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Abstract

In this paper, we study local and global broadcast in the dual graph model, which describes
communication in a radio network with both reliable and unreliable links. Existing work proved
that efficient solutions to these problems are impossible in the dual graph model under standard
assumptions. In real networks, however, simple back-off strategies tend to perform well for
solving these basic communication tasks. We address this apparent paradox by introducing
a new set of constraints to the dual graph model that better generalize the slow/fast fading
behavior common in real networks. We prove that in the context of these new constraints,
simple back-off strategies now provide efficient solutions to local and global broadcast in the dual
graph model. We also precisely characterize how this efficiency degrades as the new constraints
are reduced down to non-existent, and prove new lower bounds that establish this degradation
as near optimal for a large class of natural algorithms. We conclude with an analysis of a
more general model where we propose an enhanced back-off algorithm. These results provide
theoretical foundations for the practical observation that simple back-off algorithms tend to
work well even amid the complicated link dynamics of real radio networks.

1 Introduction

In this paper, we study upper and lower bounds for efficient broadcast in the dual graph radio
network model [4, 11, 12, 3, 6, 5, 8, 7, 14, 9], a dynamic network model that describes wireless
communication over both reliable and unreliable links. As argued in previous studies of this setting,
including unpredictable link behavior in theoretical wireless network models is important because
in real world deployments radio links are often quite dynamic.

The Back-Off Paradox. Existing papers [12, 8, 14] proved that it is impossible to solve
standard broadcast problems efficiently in the dual graph model without the addition of strong
extra assumptions (see related work). In real radio networks, however, which suffer from the type
of link dynamics abstracted by the dual graph model, simple back-off strategies tend to perform
quite well. These dueling realities seem to imply a dispiriting gap between theory and practice:
basic communication tasks that are easily solved in real networks are impossible when studied in
abstract models of these networks.
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What explains this paradox? This paper tackles this fundamental question.
As detailed below, we focus our attention on the adversary entity that decides which unreliable

links to include in the network topology in each round of an execution in the dual graph model. We
introduce a new type of adversary with constraints that better generalize the dynamic behavior of
real radio links. We then reexamine simple back-off strategies originally introduced in the standard
radio network model [2] (which has only reliable links), and prove that for reasonable parameters,
these simple strategies now do guarantee efficient communication in the dual graph model combined
with our new, more realistic adversary.

We also detail how this performance degrades toward the existing dual graph lower bounds as
the new constraints are reduced toward non-existent, and prove lower bounds that establish these
bounds to be near tight for a large and natural class of back-off strategies. Finally, we perform
investigations of even more general (and therefore more difficult) variations of this new style of
adversary that continue to underscore the versatility of simple back-off strategies.

We argue that these results help resolve the back-off paradox described above. When unpre-
dictable link behavior is modeled properly, predictable algorithms prove to work surprisingly well.

The Dual Graph Model. The dual graph model describes a radio network topology with
two graphs, G = (V,E) and G′ = (V,E′), where E ⊆ E′, V corresponds to the wireless devices,
E corresponds to reliable (high quality) links, and E′ \E corresponds to unreliable (quality varies
over time) links. In each round, all edges from E are included in the network topology. Also
included is an additional subset of edges from E′ \ E, chosen by an adversary. This subset can
change from round to round. Once the topology is set for the round, the model implements the
standard communication rules from the classical radio network model: a node u receives a message
broadcast by its neighbor v in the topology if and only if u decides to receive and v is its only
neighbor broadcasting in the round.

We emphasize that the abstract models used in the sizable literature studying distributed al-
gorithms in wireless settings do not claim to provide high fidelity representations of real world
radio signal communication. They instead each capture core dynamics of this setting, enabling
the investigation of fundamental algorithmic questions. The well-studied radio network model, for
example, provides a simple but instructive abstraction of message loss due to collision. The dual
graph model generalizes this abstraction to also include network topology dynamics. Studying the
gaps between these two models provides insight into the hardness induced by the types of link
quality changes common in real wireless networks.

The Fading Adversary. Existing studies of the dual graph model focused mainly on the
information about the algorithm known to the model adversary when it makes its edge choices. In
this paper, we place additional constraints on how these choices are generated.

In more detail, in each round, the adversary independently draws the set of edges from E′ \E to
add to the topology from some probability distribution defined over this set. We do not constrain
the properties of the distributions selected by the adversary. Indeed, it is perfectly valid for the
adversary in a given round to use a point distribution that puts the full probability mass on a
single subset, giving it full control over its selection for the round. We also assume the algorithm
executing in the model has no advance knowledge of the distributions used by the adversary.

We do, however, constrain how often the adversary can change the distribution from which
it selects these edge subsets. In more detail, we parameterize the model with a stability factor,
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Problem Time Probability Remarks Reference

Local broadcast

O
(

∆1/τ̄ ·τ̄2

log ∆ · log (1/ε)
)

1− ε τ̄ = min{τ, log ∆} Thm 6

Ω
(

∆1/τ τ
log ∆

)
1
2 τ ∈ O(log ∆) Thm 7

Ω
(

∆1/τ τ2

log ∆

)
1
2 τ ∈ O(log ∆/ log log ∆) Thm 8

Global broadcast

O
(

(D + log(n/ε)) · ∆1/τ̄ τ̄2

log ∆

)
1− ε τ̄ = min{τ, log ∆} Thm 9

Ω
(
D · ∆1/τ τ

log ∆

)
1
2 τ ∈ O(log ∆) Thm 10

Ω
(
D · ∆1/τ τ2

log ∆

)
1
2 τ ∈ O(log ∆/ log log ∆) Thm 10

Table 1: A summary of the upper and lower bounds proved in this paper, along with pointers to
the corresponding theorems. In the following, n is the network size, ∆ ≤ n is an upper bound
on local neighborhood size, D is the (reliable link) network diameter, and τ is the stability factor
constraining the adversary.

τ ≥ 1, and restrict the adversary to changing the distribution it uses at most once every τ rounds.
For τ = 1, the adversary can change the distribution in every round, and is therefore effectively
unconstrained and behaves the same as in the existing dual graph studies. On the other extreme,
for τ =∞, the adversary is now quite constrained in that it must draw edges independently from
the same distribution for the entire execution. As detailed below, we find τ ≈ log ∆, for local
neighborhood size ∆, to be a key threshold after which efficient communication becomes tractable.

Notice, these constraints do not prevent the adversary from inducing large amounts of changes
to the network topology from round to round. For non-trivial τ values, however, they do require
changes that are nearby in time to share some underlying stochastic structure. This property is
inspired by the general way wireless network engineers think about unreliability in radio links. In
their analytical models of link behavior (used, for example, to analyze modulation or rate selection
schemes, or to model signal propagation in simulation), engineers often assume that in the short
term, changes to link quality come from sources like noise and multi-path effects, which can be
approximated by independent draws from an underlying distribution (Gaussian distributions are
common choices for this purpose). Long term changes, by contrast, can come from modifications to
the network environment itself, such as devices moving, which do not necessarily have an obvious
stochastic structure, but unfold at a slower rate than short term fluctuations.

In our model, the distribution used in a given round captures short term changes, while the
adversary’s arbitrary (but rate-limited) changes to these distributions over time capture long term
changes. Because these general types of changes are sometimes labeled short/fast fading in the
systems literature (e.g., [16]), we call our new adversary a fading adversary.

Our Results and Related Work. In this paper, we study both local and global broadcast.
The local version of this problems assumes some subset of devices in a dual graph network are
provided broadcast messages. The problem is solved once each receiver that neighbors a broadcaster
in E receives at least one message. The global version assumes a single broadcaster starts with a
message that it must disseminate to the entire network. Below we summarize the relevant related
work on these problems, and the new bounds proved in this paper. We conclude with a discussion
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of the key ideas behind these new results.
Related Work. In the standard radio network model, which is equivalent to the dual graph

model with E = E′, Bar-Yehuda et al. [2] demonstrate that a simple randomized back-off strategy
called Decay solves local broadcast in O(log2 n) rounds and global broadcast in O(D log n+ log2 n)
rounds, where n = |V | is the network size and D is the diameter of G. Both results hold with high
probability in n, and were subsequently proved to be optimal or near optimal1 [1, 13, 15].

In [11, 12], it is proved that global broadcast (with constant diameter), and local broadcast
require Ω(n) rounds to solve with reasonable probability in the dual graph model with an offline
adaptive adversary controlling the unreliable edge selection, while [8] proves that Ω(n/ log n) rounds
are necessary for both problems with an online adaptive adversary. As also proved in [8]: even
with the weaker oblivious adversary, local broadcast requires Ω(

√
n/ log n) rounds, whereas global

broadcast can be solved in an efficient O(D log (n/D) + log2 n) rounds, but only if the broadcast
message is sufficiently large to contain enough shared random bits for all nodes to use throughout
the execution. In [14], an efficient algorithm for local broadcast with an oblivious adversary is
provided given the assumption of geographic constraints on the dual graphs, enabling complicated
clustering strategies that allow nearby devices to coordinate randomness.

New Results. In this paper, we turn our attention to local and global broadcast in the dual
graph model with a fading adversary constrained by some stability factor τ (unknown to the
algorithm). We start by considering upper bounds for a simple back-off style strategy inspired
by the decay routine from [2]. This routine has broadcasters simply cycle through a fixed set
of broadcast probabilities in a synchronized manner (all broadcasters use the same probability
in the same round). We prove that this strategy solves local broadcast with probability at least

1− ε, in O
(

∆1/τ̄ ·τ̄2

log ∆ · log (1/ε)
)

rounds, where ∆ is an upper bound on local neighborhood size, and

τ̄ = min{τ, log ∆}.
Notice, for τ ≥ log ∆ this bound simplifies to O(log ∆ log (1/ε)), matching the optimal results

from the standard radio network model.2 This performance, however, degrades toward the poly-
nomial lower bounds from the existing dual graph literature as τ reduces from log ∆ toward a
minimum value of 1. We show this degradation to be near optimal by proving that any local
broadcast algorithm that uses a fixed sequence of broadcast probabilities requires Ω(∆1/ττ/ log ∆)
rounds to solve the problem with probability 1/2 for a given τ . For τ ∈ O(log ∆/ log log ∆) , we
refine this bound further to Ω(∆1/ττ2/ log ∆), matching our upper bound within constant factors.

We next turn our attention to global broadcast. We consider a straightforward global broadcast
algorithm that uses our local broadcast strategy as a subroutine. We prove that this algorithm
solves global broadcast with probability at least 1− ε, in O(D+ log(n/ε)) ·∆1/τ̄ τ̄2/ log ∆) rounds,
where D is the diameter of G, and τ̄ = min{τ, log ∆}. Notice, for τ ≥ log ∆ this bound reduces
to O(D log ∆ + log ∆ log (1/ε)), matching the near optimal result from the standard radio network
model. As with local broadcast, we also prove the degradation of this performance as τ shrinks to
be near optimal. (See Table 1 for a summary of these results and pointers to where they are proved
in this paper.)

We conclude with a preliminary investigation of the performance of these strategies when we
allow some bounded amount of correlation between the distributions selected by the adversary

1The broadcast algorithm from [2] requires O(D logn+ log2 n) rounds, whereas the corresponding lower bound is
Ω(D log (n/D) + log2 n). This gap was subsequently closed by a tighter analysis of a natural variation of the simple
Decay strategy used in [2]

2To make it match exactly, set ∆ = n and ε = 1/n, as is often assumed in this prior work.
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within a given stable period of τ rounds.
Finally we consider the generalized model when we allow correlation between the distributions

selected by the adversary within a given stable period of τ rounds. It turns out that in the case of
arbitrary correlations any simple algorithm needs time Ω(

√
∆/l) if it uses only cycles of length l.

We then restrict the adversary in such a way that the expected change in the degree of any node
can be at most ∆1/(τ̄(1−o(1)). With such restriction we propose an enhanced back-off strategy that
achieves time O

(
∆1/τ̄ · τ̄ · log (1/ε)

)
.

Technique Discussion. Simple back-off strategies can be understood as experimenting with
different guesses at the amount of contention afflicting a given receiver. If the network topology is
static, this contention is fixed, therefore so is the right guess. A simple strategy cycling through a
reasonable set of guesses will soon arrive at this right guess—giving the message a good chance of
propagating.

The existing lower bounds in the dual graph setting deploy an adversary that changes the
topology in each round to specifically thwart that round’s guess. In this way, the algorithm never
has the right guess for the current round so its probability of progress is diminished. The fading
adversary, by contrast, is prevented from adopting this degenerate behavior because it is required
to stick with the same distribution for τ consecutive rounds. An important analysis at the core of
our upper bounds reveals that any fixed distribution will be associated with a right guess defined
with respect to the details of that distribution. If τ is sufficiently large, our algorithms are able to
experiment with enough guesses to hit on this right guess before the adversary is able to change
the distribution.

More generally speaking, the difficulty of broadcast in the previous dual graph studies was not
due to the ability of the topology to change dramatically from round to round (which can happen
in practice), but instead due to the model’s ability to precisely tune these changes to thwart the
algorithm (a behavior that is hard to motivate). The dual graph model with the fading adversary
preserves the former (realistic) behavior while minimizing the latter (unrealistic) behavior.

2 Model and Problem

We study the dual graph model of unreliable radio networks. This model describes the network
topology with two graphs G = (V,E) and G′ = (V,E′), where E ⊆ E′. The n = |V | vertices in V
correspond to the wireless devices in the network, which we call nodes in the following. The edge
in E describe reliable links (which maintain a consistently high quality), while the edges in E′ \E
describe unreliable links (which have quality that can vary over time). For a given dual graph, we
use ∆ to describe the maximum degree in G′, and D to describe the diameter of G.

Time proceeds in synchronous rounds that we label 1, 2, 3... For each round r ≥ 1, the network
topology is described by Gr = (V,Er), where Er contains all edges in E plus a subset of the edges
in E′ \ E. The subset of edges from E′ \ E are selected by an adversary. The graph Gr can be
interpreted as describing the high quality links during round r. That is, if {u, v} ∈ Er, this mean
the link between u and v is strong enough that u could deliver a message to v, or garble another
message being sent to v at the same time.

With the topology Gr established for the round, behavior proceeds as in the standard radio
network model. That is, each node u ∈ V can decide to transmit or receive. If u transmits, it
learns nothing about other messages transmitted in the round (i.e., the radios are half-duplex).
If u receives and exactly one neighbor v of u in Er transmits, then u receives v’s message. If u
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receives and two or more neighbors in Er transmit, u receives nothing as the messages are lost due
to collision. If u receives and no neighbor transmits, u also receives nothing. We assume u does
not have collision detection, meaning it cannot distinguish between these last two cases.

The Fading Adversary. A key assumption in studying the dual graph model are the con-
straints placed on the adversary that selects the unreliable edges to include in the network topology
in each round. In this paper, we study a new set of constraints inspired by real network behavior.
In more detail, we parameterize the adversary with a stability factor that we represent with an
integer τ ≥ 1. In each round, the adversary must draw the subset of edges (if any) from E′ \ E
to include in the topology from a distribution defined over these edges. The adversary selects
which distributions it uses. Indeed, we assume it is adaptive in the sense that it can wait until
the beginning of a given round before deciding the distribution it will use in that round, basing
its decision on the history of the nodes’ transmit/receive behavior up to this point, including the
previous messages they send, but not including knowledge of the nodes’ private random bits.

The adversary is constrained, however, in that it can change this distribution at most once every
τ rounds. On one extreme, if τ = 1, it can change the distribution in every round and is effectively
unconstrained in its choices. On the other other extreme, if τ = ∞, it must stick with the same
distribution for every round. For most of this paper, we assume the draws from these distributions
are independent in each round. Toward the end, however, we briefly discuss what happens when
we generalize the model to allow more correlations.

As detailed in the introduction, because these constraints roughly approximate the fast/slow
fading behavior common in the study of real wireless networks, we call a dual graph adversary
constrained in this manner a fading adversary.

Problem. In this paper, we study both the local and global broadcast problems. The local
broadcast problem assumes a set B ⊆ V of nodes are provided with a message to broadcast. Each
node can receive a unique message. Let R ⊆ V be the set of nodes in V that neighbor at least one
node in B in E. The problem is solved once every node in R has received at least one message from
a node in B. We assume all nodes in B start the execution during round 1, but do not require that
B and R are disjoint (i.e., broadcasters can also be receivers). The global broadcast problem, by
contrast, assumes a single source node in V is provided a broadcast message during round 1. The
problem is solved once all nodes have received this message. Notice, local broadcast solutions are
often used as subroutines to help solve global broadcast.

Uniform Algorithms. The broadcast upper and lower bounds we study in this paper focus
on uniform algorithms, which require nodes to make their probabilistic transmission decisions ac-
cording to a predetermined sequence of broadcast probabilities that we express as a repeating cycle,
(p1, p2, ..., pk) of k probabilities in synchrony. In studying global broadcast, we assume that on first
receiving a message, a node can wait to start making probabilistic transmission decisions until the
cycle resets. We assume these probabilities can depend on n, ∆ and τ (or worst-case bounds on
these values).

In uniform algorithms in the model with fading adversary an important parameter of any node
v is its effective degree in step t denoted by dt(v) and defined as the number of nodes w such that
(v, w) ∈ Et and w has a message to transmit (i.e., will participate in step t).
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As mentioned in the introduction, uniform algorithms, such as the decay strategy from [2], solve
local and global broadcast with optimal efficiency in the standard radio network model. A major
focus of this paper is to prove that they work well in the dual graph model as well, if we assume a
fading adversary with a reasonable stability factor.

The fact that our lower bounds assume the algorithms are uniform technically weaken the
results, as there might be non-uniform strategies that work better. In the standard radio network
model, however, this does not prove to be the case: uniform algorithms for local and global broadcast
match lower bounds that hold for all algorithms (c.f., discussion in [15]).

3 Local broadcast

We begin by studying upper and lower bounds for the local broadcast problem. Our upper bound
performs efficiently once the stability factor τ reaches a threshold of log ∆. As τ decreases toward
a minimum value of 1, this efficiency degrades rapidly. Our lower bounds capture that this degra-
dation for small τ is unavoidable for uniform algorithms. In the following we use the notation
τ̄ = min{τ, dlog ∆e}. By log n we will always denote logarithm at base 2 and by lnn the natural
logarithm.

3.1 Upper Bound

All uniform local broadcast algorithms behave in the same manner: the nodes in B repeatedly
broadcast according to some fixed cycle of k broadcast probabilities. We formalize this strategy
with algorithm RLB (Robust Local Broadcast) described below (we break out Uniform into its own
procedure as we later use it in our improved FRLB local broadcast algorithm as well):

1 Procedure: Uniform(k, p1, p2, . . . , pk)

2 for i = 1, 2, . . . , k do
3 if has message then
4 with probability pi Transmit otherwise Listen

5 else Listen // without a message always listen

1 Algorithm: RLB(r, τ̄)

2 for i← 1 to τ̄ do pi ← ∆−i/τ̄

3 repeat r times
4 Uniform (τ̄ , p1, p2, . . . , pτ̄ )

Before we prove the complexity of RLB we will show two useful properties of any uniform

algorithm. Let R
(v)
t denote the event that node v receives a message from some neighbor in step t.

Lemma 1. For any uniform algorithm and any node v and step t if dt(v) > 0 and the algorithm
uses in step t probability p, then:

1. p ≤ 1/2 then Pr
[
R

(v)
t

]
≥ p·dt(v)

(2e)p·dt(v)

2. Pr
[
R

(v)
t

]
≤ p·dt(v)

ep·dt(v)

Proof. For this to happen exactly one among dt(v) neighbors of v has to transmit and v must not
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transmit. Denote by α = p · di(v). We have

Pr
[
R

(v)
t

]
= pdt(v) · (1− p)dt(v) = α ·

(
1− α

dt(v)

)dt(v)

= α

((
1− α

di(v)

)dt(v)/α−1

· (1− p)

)α
≥ α(e−1(1− p))α ≥ α

(2e)α
,

which shows (1). To obtain (2) we observe that:

α ·
(

1− α

dt(v)

)dt(v)

≤ α

eα
.

Lemma 2. For any uniform algorithm, node v and step t if dt(v) > 0:

Pr
[
R

(v)
t |dt(v) ∈ [d1, d2]

]
≥ min

{
Pr
[
R

(v)
t |dt(v) = d1

]
,Pr

[
R

(v)
t |dt(v) = d2

]}
.

Proof. If the algorithm uses probability p in step t then Pr
[
R

(v)
t

]
= pdt(v)(1− p)dt(v). Seeing this

expression as a function of dt(v) we can compute the derivative and obtain that this function has
a single maximum in dt(v) = 1/(ln(1/(1 − p))). Hence if we restrict dt(v) to be within a certain
interval, then value of the function is lower bounded by the minimum at the endpoints of the
interval.

Our upper bound analysis leverages the following useful lemma which can be shown by induction
on n (the left side is also known as the Weierstrass Product Inequality):

Lemma 3. For any x1, x2, . . . , xn such that 0 ≤ xi ≤ 1:

1−
n∑
i=1

xi ≤
n∏
i=1

(1− xi) ≤ 1−
n∑
i=1

xi +
∑

1≤i<j≤n
xixj .

To begin our analysis, we focus on the behavior of our algorithm with respect to a single
receiver when we use the transmit probability sequence p1, p2, ..., pτ̄ , where τ̄ = min{τ, dlog ∆e},
and pi = ∆−i/τ̄ .

Lemma 4. Fix any receiver u ∈ R and error bound ε > 0. It follows: RLB(2dln(1/ε)e·d4e ·∆1/τ̄e, τ̄)
delivers a message to u with probability at least 1− ε in time O(∆1/τ̄ τ̄ log(1/ε)).

Proof. It is sufficient to prove the claim for τ ≤ log ∆. For τ > log ∆ we use the algorithm for
τ = log ∆. Note that any algorithm that is correct for some τ must also work for any larger τ
because the adversary may not choose to change the distribution as frequently as it is permitted
to. In the case where τ ≤ log ∆ we get that ∆1/τ ≥ 2.

We want to show that if the nodes from Nu ∩ B execute the procedure Uniform(τ, p1, . . . , pτ )
twice, then u receives some message with probability at least log ∆/(2e∆1/ττ). Every time we
execute Uniform twice, we have a total of 2τ consecutive time slots out of which, by the definition
of our model, at least τ consecutive slots have the same distribution of the additional edges and

8



moreover stations try all the probabilities p1, p2, . . . , pτ (not necessarily in this order). Let T denote
the set of these τ time slots and for i = 1, 2, . . . , τ let ti ∈ T be the step in which probability pi is
used. We also denote the distribution used in steps from set T by E(T ). Hence we can denote the
edges between u and its neighbors that have some message by Epart = {(u, b) : b ∈ B}∩E′. We know
that the edge sets are chosen independently from the same distribution: Et ∼ E(T ) for t ∈ T . Let us
denote by Xt = |Et ∩Epart| the random variable being the number of neighbors that are connected
to u in step t and belong to B. For each i form 1 to τ we define qi = Pr

[
∆(i−1)/τ < Xt ≤ ∆i/τ

]
,

for any t ∈ T . Observe that probabilities qi do not depend on t during the considered τ rounds.
Moreover E ∩ Epart 6= ∅, hence Pr[Xt = 0 ] = 0 thus:

τ∑
i=1

qi = 1, (1)

We would like to lower bound the probability that v receives a message in step ti for i = 1, 2 . . . , τ .

Pr
[
R

(v)
ti

]
≥ qi

2e∆1/τ
. (2)

In ti-th slot the transmission probability is pi = ∆−i/τ and the transmission choices done by the
stations are independent from the choice of edges Eti active in round ti. Note that pi ≤ 1/2 hence
using Lemmas 1 and 2:

Pr
[
R

(v)
ti

]
≥ Pr

[
R

(v)
ti

= 1|Qi
]
·Pr[Qi ]

≥ qi min
{

Pr
[
R

(v)
ti

= 1|dti(v) = ∆(i−1)/τ + 1
]
,Pr

[
R

(v)
ti

= 1|dti(v) = ∆i/τ
]}

(3)

≥ qi min

{
(∆(i−1)/τ + 1)∆−i/τ

(2e)(∆(i−1)/τ+1)∆−i/τ
,

1

2e

}
≥ qi

2e∆1/τ
,

because (∆(i−1)/τ +1)∆−i/τ ≤ 1. Since the edge sets are chosen independently in each step and the
random choices of the stations whether to transmit or not are also independent from each other we
have:

Pr

[
τ∧
i=1

(
¬R(v)

ti

)]
=

τ∏
i=1

Pr
[
¬R(v)

ti

]
≤

τ∏
i=1

(
1− qi

2e∆1/τ

)
by independence and Equation (2)

≤ 1−
τ∑
i=1

qi

2e∆1/τ
+

∑
1≤i<j≤τ

qiqj

4e2∆2/τ
by Lemma 3

≤ 1−
∑τ

i=1 qi

2e∆1/τ
+

(
∑τ

i=1 qi)
2

4e2∆2/τ

≤ 1− 1

2e∆1/τ
+

1

4e2∆2/τ
≤ 1− 1

4e∆1/τ
by Equation (1)

Hence if we execute the procedure for 2τdln(1/ε)e·d4e ·∆1/τe time steps, we have at least dln(1/ε)e·
d4e ·∆1/τe sequences of τ consecutive time steps in which the distribution over the unreliable edges
is the same and the algorithm tries all the probabilities {p1, p2, . . . , pτ}. Each of these procedures
fails independently with probability at most 1 − 1/(4e∆1/τ ) hence the probability that all the

procedures fail is at most:
(

1− 1
4e∆1/τ

)dln(1/ε)e·d4e∆1/τ e
≤ e−dln(1/ε)e < ε
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On closer inspection of the analysis of Lemma 4, it becomes clear that if we tweak slightly the
probabilities used in our algorithm, we require fewer iterations. In more detail, the probability of
a successful transmission in the case where each of the x transmitters broadcasts independently
with probability α/x is approximately α/(2e)α. In the previous algorithm we were transmitting
in successive steps with probabilities ∆−1/τ ,∆−2/τ , . . . . Thus if x = 1 we would get in i-th step
α = ∆−i/τ and approximately the sum of probabilities of success in τ consecutive steps would be
∆−1/τ . The formula α/(2e)−α shows that the success probability depends on α linearly if α < 1
(“too small” probability) and depends exponentially on α if α > 1 (“too large” probability). In
the previous theorem we intuitively only use the linear term. In the next one we would like to also
use, to some extent, the exponential term. If we shift all the probabilities by multiplying them by a
factor of β > 1, the total success probability would be approximately β∆−1/τ if x = 1 and β(2e)−β

if x = ∆. Thus by setting β = log2e ∆/τ we maximize both these values.

1 Algorithm: FRLB(r, τ̄)

2 for i← 1 to τ̄ do pi ← ∆−i/τ̄ · log2e ∆/τ̄
3 repeat r times
4 Uniform (τ̄ , p1, p2, . . . , pτ̄ )

The following lemma makes this above intuition precise and gains a log-factor in performance in
algorithm FRLB (Fast Robust Local Broadcast) compared to RLB. As part of this analysis, we add
a second statement to our lemma that will prove useful during our subsequent analysis of global
broadcast. The correctness of this second lemma is a straightforward consequence of the analysis.

Lemma 5. Fix any receiver u ∈ R and error bound ε > 0. It follows:

1. FRLB(2dln(1/ε)e · d4∆1/τ̄ τ̄ / log2e ∆e, τ̄) completes local broadcast with a single receiver in time

O
(

∆1/τ̄ ·τ̄2

log ∆ · log (1/ε)
)

with probability at least 1− ε, for any ε > 0,

2. FRLB(2, τ̄) completes local broadcast with a single receiver with probability at least log2e ∆

4∆1/τ̄ τ̄
.

Proof. It is sufficient to prove the claim for τ ≤ log2e ∆. For τ > log2e ∆ we use the algorithm
for τ = log2e ∆. Note that any algorithm that is correct for some τ must also work for any
larger τ because the adversary may not choose to change the distribution as frequently as it is
permitted to. In the case where τ ≤ log2e ∆ we get that ∆1/τ ≥ 2e. Moreover ∆−1/τ log2e ∆/τ =
(2e)− log2e ∆/τ log2e ∆/τ ≤ 1/(2e) because log2e ∆/τ ≥ 1 hence pi ≤ 1/2.

We want to show that if the nodes from Nu ∩ B execute the procedure Uniform(τ, p1, . . . , pτ )
twice, then u receives some message with probability at least log ∆/(7∆1/ττ). Since we execute
Uniform twice, we have a total of 2τ consecutive time slots out of which, by the definition of our
model, at least τ consecutive slots have the same distribution of the edges in E′ \E and moreover
stations try all the probabilities p1, p2, . . . , pτ . (not necessarily in this order). Let T denote the
set of these τ time slots and for i = 1, 2, . . . , τ let ti ∈ T be the step in which probability pi
is used. We also denote the distribution used in steps from set T by E(T ). Observe from the
definition of the algorithm that during these slots the number of participating stations does not
change. Hence we can denote the edges between u and its neighbors that have some message by

10



Epart = {(u, b) : b ∈ B} ∩E′. We know that the edge sets are chosen independently from the same
distributions: Et ∼ E(T ) for t ∈ T . Let us denote by Xt = |Et ∩ Epart| the random variable being
the number of neighbors that are connected to u in step t and belong to B. For each i form 1 to τ
we define qi:

qi = Pr
[

∆(i−1)/τ < Xt ≤ ∆i/τ
]
,

for any t ∈ T . Observe that probabilities qi do not depend on t during the considered τ rounds.
Moreover E ∩ Epart 6= ∅, hence Pr[Xt = 0 ] = 0 thus:

τ∑
i=1

qi = 1, (4)

We would like to lower bound the probability that v receives a message in step ti for i = 1, 2, . . . , τ :

Pr
[
R

(v)
ti

]
≥ qi log2e ∆

2∆1/ττ
. (5)

In ti-th slot each station with a message transmits independently with probability is pi = ∆−i/τ ·
log2e ∆/τ and the transmission choices done by the stations are independent from the choice of
edges Eti active in round ti. Let Qi denote the event that ∆(i−1)/τ < Xti ≤ ∆i/τ . We have pi ≤ 1/2
hence we can use Lemma 1 and 2:

Pr
[
R

(v)
ti

]
≥ Pr

[
R

(v)
ti
|Qi
]
·Pr[Qi ]

≥ qi ·min

{
(∆(i−1)/τ + 1)∆−i/τ log2e ∆/τ

(2e)(∆(i−1)/τ+1)∆−i/τ log2e ∆/τ
,

log2e ∆/τ

(2e)log2e ∆/τ

}
.

Note that (∆(i−1)/τ + 1)∆−i/τ log2e ∆/τ = ∆−1/τ · log2e ∆/τ + ∆−i/τ · log2e ∆/τ ≤ 2(2e)− log2e ∆/τ ·
log2e ∆/τ ≥ 1/e, because log2e ∆/τ ≥ 1, hence:

Pr
[
R

(v)
ti

]
≥ min

{
∆−1/τ log2e ∆/τ

(2e)1/e
,
log2e ∆

∆1/ττ

}
≥ qi log2e ∆

2∆1/ττ
.

Since the edge sets are chosen independently in each step and the choices of the stations are
also independent we have:

Pr

[
τ∧
i=1

(
¬R(v)

ti

)]
=

τ∏
i=1

Pr
[
¬R(v)

ti

]
by independence

≤
τ∏
i=1

(
1− qi log2e ∆

2∆1/ττ

)
by Equation (5)

≤ 1−
τ∑
i=1

qi log2e ∆

2∆1/ττ
+

∑
1≤i<j≤n

qiqj log2
2e ∆

4∆2/ττ2
by Lemma 3

≤ 1− log2e ∆

2∆1/ττ

τ∑
i=1

qi +
log2

2e ∆

4∆2/ττ2

(
n∑
i=1

qi

)2

= 1− log2e ∆

2∆1/ττ
+

log2
2e ∆

4∆2/ττ2
, by Equation (4)

≤ 1− log2e ∆

4∆1/ττ
,

11



where the last inequality is true since if we denote τ = (log2e ∆)/α (for α ≥ 1) then we have

∆1/ττ = (2e)α log ∆/(2α) ≥ log ∆ hence
log2

2e ∆

4∆2/τ τ2 ≤
log2e ∆

4∆1/τ τ
. This completes proof of 2. To prove 1

we observe that if we execute the procedure for 2τdln(1/ε)e · d4 ·∆1/ττ/ log2e ∆e time steps we have
at least dln(1/ε)e·d4·∆1/ττ/ log2e ∆e sequences of τ consecutive time steps in which the distribution
over the unreliable edges is the same and the algorithm tries all the probabilities {p1, p2, . . . , pτ}.
Each of these procedures fails independently with probability at most 1− log2e ∆/(4∆1/ττ) hence
the probability that all the procedures fail is at most:(

1− τ log2e ∆

4 ·∆1/ττ

)dln(1/ε)e·d4·∆1/τ τ/ log2e ∆e
≤ e−dln(1/ε)e < ε

In Lemmas 4 and 5 we studied the fate of a single receiver in R during an execution of algorithms
RLB and FRLB. Here we apply this result to bound the time for all nodes in R to receive a message,
therefore solving the local broadcast problem. In particular, for a desired error bound ε, if we apply
these lemmas with error bound ε′ = ε/n, then we end up solving the single node problem with a
failure probability upper bounded by ε/n. Applying a union bound, it follows that the probability
that any node from R fails to receive a message is less than ε. Formally:

Theorem 6. Fix an error bound ε > 0. It follows that algorithm FRLB(2dln(n/ε)e·d4∆1/τ̄ τ̄ / log ∆e)
solves local broadcast in O

(
∆1/τ̄ ·τ̄2

log2e ∆ · log (n/ε)
)

rounds, with probability at least 1− ε.

3.2 Lower bound

Observe that for τ = Ω(log ∆), FRLB has a time complexity of O(log ∆ log n) rounds for ε = 1/n,
which matches the performance of the optimal algorithms for this problem in the standard radio
model. This emphasizes the perhaps surprising result that even large amounts of topology changes
do not impede simple uniform broadcast strategies, so long as there is independence between nearby
changes.

Once τ drops below log ∆, however, a significant gap opens between our model and the standard
radio network model. Here we prove that gap is fundamental for any uniform algorithm in our
model.

In the local broadcast problem, a receiver from set R can have between 1 and ∆ neighbors in
set B. The neighbors should optimally use probabilities close to the inverse of their number. But
since the number of neighbors is unknown, the algorithm has to check all the values. If we look at
the logarithm of the inverse of the probabilities (call them log-estimates) used in Lemma 4 we get
i log ∆/τ , for i = 1, 2, . . . , τ—which are spaced equidistantly on the interval [0, log ∆]. The goal of
the algorithm is to minimize the maximum gap between two adjacent log-estimates placed on this
interval since this maximizes the success probability in the worst case. With this in mind, in the
proof of the following lower bound, we look at the dual problem. Given a predetermined sequence
of probabilities used by an arbitrary uniform algorithm, we seek the largest gap between adjacent
log-estimates, and then select edge distributions that take advantage of this weakness.

Theorem 7. Fix a maximum degree ∆ ≥ 10, stability factor τ ≤ log(∆ − 1)/16, and uniform
local broadcast algorithm A. Assume that A guarantees with probability at least 1/2 to solve local
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Figure 1: A graph used in proofs of Theorems 7 and 8. Solid lines correspond to edges in E and
dashed lines correspond to edges in E′ \ E (unreliable edges).

broadcast in f(∆, τ) rounds when executed in any dual graph network with maximum degree ∆ and
fading adversary with stability τ . It follows that f(∆, τ) ∈ Ω(∆1/ττ/ log ∆).

Proof. Consider the dual graphG = (V,E) andG′ = (V,E′), defined as follows: V = {v, u, v1, . . . , vn−2}
and E = {(u, vi), i ∈ {1, 2, . . . ,∆ − 1}} ∪ {(v1, v), (v, v∆)} ∪ {(vi, vi+1), i ∈ {∆, . . . , n − 3}} and
E′ = E ∪ {(vi, v), i ∈ {2, 3, . . . ,∆ − 1}} (see Figure 1). We will study local boadcast in this dual
graph with B = {u, v1, v2, . . . , v∆−1} and R = {v}. Observe that the maximum degree of any node
is indeed ∆ and the number of nodes is n. Nodes v∆, v∆+1, . . . , vn−2 do not belong to B ∪R hence
are not relevant in our analysis.

Using the sequence of probabilities p1, p2, . . . used by algorithm A we will define a sequence of
distributions over the edges that will cause a long delay until node v will receive a message. The
adversary we define is allowed to change the distribution every τ steps. Accordingly, we partition
the rounds into phases of length τ , which we label 1, 2, 3, . . . . Phase k consists of time steps
Ik = {1 + k · τ, 2 + k · τ, . . . , (k+ 1) · τ}. For each phase k ≥ 1, the adversary will use a distribution
Dk thats defined with respect to the probabilities used by A during the rounds in phase k. In
particular, let sequence Pk = {pi}i∈Ik be the τ probabilities used by A during phase k.

We use Pk to define the distribution Dk as follows. Define ∆̇ = ∆ − 1 and let N represent
blog ∆̇c urns labeled with numbers from 1 to blog ∆̇c. Into these urns we place balls with numbers
dlog(1/pj)e and blog(1/pj)c for all j ∈ Ik. Ball with number i is placed into the bin with the
same number. With this procedure for each j, we place two balls in adjacent bins if dlog(1/pj)e 6=
blog(1/pj)c and a single ball in the opposite case. We arrange the bins in a circular fashion i.e.,
bins blog ∆̇c and 1 are consecutive and we want to find the longest sequence of consecutive empty
bins. Observe that since for each j we put either a single ball or two balls into adjacent bins we
have at most τ sequences of consecutive empty bins. Moreover, since at most 2τ bins contain a ball

then there exists a sequence of consecutive empty bins of length at least blog ∆̇c−2τ
τ . Knowing that

τ is an integer and that τ ≤ log ∆̇/16 we can represent log ∆̇ = aτ + b+ {log ∆̇}, where {log ∆̇} is
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the fractional part of log ∆̇ and b+ {log ∆̇} < τ . We can then show that:

blog ∆̇c − 2τ

τ
= a+

b

τ
− 2 ≥

⌊
log ∆̇

τ

⌋
− 2

We define:

x = blog ∆̇/τc − 3− blog(bln ∆̇/τc)c,
y = blog (bln ∆̇/τc)c+ 1.

We observe that for τ ≤ log ∆̇/16 we have log (bln ∆̇/τc) ≥ 4 hence x and y are both positive
integers and moreover x+y = blog ∆̇/τc−2. Hence we already showed that there exists a sequence
of consecutive empty bins of length at least x+ y. Now, we pick the label of (y + 1)-st bin in this
sequence (the order of bins is according to the circular arrangement i.e., 1 comes after blog ∆̇c) and
call it ak. Let Ak = {log(1/pj) : j ∈ Ik}. This set contains logarithms of all the estimates “tried”
by the algorithm in k-th phase. Now we split Ak into elements that are larger and that are smaller

than ak: Ak = A
(≥)
k ∪A(<)

k , A
(≥)
k = {a ∈ Ak : a ≥ ak}, A

(<)
k = {a ∈ Ak : a < ak}. We observe that

if a ∈ A(<)
k then a ≤ ak − y because there are y empty bins between bin ak and the bin containing

ball dae. Symmetrically if a ∈ A(≥)
k then a ≥ ak +x−1 because there are x−1 empty bins between

bin ak and the bin containing ball bac.
In our distribution Dk in phase k, we include all edges from E, plus a subset of size 2ak − 1

selected uniformly from E \ E. This is possible since the adversary can choose to activate any
subset of links among the set {(vi, v), i ∈ {2, . . . , ∆̇}}. With this choice, the degree of v is 2ak in
phase k hence we can bound the probability that a successful transmission occurs in phase k.

Having chosen the distribution of the edges between v and {v1, v2, . . . , v∆̇} we can now bound
the probability of a successful transmission in any step t in the considered phase. Let the event of
a successful transmission in step t be denoted by St. For this event to happen simply exactly one
of the 2ak nodes among {v1, v2, . . . , v∆̇} that are connected to v need to transmit. We have:

Pr[St ] = 2akpt · (1− pt)2ak−1.

Take any step t and the corresponding probability pt used by the algorithm. We know that ak is
chosen so that ak ≥ log(1/pt) + y or ak ≤ log(1/pt)− x. We consider these cases separately:

Case 1: ak ≤ log(1/pt) − x + 1

Pr[St ] = 2ak · pt · (1− pt)2ak−1 ≤ 2ak−log(1/pt) ≤ 2−x+1

= 2−blog ∆̇/τc+4+blog(bln ∆̇/τc)c ≤ 2− log ∆̇/τ+log(bln ∆̇/τc)+5

≤ 32bln ∆̇/τc
∆̇1/τ

≤ 32 ln ∆̇

∆̇1/ττ
.

Case 2: ak ≥ log(1/pt) + y

Pr[St ] = 2ak · pt · (1− pt)2ak−1 =
2akpt
1− pt

(1− pt)2ak ≤ 2akpt
1− pt

e−2akpt .
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We know that ak ≥ log(1/pt) + y and ak ≤ log ∆̇ thus pt ≤ 2y/∆̇ hence since ∆̇ ≥ 9 we
get 1/(1 − pt) ≤ 1/2. Moreover since 2aipt ≥ 2y ≥ 4 we have e−2aipt/2 < 1/(2aipt) (because
ex/2 > x for all x). Which gives in this case:

Pr[St ] < 2e−2akpt/2 ≤ e−2y−1 ≤ 2e−bln ∆̇/τc ≤ 2∆̇−1/τ ≤ 32 ln ∆̇

∆̇1/ττ
.

We have just shown that the probability that v receives a message in our fixed phase k is at

most 32 ln ∆̇
∆̇1/τ τ

. To conclude the proof, we apply a union bound to show that probability v receives

a message in at least one of ∆̇1/ττ/(64 ln ∆̇) − 1 phases, which require ∆̇1/ττ2/(64 ln ∆̇) − τ total
rounds, is strictly less than 1/2:

Pr

 ∆̇1/τ τ/(64 ln ∆̇)−1⋃
t=1

St

 ≤ ∆̇1/τ τ/(64 ln ∆̇)−1∑
t=1

Pr[St ] <
1

2
.

In our next theorem, we refine the argument used in Theorem 8 for the case where we τ is a non-
trivial amount smaller than the log ∆ threshold. We will argue that for smaller τ , the complexity
is Ω(∆1/ττ2/ log ∆), which more exactly matches our best upper bound. We are able to trade this
small amount of extra wiggle room in τ for a stronger lower bound because it simplifies certain
probabilistic obstacles in our argument. Combined with our previous theorem, the below result
shows our upper bound performance is asymptotically optimal for uniform algorithms for all but a
narrow range of stability factors, for which it is near tight.

Theorem 8. Fix a maximum degree ∆ ≥ 10, stability factor τ ≤ ln(∆ − 1)/(12 log log(∆ − 1)),
and uniform local broadcast algorithm A. Assume that A guarantees with probability at least 1/2
to solve local broadcast in f(∆, τ) rounds when executed in any dual graph network with maximum
degree ∆ and fading adversary with stability τ . It follows that f(∆, τ) ∈ Ω(∆1/ττ2/ log ∆).

Proof. In this proof we will use the same graph as in Theorem 7. Let G = (V,E) and G′ = (V,E′).
Let V = {v, u, v1, . . . , vn−2} and let R = {u, v1, v2, . . . , v∆−1} and E = {(u, vi), i ∈ {1, 2, . . . ,∆}} ∪
{(v1, v), (v, v∆)} ∪ {(vi, vi+1), i ∈ {∆, . . . , n − 3}} and E′ = E ∪ {(vi, v), i ∈ {2, 3, . . . ,∆}} (see
Figure 1).

Let p1, p2, . . . be the fixed sequence of broadcast probabilities used by nodes in B running A.
Using this sequence we will define a sequence of distributions over the edges that will cause a long
time for this algorithm until node v will receive a message.

The adversary is allowed to change the distribution once every τ steps. Therefore we will define
the k-th distribution Dk based on the sequence of probabilities Pk = (p(k−1)τ+1, p(k−1)τ+2, . . . , pkτ )
and distribution Dk will be used in rounds (k − 1)τ + 1, (k − 1)τ + 2, . . . , kτ . Consider intervals of
τ time steps (call such interval a phase) and the corresponding probabilities pj+i·τ (j < τ). Let us
fix any phase k and consider values li = log(1/pi+(k−1)τ ), for i = 1, 2, . . . , τ . We denote ∆̇ = ∆− 1.

As an adversary we are allowed to define an integer value l∗ ∈ [1, 2, . . . , blog ∆̇c] based on the
l-values and define a distribution for phase k in which there are always 2l

∗
active links between

nodes v1, v2, . . . , vn and v. The success probability in i-th step of the considered phase is then

si = pi+(k−1)τ · 2l
∗ · (1− pi+(k−1)τ )2l

∗−1.

15



Our goal as an adversary is to find such l∗ that minimizes
∑τ

i=1 si. We will show that it is always
possible to find such l∗ that

∑τ
i=1 si = O(∆̇−1/τ log ∆̇/τ) = Θ(∆−1/τ log ∆/τ). This will give us

that Ω(∆̇1/ττ/ log ∆̇) phases of τ steps hence in total Ω(∆1/ττ2/ log ∆) steps are needed to complete
local broadcast with constant probability.

Assume by contradiction that there exists a choice of l1, l2, . . . , lτ such that for any choice of l∗

we have that
∑τ

i=1 si ≥ c log ∆̇

∆̇1/τ τ
, where c = 2409. We fix this choice of l-values l1, l2, . . . , lτ and we

denote:

x = log ∆̇/τ + log τ − log ln ∆̇,

y = log(ln ∆̇/τ),

x′ = log ∆̇/τ + 2 log τ − log ln ∆̇,

y′ = log(ln ∆̇/τ + 2 ln τ).

Since τ < ln ∆̇/(12 log log ∆̇) we have that y ≥ 3. Observe that x + y = log ∆̇/τ and x′ + y′ ≤
log ∆̇/τ + 2 log τ − log ln ∆̇ + log(ln ∆̇/τ + 2 ln τ) = log ∆̇/τ + 2 log τ + log(1/τ + 2 ln τ/ ln ∆̇) ≤
log ∆̇/τ + 2 log τ + log 3. Let ∆∗ denote the number of active links between v and v1, v2, . . . , v∆̇ in
the considered phase and l∗ = log ∆∗. In any step if ∆∗ is such that l∗ ≥ y′ then if we also have
pi ≥ 2

3 then we get:

si = pi2
l∗(1− pi)2l

∗−1 ≤ 2l
∗

32l∗−1
≤ 3(ln ∆̇/τ + 2 ln τ)

eln ∆̇/τ+2 ln τ
≤ 9 ln ∆̇

∆̇1/ττ2
, (6)

where the last inequality is true because τ ≥ 1 and ln τ ≤ ln ∆̇. This shows that the sum of all

such si is at most 9 ln ∆̇
∆̇1/τ τ

. Consider now only steps with pi < 2/3. Then:

si = 2l
∗−li

(
1− 1

2li

)2l
∗−1

= 2l
∗−li ·

(
1− 1

2li

)2l
∗

1− pi
≤ 3 · 2l∗−li · e−2l

∗−li

Pr[ Single|li ≥ l∗ + x− 3 ] ≤ 3 · 2−x+3 ≤ 24 ln ∆̇

∆̇1/ττ
(7)

Pr
[
Single|li ≥ l∗ + x′ − 1

]
≤ 3 · 2−x′+1 ≤ 6 ln ∆̇

∆̇1/ττ2
(8)

Pr[ Single|li ≤ l∗ − y ] ≤ 3 · 2y

e2y
=

3 ln ∆̇

∆̇1/ττ
(9)

Pr
[
Single|li ≤ l∗ − y′

]
≤ 3 · 2y′

e2y′
=

3(ln ∆̇/τ + 2 log τ)

∆̇1/ττ2
≤ 9 ln ∆̇

∆̇1/ττ2
(10)

Observe that for a fixed value of l∗, for any i such that li /∈ [l∗− y′, l∗+ x′− 1] we have si ≤ 9 ln ∆̇
∆̇1/τ τ2

(by Equations (8), (10)). Hence the sum of all such values si is at most 9 ln ∆̇
∆̇1/τ τ

. Hence we only need

to find such l∗ that the sum of the values si for which the corresponding li ∈ [l∗1 − y′, l∗1 + x′] is less

than (c−9) ln ∆̇

∆̇1/τ τ
.

We denote the smallest and the largest l-values: lsm = mini∈{1,2,...,τ}{li} and llg = maxi∈{1,2,...,τ}{li}.
We will prove two following claims about lsm and llg:
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lsm ≤ x′ Observe that otherwise we can choose l∗ = 0 (∆∗ is then equal to 1 which corresponds
to exactly one active link between {v1, v2, . . . , v∆̇} and v) and then by Equation (8) under

this choice of l∗ all values si would satisfy si ≤ 6∆̇−1/τ ln ∆̇
τ2 (because if li ≥ x′ then pi < 2/3).

llg ≥ log ∆̇ − y′ If it is not the case, we choose l∗ = log ∆̇ and by Equation (10) we have that if

pi < 2/3 then si ≤ 9 ln ∆̇
∆̇1/τ τ2

and by Equation (6) that if pi ≥ 2/3 then si ≤ 9 ln ∆̇
∆̇1/τ τ2

. And the

sum of all values of si is at most 9 ln ∆̇
∆̇1/τ τ

which contradicts our assumption.

Consider now interval Γ1 = [lsm, llg]. Two previous claims showed that |Γ1| ≥ log ∆̇− x′ − y′. We
can now consider the placement of values li on Γ1 and analyze gaps between the adjacent values.
Gap gi is the difference between the (i + 1)-st smallest and i-th smallest value out of all values lj
that belong to Γ1. We want to show the following:

max
i
gi ≤ x′ + y′ (11)

Assume on the contrary that such a gap between li and lj exists. Then we pick l∗ = dli + y′e
and observe that l∗ is an integer and is at least y′ larger than each smaller l-value and at least
x′ − 1 smaller than each larger l-value. In such a case l∗ ≥ y′ hence for all i such that pi ≥ 2/3

by Equation (6) we have si ≤ 9 log ∆̇

∆̇1/τ τ2
and if pi < 2/3 then (since l∗ ≥ y′) by Equations (8) (10) we

have si ≤ 9 ln ∆̇
∆̇1/τ τ2

. Thus if any gap has size at least x′ + y′ then
∑τ

i=0 si ≤
9 ln ∆̇
∆̇1/τ τ

which contradicts
our assumption.

We know that there are at most τ − 1 gaps and that they cover area of at least log ∆̇− x′ − y′.
Hence we can lower bound the average length of a gap:

d1 =
log ∆̇− x′ − y′

τ − 1
≥ log ∆̇− log ∆̇/τ − 2 log τ − log 3

τ − 1
=

log ∆̇(1− 1/τ)

τ(1− 1/τ)
−2 log τ + log 3

τ
≥ log ∆̇

τ
−2.

Thus there exists a gap G1 of length at least d1. Knowing that y ≥ 3 we have d1 = x+ y − 2 ≥ 1
and inside this gap we can find an integer value l∗1 that is at least y larger than the closest smaller
l-value and at least x − 3 smaller than the closest smaller l-value. Consider values of si with this
choice of l∗. By Equations (7) (9) if l∗ = l∗1, each si is at most 24∆̇−1/τ ln ∆̇

τ . Consider now interval
I1 = [l∗1 − y′, l∗1 + x′]. By Equations (8) and (10) for all i such that li /∈ I1 and pi < 2/3 we have

si ≤ 9∆̇−1/τ ln ∆̇
τ2 . If pi ≥ 2/3 then also si ≤ 9∆̇−1/τ ln ∆̇

τ2 because l∗1 ≥ y′. Thus the sum of all si for

which li /∈ I1 or pi ≥ 2/3 is at most 9∆̇−1/τ ln ∆̇
τ . Since by the assumption, the sum of all si is at

least c ln ∆̇
∆̇1/τ τ

then the sum of all si for which li ∈ I1 and pi < 2/3 has to be at least 2400 ln ∆̇
∆̇1/τ τ

. By the

choice of l∗1, each si for which li ∈ I1 and pi ≥ 2/3 is at most 24 ln ∆̇
∆̇1/τ τ

hence we must have at least
100 such l-values. We have shown that there are at least 100 l-values inside interval I1.

We find the smallest and the largest l-values inside I1.

l(1)
sm = min

i∈{1,2,...,τ}
{li : li ∈ I1}

l
(1)
lg = max

i∈{1,2,...,τ}
{li : li ∈ I1}

We consider interval Γ2 = Γ1 \ (l
(1)
sm, l

(1)
lg ) (we remove the interior of the interval [l

(1)
sm, l

(1)
lg ] keeping

the endpoints). We know that we removed at least 98 l-values. Since the l-values have to work for
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any l∗ we can now argue about the average length of a gap inside Γ2 and locate a different value
l∗2 in the remaining interval and identify 100 l-values close to l∗2. But we need to make sure that
|l∗1 − l∗2| ≥ x′ + y′ since otherwise we would count the same l-values twice.

We extend the interval I1 to I ′1 = [l∗1 − (x′ + y′), l∗1 + (x′ + y′)] and we find the smallest l-

value larger than any l-value inside I ′1 (call it l
′(1)
sm ) and the largest l-value smaller than any l-value

inside I ′1 (call it l
′(1)
lg ). If both these values exist, we consider interval Γ∗2 = Γ1 \ (l

′(1)
sm , l

′(1)
lg ) (we

remove the interior of the interval [l′sm, l
′
lg] keeping the endpoints). If l′sm does not exist (there

is no such l-value), we define Γ∗2 = Γ1 \ [lsm, l
′(1)
lg ) and symmetrically if l

′(1)
lg does not exist we set

Γ∗2 = Γ1 \ (l
′(1)
sm , llg].

Now we want to show that Γ∗2 ≥ |Γ1| − 5(x′ + y′). It is because |I ′1| = 2(x′ + y′) and by
Equation (11), length of any gap is at most x′ + y′ hence distance between l∗1 − (x′ + y′) and l′sm
is at most x′ + y′ (similarly between l∗1 + (x′ + y′) and l′lg). If l′sm or l′lg does not exist we remove
additionally no more than x′ + y′ because the smallest l-value that is most x′ and the largest is at
least log ∆̇− y′. This shows that we remove the total area of at most 5(x′ + y′).

Now we consider the average length of a gap in Γ∗2. We removed at least 98 l-values (because
I∗1 contains I ′1) and area of at most 5(x′ + y′) ≤ 5 log ∆̇/τ + 10 log τ + 5 log 3. Hence the average
length of a gap in Γ∗2 is:

d2 ≥
log ∆̇− 6(x′ + y′)

τ − 98
≥ log ∆̇

τ
.

We pick a gap of length at least log ∆̇
τ and find an integer l∗2 at least y larger than the closest smaller l-

value and at least x−1 smaller than the closest larger l-value. Observe moreover that |l∗2−l∗1| ≥ x′+y′
because l∗2 does not belong to the interior of interval I ′1. We define I2 = [l∗2−y′, l∗2 +x′]. Observe that
I1 and I2 are disjoint (except possibly their endpoints). We can now argue that I2 also contains 100
l-values similarly as I1. And moreover at most one l-value can be shared between I1 and I2 (because
the interiors of the intervals are disjoint). And now we extend I2 to I∗2 , construct Γ3 and Γ∗3 and
repeat the whole procedure. This procedure identifies at least 98 unique l-values in each step hence
it can last for at most τ/98 iterations. But we remove at most 5 log ∆̇/τ +10 log τ +5 log 3 area per
iteration. Since we assumed τ ≤ ln ∆̇/ log log ∆̇, then 5 log ∆̇/τ + 10 log τ + 5 log 3 ≤ 10 log ∆̇/τ .
This leads to contradiction since there are only τ l-values. Hence for any choice of l1, . . . , lτ there

exists l∗ such that
∑τ

i=1 si < c ln ∆̇
∆̇1/τ τ

. Thus by the union bound the algorithm needs to run for at

least ∆̇1/ττ/(c ln ∆̇) phases to accumulate the total probability of success of 1/2. Knowing that
each phase lasts for τ rounds the total number of steps needed is Ω(∆1/ττ2/ ln ∆)

4 Global Broadcast

We now turn our attention to the global broadcast problem. Our upper bound will use the same
broadcast probability sequence as our best local broadcast algorithm from before. As with local
broadcast, for τ ≥ log ∆, our performance nearly matches the optimal performance in the standard
radio network model, and then degrades as τ shrinks toward 1. Our lower bound will establish that
this degredation is near optimal for uniform algorithms in this setting. In this section we also use
the notation τ̄ = min{τ, dlog ∆e}.
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4.1 Upper Bound

A uniform global broadcast algorithm requires each node to cycle through a predetermined sequence
of broadcast probabilities once it becomes active (i.e., has received the broadcast message). The
only slight twist in our algorithm’s presentation is that we assume that once a node becomes active,
it waits until the start of the next probability cycle to start broadcasting. To implement this logic
in pseudocode, we use the variable Time to indicate the current global round count. We detail this
algorithm below (notice, the FRLB(2) is the local broadcast algorithm analyzed in Lemma 5).

1 Algorithm: RGB(ε)

2 Wait until receiving the message
3 Wait until (Time mod 2τ̄) = 0

4 repeat dln (2n/ε)e · d4∆1/τ̄ τ̄ / log ∆e times
5 FRLB(2)

Theorem 9. Fix an error bound ε > 0. It follows that algorithm RGB(ε) completes global broadcast

in time O
(

(D + log(n/ε)) · ∆1/τ̄ τ̄2

log ∆

)
, with probability at least 1− ε.

Proof. Similarly to the analysis of the local broadcast algorithms, we consider only the case of
τ ≤ log ∆ since for any larger τ we use the algorithm for τ = log ∆. Take any station u and assume
that some positive number of neighbors of u in E execute in parallel procedure FRLB(2). Then
by Lemma 5 station u receives a message from some neighbor with probability at least ln ∆

4∆1/τ τ
.

Note that the same number of neighbors of u have to execute both procedures Uniform of FRLB(2)
and at least one of these neighbors has to be connected to u by a reliable link. This is true since
after receiving the message, a station waits until a time slot that is a multiple of 2τ (Line 3 in the
pseudocode). Hence we can treat each execution of FRLB(2) as a single phase.

Let o denote the originator of the message. Fix any tree T of shortest paths on graph G (e.g.,
BFS Tree) on edges from E (reliable) rooted at o. We would like to bound the progress of the
message on tree T . For any station u we can denote by p(u) the parent of u in tree T . For
any station u we can define the earliest time step T (u) in which p(u) receives the message. We set
T (u) =∞ if the message does not reach p(u). If T (u) <∞ we consider dln(2n/ε)e·d4∆1/ττ/ log ∆e
phases that follow step T (u). A phase is called successful if it succeeds in delivering the message to
u and unsuccessful otherwise. Note that (assuming that T (u) <∞) the probability that all phases
are unsuccessful for any fixed u is at most(

1− ln ∆

4∆1/ττ

)dln(2n/ε)e·d4∆1/τ τ/ log ∆e
≤ e−dln(2n/ε)e =

ε

2n
. (12)

Let us denote by S an event that T (u) <∞ for all stations u. And by Si the event that T (u) <∞
for all stations at distance at most i from the root in tree T . If di denotes the number of stations
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at distance i from the root in tree T we get:

Pr[S ] = Pr[SD ] ≥ Pr[SD|SD−1 ] Pr[SD−1 ]

≥ Pr[S1 ]
D∏
i=2

Pr[Si|Si−1 ]

≥
D∏
i=1

(
1− εdi

2n

)
by (12) and union bound

≥ 1−
D∑
i=1

εdi
2n

by Lemma 3

= 1− ε

2
.

If event S takes place, the message reaches all the nodes of the network. Clearly it can reach node u
not necessarily from its parent p(u) in tree T , but this would only help in our analysis (it will cause
the message to arrive at u faster). Now we want to bound the number of phases it takes for the
message to traverse a path in the tree. Fix any station u and let P = (o, v1, v2, . . . , vD′−1, u) denote
the path from o to u in tree T (note that D′ ≤ D). We denote by Ri the round in which vi receives
the message (RD′ denotes the round in which u receives the message) ∆i = max{0, Ri − Ri−1}.
Conditioning on event S, variables ∆i are stochastically dominated by independent geometric
random variables with success probability ln ∆

4∆1/τ τ
. We have D′ such variables and the probability

that sum T of them exceeds L = 4(D′+ln(2n/ε))· 7∆1/τ τ
log ∆ = E[T ]·4(1+ln(2n/ε)/D′) can be bounded

using inequalities from [10]. Denote λ = 4(1 + ln(2n/ε)/D′) and observe that (λ − 1)/2 ≥ lnλ is
true since λ > 4. We get:

Pr[T ≥ L ] = Pr[T ≥ E[T ] · λ ]

≤ 1

λ
·
(

1− ln ∆

4∆1/ττ

)(λ−1−lnλ)E[T ]

≤ 1

λ

(
1− ln ∆

4∆1/ττ

)E[S ](λ−1)/2

≤ 1

λ
e−

3
2
D′−2 ln(2n/ε) ≤ ε2

4n2
,

and by taking the union bound over all stations u, we get that with probability at least 1− ε2/(4n)

the message reaches all nodes within time 4(D+ln(2n/ε)) · 4∆1/τ τ
log ∆ , conditioned on S. Since S takes

place with probability at least 1− ε/2 and since each phase takes 2τ time steps, this shows that the

algorithm works within time 8(D+ln(2n/ε))·4∆1/τ τ2

log ∆ with probability at least (1−ε/2)(1−ε2/(4n)) ≥
1− ε.

4.2 Lower Bound

The global broadcast lower bound of Ω(D log(n/D)), proved by Kushilevitz and Mansour [13] for
the standard radio network model, clearly still holds in our setting, as the radio network model is
a special case of the dual graph model where E′ = E. Similarly, the Ω(log n log ∆) lower bound
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Figure 2: A graph used in proof of Theorem 10.

proved by Alon et al. [1] also applies.3 It follows that for τ ≥ log ∆, we almost match the optimal
bound for the standard radio network model, and do match the time of the seminal algorithm of
Bar-Yehuda et al. [2].

For smaller τ , this performance degrades rapidly. Here we prove this degradation is near optimal
for uniform global broadcast algorithms in our model. We apply the obvious approach of breaking
the problem of global broadcast into multiple sequential instances of local broadcast (though there
are some non-obvious obstacles that arise in implementing this idea). As with our local broadcast
lower bounds, we separate out the case where τ is at least a 1/ log log ∆ factor smaller than our
log ∆ threshold, as we can obtain a slightly stronger bound under this assumption.

Theorem 10. Fix a maximum degree ∆ ≥ 10, stability factor τ , diameter D ≥ 24 and uniform
global broadcast algorithm A. Assume that A solves global broadcast in expected time f(∆, D, τ) in
all graphs with diameter D, maximum degree ∆ and fading adversary with stability τ . It follows
that:

1. if τ < ln(∆− 1)/(12 log log(∆− 1)) then f(∆, D, τ) ∈ Ω(D∆1/ττ2/ log ∆),

2. if τ < ln(∆− 1)/16 then f(∆, D, τ) ∈ Ω(D∆1/ττ/ log ∆).

Proof. We assume first that D is divisible by 3 (if it is not we can decrease D by one or two
nodes to make it divisible by 3, without impacting the asymptotic bounds). We construct the
dual graph G,G by connecting together D/3 gadgets, G1,G2, . . . ,GD/3, as shown in Figure 2. In
particular, each gadget Gi is the same graph structure used to prove our local broadcast lower
bound. Formally, for each i = 1, 2, , D/3, gadget Gi is a dual graph Gi = (Vi, Ei), G

′
i = (Vi, E

′
i)

where Ei = {(ui, v(i)
j ) : j = 1, 2, . . . ,∆− 1} ∪ {(v(i)

1 , vi)}, E′i = Ei ∪ {(v(i)
j , vi), j = 2, 3, . . . ,∆− 1}.

We denote the set of edges connecting the gadgets by Ec = {(vi, ui+1) : i = 1, 2, . . . , D/3 − 1}.
Finally we can define the total set of nodes and edges in the complete dual graph G = (V,E) and

G = (V,E) as follows: V =
⋃D/3
i=1 Vi, E = Ec ∪

⋃D/3
i=1 Ei, E

′ =
⋃D/3
i=1 E

′
i. We will show statement 1

3This bound is actually stated as Ω(log2 n), but ∆ = Θ(n) in the lower bound network, so it can be expressed in
terms of ∆ as well for our purposes here.
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by applying Theorem 8 to each gadget, statement 2 can be shown using the same proof by applying
Theorem 7.

We bound the dissemination of a broadcast message in this graph originating at node u1.
We can view the progression of the message through the chain of gadgets G1,G2, . . . ,GD/3 as a
sequence of local broadcasts. When the message arrives at a node ui, it is propagated to nodes

v
(i)
1 , v

(i)
2 , . . . , v

(i)
∆−1 and at this step delivering the message to vi is exactly the local broadcast problem

considered in Theorem 8. In this theorem we constructed a sequence of distributions that yields
a high running time. The distribution changes every exactly τ steps i.e., we have a distribution
Dk for steps 1 + (k − 1)τ, 2 + (k − 1)τ, . . . , kτ . We cannot immediately apply the result for local
broadcast because the adversary might not be allowed to change the distribution immediately when
the message arrives in a gadget. Moreover in the global broadcast problem, stations are allowed
to delay the transmissions for some number of steps. We can easily solve this problem by keeping
the “first” distribution D1 in each gadget until the message reaches the gadget, at which point the
adversary can start the sequence of changes specified by the local broadcast lower bound.

More precisely, we denote sequence p1, p2, . . . of probabilities used by algorithm A and we
denote subsequences Pk = (p1+(k−1)τ , p2+(k−1)τ , . . . , pkτ ). We want to use distributions D1,D2, . . .
from Theorem 8 in such a way that if i is the furthest gadget reached by the message and its nodes
are in phase k (i.e., are using probabilities from sequence Pk) then distribution in gadget Gi is Dk.
If the message has not reach the gadget yet, distribution in the gadget is D1. Finally if the message
already reached node vi in gadget Gi for any i we do not change the distribution in this gadget
any more. We need to show that with this construction we do not need to change the distribution
more frequently than once per τ steps. This is true because we only change the distribution in the
furthest gadget (call it Gi) reached by the message and moreover we change it from Dk to Dk+1 only

after the stations v
(i)
1 , v

(i)
2 , . . . , v

(i)
∆−1 have finished transmitting with probabilities Pk, which takes

at least τ steps (it might take more because stations might delay transmitting with probabilities
P1).

Let us define random variables Xi for i = 1, 2, . . . , D/3 as the number of time steps it takes

for nodes v
(i)
1 , v

(i)
2 , . . . , v

(i)
∆−1 to deliver the message to vi. More precisely it is the number of steps

between the first step when the stations v
(i)
1 , v

(i)
2 , . . . , v

(i)
∆−1 transmit with probability p1 and the

step in which the first successful transmission delivers the message to vi (including the step of the

successful transmission). Note that the steps during which the stations v
(i)
1 , v

(i)
2 , . . . , v

(i)
∆−1 delay

transmitting until the beginning of the next probability cycle are not counted in variable Xi.
The steps counted by variable Xi can be seen as local broadcast. By Theorem 8 we have that

Pr
[
Xi ≤ ∆̇1/ττ2/(c ln ∆̇)

]
≤ 1/2 for some constant c > 1. Moreover variables Xi are independent

because choices of the stations in each gadget are independent hence we can use Chernoff bound to

lower bound X =
∑D/3

i=1 Xi. By the assumptions on D we have that E[X ] ≥ 8 (because E[Xi ] ≥ 1),
hence

Pr[X ≤ E[X ] /2 ] ≤ e−E[X ]/8 ≤ 1/2

Observe that X lower bounds the time of the global broadcast. This shows that the global broadcast
needs Ω(D∆1/ττ2/ ln ∆) steps with probability at least 1/2.

If D is not divisible by 3 we construct our graph with diameter 3bD/3c and attach a path of
D − 3bD/3c (one or two) vertices to node vD1/3. This cannot decrease the time of brodcast hence

we get the bound Ω((D − 2)∆1/ττ2/ log ∆) = Ω(D∆1/ττ2/ log ∆).
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5 Correlations

Here we explore a promising direction for the study of broadcast in realistic radio network models. In
particular, the fading adversary studied above assumes that the distribution draws are independent.
As we will show, interesting results are still possible when considering the even more general case
where the marginal distributions in each step are not necessarily independent in each round. In
more detail we first show a simple lower bound that any uniform algorithm using a short list
of probabilities (our algorithms always used list of length min{τ, log ∆}) of length l needs time
Ω(
√
n/l) for some graphs if the adversary is allowed to use correlations. Our lower bound uses

distributions over sequences of graphs in which the degrees of nodes change by a large number in
successive steps. It turns out to be crucial as we show that if the adversary can in every step only
change O(∆1/(τ−o(τ))) edges adjacent to each node then we can get an algorithm working in time
O(∆1/ττ log(1/ε)) with probability at least 1−ε even if the adversary is allowed to use correlations.

5.1 A Lower Bound for Correlated Distributions

The following lower bound shows that any simple back-off algorithm, similar to the ones presented
in Section 3 that use at most log ∆ probabilities require time Ω(

√
∆/ log ∆) if arbitrary correlations

are permitted.

Proposition 1. Any uniform local broadcast algorithm that repeats procedure consisting of l prob-
abilities requires expected time Ω(

√
∆/l) in some graph with ∆ = n− 2 even if τ =∞.

Proof. Denote the procedure that is being used by the algorithm by P. Assume for simplicity that√
∆ is a natural number. We take as a graph a star with arms v1, v2, . . . , v∆ and center at v. In

the star connection from v1 to v is reliable and all other are unreliable. All arms are also connected
to u by reliable edges (for connectivity of E).

The single distribution is defined in the following way. Let ei = min{1/pi,∆} for i = 1, 2, . . . , l
be the estimates used by procedure P. Let

ēi =

{
1 if ei ≥

√
∆,

n if ei <
√

∆.

Let s be a number chosen uniformly at random from {1, 2, . . . , l}. In our distribution, the degree
of v in step t is dt = ē1+rt , where rt is the remainder of t+ s modulo l. More precisely, in step t in
the distribution exactly dt − 1 edges chosen at random among edges between v and v2, v3, . . . , v∆

are activated. Observe that before the algorithm starts, the distribution of the degree of node
v in each step is simply a uniform number from multiset {ē1, ē2, . . . , ēl}. But after step 1 the
sequence of degrees of v becomes deterministic and depends only on the value s of the shift. The
dependencies are designed in such a way that if s = l (which happens with probability 1/l) then in
any step t of the algorithm, the probability pt used by the algorithm satisfies either pt · dt ≥

√
∆ or

pt ·dt < 1/
√

∆. This means by Lemma 1 that the success probability is at most 1/
√

∆ in each step
and hence by union bound the success probability in the whole procedure is at most l/

√
∆. Thus

with probability at least 1/l have to repeat procedure P at least
√

∆/(2l) times to get a constant
probability of success. Hence the expected time is Ω(

√
∆/l).
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5.2 Locally Limited Changes

The previous section shows that under an adversary that is allowed to use arbitrary correlations
then any simple procedure need polynomial time in the worst case.

In this section we want to consider the adversary that can use correlations but cannot change
the degree too much in successive steps. Of course once every at most τ steps the adversary is
allowed to define a completely new distribution over the unreliable edges. We want to argue that it
is possible to build a simple algorithm resistant to such an adversary. Intuitively the changes of the
degree are problematic only if the changes are by a large (non-constant) factor. Note by Lemma 1
that if we perturb the effective degree by only a constant factor then the bound also changes only
by a constant factor. Hence in order to design an algorithm that is immune to such changes we
should add more “coverage” to the small-degree nodes. We do this by enhancing each phase of
algorithm RLB with additional steps in which we assume that the effective degree of a node is small.
The adversary may try to avoid the successful transmission in these steps by changing the degree
(the adversary knows the probabilities used by the algorithm). But having the restriction on the
distance the adversary can move the degree allows us to define overlapping “zones” such that in
two consecutive steps we are sure to find the degree in one of the zones. We also have to make sure
that the whole phase of the new algorithm fits into τ steps.

Now we present algorithm RLBC (Robust Local Broadcast with Correlations). We first show that
the algorithm works under (l, τ)–deterministic adversary that can change at most l edges adjacent
to each node per round and all the edges from E′ \E once every at most τ rounds. Our algorithm
will be resistant to deterministic adversary that can change at most τ∆1/(τ−o(τ)) edges adjacent to
each node in every step.

Then we show that it also works under restricted fading adversary with parameters τ and l.
Restricted fading adversary can change the distribution arbitrarily once every at most τ steps, if
the distribution is not changed then the expected change of the degree of any node can be at most l.
Under these restrictions, the adversary can design arbitrary correlations between successive steps.
We show that RLBC works with restricted fading adversary with l of at most ∆1/(τ−o(τ)).

1 Algorithm: RLBC(r, τ)

2 τ̄ = min{dlog2e ∆/2e, τ}
3 a← dτ̄ / log2e τ̄e
4 k ← d∆1/(τ−2a)e
5 e1 ← k · a
6 e2 ← k2 · τ · a
7 repeat 2r times
8 RLB(1, τ̄ − 2a)
9 repeat a times

10 Uniform (1, 1/e1)
11 Uniform (1, 1/e2)

Theorem 11. If τ ≥ 1000 Algorithm RLBC(8edln(1/ε)∆1/τe, τ) solves local broadcast in the presence

of
(⌊

∆
1

τ−2dτ/ log2e τe
⌋
τ/2, τ

)
-deterministic adversary in time O(∆1/ττ log(1/ε)) with probability at

least 1− ε.
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Proof. Assume that τ ≤ dlog2e ∆/2e and note that in this case τ̄ = τ . In the opposite case we
use the algorithm for τ = dlog2e ∆/2e which works also for any larger τ . Denote k = b∆1/(τ−2a)c,
l = kτ/2 and observe that for τ ≥ 1000 we have a > 200 and τ − 2a ≥ τ/2 and k ≥ 2. We divide
the time into intervals of length τ , called cycles. In each interval algorithm RLBC repeats the same
probabilities. In the first τ−2a steps of the cycle it uses probabilities pi = k−i for i = 1, 2, . . . , τ−2a
, in the next 2a steps it uses probabilities 1/e1 and 1/e2. We take two consecutive cycles and note
that in each such a pair of cycles we can find τ consecutive steps in which the distribution over
the unreliable edges is the same (since global changes can happen at most once every τ steps) and
moreover the algorithm uses all the probabilities from a cycle. Let us call a sequence of these steps
T = [t1, . . . , tτ ]. Note that in this sequence we have either one full procedure RLB(1, τ −2a) or parts
of two procedures RLB(1, τ − 2a) (call them R1 and R2). In the second case sequence T contains
some suffix of R1 and some prefix of R2. Connect these steps together into a procedure R, which
contains all steps of procedure RLB(1, τ − 2a) executed in a possibly different order. Fix a receiver
v and assume that at least one reliable neighbor of v tries to transmit a message to v. We want
to show that in each such a pair of cycles v receives the message independently with probability at
least ps = 1

8ek .
We know by the definition of the adversary that the effective degree cannot change by too much

between steps in the same cycle: |dti(v) − dti+1(v)| ≤ l. We can consider two cases depending on
the effective degree in the first considered step t1:

Case 1: dt1(v) ≥ 2l2

Here we want to show that procedure R is successful with probability at least ps. Observe that
here since l ≥ τ we have dti(v) ≥ dti(v)/2 + l2 ≥ dti(v)/2 + lτ for each i = 1, 2, . . . , τ . Thus
dti(v) − lτ ≥ dti(v)/2 and dti(v) + lτ ≤ 2dti(v) thus the effective degree in the whole considered
sequence of steps can change by a factor of at most 2. Recall from the definition of RLB that It uses
probabilities pi = k−i. Consider the smallest i such that 1/pi ≥ 2dt1(v) by the minimality of i we
have that 1/(kpi) ≤ 2dt1(v). Probability pi is used in some step of sequence T . Call this step tj .
We have:

1/pi ≥ 2dt1(v) ≥ dj(v) ≥ dt1(v)/2 ≥ 1/(4kpi).

Thus by Lemmas 1 and 2:

Pr
[
R

(v)
tj

]
= min

{
(2e)−1,

(2e)−1/(4k)

4k

}
≥ 1

8ek
= ps.

Case 2: dt1(v) < 2l2

Here we want to show that a successful transmission occurs with probability at least ps in one of
the 2a additional steps (see lines 7− 11 of the pseudocode).

Note that since d1(v) < 2l2 then dti(v) ≤ dt1(v) + lτ ≤ 4l2 Pick two consecutive steps ti, ti + 1
such that in step ti the algorithm uses probability 1/e1 and in ti + 1 it uses 1/e2. Note that in the
considered sequence we have at least a− 1 such pairs.

Case 2.1: dti(v) ≤ 2l Here the probability is 1/e1 and the degree is within interval [1, 2l]
hence we have that:

τ

a
=

2l

e1
≥ dti
e1
≥ 1

e1
.
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By Lemma 1 2:

Pr
[
R

(v)
ti

]
≥ min

{
2l

e1
e−2l/e1 , 1/e1e

−1/e1

}
≥ min

{
ln τ

τ
,

1

eka

}
≥ 1

eka
.

Case 2.2: 4l2 ≥ dti(v) > 2l Note that in this case dti+1(v) ∈ [l, 4l2] and the probability used
in this step is 1/e2 hence:

τ

a
=

4l2

e2
≥ di+1(v)

e2
≥ 2l

e2
=

1

e1
,

and we can use Lemmas 1 and 2 exactly the same as in the previous case and obtain Pr
[
R

(v)
ti+1

]
≥

1
eka .

In each pair the stations are making independent choices hence the probability of failure in all
the pairs is by Lemma 3 at most:(

1− 1

eka

)a−1

≤ 1− a− 1

eka
+

(
a− 1

2

)
1

e2k2a2
≤ 1− 1

2ek
,

where in the last inequality we used the fact that a > 20. Thus also in this case with probability
at least 1/(2ek) ≥ ps node v receives a message during this cycle.

The two considered cases showed that any full two cycles deliver the message with probability
at least ps. If we perform at least 2r = 2dln(1/ε)/pse = O(∆1/τ ) cycles then the probability that v
does not receive a message is at most (1− ps)ln(1/ε)/ps ≤ ε.

The case with deterministic adversary can be generalized to stochastic restricted adversary.

Theorem 12. If τ ≥ 1000 Algorithm RLBC(16edln(1/ε)∆1/τe, τ) solves local broadcast in the

presence of l-restricted fading adversary using correlations with l =
⌊
∆

1
τ(1−1/ log2e τ)

⌋
/4 in time

O(∆1/ττ log(1/ε)) with probability at least 1− ε.

Proof. Fix any receiver v. We know that RLBC(8edln(1/ε)∆1/τe, τ) solves local broadcast in the
presence of (lτ, τ) - deterministic adversary. But in the case with arbitrary correlations we can still
bound the probability that the degree of v does not change too much. Take any two consecutive
steps t, t+ 1. We have by Markov Inequality:

Pr[ |dt(v)− dt+1(v)| > 2τ l ] ≤ 1/(2τ)

If we pick τ steps like in the proof of Theorem 11 then by Union Bound with probability at least 1/2
in each of these steps the degree changes by at most 2lτ . From now on we can use the same analysis
as in Theorem 11 and we obtain only a constant slowdown compared to the case with deterministic
adversary. Hence RLBC(16edln(1/ε)∆1/τe, τ) solves local broadcast with restricted fading adversary
with probability at least 1− ε.
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