish the collided signals from silence.

We observe that existing, time efficient, algorithms are not optimized with respect to energy

expenditure. We then propose and analyse two new randomized energy-efficient algorithms. Our

first algorithm works in time O((D + ϕ) · n1/ϕ
· ϕ) with high probability and uses O(ϕ) energy

per station for any ϕ ≤ log n/(2 log log n) for any graph with n nodes and diameter D. Our second

algorithm works in time O((D+log n) log n) with high probability and uses O(log n/ log log n) energy.

We prove that our algorithms are almost time-optimal for given energy limits for graphs with

constant diameters by constructing lower bound on time of Ω(n1/ϕ
·ϕ). The lower bound shows also

that any algorithm working in polylogaritmic time in n for all graphs needs energy Ω(log n/ log log n).

1 Introduction

The problem of broadcast consists in delivering a single message from a source to all the nodes of a
communication network. In multi-hop networks, neighboring stations can send messages to each other
but when two neighbors of one station are sending at the same time, then these transmissions interfere
and the messages are not delivered. Such a situation is in our model indistinguishable from silence (no
collision detection). That is a station can locally distinguish only the case where exactly one neighbor
transmits from all the other situations. The broadcast problem is fundamental in radio networks because
it can be used to learn the topology of the network or as a subprocedure to other, more complex problems,
like multi-message broadcast or gossiping [8]. It also allows to emulate single-hop (networks where any
two stations can exchange messages) algorithms in multi-hop networks [2].

Two most important parameters of an algorithm in radio networks is the time complexity, measured as
the number of steps necessary to complete the execution, and energy complexity, which is the maximum
number of rounds in which a station is transmitting. For single-hop networks both time and energy
complexity of broadcast algorithms has been well studied. However, in the more general case, for multi-
hop networks, only time complexity was analyzed. Only very recently the first article appeared studying
time and energy in multi-hop networks [6]. We aim at showing algorithms that minimize the time as
well as the energy in multi-hop networks. We want to also show a tradeoff between time and energy for
broadcasting protocols. This will allow greater flexibility when designing algorithms by decreasing the
maximum energy expenditure of a station at a cost of the runtime of the algorithm. Clearly, minimizing
the energy cost can sometimes be a critical aspect of real-life systems as they are often composed of
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small, cheap, battery-powered devices whose batteries cannot be easily recharged or replaced. For such
systems it may be reasonable to sacrifice time and save some energy of the stations.

1.1 Model and Problem Statement

In this paper we consider a radio network represented as an undirected, connected graph G = (V,E),
where the nodes symbolize stations and the edges are bidirectional communication links between them.
By n we denote the number of nodes of the graph and by D its diameter. We assume that the nodes
are given value of n and the energy limit ϕ. The stations do not know the topology of the network, are
identical and do not have any labels. Symmetry between the stations can be in our model broken as the
stations have access to independent sources of random bits.

Time is divided into discrete rounds and all the stations know the number of the current round. The
model is synchronous and in each round each node either transmits a message or listens. Each station
receives a packet from its neighbors only if it listens in a given round and exactly one of its neighbors
is transmitting. We say that a Single occurs in such a round. If zero or more than one neighbor of v
transmits, then v receives no message.

The single-message broadcast problem is defined as follows. Initially some node, called originator
has a message and the goal is to deliver this message to all the nodes in the network. We assume that
the nodes that have not received the message are not allowed to make any transmissions. In our setting
broadcast can be also seen as a wakeup of the network.

Energy metrics We define ev, an energetic effort of a station v ∈ V , as the number of rounds when v
transmitted. Note that both successful as well as unsuccessful (due to collisions) transmissions count. We
will say that algorithm uses energy at most E if maxv∈V ev ≤ E. In other words we aim at limiting the
energetic expenditure of all stations that are present in the network since we need all stations working.
We will consider Monte Carlo algorithms using energy E and time T working with probability p which
will be understood that the algorithm always terminates after at most T steps and each station uses at
most E energy and the broadcast is successful with probability at least p. The same definition was used
for example in [18, 24, 29].

In some of the existing protocols the energy expenditure is a random variable and in order to compare
it with our solutions we will analyse their energy metric defined as the expected maximum amount of
energy spent by a station: E[maxv∈V ev]. Such a definition was used for example in [23]. Note that in
some articles in radio networks, also listening to the channel costs energy (see e.g., [4, 6, 7]). However in
this work we assume that the transmission of a packet costs much more energy than reception of it and
therefore we aim at minimizing only the number of transmissions by each station.

Notation For any k, set of integers {1, 2, . . . , k} is denoted by [k]. By log x we denote logarithm at
base 2 of x and by lnx the natural logarithm.

1.2 Our results

In this paper we present two energy-efficient broadcast algorithms and a lower bound. We first show an
universal algorithm BB-Broadcast in which the available energy is a parameter. This allows us to obtain
a complete tradeoff between time and energy for any fixed energy between constant and logn/ log logn.
The second algorithm GD-Broadcast is a modification of the broadcast algorithm from [2]. The goal of
the second algorithm is to perform broadcast in the same (almost-optimal) time as in [2] but reduce its
energy complexity. The obtained algorithm has energy complexity O(log n/ log logn) which we will later
show to be the minimum energy complexity for any algorithm with time polylogarithmic in n. We also
present a lower bound which shows that our algorithms are almost time-optimal for graphs with constant
diameter.
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Time Energy Prob. Remarks Ref.

O((D + logn) logn) O
(

log n
log logn

)
1− 1/n Thm 7

O
((

D + log n
α log log n

)
log1+α n

(α−1) log log n

)
log(n/ǫ)
α log logn + o(1) 1− ǫ α > 1 Thm 4

Ω
(

log1+α n
α log logn

)
logn

α log logn const. constant D Corr 9

O
(
(D + ϕ) · n1/ϕ · ϕ

) ⌈
ϕ ·
(
1 + log 2/ǫ

log n

)⌉
1− ǫ ϕ ≤ logn

2 log logn , ǫ > n−3 Thm 4

Ω(n1/ϕ · ϕ) ϕ const. constant D Corr 9

Table 1: Summary of our results. For example by setting ϕ =
√
log n

log logn shows that there exists an

algorithm with energy O
(√

logn
)

and time Õ(D · 2
√
log n) whereas time Ω(2

√
logn) is required for such

energy for some graphs with constant diameter. Similarly for energy O(log logn), our algorithm uses

Õ(D · n1/ log logn) time steps.

1.3 Related work

Broadcast problem Very recently Chang et al. [6] presented the first results on the energy complexity
of broadcast in the multihop networks in various settings. Their assumptions differs however from ours
in two aspects. In [6] the authors assume that the stations which have not received the message are
allowed to make transmissions. Secondly the energy complexity in [6] includes the number of times
a station listens to the channel. Because of that the minimal energy complexity can be shown to be
Ω(log∆ logn) for graphs with maximum degree ∆. The authors in [6] show for example an algorithm

with time complexity O
(
D1+ǫ logO(1/ǫ) n

)
and energy O

(
logO(1/ǫ) n

)
for the model without collision

detection.
The first randomized broadcast protocol presented by Bar-Yehuda et al. [3] for the model without

collision detection works in any multi-hop network in time O
(
D logn+ log2 n

)
with high probability. It is

based on Decay procedure from [2] extensively used also in many other papers. Improved protocols with
expected time O

(
D log(n/D) + log2 n

)
have been independently proposed by Czumaj and Rytter [10]

and Kowalski and Pelc [26]. Those results are optimal due to the lower bounds Ω(log2 n) shown by
Alon et al. [1] and Ω(D log(n/D)) by Kushilevitz and Mansour [28]. Recently Haeupler and Wajc [17]
proved that if stations are allowed to make transmissions before receiving the message then broadcast

can be completed in time O
(
D · logn log log n

logD + logO(1) n
)

which was improved by Czumaj and Davies [9]

to O
(
D · logn

logD + logO(1) n
)
.

In the model with known topology Gasieniec et al. [14] showed a randomized algorithm with time
O
(
D + log2 n

)
and Kowalski and Pelc [27] showed a deterministic algorithm with the same complexity.

The algorithms are time-optimal since the bound Ω(log2 n) by Alon et al. [1] holds also for the known
topology. In some papers, broadcast in specific graph classes, like line [11] or planar graphs [12, 14] was
considered.

In the model with collision detection (Receiver-CD), where listening stations can distinguish between
silence and collision, Ghaffari et al. [15] presented randomized protocol with expected time O

(
D + log6 n

)

for networks with unknown topology.

Energy efficient protocols Many problems have been discussed in the context of energy complexity
in the single hop networks. Bender et al. [4] presented algorithm for contention resolution (where each
station has to transmit a message to the shared channel) achieving constant throughput using on average
only O(1) energy for transmitting and O(log(log∗ N)) for listening per station, where N is the (known)
size of the devices’ ID space. Problems of leader election, size approximation and census have been
studied by Chang et al. [18], who considered models of Receiver-CD and also Sender-CD (where a
station that sends the message receives feedback whether the transmission was successful but receiver
cannot detect collisions). For leader election in randomized settings with unknown number of stations n,
they proved surprising gap between energy Θ(log∗ n) in Sender-CD and Θ(log(log∗ n)) in Receiver-CD.
In deterministic setting, the exponential gap turned out to be in the reverse direction: Θ(logN) for
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Receiver-CD and Θ(log logN) for Sender-CD.
Jurdzinski et al. [20] proved lower bound Ω(log logn/ log log logn) for energy complexity of leader

election in Sender-CD. The same authors presented algorithm with energy complexity O
(√

logn
)

[22].
In [21] Jurdzinski et al. presented size approximation with polylogarithmic execution time and energy
complexity o(log log n). In [23] Kardas et al. constructed an algorithm in Strong-CD model (both sender
and receiver can detect collisions) with O(log log logn) expected energy and O(logǫ n) time for ǫ > 0.

In Strong-CD the stations can assign themselves unique identifiers in range [n], using O(log log n)
energy [5, 30].

2 Analysis of classic protocols

In this section we discuss energy complexity of classic broadcasting protocols with optimal (or close to
optimal) execution time. We will prove that they were not optimized with respect to energy complexity.
All proofs from this section are deferred to Appendix.

In [3] Bar-Yehuda, Goldreich and Itai presented an algorithm working in time O
(
D logn+ log2 n

)
.

This algorithm uses procedure Decay which is also utilized in many other protocols.

Fact 1. The energy complexity of Bar-Yehuda, Goldreich and Itai protocol is Θ(logn log logn).

Czumaj and Rytter [10] presented an asymptotically time-optimal algorithm working under the assump-
tion that D = Ω(log3 n) in time O

(
D log(n/D) + log2 n

)
.

Fact 2. The energy complexity of Czumaj and Rytter protocol is Ω(D) for D = Ω(log3 n).

The same (optimal) time complexity achieve algorithm by Kowalski and Pelc [26].

Fact 3. The energy complexity of Kowalski and Pelc protocol is Ω(D) if D = Ω(n2/3) and Ω(log n log logn)
otherwise.

Facts 1, 2 and 3 are motivation for our study. We observed that the existing algorithms cannot work
using energy lower than Ω(logn log logn). Moreover it is not clear if it is possible to directly convert
these algorithms in order to use them under any energy limit.

All of the existing procedures use the following framework. Each station in i-th round after receiving
the message transmits with some probability pi. In single-hop model, algorithms in which all stations
transmit with the same probability in a given round are called uniform. One approach to design energy-
efficient algorithms based on the existing uniform-like ones would be to decrease the probabilities pi.
Observe however that if pi < 1/n̂ (where n̂ is the number of stations trying to transmit to the same
node) then Pr[Single] ≈ pin̂ and decreasing the probabilities pi by a factor of 2 decreases the probability
of Single by a factor of close to two which in turn increases the runtime of the algorithm. If the runtime
is larger by a factor close to 2 and the probabilities pi are smaller by the same factor then from the
perspective of a single node, the average total energy spent on transmitting does not change. Hence the
gain in terms of energy efficiency from such modification is probably small. To develop energy efficient
algorithms for multi-hop broadcast we will need a different approach – we will propose an approach based
on a classical problem Balls into Bins.

3 Energy-efficient broadcast algorithms

In this section we present two new algorithms. The first, BB-Broadcast ("Balls-into-Bins Broadcast")
can work with arbitrarily small (also constant) available energy. Of course smaller energy leads to higher
running time. The second algorithm GD-Broadcast ("Green Decay Broadcast") is built based on classical
Broadcast by Bar-Yehuda et al. [3]. Our GD-Broadcast algorithm works in the same asymptotic time
as the original one, but has reduced energy complexity O(logn/ log logn). We will later show that any
algorithm that works in polylogarithmic time on graphs with constant diameter needs at least this much
energy.
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3.1 Balls into Bins

Here we introduce a subprocedure Balls-into-Bins(k) that will be used in both our algorithms. In this
subprocedure each participating station transmitts in one, randomly chosen out of k time slots. Balls
into Bins (called also Random Mapping) is a classical concept in probability theory with applications in
load balancing where the studied value is usually the maximum number of balls in any bin (e.g. [25]). In
our setting, balls correspond to transmissions by the stations and bins are the time slots, hence we are
interested whether some bin contains exactly one ball as this corresponds to a successful transmission.

1 Let t be the first time slot of the subprocedure
2 Choose a random number i ∈ [0, 1, .., k − 1]
3 Transmit in slot t+ i

Algorithm 1: Balls-into-Bins(k)

In the following lemma we bound the probability that in a procedure Balls-into-Bins(k) there is a slot
that is chosen by exactly one station.

Lemma 1. If m neighbors of any fixed node v are performing procedure Balls-into-Bins(k) with k =
24⌈n1/ϕ⌉ + 1 if 1 ≤ ϕ < logn

log log n and if 1 ≤ m ≤ 12/ϕ · n1/ϕ lnn then v receives the message with

probability at least 1− 1
2n1/ϕ for sufficiently large n.

Proof. The probability that v receives the message is equal to the probability that when throwing m
balls into k bins (independently and uniformly at random) at least one bin contains a single ball.

The case m = 1 is trivial. Consider case 1 < m < 12⌈n1/(2ϕ)⌉. Take the two last balls and observe
that the probability that (at the moment when each of the balls is thrown) either of them lands in one
of the bins that have not been already occupied is at least

1−
(
12⌈n1/(2ϕ)⌉

k

)2

.

With probability 1/k the last two balls collide hence with probability at least

1−
(
12
⌈
n1/(2ϕ)

⌉

k

)2

− 1

k
≥ 1− 1

2n1/ϕ
,

at least one of the two last balls ends up as the only ball in one of the bins. For 12/ϕ · n1/ϕ lnn ≥ m ≥
12⌈n1/(2ϕ)⌉ we use [24, Lemma 4] and obtain:

Pr[X = 0 ] ≤ exp

(
−m

2

(
1− 1

k

)2m−2
)

= exp


−m

2

((
1− 1

k

)k−1
) 2m−2

k−1




≤ exp

(
−m

2

(
exp

(
−2m− 2

k − 1

)))
= f(m, k).

The derivative of f(n, k) with respect to m is equal to:

exp

(
−m

2

(
exp

(
−2m− 2

k − 1

))
−
(
exp

(
−2m− 2

k − 1

)))
·
(

m

k − 1
− 1

2

)
.

The function has a single minimum for 2m = k−1 and because the derivative is negative for 2m < k−1,
the maximum value is attained in one of the endpoints of the considered interval. Knowing that ϕ <

logn
log logn , we get

f(12⌈n1/(2ϕ)⌉, 24⌈n1/ϕ⌉+ 1) ≤ exp
(
−6n1/ϕ

)
≤ 1

2n1/ϕ
.

f(12⌈1/ϕ · n1/ϕ lnn⌉, 24⌈n1/ϕ⌉+ 1) ≤ exp

(
−6/ϕ · n1/ϕ lnn exp

(
−24⌈1/ϕ · n1/ϕ lnn⌉

24⌈n1/ϕ⌉

))
≤ 1

2n1/ϕ
,
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This lemma cannot be easily improved by more than a constant factor, since in Balls into Bins
problem if we want each bin to contain at least b balls, the total expected needed number of needed
balls is close to k log k + (b − 1) · k log log k [31]. And the concentration bound is very strong – having
k log k+ k log log k+ ak balls, the probability that each bin contains at least two balls is for large a close
to e−e−a

[13].

3.2 Balls into Bins Broadcast

The goal of this section is to design an algorithm that uses at most O(ϕ) transmissions and has time
complexity roughly O

(
D · n1/ϕ · ϕ

)
for any ϕ > 0. The idea of the algorithm is as follows. We consider

the algorithm from the perspective of a fixed node u at the first step when at least one of its neighbors
v has the message. The goal is to deliver the message to u with high probability in time O

(
n1/ϕ

)
.

Each participating station (neighbor of u that has the message) choses a phase being a number chosen
according to geometric distribution with parameter ϕ/n1/ϕ. We will show that regardless of how many
participants are there, some value will be chosen by at most O

(
n1/ϕ/ϕ · lnn

)
stations. Each phase is a

Balls-into-Bins(n1/ϕ) procedure. We already know that if the number of participants is O
(
n1/ϕ/ϕ · lnn

)
,

then the failure probability of such procedure is at most n−1/ϕ. Then, repeating it 2ϕ times will give
us high probability. This intuition is further specified in the following pseudocode and formalized in the
next two lemmas.

1 a←
⌈

ϕ logn
log n−ϕ logϕ

⌉

2 k← 24⌈n1/ϕ⌉+ 1
3 tph ← ak
4 Wait until receiving the message;
5 repeat

6 Wait until (T ime mod tph) = 0

7 Choose a number x ∼ Geo(ϕ/n1/ϕ)
8 Skip (min{x, a} − 1) · k rounds
9 Balls-into-Bins(k)

10 until
⌈
ϕ ·
(
1 +

log 2
ǫ

logn

)⌉
times ;

Algorithm 2: BB-Broadcast(ϕ, ǫ)

The following lemma shows that, regardless of how many stations execute line 7 of the Algorithm 2
in parallel, some number is chosen by at most 12/ϕ · n1/ϕ lnn stations.

Lemma 2. For any 1 ≤ ϕ < log n
log logn and for a =

⌈
ϕ logn

logn−ϕ logϕ

⌉
, if 1 ≤ n̂ ≤ n random vari-

ables X1, X2, . . . , Xn̂ are chosen from Geo(ϕ/(n1/ϕ)) then with probability at least 1 − 2/n2 among
Yi = min{Xi, a} there is a number y ∈ {1, 2, . . . , a} chosen at least once and at most 12/ϕ · n1/ϕ lnn
times by Y variables.

Proof. If n̂ ≤ 12/ϕn1/ϕ lnn then the statement follows. Consider the opposite case. We have a set of
n̂ independent identically distributed random variables X1, . . . , Xn̂ ∼ Geo(ϕ/n1/ϕ). Observe that since

ϕ < log n
log logn then ϕ logϕ < logn and if we denote b =

(
1
ϕ −

logϕ
log n

)
then b > 0. Observe that a = ⌈1/b⌉

(line 1 of pseudocode). We have for each j ∈ {1, 2, . . . , n̂}:

Pr[Xj > i ] = ϕin−i/ϕ = n−i( 1
ϕ− log ϕ

log n ) = n−i·b, for any i = 1, 2, . . . , a.

Thus E[ |j : Xj > i| ] = n̂ · n−i·b. We know that n̂ > 12/ϕ · n1/ϕ lnn and nb = n1/ϕ/ϕ thus n̂ > 4nb lnn.
Take the smallest i∗ such that n̂/ni∗·b < 4nb lnn. Since b > 0, such i∗ exists and i∗ ≥ 1 and moreover since
n̂ ≤ n then i∗ ≤ 1/b ≤ a. Using the minimality of i∗ we can write n̂ = ni∗·b ·r, where 4nb lnn ≥ r ≥ 4 lnn
We define the following variables

Zj =

{
1 if Xj > i∗,
0 otherwise.
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If Z =
∑n̂

i=1 Zi then E[Z ] = r ≥ 4 lnn and by Chernoff bound:

Pr[Z = 0 ] ≤ Pr[Z ≤ (1− 1)E[Z ] ] ≤ e−
E[Z ]

2 ≤ 1

n2
,

Pr

[
Z > 12/ϕ · n1/ϕ lnn

]
= Pr

[
Z > 12nb lnn

]
≤ Pr[Z > 3E[Z ] ] ≤ e−

2E[Z ]
3 ≤ 1

n2
.

Thus with probability at least 2/n−2 between 1 and 12/ϕ ·n1/ϕ lnn values of X variables are at least i∗.
Hence there is some value of Y variables chosen at least once and at most 12/ϕ · n1/ϕ lnn times.

For all nodes we define some tree of shortest paths connecting the originator u to all the nodes of
the graph. For any node v we denote by Pv the shortest path from u to v in this tree and by p(v) the
second last node on this path. To analyze the complexity of the algorithm we want to bound the speed
at which the message progresses along path Pv. We need to first show that with high probability if p(v)
receives the message then also v receives it. Denote by T (p(v)) the time when p(v) receives the message.
Then consider the next 2ϕ complete phases that start after T (p(v)). We say that a phase is successful
for v if it results in a Single and delivers the message to v. Note that v might receive the message before
T (p(v)) but we say that the successful phase for v is the first after T (p(v)).

Lemma 3. For any 1 ≤ ϕ < logn
log logn in BB-Broadcast(ϕ, ǫ):

1. each phase is successful with probability at least 1− 1
2n1/ϕ − 2

n2

2. with probability at least 1− 2ǫ some of the 2ϕ phases is successful at each node of path Pv for every
v.

Proof. In any phase, by Lemma 2 with probability at least 1 − 2/n−2, some procedure Balls-into-Bins
is executed by at most 12/ϕ · n1/ϕ logn stations. In such a case by Lemma 1, procedure Balls-into-Bins
obtains a Single with probability at least 1

2n1/ϕ . Hence, with probability at least 1 − 1
2n−1/ϕ − 2

n2 the
phase is successful (results in a Single in one of its time slots). Using independence, the probability that
2ϕ phases are unsuccessful is at most:

(
1

2n1/ϕ
+

2

n2

)
⌈

ϕ

(

1+
log 2

ǫ
log n

)⌉

≤ ǫ/2

n

(
1

2
+

2

n2−1/ϕ

)2ϕ

≤ ǫ/2

n
.

Hence for any node v, the probability that all of the
⌈
ϕ
(
1 +

log 2
ǫ

logn

)⌉
phases executed by p(v) are unsuc-

cessful is at most ǫ/2 ·n−1. Taking union bound over all n stations, we get that with probability at least
ǫ/2, some phase is successful at every node. Now observe that since paths P form a tree this is sufficient
to prove 2.

The previous lemma shows that with probability at least 1− ǫ/2 each station eventually receives the
message. This does not prove that v receives the message from p(v) but only that during the 2ϕ phases
executed by p(v), node v receives the message (possibly from a different neighbor). But with probability
1− ǫ/2 the time until the message reaches v is at most 2ϕ phases after p(v) receives the message. Using
this, we could bound the total number of phases until each station receives the message by O(D · ϕ).
We want however a slightly better bound of O(D + ϕ) using the fact that on average only a constant
number of phases is sufficient to deliver the message from one node to its neighbor.

Theorem 4. For any 1 ≤ ϕ < logn
log logn and ǫ > 2n−3, if n > 264, then Algorithm BB-Broadcast(ϕ, ǫ)

completes broadcast

1. in time O
(
(D + ϕ) · n1/ϕ · ϕ logn

logn−ϕ logϕ

)
,

2. using at most
⌈
ϕ
(
1 + log (2/ǫ)

logn

)⌉
energy per station,

3. with probability at least 1− ǫ.
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Proof. Claim 2 follows directly from the construction of the algorithm. Take any vertex v and consider
path Pv = (u, v1, v2, . . . , vDv−1, v) of length Dv ≤ D from the originator u to v. Let us introduce random

variables X
(v)
i as the number of phases between the reception of the message by i-th node on path P

and the first successful phase for (i + 1)-st node on the path. If none of the
⌈
ϕ
(
1 +

log 2
ǫ

logn

)⌉
phases for

(i + 1)-st node on the path are successful we set X
(v)
i =∞. Observe that the number of phases until v

receives the message is upper bounded by
∑Dv

i=1 X
(v)
i .

We know by Lemma 3 that each phase is successful independently with probability at least 1 −
1

2n1/ϕ − 2
n2 ≥ 1− 1

n1/ϕ . Moreover X
(v)
i ≤

⌈
ϕ
(
1 +

log 1
2ǫ

logn

)⌉
for all v and i with probability at least 1− ǫ/2.

Observe that conditioned on this event, variable X(v) =
∑Dv

i=0 X
(v)
i is stochastically dominated by a

sum of Dv geometric variables Y (v) =
∑Dv

i=0 Y
(v)
i with success probability 1 − 1/n1/ϕ. We have that

E
[
Y (v)

]
= Dv/(1 − 1/n1/ϕ). We can use concentration bound for the sum of geometric variables [19,

Theorem 2.3]. Let λ = 6

(
1 + ϕ

E[Y (v) ]

)
:

Pr

[
Dv∑

i=0

Y
(v)
i ≥ λE

[
Y (v)

] ]
≤ 1

λ
·
(

1

n1/ϕ

)(λ−1−lnλ)E[ Y (v) ]

since λ > 6, lnλ < λ/3 and:

Pr

[
Dv∑

i=0

Y
(v)
i ≥ λE

[
Y (v)

] ]
≤ 1

n4
.

Observe moreover that λE
[
Y (v)

]
= O(D + ϕ). By taking union bound in both case over all vertices v

we get that with probability at least 1−1/n3, the number of phases until each node receives the message
is O(D + ϕ), conditioned on the fact that at least one phase is successful for each node. Since we know
that the latter event takes place with probability at least 1− ǫ/2 then with probability at least 1− ǫ all
the nodes receive the message and the total number of phases is O(D + ϕ). Observe that the stations

terminate the algorithm after additional time at most 2ϕ · tph. Thus, since tph ∈ O
(
n1/ϕ · ϕ log n

logn−ϕ logϕ

)
,

we obtain the desired result.

Observe that if ϕ ≤ logn
2 log log n then ϕ logn

logn−ϕ logϕ = Θ(ϕ) and the complexity of the algorithm becomes

O
(
(D + ϕ)n1/ϕ · ϕ

)
.

3.3 Green-Decay

Algorithm BB-Broadcast can operate under a wide range of energy limits, however for energy logn/(log logn+

1) guarantees only O
((

D + log n
log logn

)
· log2 n
log log logn

)
, which is slower than the algorithms from the litera-

ture. In this section we want to develop an algorithm that is less universal but achieves an almost-optimal
time O((D + logn) logn) using energy O(logn/ log logn).

We will first present Green-Decay which is a simple modification of classical procedure Decay intro-
duced in [2]. It will serve as a subprocedure to our energy-efficient algorithm GD-Broadcast. In original
Decay, each station transmits for a number of rounds being a geometric random variable. We note that
instead of broadcasting in each round of the procedure it is sufficient to broadcast only in the last one.
With this we save energy whilst the probability of success remains the same.

1 Transmit;
2 repeat

3 x← 0 or 1 with equal probability;
4 if x = 1 then

5 Transmit;

6 until x = 1 but at most k times ;

Algorithm 3: Green-Decay(k)
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The following theorem is analogous to [2, Theorem 1]. By inspection of the proof from [2] we observe
that exactly the same proof works for Green-Decay. Furthermore it is easy to see that the modified
procedure uses only constant energy.

Theorem 5. If n neighbors of station v execute procedure Green-Decay(k) then the probability Pr[ k, n ]
that v receives the message satisfies:

1. Pr[∞, n ] = 2
3 ,

2. Pr[ k, n ] > 1
2 , for k ≥ 2 logn.

The high-level idea of GD-Broadcast is as follows. In Broadcast algorithm from [3] each station
participates in Θ(logn) Decay procedures and the expected maximum energy is Θ(logn log log n). By
simply replacing it with Green-Decay (that takes always at most a constant energy per participant) we
can reduce the energy complexity from logn log logn to logn. In order to reduce the energy complexity
further we observe that a station does not necessarily need to participate in all the logn procedures
Decay. If some number x of neighbors of v have the message and want to transmit it to v it is sufficient
that in at least a constant fractionof the Θ(logn) procedures Decay at least one among the x stations
participate. In our algorithm each station participates in Θ(logn/ log logn) procedures Decay chosen
at random. If x is sufficiently large, at least a constant fraction of procedures Decay will have at least
one participant and the algorithm will work correctly with high probability. On the other hand if x is
small we can use procedure Balls-into-Bins which gives a probability of success of order 1 − 1/ logn, for
ϕ = logn/ log logn. Hence for small x, O(logn/ log logn) procedures Balls-into-Bins is sufficient to obtain
the high probability of successful transmission. Our algorithm combines Green-Decay and Balls-into-Bins
to cover both cases of small and large number of neighbors trying to deliver the message. One more
difficulty we need to overcome is that the number of participating (i.e., holding the message) neighbors
of v might increase over time.

1 ll← ⌈log log n⌉
2 k← 24⌈logn⌉+ 1
3 state← new

4 Wait until receiving the message;
5 repeat

6 Wait until (T ime mod 3 · k) = 0
7 phase← T ime/(3 · k) mod ll
8 if phase = 0 and state = new then

9 state← normal

10 endif

11 if state = new then

12 Balls-into-Bins(k)
13 Skip k rounds

14 else if phase = 0 then

15 Skip k rounds
16 Balls-into-Bins(k)

17 endif

18 if phase = 0 or state = new then

19 if state = new then state← normal

20 myPhase← Random([0, 1, . . . , ll− 1])

21 endif

22 if phase = myPhase then

23 Green-Decay(k)
24 endif

25 until 2⌈logn⌉+ 2 times ;

Algorithm 4: GD-Broadcast

Observe that the algorithm executed by a node that received the message consists of 3k = 72⌈logn⌉
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phases. Each phase consists of tph = O(logn) rounds. In the analysis we group ll = ⌈log logn⌉ consecu-
tive phases into an epoch.

Let T (v) denote the time when v receives the message. Note that with a nonzero probability our
algorithm may fail to deliver the message to some nodes. For all such nodes v we define T (v) = ∞.
Bounding the difference between T (v) and T (w) for any neighbors v and w is a key component in the
analysis of the algorithm.

Lemma 6. If n > 500 then for any two neighbors v, w ∈ V such that T (v) < ∞ and T (v) ≤ T (w) and
for any 1 ≤ x ≤ 2⌈logn⌉+ 2:

Pr[ |T (v)− T (w)| ≥ (x+ 2) · tph ] ≤ 2−x.

Proof. Consider (x+2) · tph steps, starting from T (v), during which v executes algorithm GD-Broadcast.
It performs at least x + 1 complete phases. From the definition of the algorithm we can observe that
station v executes a < ll phases in state new, then it participates in b full epochs and finally c < ll phases
of the last (incomplete) epoch. Hence v participates altogether in the considered time interval in b + 2
epochs. We will analyse the first epoch, consisting of a phases separately.

Observe that a station can finish its algorithm only at the end of a phase (see lines 6 and 25). Define
by κi the number of neighbors of v participating in i-th epoch i.e. the number of stations that participate
in the i-th epoch in all its phases in state normal.

1. Epochs {2, 3, . . . , b+ 2}.

(a) If κi ≥ 12⌈logn⌉ log logn then the probability that one fixed of the ll procedures Green-Decay
is not executed by any station is at most

(
1− 1

⌈log logn⌉

)12⌈log n⌉ log logn

≤




(
1− 1

⌈log logn⌉

)⌈log logn⌉

1− 1
⌈log logn⌉




12⌈log n⌉

≤ 2− ln 2·12·⌈logn⌉
(
1 +

1

⌈log logn⌉ − 1

)12⌈log n⌉

≤ n−3, (1)

where the inequality
(
1 + 1

⌈log log n⌉−1

)12⌈logn⌉
≤ n5 is true for n > 500. Hence with proba-

bility at least n−2 (by the Union Bound) each Green-Decay has at least one participant. But
then by Theorem 5 each Green-Decay it is successful with probability at least 1/2.

(b) Fix any i and assume that κi < 12⌈logn⌉ log logn. Observe that exactly κi stations are taking
part in Balls-into-Bins procedure (in line 16) which is executed by all stations in normal state
always in the first phase in each epoch. Now using Lemma 1 if κi < 12⌈logn⌉ log logn, the
failure probability of Balls-into-Bins is at most 1/(2 logn) ≤ 2−ll.

2. Epoch 1. Denote by κ the number of stations that execute procedure Balls-into-Bins in state new

together with v (line 13). Observe that if κ < 12⌈logn⌉ log logn then the argument is the same
as in the previous case which gives success with probability at least 1− 2−ll. In the opposite case
all these κ stations choose a phase (line 21) and by (1) each of the a procedures Green-Decay is
executed by at least one station with probability at least n−2 and hence successful with probability
at least 1/2.

We showed that if an epoch i has κi ≥ 12⌈logn⌉ log logn then the probability of success in each phase
is at least 1/2− n−2. And in the opposite case the probability of success of the entire epoch is at least
1 − 2−ll. Let y be the number of epochs i with κi ≥ 12⌈logn⌉ log logn and z = x+ 1 − y. Then, using
the independence of the phases, the failure probability is at most:

(1/2 + n−2)y·ll · 2−ll·z = 2−x−1 · (1 + 2 · n−10)y ≤ 2−x,

because (1+2 ·n−2)y·ll ≤ 2. Now we note that in both cases the probability of success in each considered
epoch is at least 2−i where i is the number of phases executed by v in considered time interval [T (v), T (v)+
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(x + 2) · tph]. When we multiply the failure probabilities (the successes in epochs are independent) we
obtain the failure probability of at most 2−x.

In Lemma 6 we showed local bounds on the difference between the reception times of adjacent vertices.
Using the Lemma we can show a global bound on the total number of step until all the nodes receive
the message.

Theorem 7. Algorithm GD-Broadcast completes broadcast

1. in time O((D + logn) logn),

2. using O(logn/ log logn) energy per station,

3. with probability at least 1− 2/n.

Proof. Similarly as in Section 3.2 we define a tree of shortest paths connecting u to all the other nodes.
For any vertex v ∈ V we denote path Pv (in the tree) connecting u (the originator) and v and define a
vertex p(v) as the second last node on this path. The length of the path satisfies Dv ≤ D. For any node
w, the probability that some node p(w) receives the message and w does not is by Lemma 6 at most
1− 1/n2 (since in the algorithm each station executes the outer loop 2 logn+2 times) and hence by the
union bound all the nodes receive the message with probability at least 1 − 1/n. Moreover at least one
phase is successful with probability at least 1− 1/n for any node v at every vertex of the path Pv. Call
this event X .

We have:

T (v) = T (v)− T (vDv ) +

Dv∑

i=2

T (vi)− T (vi−1) + T (v1). (2)

Thus let us denote Xi = |T (vi) − T (vi−1)|, for i = 2, . . . , Dv and XDv+1 = |T (v) − T (vDv)| and

X1 = |T (v1)|. Then by (2) Tv ≤
∑Dv+1

i=1 Xi. Variables Xi are not independent but their distribution is
bounded in Lemma 6. Let us define a sequence of independent variables Yi ∼ Geo(1/2). Conditioned on

event X , each variable Xi is stochastically dominated by (Yi +2) · tph by Lemma 6. If Y =
∑D+2 logn

i=1 Yi

then by concentration bound for sum of geometric variables [19, Theorem 2.3] we have:

Pr[Y ≥ 4 ·E[Y ] ] ≤ n−2.

Hence again by the union bound this holds for all nodes with probability at least 1 − 1/n. Thus with
probability at least 1−2/n event X takes place and Y < 4·E[Y ] for all vertices v. Hence with probability
1−2/n all stations receive the message within time (D+2 logn)·tph. All stations terminate the algorithm
after a most 2 logn + 2 additional phases hence the total time is O((D + logn) logn), which completes
the proof of 1 and 3.

The energy complexity follows directly from the fact that the energy used by each station in log logn
consecutive phases is always constant. Hence the energy is at most O(logn/ log logn)

4 Lower bound

Our algorithm BB-Broadcast has a surprisingly large multiplicative factor n1/ϕ. In this section we want
to prove that such a factor is sometimes necessary by showing that time Ω(n1/ϕ · ϕ) is needed for any
algorithm using energy ϕ.

Theorem 8. For any randomized broadcast algorithm A successful with probability at least (1 − e−1)/2
in all multi-hop radio networks there exists a graph G with constant diameter and n nodes, such that if
T is the runtime and E is the energy used by the algorithm then the expected value of E · log (T/E) is
Ω(logn).

Proof. We want to prove the theorem using Yao’s minimax principle [32]. Take any deterministic al-
gorithm A and consider any fixed n. We define a family of graphs G on n vertices. For simplic-
ity assume that n − 1 is divisible by 2. For any Gπ ∈ G we have Gπ = ({u} ∪ S ∪ X,Es ∪ Eπ),
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where |S| = |X | = 1
2 (n − 1). Node u is the originator of the message in each Gπ ∈ G. Also in

each Gπ ∈ G, set Es is defined as Es = {(u, s) : s ∈ S} (i.e., vertices {u} ∪ S are forming a star
with u at its center). Graphs from G differ on the remaining edges from Eπ in the following way.
Let S = {s1, s2, . . . , s(n−1)/2} and X = {x1, x2, . . . , x(n−1)/2}. Take the set Π of all permutations
π : [(n − 1)/2]→ [(n − 1)/2], such that π(i) 6= i, for any i ∈ [(n− 1)/2]. For all π ∈ Π we define Eπ as
{(si, xi), (xi, sπ(i)) : i ∈ {1, 2, . . . , (n − 1)/2}}. Now consider algorithm A on graph Gπ taken uniformly
at random from G. Let T denote the time of the algorithm and E denote maximum energy used by
the stations. Consider the total number of possible broadcasting patterns of length T with at most E
transmissions:

α(T,E) =

E∑

i=0

(
T

i

)
≤

E∑

i=0

T i

i!
=

E∑

i=0

Ei

i!
·
(
T

E

)i

≤
(
T

E

)E ∞∑

i=0

Ei

i!
=

(
eT

E

)E

.

Now, assume that in algorithm A, the last expression is upper bounded by n/100. Then also α(t, x) ≤
n/100.Assume that n/100 is an integer. Since there are at most n/100 broadcasting patterns there are
then at least 1

2 (n − 1) − n
10 ≥ 1

3n stations from S which have the same pattern as at least 10 other

stations from S. Call the set of these 1
3n stations Ŝ. Observe by the construction of the graph that if

the stations with the same patterns also have a common neighbor in x ∈ X then they cannot break the
symmetry because they receive the same feedback from the channel in each time step. And then the
message cannot be delivered to this neighbor x. We want to lower bound the probability that two stations
from Ŝ have a common neighbor in X . Set G is defined in such a way that in a graph Gπ ∈ G chosen
uniformly at random, for each s ∈ S, its corresponding π(s) can be seen as a vertex taken uniformly
from S \ {s}. Thus, for any s ∈ Ŝ, the probability that p(s) is using different broadcasting pattern is at
most 1− 5/(n− 1). Hence with probability at most,

(
1− 5

n− 1

)n/3

≤ 1/e,

for each station s ∈ S its corresponding p(s) station uses a different pattern. Hence under the chosen
probability distribution over the set of graphs, with probability at least 1 − e−1, some node does not
receive the message. Hence if we define as the cost of the algorithm the expression (eT/E)E then
its expected value is Ω(n). By Yao’s principle [32, Theorem 3] for Monte Carlo algorithms, for any
randomized algorithm with error probability at most (1 − e−1)/2 there exists graph Gπ ∈ G such that
the expected value of (eT/E)E is Ω(n).

The following Corollary lower bounds the time complexity of any algorithm using the asymptotically
same energy as the algorithms presented in Section 3.

Corollary 9. Any randomized algorithm completing broadcast in any graph with probability at least
(1− e−1)/2

1. using energy at most ϕ needs expected time Ω(n1/ϕ · ϕ),

2. using energy at most logn
c log log n for any constant c needs expected time Ω

(
logc+1 n
log log n

)
.

This shows that for graphs with constant diameter our algorithms achieve almost optimal tradeoff
between time and energy. This also shows that our GD-Broadcast is asymptotically optimal in terms of
energetic efficiency among all algorithms that have time polylogarithmic in n.

5 Open problems

A very interesting open problem is whether it is possible to generalize the lower bound for any value of
D. Our current results do not rule out an algorithm with energy O(ϕ) and time Õ(D+n1/ϕ). A second
problem would be to develop a time and energy optimal algorithm working in time O

(
D log n

D + log2 n
)

and using energy O(logn/ log logn).
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Appendix

Below we provide analysis of energy-complexity of classical, fast, randomized broadcasting protocols.
We do not provide full descriptions of protocols, but only information necessary for demonstrating lower
bound on number of transmissions that is necessary for establishing energy complexity.
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Energy-complexity of Bar-Yehuda – Goldreich – Itai protocol

Idea of the protocol This protocol was presented in [2] working in time O(D logn + log2 n) with
high probability.

1 repeat at most k times [but at least once!]
2 send message M to all neighbors;
3 x← 0 or 1 with equal probability;

4 until x = 0;

Algorithm 5: Original Decay(k) from [2]

In the course of the protocol execution the procedure Decay(2⌈logn⌉) is repeated Θ(logn) times by
each of the n stations.

Proof of Fact 1

Proof. To prove this Fact we need to prove that the expected maximal number of transmissions over all
stations is Θ(logn log logn).

Definition 1. A random variable X has k-truncated geometric distribution G1/2,k if Pr[X = i ] =

1/2i for 1 ≤ i < k, Pr[X = k ] = 1/2k−1 and 0 otherwise.

In Broadcast algorithm from [2], each station executes t = ⌈logn/ε⌉ times the Decay procedure,
where ε is shown to be the failure probability of the algorithm. Each execution requires a random
number of transmissions governed by k-truncated geometric distribution G1/2,k for k = 2⌈logn⌉. That

is, let X
(i)
j,k be the number of transmissions during j-th Decay executed by i-th station. Thus the total

energy expenditure of the i-th station is S
(i)
k = X

(i)
1,k + . . .+X

(i)
t,k. Note that t = 2⌈logn/ε⌉ = Θ(log(n)).

Thus the energetic complexity of the algorithm is E[Sk ] = E

[
max{S(1)

k , . . . , S
(n)
k }

]
.

To the best of our knowledge there are no precise results for finding the maximum of such random
variables. Note however that in the case of G1/2,∞, i.e. maximum of sums of regular geometric distribution
(a.k.a. negative binomial distribution), precise asymptotic is given by Grabner and Prodinger in [16].

Let S∞ be the random variable Sk with k = ∞. In that case all X
(i)
j,∞ ∼ G1/2,∞. Immediately from

Theorem 1 in [16] we get:

Lemma 10. E[S∞ ] = 2 logn log logn+ logn+ o(log n).

Let us investigate E[Sk ]. Let Tk be a binary random variable equal 1 if X
(i)
j,∞ ≤ k for all i, j and 0

otherwise. One can observe that
E[S∞|Tk = 1 ] ≤ E[Sk ] . (3)

Let us note that:

E[S∞ ] = E[S∞|Tk = 1 ]Pr[Tk = 1 ] +E[S∞|Tk = 0 ]Pr[Tk = 0 ] ,

E[S∞|Tk = 1 ]Pr[Tk = 1 ] = E[S∞ ]−E[S∞|Tk = 0 ]Pr[Tk = 0 ] .

Since t = 2⌈logn/ε⌉, k = 2⌈log∆⌉ one can observe, assuming that 1/ε = O(poly(n)):

E[S∞|Tk = 0 ] ≤ E

[
S∞|∀i,jX(i)

j,∞ ≥ k
]
= E[S∞ ] + t · k = 4 log2 n+O(log n) .

Moreover:

Pr[Tk = 0 ] = Pr

[
(∃i, j) s.t. X(i)

j,∞ > k
]

< n · t ·Pr

[
X

(1)
1,∞ > k

]

<
2n · logn/ε

2k
.

Since we assumed that k ≥ 2 logn thus Pr[Tk = 0 ] = o
(

1
logn

)
and we get:
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E[S∞|Tk = 1 ]Pr[Tk = 1 ] ≥ 2 logn log logn+ log n+ o(logn)+

− (log2 n+ 2 logn log logn+O(log n)) · o
(

1

logn

)
.

Thus E[S∞|Tk = 1 ] = Θ(logn log logn) and using equation (3) we get that E[Sk ] = Θ(logn log logn),
which completes the proof.

Energy-complexity of Czumaj-Rytter protocol

Idea of the protocol Let D be the diameter of the graph. The algorithm uses a common se-
quence of probabilities J = (J1, J2, . . .). It has the following property: it contains Θ(D) subsequences
(1, . . . , log(n/D)) in the first T = D log(n/D) positions. The sequence is used by all the stations (it is
transmitted together with the message). Then in the course of the algorithm each station transmits in
i-th round with probability 2−Ji .

Proof of Fact 2

Proof. It is sufficient to observe that in T first elements of the sequence J there are Θ(D) ones. Thus
the expected number of transmissions is Θ(D) for every station.

Energy-complexity of Kowalski-Pelc protocol

Idea of the protocol In the case when D = o(n2/3) Bar-Yehuda–Goldreich–Itai randomized protocol
from [2] is launched. For large D a subprotocol Stage is executed, wherein each station transmits with
probabilities 1/2l for l = 0, . . . , log(N/D).

Proof of Fact 3

Proof. The case for small D follows directly from Fact 1. To prove the second case it is enough to note
that each station has to execute D times the Stage procedure. Each time the Stage launched, the station
transmits at least once. Since D = Ω(n2/3) the proof is completed.
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