
Self-Stabilization and Virtual Node Layer

Emulations

Tina Nolte and Nancy Lynch ⋆

MIT CSAIL, Cambridge, MA, USA

Abstract. We present formal definitions of stabilization for the Timed
I/O Automata (TIOA) framework, and of emulation for the timed Vir-
tual Stationary Automata programming abstraction layer, which con-
sists of mobile clients, virtual timed machines called virtual stationary
automata (VSAs), and a local broadcast service connecting VSAs and
mobile clients. We then describe what it means for mobile nodes with
access to location and clock information to emulate the VSA layer in a
self-stabilizing manner. We use these definitions to prove basic results
about executions of self-stabilizing algorithms run on self-stabilizing em-
ulations of a VSA layer, and apply these results to a simple geographic
routing algorithm running on the VSA layer.

Keywords: self-stabilization, virtual stationary automata, virtual node layer,
geocast, abstraction layer emulation, mobile ad-hoc networking, TIOA

1 Introduction

A system with no fixed infrastructure in which mobile clients may wander in the
plane and assist each other in forwarding messages is called an ad-hoc network.
The task of designing algorithms for constantly changing networks is difficult.
Highly dynamic networks, however, are becoming increasingly prevalent, espe-
cially in the context of pervasive and ubiquitous computing, and it is therefore
important to develop and use techniques that simplify this task.

In addition, nodes in these networks may suffer from crashes or corruption
faults, which cause arbitrary changes to their program states. Self-stabilization
[2, 3] is the ability to recover from an arbitrarily corrupt state. This property
is important in long-lived, chaotic systems where certain events can result in
unpredictable faults. For example, transient interference may disrupt wireless
communication, violating our assumptions about the broadcast medium.

In this paper, we first develop a basic formal theory of stabilization for the
Timed I/O Automata (TIOA) framework [11], used to describe and analyse
timed systems (Section 2). We then describe the abstract timed Virtual Station-
ary Automata (VSA) layer presented in [6], used to simplify algorithm design for

⋆ Research supported by AFRL contract number F33615-010C-1850, DARPA/AFOSR
MURI contract number F49620-02-1-0325, NSF ITR contract number CCR-0121277,
and DARPA-NEST contract number F33615-01-C-1896.

mobile networks (Section 3). The VSA layer is a virtual infrastructure, consisting
of mobile client automata, timing-aware and location-aware machines at fixed
locations (VSAs), and a local broadcast service connecting VSAs and clients.

We introduce a formal theory of self-stabilizing emulation of a VSA layer in
Section 4. This provides proof obligations required to conclude that an algorithm
successfully emulates the VSA layer, allowing an application programmer to
write programs for the VSA layer without worrying about its implementation.

We finally show that a self-stabilizing VSA layer emulation running on the
physical layer and instantiated with a self-stabilizing VSA layer service imple-
mentation, is a stabilizing implementation of the service on the physical layer
(Section 5). This separates the reasoning about stabilization properties of a VSA
layer emulation algorithm from those of the VSA layer service being run. We
apply these results to a simple self-stabilizing VSA layer algorithm that provides
geographic routing, a version of which appeared in [7].

Virtual Stationary Automata programming layer. In prior work [6, 5, 4],
we developed a notion of “virtual nodes” for mobile ad hoc networks. A virtual
node is an abstract, relatively well-behaved active node implemented using less
well-behaved real physical nodes. The GeoQuorums algorithm [5] proposes stor-
ing data at fixed locations; however it supports only atomic objects, rather than
general automata. A more general mobile automaton is suggested in [4].

The static infrastructure we use in this paper includes fixed, timed virtual
automata with an explicit notion of real time, called Virtual Stationary Au-
tomata (VSAs), distributed at known locations over the plane [6] and connected
as in a wired network. Each VSA represents a predetermined geographic area
and has broadcast capabilities similar to those of the physical nodes, allowing
nearby VSAs and physical nodes to communicate. VSAs have access to virtual
clocks, guaranteed to not drift too far from real time; many algorithms depend
significantly on timing, and it is reasonable to assume that many mobile nodes
have access to reasonably synchronized clocks. This layer provides mobile nodes
with a fixed timed virtual infrastructure, reminiscent of more traditional and
better understood wired networks, with which to coordinate their actions.

Our clock-equipped VSA layer is emulated by physical nodes. Each physical
node is periodically told its region by a reliable GPS oracle. A VSA for a partic-
ular region is then emulated by a subset of the physical nodes in its region: the
VSA state is maintained in the memory of the physical nodes emulating it, and
the physical nodes perform VSA actions on behalf of the VSA. If no physical
nodes are in the region, the VSA fails; if physical nodes later arrive, it restarts.

The implementation in [6] was designed to be self-stabilizing. This paper
provides the necessary formal machinery to both formally express and prove that
such an implementation is a VSA layer emulation and that it is self-stabilizing.

Geographic routing. We use a basic geographic routing service [7], based on
greedy depth-first search, to demonstrate concepts we introduce in this paper.
Geocast algorithms [14, 1], GPSR [10], AFR [13], GOAFR+ [12], and polygo-
nal broadcast [8] are other examples of greedy geographic routing algorithms,
forwarding messages to the neighbor geographically closest to the destination.

2 Definitions

We start by defining the Timed I/O Automata modeling framework for timed
systems, and then outline basic definitions and facts with respect to stabilization.

2.1 Timed I/O Automata (TIOA)

Here we define Timed I/O Automata (TIOA) terminology used in this paper.
TIOAs are nondeterministic state machines whose state can change in two ways:
instantaneously through a discrete transition, or according to a trajectory de-
scribing the evolution, possibly continuous, of variables over time. The TIOA
framework can be used to carefully specify and analyse timed systems. (Addi-
tional details can be found in [11].)

A valuation for a set V of variables is a function mapping each variable v ∈ V

to a value in type(v). The set of such valuations is val(V).
A trajectory, τ , for V is a function mapping a left-closed interval of time

starting at 0 to the set of valuations for V , such that for v ∈ V , τ restricted to
v is in the dynamic type of v.

• τ is closed if domain(τ) is both left and right-closed.
• τ.fstate is the first valuation of τ , and, for τ closed, τ.lstate is the last.
• The limit time of τ , τ.ltime, is the supremum of domain(τ).
• The concatenation, ττ ′, of trajectories τ and τ ′, τ closed, is the trajectory

resulting from the pasting of τ ′, shifted by τ.ltime, to the end of τ .

A Timed I/O Automaton (TIOA), A = (X, Q, Θ, I, O, H,D, T), consists of:

– Set X of internal variables.
– Set Q ⊆ val(X) of states.
– Set Θ ⊆ Q of start states, nonempty.
– Sets I of input actions, O of output actions, and H of internal actions, each

disjoint. A = I ∪ O ∪ H is all actions. E = I ∪ O is all external actions.
– Set D ⊆ Q × A × Q of discrete transitions.

We say action a is enabled in state x if (x, a, x′) ∈ D, for some x′ ∈ X . We
require A be input-enabled (every input action is enabled at every state).

– Set T ⊆ trajectories of Q. We require:
• For every state x, the point trajectory for x must be in T ,
• For every τ ∈ T , every prefix and suffix of τ is in T ,
• For every sequence of trajectories in T , where for every τi but the last, τi

is closed and τi.lstate = τi+1.fstate, the concatenation of the trajectory
sequence is also in T , and

• Time-passage enabling: for every state x, there exists a τ ∈ T where
τ.fstate = x, and either τ.ltime = ∞ or τ is closed and some l ∈ H ∪O

is enabled in τ.lstate.

Two TIOAs A and B are compatible if they share no internal variables, and
their internal actions are not actions of the other. Two compatible TIOAs A and
B can be composed into a new TIOA A‖B, which has A and B as components

where an action performed in one component that is an external action of the
other component is also performed in the other component.

Given a set A of actions and a set V of variables, an (A, V)-sequence is an
alternating sequence α = τ0a1τ1a2τ2 · · · where: (a) Each ai is an action in A,
(b) Each τi is a trajectory for V , (c) If α is finite, it ends with a trajectory, and
(d) Each τi but the last is closed.

• α is closed if it is a finite sequence and its final trajectory is closed.
• The limit time of α, α.ltime, is the sum of limit times of α’s trajectories.
• The concatenation, αα′, of two (A, V)-sequences α and α′, α closed, is α

followed by α′, where the last trajectory of α is concatenated to the first
trajectory of α′.

• For sets of actions A and A′, and sets of variables V and V ′, the (A′, V ′)-
restriction of an (A, V)-sequence α, written α⌈(A′, V ′), is the (A′, V ′)-
sequence that results from projecting the trajectories of α on variables in
V ′, removing actions not in A′, and concatenating all adjacent trajectories.

An execution fragment of a TIOA A is an (A, V)-sequence α =
τ0a1τ1a2τ2 · · · , where each τi is a trajectory in T , and if τi is not the last trajec-
tory of α, then (τi.lstate, ai+1, τi+1.fstate) ∈ D. The set of execution fragments
of A starting from a state in some S ⊆ Q is referred to as fragsS

A.
An execution fragment of A, α, is an execution of A if α.fstate is in Θ. The

set of executions of A is referred to as execsA.

A state of A is reachable if it is the last state of some closed execution of A.
The set of reachable states of A is referred to as reachableA.

A trace (external behaviour) of an execution fragment α of A, trace(α),
is α restricted to external actions of A and trajectories over the empty set of
variables. tracesA is the set of traces of executions of A.

2.2 Stabilization

We define stabilization in terms of sets of (A, V)-sequences. This is general
enough to talk about stabilization of traces and execution fragments of TIOAs,
and about stabilization of transformed versions of these (A, V)-sequences.

Definition 1. Let α and α′ be (A, V)-sequences, and t be in R
≥0. α′ is a t-suffix

of α if a closed (A, V)-sequence α′′ exists where α′′.ltime = t and α = α′′α′.

Definition 2. Let α = α′′α′ be an (A, V)-sequence and t be in R
≥0. α′ is a

state-matched t-suffix of α if it is a t-suffix of α, and α′.fstate = α′′.lstate.

Lemma 1. Let α be an (A, V)-sequence and t be in R
≥0 where either t <

α.ltime, or t = α.ltime and α is closed. A state-matched t-suffix of α exists.

For the following definitions, let B be a set of (AB , V)-sequences, C be a set
of (AC , V)-sequences, and D be a set of (AD, V)-sequences, where AB, AC , and
AD are sets of actions, and V is a set of variables.

Definition 3. Let t be a non-negative real. B stabilizes in time t to C if any
state-matched t-suffix α of a sequence in B is a sequence in C.

Since executions and traces of TIOAs are (A, V)-sequences, the above definition
can be used to talk about executions or traces of one TIOA stabilizing to exe-
cutions or traces of some other TIOA. The following lemma is a general result
that can be used to show, for example, that if executions of one TIOA stabilize
to those of another then its traces also stabilize to traces of the other.

Lemma 2. Let A be a set of actions and V ′ a set of variables. If B stabilizes to
C in time t, then {α⌈(A, V ′)|α ∈ B} stabilizes to {α⌈(A, V ′)|α ∈ C} in time t.

Lemma 3 (Transitivity). If B stabilizes to C in time t1, and C stabilizes to
D in time t2, then B stabilizes to D in time t1 + t2.

Proof sketch: Assume B stabilizes to C in time t1, and C stabilizes to D in time
t2. Consider a sequence αB = α1

Bα2
Bα3

B in B, where αB.ltime ≥ t1 + t2, α2
Bα3

B is
a state-matched t1-suffix of αB, and α3

B is a state-matched t1 + t2-suffix of αB.

We will show that α3
B is in D:

αB : -

α1
B

t1

α2
B

t2

α3
B

Since B stabilizes to C in time t1, α2
Bα3

B is in C. Also, since α3
B .fstate =

α2
B.lstate, α3

B is a state-matched t2-suffix of α2
Bα3

B . Since C stabilizes to D in
time t2, and α3

B is a state-matched t2-suffix of a sequence in C, α3
B is in D.

We conclude that B stabilizes to D in time t1 + t2. ⊓⊔
The following definitions capture the idea of a TIOA being self-stabilizing

when composed with another TIOA, allowing us to write algorithms that can
be started in an arbitrary state but take advantage of separate oracles, in order
to eventually reach some legal state of the composed automaton. (The idea of a
TIOA stabilizing given another can be used to arrive at layering results similar to
those of fair composition, described in [3], showing that under certain conditions,
if you have a self-stabilizing implementation A of a service that’s used by a self-
stabilizing implementation B of a higher level service, then B using A is still
stabilizing.) We begin by defining a function that takes a TIOA and a state set
L and returns the same TIOA with its start state set changed to L.

Definition 4. Let A be any TIOA and L be any nonempty subset of QA. Then
changeStart(A, L) is defined to be A except with ΘchangeStart(A,L) = L. We use
notation U(A) for changeStart(A, QA) (or A started in an arbitrary state), and
R(A) for changeStart(A, reachableA) (or A started in a reachable state).

Lemma 4. Let O and A be compatible TIOAs, L ⊆ QA, L′ ⊆ QO, and L′′ ⊆
QA‖O. Then:

1. changeStart(A, L)‖changeStart(O, L′) = changeStart(A‖O, L × L′).
2. fragsL

A = execschangeStart(A,L).

3. fragsL′′

changeStart(A,L)‖changeStart(O,L′) = fragsL′′

A‖O

4. For any αα′ ∈ tracesU(A)‖R(O), α′ ∈ tracesU(A)‖R(O).

Definition 5. Let A be a TIOA, and L ⊆ QA. L is a legal set for A if:

1. For every (x, a, x′) ∈ DA, if x ∈ L then x′ ∈ L.
2. For every closed τ ∈ TA, if τ.fstate ∈ L then τ.lstate ∈ L.

Definition 6. Let O and A be compatible TIOAs, and L be a legal set for A‖O.
A self-stabilizes in time t with respect to L and given O if execsU(A)‖O stabilizes
in time t to fragsL

A‖O.

Notice in the definition above that when O = R(O′) for some TIOA O′, the
TIOA A can recover from a corruption fault, where A’s state can be changed
arbitrarily: the resulting state s is in QA × reachableO′, meaning any execution
fragment starting from s is in execsU(A)‖O.

3 Physical layer and VSA layer system models

The physical layer consists of a bounded, tiled region of the plane, where mobile
physical (real) nodes are deployed. These nodes are TIOAs susceptible to crash
failures and restarts, and with access to a local clock. They also have access to a
local broadcast service and a reliable RW (real world or GPS) automaton that
models moves, failures, and restarts of the physical nodes and real-time. This
layer can be used to emulate the VSA layer (we define emulation in Section 4).

The Virtual Stationary Automata abstraction layer [6] includes a modified
version of RW called RW ′, client nodes that correspond to physical nodes,
virtual stationary automata (VSAs) the physical nodes emulate, and a local
broadcast service between them, V-bcast, similar to that of the physical layer
(see Figure 1). Since each physical layer component has a corresponding virtual
layer component, this section describes the more complicated VSA layer in depth
and explains connections or differences from the physical layer as appropriate.

3.1 Network tiling

The deployment space of the network is a fixed, closed, bounded portion of the
two-dimensional plane called R. R is partitioned into known connected regions,
with unique ids drawn from the set of region identifiers U . Distances between
points in the same region are bounded by a constant rvirt. We also define a
neighbor relation nbrs on ids from U : nbrs holds for any distinct region ids u

and v where the distance between points in u and v is bounded by rvirt.

Connection to physical layer: The constant rvirt is the broadcast radius of the
underlying physical nodes. The network tiling then ensures that any two physical
nodes in the same or neighboring regions will be able to communicate.

3.2 Real World

Real world TIOA RW of the physical level models system time and mobile
node region locations, failures, and restarts. It maintains a variable, now, that
is considered the true system time, and two mappings, locReg and fail.

locReg, mapping the set of physical node ids, P , to U , indicates the region
where a particular mobile node is located. RW outputs a GPSupdate(u, now)
at a mobile node whenever the node changes regions, and every ǫsample time in
addition, informing the node of the node’s new region and the current time.

fail, mapping the physical node ids, P , to Booleans, indicates whether a
physical node is failed. RW outputs failp at a node when it fails, setting fail(p)
to true, and outputs restartp when the node restarts, setting fail(p) to false. A
fail only occurs at a non-failed node, and a restart only occurs at a failed node.

The real world TIOA RW ′ of the virtual level is an extension of RW that is
also able to fail and restart regions in U (corresponding to failing and restarting
VSAs). The mapping fail is extended to also map region identifiers in U to a
Boolean, and fail and restart actions similar to those for mobile nodes are added.
In addition to the locReg and fail variables of RW , RW ′ also maintains a log

history variable, in which the execution of RW ′ up to now is stored.

RW and RW ′ outputs are also inputs to physical level broadcast and V-bcast
services, respectively.

RW ′ is parameterized by failure and recovery conditions for regions,
expressed as two precondition (allowed-to-happen) predicates, failprec and
restartprec, and two stopping condition (must-happen) predicates, failstop and
restartstop, each of which is parameterized by region id. These predicates are
allowed to be over the variable log and the current time, now, and we require
that for any region u, if failstop[u] holds, then restartprec[u] does not, and if
restartstop[u] holds, then failprec[u] does not. Given these, the precondition
of a failu, u ∈ U , action will be ∼ failed(u) ∧ failedprec[u]. Similarly, the pre-
condition of a restartu action will be failed(u) ∧ restartprec[u]. The associated
stopping conditions are ∼ failed(u)∧failstop[u], and failed(u)∧restartstop[u].

Example predicates: One suitable failprec for a region is that some failure or
leave of a client occurred at the current time. The stopping condition can be that
there are no clients in the region or none of the clients have been in the region for
at least d time. (Region failures only occur in reaction to some mobile node fail
or leave, and are guaranteed to happen if there are no clients populating their
regions that have been around for some time.) For restartprec, we can require
that there be some client in the region that’s been in the region for at least 2d

time. The stopping condition can be that the last client fail or leave was at least
e time ago and there is some client that has been in the region at least 2d time.
(Region restarts only occur if some mobile node has been around long enough,
and are guaranteed to happen if none of the mobile nodes in the region have
failed or left for some time. Constants e and d are explained in Section 3.5.)

3.3 Client nodes

For each p in the set of physical node ids P , we assume a Cp from a set of TIOAs,
CProgramp. Each Cp has access to a local clock, now. Clients receive accurate
information from the reliable GPS oracle, RW ′. A GPSupdate(u, now)p happens
at Cp each time the client enters the system or changes region, indicating to the

client the region u where it is currently located and the current system time. It
also occurs every ǫsample time at each client. Clients accept this now real-time
clock value as the value of their own local clock. For simplicity, this local variable
progresses at the rate of real time. This implies that, outside of client failures
and arbitrary initial states, the local value of now will equal real time.

Cp has access to V-bcast (see Section 3.5), allowing it to communicate with
its own and neighboring regions’ VSAs and clients with bcast(m)p and brcv(m)p.

Clients can suffer crash failures. After a crash, a client performs no locally-
controlled actions until restarted. If restarted, it starts from an initial state.

Additional arbitrary external interface and environment actions and local
state used by algorithms running at the client are allowed. (Environment actions
are external actions that are not actions of any other system component.)

Connection to physical layer: Each client node is hosted by its corresponding
physical node. In addition, RW ′ inputs occur at a client node exactly when
corresponding RW inputs occur at the physical node.

3.4 Virtual Stationary Automata (VSAs)

Here we describe VSAs; details on their implementation can be found in [6].
An abstract VSA is a clock-equipped virtual machine at a region in the

network. We formally describe a timed machine for region u, Vu, as a TIOA
from a set of TIOAs, V Programu. The state of Vu is referred to as vstate and
is assumed to include a variable corresponding to real time, vstate.now. Vu’s
external interface is restricted to include only stopping failures, restarts, and the
ability to broadcast and receive messages using V-bcast.

The VSA layer provides a delay-augmented TIOA, an augmentation of Vu

with timing perturbations, represented with buffers Dout[e]u, composed with
Vu’s outputs, with the Vu outputs then hidden. The buffer delays messages by
a nondeterministically-chosen time [0, e]. Programs must take into account e,
as they would message delay. Also, a failure of region u also means a failure of
Dout[e]u, clearing its buffer of messages.

Connection to physical layer: While an emulation of Vu would ideally be identical
to a legitimate execution of Vu, an abstraction must reflect that, due to message
delays or node failure, the emulation might be behind real time, appearing to be
delayed in performing outputs by up to some time. This time is the e referred
to with respect to Dout.

Since we emulate a VSA using physical nodes, its interface must be emulat-
able by them. This is why a VSA’s external interface is restricted to include only
the various failure and broadcast-related inputs and outputs. Also, its failures
can be defined in terms of physical node fail status and movement, as described
by the fail and restart predicates in Section 3.2.

3.5 Local broadcast service (V-bcast)

Communication is in the form of local broadcast service V-bcast, with message
delay d. It allows communication between VSAs and clients in the same or neigh-

.

.

.

.

.

.

V-bcast

Dout[e]u

Dout[e]v

Cp

Cq

GPSupdate(u, now)p

GPSupdate(u, now)p

RW ′

GPSupdate(v, now)q

GPSupdate(v, now)q

Vu

Vv

bcast(m)p

brcv(m)p

bcast(m)q

brcv(m)q

bcast(m)u

brcv(m)u

bcast(m)v

brcv(m)v

Fig. 1. Virtual Stationary Automata layer. VSAs and clients communicate locally using
V-bcast. VSA outputs may be delayed in Dout.

boring regions. The service allows the broadcasting and receiving of message m

at each port i ∈ P ∪ U through bcast(m)i and brcv(m)i. It also receives GPSup-

date, fail, and restart inputs from RW ′, informing the service of the location and
failure status of nodes in the network.

V-bcast guarantees two properties: integrity and reliable local delivery. In-
tegrity guarantees that for any brcv(m)i that occurs, a bcast(m)j , j ∈ P ∪ U

previously occurred. Reliable local delivery guarantees, roughly, that a transmis-
sion will be received by nearby ports: If port i, where i is a client or VSA port in
any region u, transmits a message, then every port j, whether a client or VSA,
in region u or neighboring regions during the entire time interval starting at
transmission and ending d later receives the message by the end of the interval.

Connection to physical layer: V-bcast is implemented using the underlying phys-
ical nodes’ broadcast capabilities. We assume that the physical layer broadcast
satisfies, for physical nodes, integrity and reliable local delivery between physical
nodes within distance rvirt of each other. The message delay d of V-bcast is the
message delay of the underlying broadcast.

4 Self-stabilizing emulations

In Section 3, we described the VSA layer and noted that it can be provided by a
physical layer’s broadcast and GPS-enabled physical nodes running an emulation
algorithm. Here we formally define what it means for an algorithm to emulate an
abstract VSA layer. We begin by providing definitions for a VSA layer algorithm
and a VSA layer instantiation.

Definition 7. A V-algorithm, alg, is a mapping from each mobile node id p ∈ P

to some TIOA Cp ∈ CProgramp, and from each each u ∈ U to some Vu ∈
V Programu. The set of all V-algorithms is referred to as V Algs.

Definition 8. For each alg ∈ V algs, V Layer[alg], the instantiation by alg

of the abstract VSA layer, is the abstract VSA layer where for each p ∈ P ,
Cp = alg(p), and for each u ∈ U , Vu = alg(u). More formally, V Layer[alg] is
the composition of V-bcast, alg(q) for each q ∈ P ∪ U , and Dout[e]u for each
u ∈ U , where the bcast action between Vu and Dout[e]u is hidden.

We are interested in the traces of a VSA layer, with VSA fails and restarts
hidden (there is no natural analogue for such actions at the physical layer):

Definition 9. Let E be the set of fail(u) and restart(u) actions for each u ∈ U ,
and let A be a TIOA. We refer to A’s traces with E hidden, {β⌈(EA−E, ∅)|β ∈
tracesA}, as HtracesA.

For any set S of states of A, we refer to A’s traces with E hidden of execution
fragments started in S, {trace(α)⌈(EA −E, ∅)|α ∈ fragsS

A}, as HtracefragsS
A.

We then define an emulation of the abstract layer as a pair consisting of: (a)
an emulation program, amap, and (b) a mapping, tmap, from traces of the em-
ulation to traces of the abstract VSA layer without fails and restarts of regions.
Like V Layer, amap is instantiated with programs from V algs. However, unlike
in our definition for V Layer[alg], we do not restrict the instantiation of amap by
alg to assign particular client and VSA programs to individual components; the
mapping can be arbitrary. For example, for a particular alg, amap[alg] could be
defined to be a physical layer in which each physical node’s program is a com-
position of the client program in the VSA layer for that node, and an emulator
portion where the physical node helps emulate its current region’s VSA.

Definition 10. An emulation, (amap, tmap), of the abstract VSA layer has:

– Function amap : V Algs → {T |T is a TIOA compatible with RW}.
– For each alg ∈ V algs, function tmap[alg] : (Eamap[alg], ∅)-sequences →

(EV Layer[alg] − {fail(u), restart(u)|u ∈ U}, ∅)-sequences.

We require that for any alg ∈ V algs and trace fragment β of amap[alg]‖RW :

1. Let B be ERW ∪ {environment actions}. β⌈(B, ∅) = tmap[alg](β)⌈(B, ∅).
2. β ∈ tracesamap[alg]‖RW implies tmap[alg](β) ∈ HtracesV Layer[alg]‖RW ′ .

The following definition of a self-stabilizing emulation of a VSA layer says an
emulation is self-stabilizing if any execution of amap[alg]‖RW started in an
arbitrary state of amap[alg] and a reachable state of RW has a suffix in the set
of execution fragments of amap[alg]‖RW starting in a state in L[alg]. L[alg] is
a legal set for amap[alg]‖RW with the added restriction that tmap[alg] applied
to any legal execution fragment is in HtracesU(V Layer[alg])‖R(RW ′). This means
once the emulation stabilizes, the mapped traces of the emulation look like those
of the virtual layer with V Layer[alg] started in an arbitrary state and RW ′

started in some reachable state. This will allow us to guarantee that if the alg

being emulated is such that V Layer[alg] is self-stabilizing with respect to some
legal set and given R(RW ′), then the mapped traces of the emulation stabilize
to traces of legal execution fragments of V Layer[alg]‖RW ′ (Theorem 3).

Definition 11. Let (amap, tmap) be an emulation of the abstract VSA layer
and t be in R

≥0. (amap, tmap) is a self-stabilizing emulation of a VSA layer
with stabilization time t if for each alg ∈ V Algs, there exists a legal set L[alg]
for amap[alg]‖RW such that:

1. amap[alg] is self-stabilizing with respect to L[alg] and given R(RW) in time
t.

2. For each α ∈ frags
L[alg]
amap[alg]‖RW

, tmap[alg](trace(α)) ∈
HtracesU(V Layer[alg])‖R(RW ′).

Let null(t) be the closed empty trajectory with ltime = t.

We use Mtraces
t,alg
amap,tmap to refer to: {null(t)tmap[alg](β)|

β is a state-matched t-suffix of some element in tracesU(amap[alg])‖R(RW).

We conclude that a transformed trace of a self-stabilizing emulation of the
VSA layer started in an arbitrary state has a suffix in the traces of the VSA
layer started in an arbitrary state:

Theorem 1. Let (amap, tmap) be a self-stabilizing emulation of the abstract
VSA layer with stabilization time t, and let alg be any element of V algs.
Then Mtraces

t,alg
amap,tmap stabilizes to HtracesU(V Layer[alg])‖R(RW ′) in time t.

Proof sketch: Let β be a sequence in Mtraces
t,alg
amap,tmap, and β′ be a state-

matched t-suffix of β. We must show that β′ ∈ HtracesU(V Layer[alg])‖R(RW ′).
By definition of traces and Mtraces, there exists some αα′ ∈

execsU(amap[alg])‖R(RW) such that α′ is a state-matched t-suffix of αα′, and
β = null(t)tmap[alg](trace(α′)). By definition of self-stabilizing emulation, there
exists some legal set L[alg] for amap[alg]‖RW such that properties 1 and 2
of the definition hold. Since α′ is a state-matched t-suffix of a sequence in

execsU(amap[alg])‖R(RW) then property 1 implies α′ ∈ frags
L[alg]
amap[alg]‖R(RW).

By Lemma 4, α′ ∈ frags
L[alg]
amap[alg]‖RW

. This implies by property 2 that

tmap[alg](trace(α′)) is in HtracesU(V Layer[alg])‖R(RW ′).
Since β′ is a state-matched t-suffix of null(t)tmap[alg](trace(α′)), β′ is a

state-matched 0-suffix of tmap[alg](trace(α′)). By Lemma 4, this implies β′ ∈
HtracesU(V Layer[alg])‖R(RW ′). ⊓⊔

Application to an existing emulation algorithm

In prior work, we developed a self-stabilizing emulation algorithm for the VSA
layer (details can be found in [6]). Physical nodes both implement their own
corresponding client node and cooperate with other physical nodes to implement
VSAs. For VSAs, at most one physical node in a VSA’s tile is a leader (chosen by

a stabilizing leader service), with primary responsibility for emulating the VSA
and sole responsibility for performing VSA outputs. For fault-tolerance, other
nodes receive VSA messages and maintain and update their own local versions
of the VSA state, but do not perform broadcasts on behalf of the VSA.

Our implementation was made self-stabilizing with local correction and up-

date and checksum messages. Update messages sent by a leader contain state in-
formation which overwrites VSA state information at other emulators, bringing
emulators into agreement about VSA state. The leader also sends out checksum

messages with an attached checksum. An emulator, when it receives the mes-
sage, compares the attached checksum to the version it locally computed. If they
differ, the emulator re-joins, ensuring its state is consistent with the leader’s.

With our definitions, we can make formal correctness claims about [6]:

Theorem 2. The VSA layer emulation algorithm of [6] is a self-stabilizing emu-
lation of the VSA layer parameterized by the region failure and restart conditions
described in Section 3.2.

Proof sketch: We can show this by providing a mapping from states of the
emulation algorithm to states of the abstract layer. For the emulation of an
individual VSA, the mapping is from physical node and message channel states
to a state of the abstract VSA. We then augment the emulation automaton to
explicitly add fail and restart actions for regions, triggered based on conditions of
the state of the emulation. A simple tmap function preserves interactions with
RW and the environment, and renames certain physical node broadcasts and
receives as V-bcast actions while hiding others. For example, a VSA receives a
message sent to it the first time a client in the region receives it. We can then
show that tmap applied to a trace of an execution of the emulation, combined
with the added fail and restart actions for regions, has a suffix that is the trace of
an execution of the abstract VSA layer started in an arbitrary initial state. ⊓⊔

5 Self-stabilizing services on emulated layers

We can now combine a self-stabilizing emulation of the abstract VSA layer with
a self-stabilizing algorithm run on the layer and conclude that the traces of the
result stabilize to those of the algorithm running on the abstract VSA layer,
with regions’ fails and restarts hidden.

Theorem 3. Let (amap, tmap) be a self-stabilizing emulation of the abstract
VSA layer, with stabilization time t1 ∈ R

≥0. For any alg ∈ V Algs, t2 ∈ R
≥0,

and legal set vlegal[alg] for V Layer[alg]‖RW ′, if V Layer[alg] self-stabilizes with

respect to vlegal[alg] and given R(RW ′) in time t2, then Mtraces
t1,alg
amap,tmap sta-

bilizes in time t1 + t2 to Htracefrags
vlegal[alg]
V Layer[alg]‖RW ′ .

Proof sketch: Fix alg ∈ V Algs where V Layer[alg] self-stabilizes with respect

to vlegal[alg] and given R(RW ′) in time t2. By Theorem 1, Mtraces
t1,alg
amap,tmap

stabilizes to HtracesU(V Layer[alg])‖R(RW ′) in time t1. By definition of self-
stabilization, since V Layer[alg] self-stabilizes with respect to vlegal[alg] and

given R(RW ′) in time t2, execsU(V Layer[alg])‖R(RW ′) stabilizes in time t2 to

frags
vlegal[alg]
V Layer[alg]‖R(RW ′), which by Lemma 4 is frags

vlegal[alg]
V Layer[alg]‖RW ′ . By Lemma

2, HtracesU(V Layer[alg])‖R(RW ′) stabilizes to Htracefrags
vlegal[alg]
V Layer[alg]‖RW ′ in

time t2. With Mtraces
t1,alg
amap,tmap as B, HtracesU(V Layer[alg])‖R(RW ′) as C, and

Htracefrags
vlegal[alg]
V Layer[alg]‖RW ′ as D in Lemma 3, we conclude Mtraces

t1,alg
amap,tmap

stabilizes in time t1 + t2 to Htracefrags
vlegal[alg]
V Layer[alg]‖RW ′ . ⊓⊔

Application to a geocast service

We now apply this theorem to a particular self-stabilizing service implemented
using the VSA layer and conclude that the emulation of the VSA layer running
this service eventually has traces that you could get in the abstract layer (minus
regions’ fail and restart events). We use a simple variant of a geocast service
specification and implementation originally published in [7].
Specification. The geocast service is a timed channel automaton that allows a
client Cp in region u to send a message m to region v via geocast(v, m)p, and to
receive such a broadcast message via geoRcv(m)p, under certain conditions. For
some constant ttlGeo, say that a geocast by a client in region u to a region v at
time t is serviceable if there exists at least one path of non-failed regions from
u to v for the entire interval [t, t + ttlGeo + 2d + e]. The geocast service’s traces
guarantee: (1) If a client geocasts a message at some time t and the geocast

is serviceable, then all nonfailed clients in the destination region geoRcv the
message by time t + ttlGeo + 2d + e. (2) If a message is geoRcved by a client in
region u, the message was geocast to region u within the last ttlGeo +2d+e time.
Implementation. Geocast is implemented as a self-stabilizing V alg, algGeo,
over the VSA layer. A client with a geocast input broadcasts the message to its
local VSA, and the local VSA initiates VSA-to-VSA communication. VSA-to-
VSA communication is based on a greedy depth-first search (DFS) procedure.

When a VSA receives a message for which it is not the destination, it greedily
chooses a neighboring VSA using a function NxtNbr, mapping a set of region
neighbors not yet tried, its own region, and the destination, to the next neighbor
to forward the message to. (The selection is greedy in that the next neighbor cho-
sen to receive the forwarded message is one on a shortest path to the destination
VSA, after excluding paths that begin with neighbors associated with previous
tries.) It then forwards the message in a forward message to that neighbor. If the
VSA does not receive an indication through a found message that the message
has been delivered to the destination within some bounded amount of time, it
forwards the message to the next neighboring VSA returned by NxtNbr, etc.

Once the destination region is reached, the VSA at that region broadcasts
the geocast message to its local clients, who then geoRcv it.

Self-stabilization is ensured by the use of a real-time timestamp to identify
the version of the DFS for a forwarded message. Too old forwarded messages are
eliminated from the system and newer forwarded messages do not impact the
treatment of the older ones. Extending the results in [7], we can show that:

Lemma 5. V Layer[algGeo] self-stabilizes with respect to
reachableV Layer[algGeo]‖RW ′ and given R(RW ′) in time e + 2d + ttlGeo.

Theorem 4. Let (amap, tmap) be a self-stabilizing emulation of the abstract

VSA layer with stabilization time tstab. Then Mtraces
tstab,algGeo

amap,tmap stabilizes to

Htracefrags
reachableV Layer[algGeo]‖RW ′

V Layer[algGeo]‖RW ′ in time tstab + ttlGeo + 2d + e.

Proof sketch: By Lemma 5, V Layer[algGeo] self-stabilizes with respect to
reachableV Layer[algGeo]‖RW ′ and given R(RW ′) in time ttlGeo +2d+e. By Theo-

rem 3, Mtraces
tstab,algGeo

amap,tmap stabilizes to Htracefrags
reachableV Layer[algGeo]‖RW ′

V Layer[algGeo]‖RW ′ in

time tstab + ttlGeo + 2d + e. ⊓⊔
This means that if we run a self-stabilizing emulation of algGeo, the trans-

formed trace of an execution of this emulation will eventually look like the suffix
of a trace of the geocast specification.

By translating the geocast specification based on an abstract VSA layer’s
region failure and restart conditions, we can rephrase this result to be strictly in
terms of the physical level. Consider the example region failure and restart condi-
tions in Section 3.2. With those conditions, we can say that a region is definitely
non-failed over some interval if some physical node at the start of the interval
was non-failed and in the region for at least 2d time, and no failures or leaves of
physical nodes occur during the interval or in the e time before the interval. This
property is expressible with traces of physical node interactions with RW . The
abstract geocast specification can then be transformed into a new, but weaker,
physical level specification, physGeo, that replaces clients with physical nodes,
replaces non-failed regions with definitely non-failed regions, and makes no men-
tion of VSAs. We then get the corollary that traces of U(amap[algGeo])‖R(RW)
stabilize to traces of physGeo in time tstab + ttlGeo + 2d + e.

6 Conclusions

We’ve presented a basic formal theory of self-stabilizing emulations for timed
abstract virtual node layers. Abstract VSA layers can make the task of designing
algorithms for mobile ad hoc networks considerably simpler than it would be in
the absence of any infrastructure. Self-stabilizing algorithms were previously
presented for emulation of VSA layers [6], and here we formalize the notion of
emulation and self-stabilizing emulation. Such formalization provides a clear set
of proof obligations required to conclude that an algorithm successfully provides
an emulation of an abstract VSA layer, allowing an application programmer to
program the VSA layer without worrying about how that layer is provided.

The formalization of self-stabilizing emulation also allows us to guarantee
that if a self-stabilizing emulation of the abstract VSA layer is running a self-
stabilizing VSA layer application, then the result is a system whose externally
visible actions eventually look like those of a legal execution fragment of the
application being run. This separates the reasoning about the stabilization prop-
erties of the emulation algorithm from those of the application being run.

These support application developers for unpredictable mobile networks by
allowing them to safely and easily take advantage of timed virtual infrastructure
to aid in problem solving.

References

1. Camp, T., Liu, Y., “An adaptive mesh-based protocol for geocast routing”, Journal
of Parallel and Distributed Computing: Special Issue on Mobile Ad-hoc Networking
and Computing, pp. 196–213, 2002.

2. Dijkstra, E.W., “Self stabilizing systems in spite of distributed control”, Commu-
nications of the ACM, pp. 643-644, 1974.

3. Dolev, S., Self-Stabilization, MIT Press, 2000.
4. Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartsman, A., and Welch, J.,

“Virtual Mobile Nodes for Mobile Ad Hoc Networks”, International Conference
on Principles of Distributed Computing (DISC), pp. 230-244, 2004.

5. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J., “GeoQuorums: Im-
plementing Atomic Memory in Ad Hoc Networks”, 17th International Conference
on Principles of Distributed Computing (DISC), Springer-Verlag LNCS:2848, pp.
306-320, 2003. Also to appear in Distributed Computing.

6. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and Nolte, T., “Timed Virtual Sta-
tionary Automata for Mobile Networks”, Technical Report MIT-LCS-TR-979a,
MIT CSAIL, Cambridge, MA 02139, 2005; and appeared in 9th International Con-
ference on Principles of Distributed Systems (OPODIS), 2005.

7. Dolev, S., Lahiani, L., Lynch, N., and Nolte, T., “Self-stabilizing Mobile Node
Location Management and Message Routing”, 7th Self-stabilizing Systems (SSS),
2005.

8. Dolev, S., Herman, T., and Lahiani, L., “Polygonal Broadcast, Secret Maturity
and the Firing Sensors”, Third International Conference on Fun with Algorithms
(FUN), pp. 41-52, May 2004. Also to appear in Ad Hoc Networks Journal, Elseiver.

9. Dolev, S., Israeli, A., and Moran, S., “Self-Stabilization of Dynamic Systems As-
suming only Read/Write Atomicity”, Proceeding of the ACM Symposium on the
Principles of Distributed Computing (PODC 90), pp. 103-117. Also in Distributed
Computing 7(1): 3-16 (1993).

10. Karp, B. and Kung, H. T., “GPSR: Greedy Perimeter Stateless Routing for Wire-
less Networks”, Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, pp. 243-254, SCM Press, 2000.

11. Kaynar, D., Lynch, N., Segala, R., and Vaandrager, F., The Theory of Timed I/O
Automata, Morgan and Claypool Publishers, 2006.

12. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A., “Geometric Ad-Hoc Routing:
Of Theory and Practice”, Proceedings of the 22nd Annual ACM Symposium on
Principles of Distributed Computing (PODC), pp. 63-72, 2003.

13. Kuhn, F., Wattenhofer, R., and Zollinger, A., “Asymptotically Optimal Geo-
metric Mobile Ad-Hoc Routing”, Proceedings of the 6th International Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communications
(DialM), pp. 24-33, ACM Press, 2002.

14. Navas, J.C., Imielinski, T., “Geocast- geographic addressing and routing”, Pro-
ceedings of the 3rd MobiCom, pp. 66-76, 1997.

