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Graph exploration

A team of agents is placed on some subset of nodes of the network.
The network is an undirected graph.
The agents are propagated along edges of the network following a
local set of rules defined for each node.
The goal of the agents is to visit each node (i.e. to explore the whole
network).
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Random walk

What is the random walk?
The agent leaves each node along
one of the adjacent links, chosen
uniformly at random.
From the perspective of a node it
sends on average the same number
of agents in each direction.
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Single random walk

Cover time of random walk
Expected time until agent visits all vertices.

Graph class Cover time

Expander, Hypercube, Complete Θ(n log n)
2-dim. torus Θ(n log2 n)
Cycle Θ(n2)
Lollipop Graph Θ(n3)
Any graph O(n3), Ω(n log n)
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Single random walk

Consider path on n vertices.

Hitting time
H(v ,w) – expected time to reach v from w

Return time
H(v , v) = 1

πv
= 2m

d(v)

H(0, 0) = 2n

We want to compute H(0, n − 1)
H(k − 1, k) is one less than expected return time of a random walk
on a path with k + 1 vertices starting at the last node,
H(k − 1, k) = 2k − 1
H(i , k) = H(i , k − 1) + 2k − 1 = k2 − i2

H(0, n − 1) = (n − 1)2
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Multiple random walks (k = number of agents)

Cover time of multiple random walks
Expected time until every node is visited by some agent.

Speedup
Ratio between the cover time for single walk and for multiple walks.

Graph class Speedup

Expander, Hypercube, Complete, Random k
Cycle log k
d-dim. torus (d > 2) k(k < n1−2/d)

Table: Results from [Elsässer, Sauerwald, 2011] and [Alon, Avin, Koucky, Kozma,
Lotker, Tuttle, 2008]

Conjecture [Alon, Avin, Koucky, Kozma, Lotker, Tuttle, 2008]
Speedup is O(k) and Ω(log k) for any graph.
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Synergy?

ααα ααα

The Markov chain given by Efremenko and Reingold. The cover time for
the single random walk equals 5

1−α , while the cover time for the two
random walks starting from any endpoint is 2.25

1−α + o(1/(1−α)), as α→ 1.

The speedup is around 2.2
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Questions

1 Can it happen for other graphs?
2 Can it happen for any n or any k?
3 Are loop probabilities necessary for this effect?

We will try to answer 2 and 3.
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Result

Theorem
Consider a path with n vertices, where n→∞. Then the following results
hold regardless of the loop-probability of the random walk:

For k = 2, the speed-up satisfies S(k)
cov > 2.

For k ≥ 3, the speed-up satisfies S(k)
cov < k.
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Idea

Lets add more randomness to the random walks!

Continuous-Time Multiple Random Walks
Let the waiting time between any two transitions of a random walk be
independent and identically distributed exponential random variables.

Lemma
Continuous-time multiple random walks with waiting time λ is the same as
Poisson process with waiting time kλ in which in each step a walk chosen
uniformly at random makes a move.
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Continuous-Time Multiple Random Walks

Lemma
Continuous-time multiple random walks with waiting time λ is the same as
Poisson process with waiting time kλ in which in each step a walk chosen
uniformly at random makes a move.

Proof.
Let T1, . . . , Tk represent the first times the corresponding walk makes a
transition. The first transition by any walk: T = min {T1, . . . ,Tk}

Pr [T > x ] = Pr [T1 > x ∩ . . . ∩ Tk > x ] = Pr [T1 > x ]k = e−kλx

Continuous-time model is easier to analyze because:
Only one walker moves at a single time.
Loop probabilities (if are the same at each vertex) is simply scaling of
the waiting time.
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Relating continuous time to discrete time

t(k)
cov(~u) – expected cover time for discrete-time k walks starting at
~u = (u1, . . . , uk)

t̃cov
(k)(~u) – the same for continuous time

Lemma
For any graph G and 1 ≤ k ≤ n,

t̃cov
(k)(~u) = Θ

(
t(k)
cov(~u)

)
.

Lemma (Elsasser and Sauerwald)
If nε ≤ k ≤ n for some arbitrary ε > 0. Then

Pr
[
t(k)
cov(~u) ≥ ε

8 ·
n
k · log n

]
≥ 1− exp

(
−nε/8

)
.
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Relating continuous time to discrete time

Lemma
For any graph G and 1 ≤ k ≤ n,

t̃cov
(k)(~u) = Θ(t(k)

cov(~u)).

Proof.
With very high probability the cover time in the discrete model is at
least log n (by Elsasser and Sauerwald).
If t > log n we can use the Chernoff bound and Union bound and
show that in the continuous model within t steps all the walks make
Θ(t) steps.
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Gambler’s ruin

Player 1 starts with n1 coins.
Player 2 starts with n2 coins.

In each step one player wins a coin from the other one.
Assume that the game is fair and each player wins in each step with
probability 1/2.
What is the time until some of the players will end up having no
coins?
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Single walk

Gambler’s ruin
If there are n coins in total and player 1 starts with k coins, the (fair)
game will take on average k · (n − k) rounds.

Time to hit an endpoint
Time to hit the endpoint by a single walk is exactly the time of the
Gambler’s ruin game.
It is maximized if we start in the middle and equals n2/4.
We already computed H(0, n − 1) = n2 hence we get
t(1)
cov (Pn) = 5

4n
2
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Multiple walks

Multidimensional Gambler’s ruin
There are k currencies and n coins in total in each currency.

In each step we choose a currency at random and then choose a
winner.
We play until some player runs out of coins in any currency.

For 2-dimensional game the toal number of steps is approximately 1.178n2

(Kmet, Petkovsek)

Theorem

t(2)
cov (Pn) < 5/8 · n2

S(k)
cov > 2
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Multiple random walks on a d-dimensional grid

Theorem

d = 2 / k ∈ t(k)
cov Speed-up

[1, log2 n] Θ
(

n log2 n
k

)
linear

[log2 n, n] Θ
(

n
log k

ln2 n

)
logarithmic

d ≥ 3 / k ∈ t(k)
cov Speed-up

[1, n1−2/d log n] Θ
(

n log n
k

)
linear

[n1−2/d log n, n] Θ
(
n2/d/ log

(
k

n1−2/d log n

))
logarithmic
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Lower bound for d = 2

We want to use the following lemma:

Lemma (Zuckermann 1992)
V ′ ⊆ V s. t. |V ′| ≥ nδ, δ > 0
for u ∈ V ′, at most 1/nβ fraction of the v ∈ V ′ satisfy thit(u, v) < t

tcov = Ω(t · ln n)

We observe that it works for any Markov Chain (not only normal random
walk).
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Lower bound for d = 2
We want to show:
Theorem
On 2-dimensional torus the cover time for k ∈ [1, log2 n] is Ω(n log2 n/2).

Idea
Lets add more randomness to the random walks!

Consider a process in which k walks are deployed from the origin for a
number of steps from geometric distribution with mean
δ = n log2 n/k.
Zuckermann’s lemma works for such a process (if we manage to
satisfy the assumptions).

Lemma
If k walks with geometric length with parameter λ do not cover the graph
then k/2 walks of length λ/(10c) do not cover the graph with probability
at least c/2.
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Lower bound for d = 2

Take V ′ – set of all vertices at distance at least 1/3 ·
√
n to the origin

in both dimensions.
For any v ∈ V ′ we can show that if w ∈ V ′ satisfies
dist(v ,w) ≥ n49/100 then H(v ,w) = Ω(n log n)
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The Rotor-router model

Each node v has a fixed local port numbering from 1 to deg(v)
The state of each node v is a pointer p(v) ∈ {1, ..., deg(v)}.

Rotor-Router Mechanism
For each agent located at node
v at the start of time round t:

I The agent is pushed to the
neighbor along port p(v)

I Pointer p(v) is
incremented modulo the
degree.
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Example (single agent)
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Example (two agents)
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The Rotor-router model

Configuration of the rotor-router
Initialization of the port numbering
Initial positions of agents.

When analysing the rotor-router we will always assume the worst possible
initial configuration.
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Parameters of the rotor-router

Cover time
When will have each node of the graph been reached by some agent, for a
worst-case starting configuration?

Lock-in
The rotor-router is a deterministic process with a finite number of
states, hence it must stabilize to a periodic traversal of some cycle in
its state space after some initialization phase
After what time does the rotor-router enter its limit cycle?
What is the length of the cycle?
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Single agent rotor-router

Theorem [Yanovski, Wagner, Bruckstein, 2001]
For any graph with diameter D and m edges, cover time and lock-in
time are bounded by O(mD).
After this lock-in period, the rotor-router stabilizes to an Eulerian
traversal of the directed version of the graph (traversing each edge
once in each direction).

Theorem [Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski]
There exists an initial configuration of the rotor-router for which
cover time and lock-in time are Ω(mD).

Single agent rotor-router exhibits elegant structural properties.
For any graph, for the worst-case initial configuration

I Cover time is Θ(mD).
I Lock-in time is Θ(mD).
I Cycle length is 2m.
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Multi-agent rotor-router

Multiple agents are interacting with the same rotor-router model
no independence of walks!
can we have similar results for multi-agent rotor-router as for multiple
random walks?

Goal
We want to study the speedup S(k) (a function of k) of the cover time of
the multi-agent rotor-router with respect to the single agent.
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Multi-agent rotor-router in general graphs

Theorem [Dereniowski, Kosowski, P., Uznanski]
The k-agent rotor-router covers any graph in worst-case time
O(mD/ log k) and Ω(mD/k)

Both of these bounds are achieved for some graph classes.
The range of speedup for the rotor-router corresponds precisely to the
conjectured range of speedup for the random walk.
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Outline of argument in proof of O(mD/ log k) cover time.

Graphs we consider are undirected but it is more convenient to
analyse the number of traversals of edges in both directions.

Partition all arcs into possibly empty sets (buckets) E0, E1, E2,...,
with an arc e belonging to set Ed at time t if it has been traversed by
agents exactly d times up to time t.

Lemma (based on Yanovski 2001)

Suppose that at some moment of time t, there exists a pair of consecutive
arcs (u, v) and (v ,w), such that

(u, v) ∈ Ed+x ,

(v ,w) ∈ Ed .
d+ x

d

u

v

w

Then, in step t + 1, at least x − 1 agents traverse arcs currently belonging
to buckets E0...Ed .
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Proof.
S – the set of nodes which has completed at most d full cycles of if
its rotor.

T – nodes not belonging to S (completed at least d + 1 full cycles).
Every arc from S to T was traversed at most d + 1 times.
Every arc from T to S was traversed at least d + 1 times.

S T There is the same number of
edges from S to T as in the
opposite direction.

u ∈ T and v ∈ S, arc (u, v) from
T to S was traversed d + x times.

"Flow" from T to S is at least
x − 1.

At least x − 1 agents are in S.
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Outline of argument in proof of O(mD/ log k) cover time.

Theorem
The k-agent rotor-router covers any graph in worst-case time
O(mD/ log k)

1 for k ≤ 216D,
2 for k = poly(n).

Idea of the argument

number of traversals

x

0

≥ x− 1 moves will happen here
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Proof of (1).
Deploy the system for 2b+1mD/k steps, where b = log k/2.

Total number of visits = 2b+1mD.
There exists an arc e with at least 2bD traversals.
Take path P = 〈e = e1, e2, . . . , eD〉 of length D starting at e.
Partition arcs from P into buckets I1, I2, . . . Ib.
Bucket Ii contains arcs with number of traversals between 2i−1D and
2iD.
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Outline of argument in proof of O(mD/ log k) cover time.

Proof of (1).
Denote by ai the number of agents currently traversing arcs with
number of traversals at most 2iD.

"Distance" (difference in the number of traversals) between two
consecutive arcs belonging to bucket Ii is at most ai + 1 (by Lemma).
"Length" of i-th bucket is 2i−1D.
We get |Ii | ≥ (2i−1D − ai−1)/(ai + 1).
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Outline of argument in proof of O(mD/ log k) cover time.

Proof of (1).
Buckets are disjoint and contain altogether D elements.

D ≥
∑b

i=1 |Ii | ≥
∑b

i=1
2i−1D
ai +1 − b.

1
b
∑b

i=1
2i−1

ai +1 ≤
1
b + 1

D ≤
9
b (Assume: k ≤ 216D ⇒ D ≥ b

8 )
Right side of this inequality is an arithmetic average.
For at least half of indices i : 2i−1

ai +1 ≤
18
b ⇒ ai ≥ b

502
i .

There exists index i∗ for which this is true in at least half of all rounds.
If we take 200mD

b rounds then we accumulate at least 2m2i∗D visits in
arcs with number of visits at most 2i∗D.
This number of visits is sufficient to "pull" all arcs.
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Multi-agent rotor-router

Lemma [Yanovski, Wagner, Bruckstein, 2001]
Adding an agent cannot decrease the number of visits at any node at any
time. (this implies that S(k) is nondecreasing)

Lemma
Blocking some agents for some time steps cannot increase the number of
visits at any node at any time.

Delayed deployments
A process obtained from a rotor-router by defining how many agents to
delay at which times and at which nodes.
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The slow-down lemma

R[k] - k-agent rotor router system with an arbitrarily chosen
initialization.
We construct delayed deployment D such that:

deployment D explores the graph in at most T steps,
in at least τ of these steps all agents were active in D.

Theorem
The cover time C(R[k]) of the system can be bounded by:
τ ≤ C(R[k]) ≤ T .

Dominik Pająk Speedup in graph exploration with multiple walkers 36/ 49



Applications of the slow-down lemma

The slow-down lemma plays key part in our analysis of the multi agent
rotor-router:

We can analyze R[k] by constructing some easy to analyze, delayed
deployment D.
This allows us to think of the rotor-router as an algorithm, rather
than a process which is imposed upon us.
If the deployment D is defined so that agents in D are delayed in at
most a constant proportion of the first C(D) rounds, then the above
inequalities lead to an asymptotic bound on the value of the
undelayed rotor-router, C(R[k]) = Θ(C(D)).
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Outline of argument in proof of Ω(mD/k) cover time

Theorem
The k-agent rotor-router covers any graph in worst-case time Ω(mD/k).

Proof (sketch).
For any graph, we can devise a worst-case initialization of pointers for
which there exists a delayed deployment which has some sort of
structured behavior,
using structural lemmas from [Bampas et al. 2009] to decompose the graph
into a ”heavy” part H1 (with many edges) and a ”deep” part H2
(with large diameter)
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Proof (sketch).

Pointer initialization in H1
along an Eulerian circuit in
H1
Agents are initially located
equidistantly on the
circuit.
Pointer initialization in H2
to point towards H1

When any agent leaves "heavy" part and enter "deep" part, we pause
all other agents.
Agent will return to the "heavy" by the same edge it left this part.
If we contract "heavy" part to one vertex, exploration looks like
one-agent exploration of "deep" graph
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Proof (sketch).
To explore one level of "deep" part agents need to traverse every edge
connecting parts,
To explore next level agents need to "shift" on the cycle.
When no agent is in "deep" part then all agents are active and walk
around the cycle in "heavy" part.
Total number of steps when all agents are active is Θ(mD/k).
We use the slow-down lemma to conclude that undelayed deployment
needs time Ω(mD/k).
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Agent domains

Example on the line, k = 2 (starting from some moment...)

V2 V1 V0

V2 V1 V0V2 V1 V0V2 V1 V0V2 V1

Agents are traversing their domains and during each cycle can capture
one node from neighboring domain (or at least one node not
belonging to any domain).
Agents with smaller domains will visit borders more frequently thus
smaller domains will grow.
Intuitively the system should converge to domains of equal sizes.
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Multi-agent rotor-router on the ring

Theorem
Worst-case cover time for k agent rotor-router on the ring is Θ(n2/ log k)
when k < 2n.

So the speedup for the ring is log k.

Model Cover time Return time
worst placement best placement

k-agent
rotor-router

Θ(n2/ log k) Θ(n2/k2) Θ(n/k)

k random walks
(expectations)

Θ(n2/ log k)
in literature

Θ
(
n2
/

k2

log2 k

) Θ(n/k)
in literature
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Discrepancy between the rotor-router and the random walk

To analyse the cover time of the multi agent rotor-router for other graph
classes we used a different approach.

Discrepancy in time t
The maximum (taken over all nodes) difference between:

the total number of visits in the k-agent rotor-router,
the expected total number of visits by k random walks,

up to time t.

Lemma
The discrepancy in time t is bounded by Ψt(G)
Ψt(G) = maxv∈V

∑t
τ=0

∑
(u1,u2)∈

−→
E |Pτ (u1, v)− Pτ (u2, v)|.

Ψ(G) = Ψ∞(G) is called local divergence and was defined in
[Rabani, Sinclair, Wanka 1998].
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Expanders
Using two techniques: delayed deployments and bounded discrepancy we
obtained precise asymptotic of the cover time for many graph classes

Cover time for single agent is Θ(mD).
We have linear speedup for k up to m.
Adding more agents above m gives constant speedup.

k

S(k)

mlinear speedup

m

constant speedup

S(k) – speedup
(ratio between the
cover time for 1 agent
and for k agent
rotor-router )

S(m) = m and the cover time for m agents is Θ(D) (minimum
possible).
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Cycles

Cover time for single agent is Θ(n2).
We have logarithmic speedup for k up to 2n.
Adding more agents above 2n gives constant speedup.

k

S(k)

logarithmic speedup constant speedup2n

n

S(2n) = n and the cover time for 2n agents is Θ(n) = Θ(D)
(minimum possible).
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δ-dimensional torus

Cover time for single agent is Θ(n1+1/δ).
We have linear speedup for k up to n1−1/δ. (δ-constant)
Adding more agents above n1−1/δ gives only logarithmic speedup.

k

S(k)

n1−1/δ
2n

1/δ

n1−1/δ

n1−1/δ

n

linear speedup logarithmic speedup constant speedup

S(n1−1/δ) = n1−1/δ and the cover time is Θ(n2/δ),
S(n1−1/δ2n1/δ) = n and the cover time is Θ(n1/δ) = Θ(D).

Team of less than n agents achieves cover time n2/δ but any team of
polynomial size is not sufficient to get cover time n1/δ.
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Hypercube

Cover time for single agent is Θ(n log2 n).

An interval of linear speedup followed by a period of constant speedup.

k

S(k)

n logn
log logn

(log n)logn

n log n

linear speedup constant speedup

n logn
log logn

constant speedup

n2log
1−ε n OPEN PROBLEM

S(n log n
log log n ) = n log n

log log n , the cover time is Θ(log n log log n),

S((log n)log n) = n log n, the cover time is Θ(log n) = Θ(D).

A similar phenomenon occurs for random walks [Elsässer, Sauerwald, 2011]
There is a period of linear speedup during which the cover time decreases
to Θ(log n log log n) followed by a period of constant speedup.
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Multi-agent rotor-router vs. multiple random walks

In terms of the speedup, the multi-agent rotor-router resembles very much
multiple random walks.

Graph class Speedup (for small k)
Random walk Rotor-router

Cycle log k log k
Complete graph k k
Star k k
Grid

√
n ×
√
n k k

Hypercube k k
Binary tree

√
k ???

General graph Conjecture:Ω(log k) Ω(log k)
Conjecture:O(k) O(k)
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Thank You!


